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GROWTH OF EDGE-HOMOGENEOUS TESSELLATIONS*

STEPHEN GRAVES', TOMAZ PISANSKI¥, AND MARK E. WATKINST

Abstract. A tessellation is understood to be a 1-ended, locally finite, 3-connected planar map.
The edge-symbol (p,q; k,£) of an edge of a tessellation T is a 4-tuple listing the valences p and ¢
of its two incident vertices and the covalences k and £ of its two incident faces. To say that T is
edge-homogeneous means that all edges of 1" have the same edge-symbol. By a result of Griinbaum
and Shephard, each edge-transitive tessellation may be identified with its edge-symbol. It is shown
that the growth rate of T is given by a function g(t) = %(t — 2 + V/t2 — 4t) of the single variable

t= (pT"'q — 2)(% — 2), except that the growth rate equals g(t — 1) when the edge-symbol of T" or

its planar dual has the form (3, ¢;4,4), where ¢ > 6. Thus, for each integer ¢ > 4, there are only
finitely many edge-homogeneous tessellations whose growth rate equals g(t), allowing a complete list
of such tessellations to be compiled in terms of increasing growth rate. The maximum value of the
quantity % + % + % + % for tessellations with given value t is shown to decrease monotonically as
t increases, while the minimum value decreases only asymptotically. Methods are demonstrated for
concrete enumeration of the sets of faces and vertices at any given facial distance from a fixed face,
edge, or vertex.
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1. Introduction. In the present work, the term “tessellation” denotes an in-
finite, locally finite, 3-connected planar map that is one-ended, i.e., the deletion of
no finite subgraph leaves more than a single infinite component. It is well known
that any automorphism of the underlying graph of such a map is extendable to a
homeomorphism of the plane [10]. If a tessellation is almost-transitive, then it is also
dually locally finite; i.e., all facial walks are finite circuits (cf. [3, Theorem 2.3]). A
tessellation is edge-homogeneous when there exists a 4-tuple (p, ¢; k, £) of integers > 3,
called the edge-symbol of the tessellation, such that for each edge, p and g are the
valences of its two incident vertices, and k£ and £ are the covalences of its two incident
faces. Grinbaum and Shephard [8] proved that edge-homogeneous tessellations are
determined up to isomorphism by their edge-symbol and are, in fact, edge-transitive.

We determine the “growth rate” of edge-homogeneous tessellations outward from
a central vertex, edge, or face, called its root. When F}, denotes the set of faces in the
nth corona of a Bilinski diagram of a tesselation 7', the growth rate is defined as

n+1 n

AT) = lim 3 1F;| /SR,
j=0

§=0
if the limit exists; it is independent of the chosen root.
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2 STEPHEN GRAVES, TOMAZ PISANSKI, AND MARK E. WATKINS

For a rooted tessellation T' with edge-symbol (p, ¢; k,£), the faces are of vari-
ous “types” depending upon their covalence and their orientation with respect to
the root. We obtain a system of recurrences which enable us to compute the num-
bers of faces of T of each type at regional distance n + 1 (from the root) in terms
of the number of each type at regional distance n (n € N). These recurrences
yield a transition matrix A whose entries are multinomials in p,q,k, and £. Us-
ing packages for symbolic computation, we can determine the spectrum of A ex-
plicitly for any edge-homogeneous tessellation. The ordinary generating function
> nen | Fnlz™ of the sequence {|F,| : n € N} is expressed in terms of A. Then we
prove that the growth rate v(7") equals the eigenvalue of A of largest modulus (abso-
lute value).

To an edge-homogeneous tessellation with edge-symbol (p, ¢; k, £) we associate a
parameter ¢, which is a linear function of the product of the average valence (p+ ¢)/2
and the average covalence (k 4 £)/2. The set of values assumed by ¢ is exactly the
set of integers > 4. For each t > 4, let 7 (t) denote the set of edge-homogeneous
tessellations associated with t. The sets 7 (t) are finite. Our main result is that v(7')
for T € 7 (t) is determined also by the single parameter t. Specifically, for each t > 4,
if T € 7(t), then v(T) = g(t) = & (t — 2+ V2 — 4t) with the following exception:
When the edge-symbol of T or its planar dual is of the form (3, ¢; 4, 4) for ¢ > 6, then
AT = gt~ 1).

It is a folklore theorem that an edge-homogeneous tessellation T is finite, has
quadratic growth, or has exponential growth (with respect to regional distance from
a root) when the quantity u(T) = % + % + % + % is > 1, = 1, or < 1, respectively.
Denote by m(t) and M (t) the least and greatest values, respectively, of u(T) for
T € Z(t). We prove that M(¢) is strictly decreasing in ¢. The Lagrange multiplier
method shows that m(t) is asymptotic to 4/ (2 + /), although it is not monotonic.

Finally we demonstrate how to crunch some numbers to obtain exact values for
the numbers of vertices, edges, and faces at any given facial distance from a central
vertex, edge, or face.

This article considerably extends the work of Moran; in [11] she computed the
growth rates of tessellations, in our notation, of the form (p,p;k, k) and determined
when the limit lim,, Z?iol |Fjl/ 3= |Fj| exists for face-homogeneous triangula-
tions of the hyperbolic plane.

2. Preliminaries. In order to give a precise definition of “growth rate,” we use
what may be called a Bilinski diagram. These diagrams were first used by Bilin-
ski in his dissertation [1, 2] and more recently by Griinbaum and Shephard [9] and
Moran [11].

DEFINITION 2.1. Let M be a map that is rooted at some vertex x. Define a
sequence of sets {U, : n > 0} of vertices and a sequence of sets {F,, : n > 0} of faces
as follows.

o Let Ug = {z}, and let Fy = 0.

e Forn > 1, let F,, denote the set of faces of M not in F,_1 that are incident
with some vertex in U, _1.

e Forn > 1, let U, denote the set of vertices of M not in U,_1 that are incident
with some vertex in F,,.

The stratification of M determined by {U,} and {F,} is called the Bilinski dia-
gram B of M rooted at v. In a similar way one can define a Bilinski diagram of M
rooted at a face f. In this case Uy = 0 and Fy = {f}. A Bilinski diagram is concentric
if each subgraph (Uy,) induced by U,, (n > 1) is a circuit. If a map yields a concentric
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GROWTH OF EDGE-HOMOGENEOUS TESSELLATIONS 3

Bilinski diagram regardless of which vertex or face is designated as its root, then the
map is uniformly concentric.

Remark. In practice one may alter Definition 2.1 by letting the root be any
vertex-induced, finite, simply connected submap.

Intuitively, one can label any planar map as a Bilinski diagram by arbitrarily
selecting a vertex to comprise the singleton set Uy and then calling by U,, each set of
vertices on subsequent successive layers with (increasing) radius n. When the diagram
is concentric, the layers induce “concentric” circuits (U, ). The annulus between two
consecutive layers is partitioned by the set F), of faces, which constitute the nth
corona. Thus the vertices adjacent to a vertex in U, lie in U,y UU, UU, 41, and the
vertices incident with a face in F, belong to U,,—1 U U,,.

Let .#, 1, denote the set of maps with all valences finite and > a and all covalences
finite > b. Let .#, ;+ denote the set of maps in .#,  such that no two b-covalent faces
are adjacent. Let .#,+ ; denote the set of maps in .#,; such that no two a-valent
vertices are adjacent.

The following proposition contains results from [12] and [4].

PROPOSITION 2.2. Let the map M be labeled as a Bilinski diagram with respect
to which v € Uy, and f € F,,, (m,n > 1).

(a) If M € Ms36U Mzt 50 MssU My 5+ U Mg 3, then M is uniformly concentric.

(b) If M € M36U M5+ 5, then v is adjacent to at most one vertex in Up,—1 and

f is incident with at most two edges of (Up—1).

(c) If M € My, then v is adjacent to at most one vertex in U,,—1 and f is

incident with at most one edge of (Up—_1).

(d) If M € M5 3+ U M3, then v is adjacent to at most two vertices in Uy,,—1 and

f is incident with at most one edge of (Up_1).

The next proposition from [5] gives necessary conditions for uniform concentricity
in terms of forbidden local configurations.

PropoOSITION 2.3. If a map admits any of the following configurations, then it
is not uniformly concentric:

(a) a 3-valent vertex incident with a 3-covalent face;

(b) a 4-valent vertex incident with two nonadjacent 3-covalent faces;

(¢) an edge incident with two 3-valent vertices and two 4-covalent faces;

(d) a 4-covalent face incident with two nonadjacent 3-valent vertices;

(e) an edge incident with two 4-valent vertices and two 3-covalent faces.

Note that these conditions are closed with respect to duality. Uniformly con-
centric tessellations form, in a sense, the general case. The nonconcentric Bilinski
diagrams evidence some “closing up” at all but the first few levels, yielding a slower
growth rate, but also requiring special computational considerations, as we will see in
section 4.

DEFINITION 2.4. Let the tessellation T be labeled as a Bilinski diagram. The
growth rate of T is defined as

n+1 n
AT) = 1im ST IF| /SR
j=0 j=0
when this limit exists and is finite.

It is not hard to show that the growth rate v just defined is equal to the growth
rate defined in terms of the standard distance metric d(—,—), provided that the
covalences of the map are not arbitrarily large. Consider a Bilinski diagram of a map
M with maximum covalence k, and let the root be a vertex x. Let y be an arbitrary
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4 STEPHEN GRAVES, TOMAZ PISANSKI, AND MARK E. WATKINS

vertex in U, 41 of the Bilinski diagram. Since 1 < d(y,U,) < |k/2], one easily obtains
by induction that

n <d(z,y) <n|k/2].

Hence every n-ball with respect to d(—, —) centered at x is contained in the union
of the first n layers of vertices of the Bilinski diagram, while U,, is contained in the
(n|k/2])-ball centered at x of the underlying graph.

To place the notion of homogeneity in a more general context, let us make the
following definitions (cf. [14]):

DEFINITION 2.5. Let T be a tessellation, and let f be a k-covalent face of T. A
valence sequence at f is a cyclic k-tuple (p1,p2,...,px) of integers > 3 that lists in
cyclic order the valences of the vertices incident with f as one proceeds around f in
either the clockwise or counterclockwise direction. If a given cyclic k-tuple is a valence
sequence of every face of T, then we say that T is face-homogeneous.

If in this definition we swap the words “vertex” and “face” and the words “valence”
and “covalence,” then we will have defined a vertex-homogeneous map.

Suppose that T' is edge-homogeneous with edge-symbol (p,q; k,¢). If p = g,
then T is vertex-homogeneous with covalence sequence (k, ¢, k, ¢, ..., k,£). Dually, if
k = £, then T is face-homogeneous with valence sequence (p,q,p,q,...,p,q). Clearly
a map that is both p-valent and k-covalent is vertex-, face-, and edge-homogeneous.
While each permissible edge-symbol determines a unique edge-transitive map (by
Proposition 2.8 below), a covalence sequence may be realized by infinitely or finitely
many vertex-homogeneous maps or by no map at all, and any map so determined
may or may not be vertex-transitive. (This question is the subject of [14].)

PROPOSITION 2.6 (Moran [11], Theorems 7.1 and 9.1). Let T be a vertex-
homogeneous tessellation whose planar dual is T*.

(a) Ifv(T) exists, then so does v(T*), and v(T*) =~(T).

(b) The recurrences that determine y(T') are independent of the root of the Bilin-

ski diagram used to compute them.

The following result will be used for a special case in section 4.

PROPOSITION 2.7 (Moran [11], pp. 159, 163). Let T be a p-valent, k-covalent
tessellation, where 1/p+ 1/k < 1/2.

(a) If k > 4, then its growth rate is given by

(kp—2p—2k+2)++/(kp—2p—2k+2)2 —4
5 .
(b) If k =3 and p > 7, then its growth rate is given by

a4 APd
(2.2) (T) = ! .

(¢) If 1/p+1/k < 1/2, then v(T) is an irrational number > 1.

Note that if the parameters for any of the three regular Euclidean tessellations
(where 1/p+ 1/k = 1/2) are substituted into (2.1), then we obtain v = 1. In this
same work [11, Theorem 6.1], Moran also determined the growth rates of all 3-covalent
face-homogeneous maps and found lim,, . Z;jol |Fj1/ 327=0 | Fj] to exist in all cases
except when the valence sequence has the form (271, 2j2,4), where j; # ja.

For an edge-homogeneous tessellation T with edge-symbol (p, ¢; k, £), we define

11 1 1

T)y=-+-4-+-.
pI) =+t 47

(2.1) T) =
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It is well known that if u(7T) > 1, then T is finite—if it is realizable at all—and if
so, then it has a “normal” realization on the sphere, in the sense that faces of equal
covalence are congruent regular polygons. If u(T) = 1 and if T is realizable, then
T has a normal realization in the Euclidean plane, Z;-Z:O |F;| grows quadratically in
n, and y(T') = 1. However, if u(7') < 1, then T has a normal realization in the
hyperbolic plane, E?:o |F;| grows exponentially in n, and v(T') > 1.

For the tessellations considered in this article, the following strong result was
obtained in [8].

PROPOSITION 2.8 (Griinbaum and Shephard [8]). Let p,q,k,{ be integers >
3. There exists an edge-homogeneous, 3-connected, finite or 1-ended map with edge-
symbol {(p, q; k,?) if and only if exactly one of the following holds:

(a) all of p,q,k, and £ are even;

(b) k= is even and at least one of p,q is odd;

(¢) p=q is even and at least one of k,{ is odd;

(d) p=gq, k=4, and all are odd.
Such a map is edge-transitive and is uniquely determined (up to isomorphism) by
its edge-symbol. If p = q, then it is vertex-transitive. If k = £, then it is face-
transitive. Finally, the parameters p,q, k,{ determine the map up to homeomorphism
of the plane.

We remark that, for some edge-symbols, there exist more than one multi-ended
map with that edge-symbol. A detailed classification of all edge-transitive planar
maps is found in [7].

3. The generating function. Let a tessellation T' with edge-symbol (p, ¢; k, £)
be labeled in accordance with a Bilinski diagram. If the root is a face, then |Fy| = 1.
Otherwise Fy = ). If the root is a vertex z, then Uy = {z} and |F}| equals the valence
of z. If the root is an edge, we let Uy consist of its two incident vertices, while F}
consists of all faces incident with one or both of these two vertices.

Suppose that the set F, is partitioned into m types of faces; the type of a face
f € F,, is determined by its covalence, the number of vertices incident with f of each
valence that lie in U,,_1, and the number of vertices incident with f of each valence
that lie in U,. Let the column vector v,, = [vy,... 7vm]t list the number of faces in
F,, of each type. Suppose further that for all n > 1 and each 4,j € {1,...,m}, there
exists a constant a;; denoting the number of faces in Fj,1 of the ith type whose
existence is due to each face in F), of the jth type. The existence of such constants
a;; for edge-homogeneous tessellations will be demonstrated by direct computation
in section 4.

The m x m matrix A = [a, ;], called the transition matriz, satisfies the recurrence

Vig1 = Avy,, n>1.

Each entry of A and of v,, is a multinomial in some or all of p,q, k, and £. Let the
row vector j = [1,1,...,1] be regarded as an (m x 1)-matrix. Then |F, 41| = jAv, =
jA"™vq, by induction for any n > 0 once the initial condition vq is given. In practice,
however, the vector vy is fictitious, because the types of faces that need to be counted
in v generally never occur in the nth corona when n > 1. For example, in the proof
of Lemma 4.3 below, if the root is a 3-valent vertex together with its three incident
faces, then Fy consists of three faces of a type that cannot exist elsewhere in the
Bilinski diagram and hence does not appear in the list of face-types. Our mechanism
for dealing with such situations is to replace A"vg by A vy for n > 1.
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6 STEPHEN GRAVES, TOMAZ PISANSKI, AND MARK E. WATKINS

We thus compute the ordinary generating function ¢(z) of the sequence {|F,| :
n > 0}:

p(z) =D |[Fnl2"
n=0

= |[Fo|+ > (A" 'vi)z"

n=1
= |Fol + 25 | > _(zA)"| v
n=0

from which the next theorem follows.

THEOREM 3.1. The ordinary generating function for the number |F,| of faces in
the nth corona of a concentric Bilinski diagram of an edge-homogeneous tessellation
with transition matriz A is

©0(2) = |Fo| + 2j(I — zA) vy,

where A is the transition matrix, j is the row vector of 1s, and vy is a column vector
listing the distribution of face-types in the first corona Fi.

The following result is from [13, p. 159].

PROPOSITION 3.2. Assume that a rational generating function u(z)/v(z) =
> anz™, with u(z) and v(z) relatively prime and v(0) # 0, has a unique pole 1/
of smallest modulus, and let its multiplicity be m. Then

A /8)
O

LEMMA 3.3. Let u(z)/v(z) be a rational generating function for > anz"™ such
that v(z) has a unique root of smallest modulus 1/X and v(0) # 0. Then

an = CA" ™ 4 o(f"n™ 1),  where

. An41
lim —*L = ).

n—oo Gy

Proof. Letting m be the multiplicity of the root of v(z) at 1/, we have from
Sedgewick and Flajolet’s proof of Proposition 3.2 that
Co

m—1yn
—_— A
(m — 1)!n

QAp ~

for some nonzero constant cg. This immediately gives

im )0
n—oo Gy
For a matrix B, let cof (B) denote the matrix whose (i, j)-entry is the cofactor of
the (4, j)-entry of B, and let x(B) denote its characteristic polynomial.
THEOREM 3.4. If the m X m transition matrix A of a tessellation T has a unique
eigenvalue A > 1 of largest modulus, then the growth rate of T is .
Proof. By Theorem 3.1,

o(z) = Z |E 2" = |Fol+ 2 [(I — 2A) " 'va].
n=0
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GROWTH OF EDGE-HOMOGENEOUS TESSELLATIONS 7

If p(2) is written as a rational function u(z)/v(z), then v(z) is determined by
(I —zA)~t. Specifically,

(I —zA)™! cof(I — zA)

_ 1

~ det(I — zA)
1

= o de(A =11 cof(I — zA)

1
= @Sy cof(I — zA).
Since elements of cof (I — zA) are polynomials in z, the denominator of ¢(z) is of the
form v(z) = (—2)™f(1/2); x(1/z) is a polynomial of degree m in 1/z. Hence v(z) has
nonzero constant term. This in turn gives that the roots of v(z) occur precisely at
the reciprocals of nonzero eigenvalues of A, and so the root of minimum modulus of
v(z) is 1/

Let 1(z) be the generating function of the sequence {Z?:o |F;| : n > 0}. Then
Y(z) =200 (im0 [FmD)2™ = 22020 [Ful2"/(1-2) = ¢(2)/(1—2). The denominator
of ¥(z) is (1 — 2)v(z), which has no additional root of modulus less than 1/A. Hence
by Lemma 3.3,

n+1 n

AT) = lim I/ SOIFL O
=0

Jj=0

4. The growth formula. Our first main result is the following.
THEOREM 4.1. Let the function g: {t € Z :t > 4} — [1,00) be given by

(4.1) g(t) = % (t —24 /12— 4t) .

Let T' be an edge-homogeneous tessellation with edge-symbol (p, q; k,£), and let

(4.2) _ <¥ _ 2) (# _ 2) .

Then exactly one of the following holds:
(a) the growth rate of T is g(t); or
(b) the edge-symbol of T or its planar dual is (3,q;4,4) for some q¢ > 6, and the
growth rate of T is g(t — 1).

The proof of the theorem is embodied in four lemmas which partition the pos-
sibilities for the edge-symbol. Case (a) is realized by each of the first three of these
lemmas, and all of the associated Bilinski diagrams are uniformly concentric. The
fourth lemma realizes Case (b), where the associated Bilinski diagram is not concen-
tric. Some of the eigenvalues in the proofs of these lemmas were obtained using Maple.

To fix notation for all four lemmas, we assume that 7T is an edge-homogeneous
tessellation with edge-symbol (p, ¢; k, £), that g is given by (4.1), and that ¢ is given by
(4.2). The average valence is r = (p+¢)/2, and the average covalence is s = (k+/£)/2.
Hence by (4.2), t = (r — 2)(s — 2).

Remark. Observe that

.g(t):%( _%"‘\/1—%)7andsolimtﬂw@:1;

1 1 /

The most general case is treated in the first lemma.
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8 STEPHEN GRAVES, TOMAZ PISANSKI, AND MARK E. WATKINS

Uy, ® o—()—o—
qpad dlp a\pd p/qg p\aIP qd/p
k k k
U, _
" q D q
£, £, fs
- o L
aqqpa dlp a\pd p/a p\IP qa/p
V4 14 V4
Un—l - bt
D q D q
fa fs fe

F1G. 1. Face types for Lemma 4.2, Case 1.

LEMMA 4.2. If p,q,k, and ¢ are all at least 4, then v(T') = g(t).

Proof. By assumption, T' € .#4 4. Hence by Proposition 2.2(a), T' is uniformly
concentric. The proof of this lemma is broken into four cases corresponding to the
four cases listed in Proposition 2.8.

Case 1: all of p,q,k, and £ are even.

Remark. This is the most complicated case. By explaining our procedure in
considerable detail in this case, we hope to omit much of the detail in the subsequent,
simpler cases and in the other lemmas of this section.

We assume the sets of vertices and faces of T to be labeled with respect to a
concentric Bilinski diagram. By Proposition 2.2(c), there can be up to six types of
faces. For each n > 2, the faces in the nth corona F,, have the following descriptions,
respectively, and are illustrated in Figure 1:

Type f; is a k-covalent face incident with one edge in U,,_1;

Type f3 is a k-covalent face incident with exactly one p-valent vertex in U, _1;

Type f3 is a k-covalent face incident with exactly one g-valent vertex in U, _1;

Type f4 is an ¢-covalent face incident with one edge in U, _1;

Type f5 is an ¢-covalent face incident with exactly one p-valent vertex in U,,_1;

Type fg is an ¢-covalent face incident with exactly one g-valent vertex in U, .

Suppose that v, denotes the column vector that lists the number of faces in Fi,
of each of these six types. The transition matrix A = [a; ;] is then a (6 x 6)-matrix
that satisfies

(4.3) Vig1 = Avy,, n>1.

The way that the entries of a; ; are obtained is indicated by Figure 2. We understand
that if f; and fo are adjacent faces in F;, and g € F, 41 is adjacent to neither f; nor
f2 but shares an incident vertex with both of them, then each of f; and fs is given
half-credit for the existence of g.

Let us, by way of an example, compute as 1, the number of Type fa faces in F}, 1
produced by each Type f; face f € F,,. The face f is incident with %(k — 2) p-valent
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GROWTH OF EDGE-HOMOGENEOUS TESSELLATIONS 9

f1 k

fs ¢

fs P

—
—
q(‘)ip-< 3
<
e

[pT_élfz + pT%fs]

R ]
i [1520 4 a5t

bt (et + byt

4
(k—2)fa

3 [t +

qC

3 [t + 2yt

Fic. 2. “Offspring” of various face types for Lemma 4.2, Case 1.

vertices in U,. Each of exactly 3(k — 4) of these p-valent vertices is adjacent to p — 3
vertices in U, 2 and is therefore incident with %(p— 2) Type f3 faces in Fj,+1. (Recall
that every edge is incident with one k-covalent face and one ¢-covalent face.) The one
remaining p-valent vertex is incident with %(p —4) Type f3 faces in F, ;1. Since this
vertex is also incident with another face in F},, we count only half of its contribution.

As a total, we get

a1 =

k—4

p—2
2 2 +2 2

1 p—4

1
= Z(pk—Bp—2k+4).

In this manner, one obtains all 36 entries of the following transition matrix:

0 0 0 -3 l—2 l—2
kp—3p—2k+4 (k=2)(p—2) kp—2p—2k (£=3)(p—4) (£=2)(p—4) fp—2p—4¢48
kq—3q4—2k+4 kq—24q—2k (’v*2)4(q*2) (5*3)4(1174) Zq—2q4—4l+8 (‘5*2)4(11*4)

A= 4 4 4 4 P
k—3 k—2 k—2 0 0 0
(k=3)(p—4) (k=2)(p—4) kp—2p—4k+8  (p—3p—20+4  (£=2)(p—2) fp—2p—2¢
(k=3)(q=4)  hq—2¢—ak+8  (k=2)(q=4)  Lg—3g-20+4  Lg—3q-20  (-=2){(g=2)
i 1 i 1 4 4
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fs q¢ k

F1G. 3. “Offspring” for face types for Lemma 4.2, Case 2.

The eigenvalue of A with maximum modulus is

1
g(pk+p€+qk+q€—4p—4q—4k—4€+8)

1
+ gVt a4 (k=2 (pk+pl+ gk +qf —dp — dg — 4k — 40)

(p+q)(k+0)—4(p+q+k+1)+8]

|~

+ Vo DG D r OG0 Apr gt D)

:%[TS—Z(T—I—S)—FZ—I—\/(r—2)(s—2)[rs—2(7“—|—8)]}

=2 [r-26-29 -2+ Vi G- D269 - 1]
%Q—2+Vﬁ—u):mw

By Theorem 3.4, v(T') = ¢(t) as claimed.

Case 2: k= { and at least one of p,q is odd.

This case may be considered as a special case of Case 1, where T" has edge-symbol
(p,q; k, k). We do not actually use that p or ¢ is odd, but for the matrix entries to
make sense, k must be even. Here the face Types f; and f4 of the previous case are
identified, as are Types fa and f5, as well as Types f3 and fg, and their “offspring”
are as seen in Figure 3.
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The transition matrix is thus the following (3 x 3)-matrix:

k-3 k-2 k-2

A= |2(kp—3k-3p+8) Lk-2(p-3) Lkp—3k-2p+4)
1(kq—3k—3q+8) i(kq—3k—2¢+4)  (k—2)(¢—3)

Again letting r = 224, s = 2 and ¢ = (r —2)(s—2), we compute the eigenvalue

of A with maximum modulus.

Lo+ ok 20049 4k + 4T T DE -G T OF 2+ a) )

=3[ -26-2 -2+ VTG D26~ - 1]

:%@—2+V#—u):mw

Case 3: p = q is even, and at least one of k, ¢ is odd.

In this case the tessellation is the planar dual of a tessellation described by Case
2. By Proposition 2.6(a), the growth rate is the same as that of its dual.

Case 4: p=q, k = ¢, and all are odd.

By Proposition 2.7(a), the growth rate of T' is given by (2.1):

1

'Y(T):i{pk—?p—2k+2+\/(pk—2p_2k_2)2_4}

— 3 [0 2 -2 Vi - 20— 2) - 27 -],

Trivially, p is the average valence, and k is the average covalence. With t = (p —
2)(k — 2), we obtain

703:50—2+wﬁ—u):mw O

The remaining three lemmas exhaust the special cases when T is not in .#j 4.
For the first of these, the edge-symbol of T is (3,q;k,k). The average valence is
r = 1(3+q) and the average covalence is s =k, and so t = (¢ — 1)(k — 2).

LEMMA 4.3. If T has edge-symbol (3,q;k, k), where ¢ > 4 and k > 6, then
AT) = g(t).

Proof. By Proposition 2.8, k£ must be even. Since T' € #3¢, T is uniformly
concentric by Proposition 2.2(a), and we assume that the sets of vertices and faces
of T have been labeled consistently with a Bilinski diagram. By Proposition 2.2(b),
except perhaps in Fy or Fy, T admits only three types of faces; for n > 2, a face
f € F, is of the following type:

Type f; if f is incident with exactly one edge in the subgraph induced by U,,_1;

Type f3 if f is incident with exactly two adjacent edges in the subgraph induced
by U, —1;

Type f3 if f is incident with exactly one g-valent vertex in U,,_;.

In the instance of a Type fz face, the “two adjacent edges” are incident with a
common 3-valent vertex. Figure 4 shows the “offspring” of these three face types.
The transition matrix A for this lemma is the following (3 x 3)-matrix:

k—4 k—6 k—4
A= 1/2 1 1
s(kq—3k—3q+8) $(k—4)(¢—3) 3(k—2)(¢—3)
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Unfl Un U’nfl Un
q q
q £ (g —3)fs q
3e
f1 f2 —®
: (k — 4)f; 3
3e
3 oﬁ< LAfs 90—
U’nfl Un
q
3 %fz
q
fs ¢q
(k — 4)f;
552 (g - 3)fs
i

F1G. 4. “Offspring” for face types for Lemma 4.3.

The eigenvalue of A of maximum modulus is

Lok 20—k 24 VgD 2@k 20 k0|

: [1<q—1><k—2>—2+\/§<q—1><k—2> B@—l)(k—m—zxﬂ

212

:%G—2+¢§tﬂ)=MU 0

LEMMA 4.4. If T or its planar dual has edge-symbol (3,3;k, k), where k > 6,

then v(T) = g(t).
Proof. Clearly t = k — 2. By Proposition 2.7(b), we use (2.2) to obtain

A1) = 5 (k=4 + VE=DP—4)
:%G—2+Vﬁ—u):mw O

The one remaining class of edge-symbols to be considered is that of the form

(3,q;4,4), where ¢ > 6. The average valence is r = %(3+q), and the average covalence
is trivially s = 4. Thus t = (r — 2)(s —2) = ¢ — 1. As previously remarked, this is the

one situation where no Bilinski diagram of 7" or of its planar dual is concentric (cf.
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. =f+
& o

uj uz

w e
(S

F1G. 5. Vertex types for Lemma 4.5.

Proposition 2.3(d)). The concurrence of small values in the edge-symbol causes some
“closing up” and hence a slightly slower growth rate than for the other tessellations
with the same t-value. It is notable that the class of edge-homogeneous planar maps
with edge-symbol of the form (3, ¢; 4,4) and their planar duals is exactly the class of
edge-transitive planar maps with the property that no Petrie walk is a double ray.
Rather, all Petrie walks are circuits of length 2¢ (see [7], Theorem 6.3).

LEMMA 4.5. If T has edge-symbol (3, q;4,4), where ¢ > 6, then v(T) = g(t —1).

Proof. By Proposition 2.6(a), recurrences using vertices instead of faces yield the
same growth rate. Except perhaps in the Uy or Uy, T admits only the following three
types of vertices (see Figure 5). For n > 2, a vertex u € U, is of the following type:

Type uy if u is 3-valent and has exactly one neighbor in U,,_1;

Type ug if u is g-valent, has no neighbor in U,,_; and two neighbors in U,;

Type ug if u is one of a pair of adjacent vertices of which the ¢g-valent vertex has
no neighbor in U,,_1 and three neighbors in U,,, while the 3-valent member of the pair
has two neighbors in U,,_1.

The two Type ug vertices are treated as a single item in the recurrence computa-
tion, and therefore one must remember to double the number of Type ug vertices when
enumerating the sets U,,. The transition matrix A for this lemma is the (3 x 3)-matrix:

0 ¢g—4 q-—5
A=10 ¢g—5 q—6
0 1 1

The eigenvalue of A with the largest modulus is

So— 4 VP a) = (134 VT3P d) =gt-1). O

Note that when ¢ = 6, we have the familiar Euclidean tessellation with rhombi
(designated by Coxeter [6, p. 61] as [2{6,3}] {6,3}), and the characteristic polynomial
of A factors as (z+1)%(z — 1)2. Setting ¢ = 7 gives the “first” hyperbolic map of this
kind; the roots are —1 and (3 £ V/5).

5. Some comparisons. A lot of numerical data can be generated from the
formulas of the preceding section. It is useful to have an idea of their orders of
magnitude. In Table 1, we list the tessellations 7', identified by their edge-symbol,
having a t-value of ¢ < 9, sorted first by increasing growth v(7T'), then by increasing
t-value, and thirdly by decreasing value of u(7T). We also include the number of the
lemma in the preceding section that gives the first two values. In the case of Lemma
4.2, the integer in parentheses indicates the appropriate case within the proof. To
reduce redundant information, for tessellations that are not self-dual we have not
listed both the tessellation and its dual. In particular, for a pair of dual tessellations
covered by Cases 2 and 3 of Lemma 4.2, we list only one of the two tessellations.

Remark. We see from Table 1 that the edge-homogeneous tessellations with the
slowest exponential growth rate have growth rate %(3 + \/5) ~ 2.618. There exist
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14 STEPHEN GRAVES, TOMAZ PISANSKI, AND MARK E. WATKINS

TABLE 1
Edge-homogeneous tessellations with 4 <t <9.

[ (1) [t ] p(@) ] Edgesymbol | Lemma |
T 4] 1 (3.3:6,06) 3.4
1 4| 1 4,4,4,4) | 3.21)
T 5 1 3,6:4,4) 35
2618 | 5| 09524 | (3.3:7.7) 3.4
2618 | 5| 0.95 4,54,4) | 3.2(2)
2.618 6 | 0.9762 (3,7;4,4) 3.5
3.7321 | 6 | 0.9167 | (3,3:8,8) 3.4
3.7321 | 6 | 0.9167 (3,4;6,6) 3.3
3.7321 | 6 | 0.9167 | (4,6:4,4) | 3.2(1)
37321 | 6 | 0.9 4,544 | 3.2(2)
3.7321 | 7 | 0.9583 (3,8;4,4) 3.5
47913 | 7| 08920 | (4,7:4,4) | 3.2(2)
47913 | 7 | 0.8889 | (3,3:9,9) 3.4
47913 | 7 | 0.8667 | (4,4;5,6) | 3.2(3)
17913 | 8 | 0.0444 | (3,9;4,4) 35
58284 | 8 | 0.875 | (4,84,4) | 3.2(1)
5.8284 | 8 | 0.8667 (3,5;6,6) 3.3
5.8284 | 8 | 0.8667 | (3,3;10,10) 3.4
58284 | 8 | 08420 | (5, 7:4,4) | 3.2(2)
58284 | 8 | 0.8333 | (4,4;6,6) | 3.2(1)
5.8284 | 9 | 0.9333 | (3,10;4,4) 35
6.8541 | 9 | 0.8611 | (4,9;4,4) | 3.2(2)
6.8541 | 9 | 0.8485 | (3,3;11,11) 3.4
6.8541 | 9 | 0.8333 | (4,6;4.6) | 3.2(1)
6.8541 | 9 | 0.8333 (3,4;8,8) 3.3
6.8541 | 9 | 0.8250 | (4,4;5,8) | 3.2(3)
6.8541 | 9 | 0.8095 | (4,4;6,7) | 3.2(3)
6.8541 | 9 | 0.8000 | (5,5:5,5) | 3.2(4)

many non—edge-homogeneous tessellations with exponential growth that are vertex-
homogeneous or face-homogeneous and that grow more slowly. For example, the
method of Lemma 6.2 in [11] can be applied to the unique 3-valent, face-homogeneous
tessellation with vertex-sequence (6, 6, 7); its growth rate is i(l—l—\/l—?)—l— V213 — 2) =
1.722. (Uniqueness follows from [14], p. 613.)

Notation. Thanks to Proposition 2.8, we are entitled to the notational convenience
of writing u(p, g, k, ¢), when we mean p(7'), where T is the (unique) tessellation with
edge-symbol (p, ¢; k, £). For t > 4, let 7 (t) denote the set of tessellations 7" for which
t= (22 —2) (B —2). Let M(t) and m(t) denote the greatest and the least value,
respectively, of u(T) for T € T (t).

The data suggest some sort of inverse correlation between ¢-value (and hence
growth rate) and the value of . We formulate this in terms of the following nonlinear
integer optimization problem.

PROBLEM 5.1. For fized t > 4, assume that the tessellation T € T (t) has edge-
symbol {p,q; k, ).

Mazimize and minimize: pu(p,q,k,l) subject to
P, k=3

and

() ()
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The following theorem shows that M (t) is strictly decreasing.
THEOREM 5.2. For each t > 6,
1

5

and the second largest value of p on J (t) is

3.1
4,t,4,4) ="+ .
:U“(vav) 4+t

Proof. Assume that ¢t > 6. Let M; = M, and let M5(t) denote the second largest
value of pon 7 (t). Clearly 7 (t) contains tessellations with edge-symbol (3,t+1;4, 4)
and with edge-symbol (4,¢;4,4), and these tessellations yield the values of p given in
the statement of this theorem.

Without loss of generality, we may assume that p < ¢, k¥ < £, and, by duality,
p<k. Ifpqk,¢>5 then u(p,q,k,0) < % < u(3,t+1,4,4) < My (t). If p,q,k,£ > 6,
then pu(p,q,k,0) < 3 < p(4,t,4,4) < Ms(t). Hence we need to consider only those
edge-symbols with p equal to 3, 4, or 5.

Suppose that p = 3. By Proposition 2.8, T has edge-symbol (3, q; k, k), where
either ¢ = 3 and k is odd or ¢ is arbitrary and k is even. In the former instance, we
must have k = ¢t + 2 and pu(T) = % + t% The assumption that p(T) > wu(4,t,4,4)
leads to the quadratic inequality 0 > 2 — 10t + 24, whose only real integer solution is
t = 5, contrary to assumption.

Now suppose that & is even. Then t = (¢ — 1)(k — 2). If k = 4, then ¢ =t + 1,
and p(T) = M;(t) as claimed. If k¥ = 6, we obtain exactly the same contradiction
as in the previous paragraph. If k = 8, then q = %(t + 3), and the assumption that
1(3,q,8,8) > % + % leads to the inequality 0 > ¢ — 9¢ + 18, which implies that ¢t = 6
and hence ¢ = 3, in which case (3,3;8,8) ties for second place in 7 (6) (see Table
1). Finally, if k& > 10, then u(3,q,k,k) < {5 + ;. If this quantity is greater than
% + %, then we must have ¢ = 4, which leads to the same quadratic inequality as in
the subcase of k = 8 but, in this instance, to a contradiction.

Suppose that p = 4. We may assume that ¢ > 5 or k > 5. First suppose that ¢ is
odd. Then k = ¢ > 6 and is even. If T has edge-symbol (4,5;6,6), then T € 7 (10)
and 1(4,5,6,6) = 0.783 < 0.85 = u(4,10,4,4). If ¢ > 7 or k > 8, then one easily
checks that p(p, g, k,¢) < 3/4.

Now suppose that ¢ = 4. First consider the tessellation 7" with edge-symbol
(4,4;6,0). Then T' € T (€+2) and pu(T) = 2 + 3. But if p(4,£+2;4,4) < p(T), then
0 > ¢2 4 20 — 24, contrary to the assumption that ¢ > 6. Hence 7 < k < £. If T has
edge-symbol (4,4;7,7), then pu(T) ~ 0.7857, but w(4,10;4,4) = 0.85, as noted in the
previous paragraph. Hence 8 < k < ¢, and so u(4,4;k,¢) < %.

Hence ¢ > 6. If k > 6, then u(4,q;k,¢) < %, and so we need consider only
the tessellation T' with edge-symbol (4,6;4,6), which belongs to Z(9). But then
(T) = 0.83, while p(4,9,4,4) = 0.861.

Finally suppose that p = 5. Since 5 is odd, we have the same two possibilities as
in the case of p = 3. If T has edge-symbol (5, 5; k, k), then by our initial assumptions,
k>5 1f k=5 then T € 7(9) and pu(T) = 0.8 < 3 + & = (4,9,4,4). If k > 6,
then clearly p(7) < %. Hence suppose that T' has edge-symbol (5, ¢; k, k), where
g > 6. This forces k to be even, and so k > 6. But then u(7) < 0.7, completing the
proof. a

A glance at Table 1 shows that the theorem holds for M7 (5) but fails for Ms(5).

But what about the least values m(t)? Treating p, g, k, and £ as continuous variables
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16 STEPHEN GRAVES, TOMAZ PISANSKI, AND MARK E. WATKINS

and applying the method of Lagrange multipliers (see any standard advanced calculus
text), we find that, for fixed ¢t > 4, a minimum of u(p, ¢, k,¢) = 4/(2 + V/t) occurs
when all four parameters equal 2+ +/t. Thus when t is a perfect square, a tessellation
of minimum p-value m(¢) is found in .7 (¢) by this formula. It turns out, however,
that m(t) does not decrease monotonically. As a counterexample, m(12) = 0.733 is
realized by (5,5;6,6). But m(13) = 0.7361 is realized by (4,4;8,9).

6. Initial conditions and enumeration. In this final section we demonstrate
how the transition matrices constructed in section 4, in conjunction with elementary
enumeration methods, can be used to obtain the ordinary generating function for the
number of faces (or vertices or edges) in each corona for any Bilinski diagram of any
edge-homogeneous tessellation with any given root. Although, for any given value of
t, the individual parameters in an edge-symbol have no effect asymptotically as one
computes the growth rate, these parameters do determine the initial conditions of the
recurrence system and hence determine the concrete numbers that we are about to
compute.

As mentioned earlier, the vector v; is determined by the choice of the root of the
Bilinski diagram. Suppose, for example, that the tessellation in question belongs to
My 4 and all valences and covalences are even (as in Case 1 of Lemma 4.2). If the
root is a p-valent vertex, then

v1 =[0,p/2,p/2,0,0,0]%

if the root is an edge, then

|y, p—24q-2 p-2 q—2t.
Vi = 1) ’ 715 ) ’
2 2 2 2

if the root is a k-covalent face, then

k(p—2) k(qg—2)

k
4 ) 4 ) 3

kp—4) k(g—4)]'

6.1 =10 .
(6.1) vi=o —4 Mo
Determination of the initial vector v; in the other cases of the edge-symbol is a
straightforward exercise.

We now demonstrate how to count the vertices in U,, for n > 2. This, of course, in
a concentric Bilinski diagram equals the number of edges in the circuit (U,,) induced
by U,. Let us define the weighted row vector w = [wq,...,wy], where w; denotes
the number of edges in (U,,) incident with a face in F), of the ith face-type. Thus we
have the dot product
(6.2) |Up| = w-vE, (n>2).
For example, if the edge-homogeneous tessellation with edge-symbol (p, ¢; k, £) belongs
to .44 and all parameters are even, then

(6.3) w=[k-3 k-2 k—2,0-3, -2, £—2].
We conclude this article by applying the foregoing computations to an example.

Ezample. Consider the tessellation T with edge-symbol (4, 6;4,6). As we are in
Case 1 of Lemma 4.2, we have t = 9 and ¥(T) = g(9) = (74 3V/5) ~ 6.854. The
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transition matrix for T is

0 00 3 4 4
0 10 0 00
Ao b2 12 32 2 2
1 22 0 00
0 00 1 21
1/2 1 1 5/2 3 4

We choose the root of our Bilinski diagram of T" to be a 4-covalent face. By (6.1),
vi = [0,2,4,4,0,2]".
From Theorem 3.1, the closed form of the ordinary generating function ¢ for the
sequence {|F,|:n >0} is

12x

ST
#(2) +a:2—7a:—|—1

The two roots of the denominator are Ay = 3 (74 3v5) = y(T) and Ay = 1/A\; =
1 (7= 3V/5). Elementary algebra leads to

4 o0
pla) =1+ 72 3 (@0 = A + (2% = TAF]a"
n=0
Thus
|F,| = 1 ifn=0,
" % [(2)‘1 =TT + (2A2 — 7)/\3] if n > 1.

The sequence {|F,|: n > 0} begins with 1,12,84, 576, .. ..
Equation (6.3) yields the weighted vector w = [1,2,2,3,4,4], from which we
compute by (6.2) the sequence {|U,| : n > 0}, which begins with 4,32,220,1512,
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Abstract. Ensembles of regular low-density parity-check codes over any finite Abelian group
G are studied. The nonzero entries of the parity matrix are randomly chosen, independently and
uniformly, from an arbitrary label group of automorphisms of G. Precise combinatorial results are
established for the exponential growth rate of their average type-enumerating functions with respect
to the code-length N. Minimum Bhattacharyya-distance properties are analyzed when such codes are
employed over a memoryless G-symmetric transmission channel. In particular, minimum distances
are shown to grow linearly in N with probability one, and lower bounds are provided for the typical
asymptotic normalized minimum distance. Finally, some numerical results are presented, indicating
that the choice of the label group strongly affects the value of the typical minimum distance.

Key words. low-density parity-check codes, group codes, minimum distance, type-spectrum,
Ramanujan sums
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1. Introduction. Low-density parity-check (LDPC) codes have received a huge
amount of attention in the last years. It is indeed the family of high-performance
codes for which the deepest theoretical insight has been achieved. Their definition
is quite simple: they are those binary-linear codes which can be described as kernels
of matrices over the binary field Zs with a “small” number of nonzero elements.
Since the pioneering work [19], two streams of research are easily recognizable in the
literature on LDPC codes. On the one hand, structural properties of such codes have
been investigated: distance-spectra, minimum distances, and also capacity estimations
under maximum-likelihood (ML) decoding [28, 29, 25, 37, 25, 26, 9, 15, 33]. On the
other hand, they have been studied coupled with the well-known iterative decoding
schemes [34, 35, 42, 31, 43, 24, 36, 14].

The need to use transmission channels with higher spectral efficiency naturally
leads one to consider nonbinary codes and nonbinary LDPC codes. A typical example
is provided by the m-PSK Gaussian channel. This is a channel accepting as possible
input any element in the set m-PSK := {e%% | 1 < I < m}, while the received
output is obtained by adding a homogeneous, zero-mean, two-dimensional Gaussian
variable. When m is an integer power of 2—a case which is particularly relevant in
practice—in principle binary codes can be used for transmission over this channel.
Using any fixed bijection A : Z§ — 2"-PSK, binary-linear codes can be mapped into
codes on the alphabet 2"-PSK. The problem with this type of code is that, if r > 2,
for any possible choice of A they will not possess many of the symmetry properties
that binary-linear codes enjoy on binary symmetric channels: Voronoi regions will not
be congruent, Euclidean distance profiles will depend on the reference codeword, and
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the uniform error property will not hold. As a consequence the theoretical analysis
becomes quite hard and design-criteria optimization exceedingly complicated; in [22,
4, 5] an average-coset approach has been adopted in order to overcome this problem.
Actually, for such an input set, a much better candidate group structure is provided by
the cyclic group Z,,. Indeed, if we consider the natural map A : Z,, — m-PSK (with
A(l) = e%L any subgroup C C ZX yields, through the embedding )\, a code over
m-PSK possessing congruent Voronoi regions and invariant distance profiles [18, 27].
These codes (as well as the subgroups they come from) are called Z,,-codes. All
of this construction can be generalized to a broader family of transmission channels
exhibiting symmetry with respect to the action of a finite group G, which will be
called G-symmetric channels, and to a family of codes with group structure which
will be called G-codes.

Zm-codes have been widely studied in the past (see, for instance, [3]). A remark-
able fact is that, since Z,, is a commutative ring, they can be represented, as in the
binary case, as images or kernels of matrices with coefficients in Z,,. In this paper we
are particularly interested in kernel representations: given a matrix ® in ZLXV,

C:={xcZl|dx =0}

is obviously a Z,,-code. Regular LDPC Z,,-codes can easily be constructed by consid-
ering syndrome matrices with a fixed amount of nonzero elements both on each row
and on each column and, as in the binary case, randomly selecting nonzero positions
through a random-permutation approach. An interesting difference with respect to
the binary case is the way to choose the nonzero elements of ®. In this paper we will
consider many different possibilities. Among them, we consider the so-called unla-
belled ensemble, where nonzero elements are all equal to 1, and the uniformly labelled
ensemble, where nonzero elements are instead, each one independently, chosen to be
any possible invertible element in the ring Z,, with uniform probability. We will see
that the latter ensemble will outperform the former. Of course our results could be
extended to irregular LDPC ensembles, where the fraction of rows and columns with
different amounts of nonzero entries (degree profile) is fixed, although this extension
will not be considered here. Nonbinary LDPC codes have been considered for binary-
input channels as well (see [32], for instance). In this case, they allow us to introduce
a new design parameter, the choice of the nonzero entries in the parity matrix, to be
optimized jointly with the degree profile.

LDPC codes over nonbinary alphabets were already introduced and studied in
Gallager’s seminal work [19]. Precisely, Gallager considered regular ensembles of
LDPC Z,,-codes with all nonzero entries equal to 1 (unlabelled ensembles in our ter-
minology); he studied their Hamming distance-spectra and provided bounds for their
error probabilities under ML and suboptimal iterative decoding over some highly sym-
metric channels. More recently, after the rediscovery of Gallager codes in the 1990s,
LDPC codes over nonbinary fields, both for binary and nonbinary channels, have re-
ceived a considerable amount of attention by researchers. In [13], the authors show
empirical evidence that, appropriately choosing the values of the nonzero entries in the
parity-check matrix, LDPC codes over the Galois field Fyr perform better than the
corresponding binary LDPC codes when used over binary-input output-symmetric
channels. LDPC codes over Fyr for binary-input output-symmetric channels have
also been studied in [32] following a density-evolution approach. The works [4, 5, 17]
contain quite a complete theoretical analysis of LDPC codes over finite fields for
nonbinary channels considering both ML and belief-propagation decoding. Average
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type-spectra of regular LDPC ensembles over Z,, in the special case when p is prime,
and more in general over F)-, have been studied in [17, 4]. In this case the structural
theory of binary LDPC codes generalizes in an almost straightforward way. In par-
ticular it has been shown, using expurgation techniques and results from [39], that
average type-spectra provide lower bounds to the typical error exponent of these en-
sembles and that this exponent can be made arbitrarily close to the random-coding
one by allowing the density of the parity matrix to grow while keeping the rate con-
stant. Finally the recent works [8, 30, 38| investigate the possibility of using hybrid
nonbinary LDPC codes over multiple groups.

However, in the case of algebraic structures which are not fields (e.g., Z,, with
nonprime m), the available theoretical results are very few. In [4], average type-
spectra of unlabelled ensembles of LDPC Z,,,-codes have also been studied in the case
when m is not prime, but there are no results on minimum Euclidean distances. In
the papers [40, 1, 44] the case when m is not prime has been considered but mainly
from an iterative-decoding perspective. Computer simulations have been reported
in [40, 44] showing that, when mapped over the m-PSK constellation, LDPC Z,,-
codes guarantee better performance than their binary counterparts.

When m is not prime, the lack of field structure implies that the theory of Z,,-
codes itself (with no restriction on the density of their kernel representation) is not
as simple as in the linear case. This issue has been addressed in [10, 11], where
the capacity achievable by Z,,-codes (and more in general by Abelian group codes)
over symmetric channels—called Z,,,-capacity—has been characterized in terms of the
capacities of the channels obtained by restricting the input to all nontrivial subgroups
of Z, (see (2.5) in section 2.3). For the m-PSK constellation (when m is an integer
power of a prime) it has been proved that Z,,-codes achieve capacity, while this is
no longer the case for other possible geometrically uniform constellations. Type-
spectra and minimum distances of ensembles of Z,,-codes have been studied in [12],
where it has been shown that the typical Zg-code asymptotically achieves the Gilbert—
Varshamov bound of the 8-PSK AWGN channel. The study of the properties of
group-code ensembles gives insight into the theory of LDPC codes over groups, since
it allows one to distinguish between the possible loss in performance due to the group
structure and the one due to the sparseness of the syndrome representation.

In this paper we will study in detail average type-spectra and minimum Bhatta-
charyya-distances of regular LDPC ensembles over any finite Abelian group G, in
which the nonzero entries of the parity-check operator are randomly sampled, inde-
pendently and uniformly, from an arbitrary group F' of automorphisms of G (briefly
F-labelled ensembles), generalizing all of the results in [19, 13, 17, 4]. This extension
passes through the use of mathematical tools which do not show up in the binary
case: group characters, arithmetic concepts (Md&bius inversion formula, Ramanujan
sums), combinatorial techniques (Cayley graphs), and convex-analytical techniques.

As a first result, we will find exact expressions in terms of combinatorial formulas
for the average type-spectra of regular F-labelled ensembles of LDPC codes over Gj; see
Theorem 3.5. For the unlabelled ensemble of LDPC codes over Z,,, we will show that
our results for average type-spectra coincide with those obtained in [19, 4], while for
LDPC codes over finite fields the results of [13, 17, 4] will be recovered. Theorem 3.5
is instead completely original, to the best of our knowledge, for the uniformly labelled
ensemble of LDPC codes over Z,,, for which the average type-spectrum has an elegant
expression in terms of Ramanujan sums. Coupling this analysis with an ad hoc
analysis for the low-weight average type-enumerating functions, we will finally propose
upper bounds to the probability distribution of the minimum Bhattacharyya distance
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[6]. This will allow us to show that minimum distances grow linearly in N with
probability one (see Theorems 5.1 and 5.2): in the coding terminology this means
that such codes are asymptotically good with probability one. More precisely, we
obtain almost sure lower bounds on the asymptotic normalized minimum distance of
the LDPC ensembles. These bounds are defined as the solution of (|G|—1)-dimensional
optimization problems. Proving the tightness of these bounds would require second-
moment estimations for the type-enumerating functions and is a problem left for
future research. However, concentration results available in the literature for the
Hamming distance-spectra of regular ensembles of binary LDPC codes (see [33]) make
us optimistic about the tightness of our bounds for regular ensembles of LDPC G-
codes as well. Finally, we will present some numerical results for the average distance-
spectra showing how strongly the choice of the label group F' affects the value of the
typical minimum distance. In particular, we will show that, for the 8-PSK AWGN
channel, the distance properties of the uniformly labelled ensemble of LDPC Zg-codes
are significantly better than those of the unlabelled ensemble. This is confirmed by
Monte Carlo simulations of these codes which we have run, and it agrees with some
of the simulation results reported in [4].

The remainder of this paper is organized as follows. Section 2 is devoted to a
formal introduction of all of the fundamental concepts: G-symmetric channels and
the associated Bhattacharyya distance, Abelian group codes and their capacity, and
LDPC code ensembles over Abelian groups. In section 3 we study the average type-
enumerating functions of these ensembles, and we determine their exact growth rate,
namely the so-called average type-spectrum: the main result is Theorem 3.5. Section 4
is a technical one devoted to a detailed probabilistic analysis of low-weight codewords:
the main result is Theorem 4.6. Using the results of sections 3 and 4 we are able to
prove, in section 5, a probabilistic lower bound on the growth of minimum Euclidean
distances for the LDPC ensembles when the block-length N goes to infinity; see Theo-
rems 5.1 and 5.2. Finally, in section 6 we report some numerical simulations showing
that the uniformly labelled ensemble of LDPC Zg-codes definitely outperforms the
unlabelled one on the 8-PSK AWGN channel, and we draw some final conclusions.
An appendix completes the paper, containing some of the most technical proofs and
a technical lemma on semicontinuous functions.

2. The coding setting.

2.1. Notation. Throughout the paper N, Z, R, C will denote the usual number
sets. With Ry (Z4) we will indicate the set of nonnegative reals (integers). If z
is in C, then z* is its conjugate. The functions log and exp are to be considered
with respect to a fixed base a > 1. Conventionally, inf()) = +oo, sup() = —cc.
For any subset B C A, B := A\ B will denote the complement of B in A, while
1p : A — {0,1} will denote the indicator function of B, defined by 1p(a) = 1 if
a belongs to B and 1p(a) = 0 otherwise. For a finite set A, L?(A) will denote
the vector space of all C-valued functions on A, equipped with the Hermitian form
(f,9) =X 4ca fa)g(a)*. For a function f in L?(A) we shall indicate by supp(f) :=
{a € A| fla) # O} the support of f. Given f,g € L?>(A), f-g € L?(A) will denote
their pointwise product, while we define f9 := Haesupp( £ f(a)?@). We consider the
simplex P(A) of probability measures on A, P(A) := {#: A—R;| > 0(a) =1}
Given a subset B C A, we shall use the notation 8(B) := >, ;60(b). For a in A,
0o in P(A) will be the probability measure concentrated on a. The entropy function
H: P(A) :— R and the Kullback—Leiber distance D (:||-) : P(A) x P(A) — [0, +oc]
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are defined, respectively, by

6(a)
0'(a)’

H(0):=— Y  6(a)logf(a), D(0|6):= >  6(a)log

a€supp(0) a€supp(0)

Given x € AN, its A-type (or empirical frequency) is the probability measure
04(z) € P(A) given by [@a(x)](a) = & |[{1 <i < N : x; = a}|. Define the set of
types of all N-tuples by Pn(A) := 04(A"), and let Pn(A) := Uy Pn(A) be the set
of all A-types. The number of A-types |Px(4)| = (N|+A||A—|l_ 1) is a quantity growing
polynomially fast in N. Instead, the set of N-tuples of a given type 6, denoted by

Ag = {z € AV such that (s.t.) Oa(z) =6},

has cardinality growing exponentially fast with N. More precisely, for 8 € Py(A),
consider the set Ng := {N : NO@(a) € NVa € A} which is infinite since |A|N C Np.
Then, for every N € Np, we have |[A)| = () == N!/T[,(N6(a))!, and Stirling’s
formula implies that

N . 1 N
(2.1) ‘Ag | < exp(NN H(8)), NhEI/r\lfg N log ‘Ag | = H(0).

2.2. Symmetric channels. A memoryless channel (MC) is described by a finite
input set X, an output set consisting of a o-finite measure space Y = (Y, B,v), and a
family of transition probability densities P(:|z) on ) indexed by the possible inputs
z in X. Such a channel will be denoted by (X,), P). In the applications there are
essentially two possibilities: either Y is finite and v is simply the counting measure
(and in this case P(:|z) are simply probabilities on ), or ) is an n-dimensional
Fuclidean space and v is the corresponding Lebesgue measure. Keeping this more
abstract formalism will allow us to cover both cases at once.

We now recall the concept of a group action. Given a finite group G with identity
1 and a (finite) set A, we say that G acts on A if, for every ¢ in G, it is defined
as a map from A to A denoted by a — ga, such that 1ga = a for all ¢ in A and
h(ga) = (hg)a for all h,¢g in G and a in A. The action of G over A is said to be
(simply) transitive if for every a,b € A there exists one (and only one) element g of G
such that ga = b. If the action is simply transitive, G and A are clearly in bijection:
g — gag, where ag is some fixed reference element in A.

Given a o-finite measure space Y = (Y,B,v), we say that the group G acts
isometrically on Y if it is defined as an action of G on Y consisting of measurable
bijections such that

(2.2) v(gA) =v(A) VA€ B, Vg eG.

Notice that in the case, when Y is a finite set, (2.2) is trivially always verified so that
in this case all actions are isometric. Instead, in the case when Y = R™, (2.2) is a real
restriction and is verified if the maps y — gy are isometries of R".

DEFINITION 2.1. An MC (X,Y,P) is said to be G-symmetric if the following
hold:

(a) there exists a simply transitive action of G on X;

(b) there exists an isometric action of G on Y;

(¢) P(ylx) = P(gy|gx) for every g € G, every x € X, and v-almost every y € ).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



24 GIACOMO COMO AND FABIO FAGNANI

It follows from (a) that the input X of a G-symmetric MC and the group G are in
bijection: we will often tend to identify them. In this paper we will exclusively consider
the case when G is a finite Abelian group. We present a few fundamental examples.

Ezample 1 (binary-input output-symmetric channels). Consider the case when
G =~ Zsy. Zo-symmetric channels are known in the coding literature as binary-input
output-symmetric (BIOS) channels. Typical examples are the binary symmetric chan-
nel (BSC) and the binary erasure channel (BEC). By considering r consecutive uses of
a BIOS channel (X, ), P), one obtains a Zj-symmetric MC with input set X", output
space )", and product transition probabilities P(y|x) := [, <<, P(yr|zi).

Ezample 2 (m-ary symmetric channel). Consider a finite set X of cardinality
m > 2 and some ¢ € [0,1]. The m-ary symmetric channel is described by the triple
(X, X, P), where P(y|z) =1 —¢if y = x and P(y|z) = ¢/(m — 1) otherwise. This
channel returns the transmitted input symbol x as output with probability 1—¢, while
with probability € a wrong symbol is received, uniformly distributed over the set X\
{z}. The special case m = 2 corresponds to the BSC. The m-ary symmetric channel
was considered by Gallager [19, sect. 5] to evaluate the performance of nonbinary
LDPC codes. It exhibits the highest possible level of symmetry. Indeed, it is G-
symmetric for every group G of order |G| = m. To see this, it is sufficient to observe
that every group acts simply and transitively on itself. Notice that whenever m = p”
for some prime p and positive integer 7, the group G can be chosen to be Z;, which
is compatible with the structure of the Galois field F-.

Ezample 3 (geometrically uniform AWGN channels). An n-dimensional constel-
lation is a finite subset S C R™ spanning R™. We denote with Iso(S) its symmetry
group, i.e., the group of those isometries of R™ mapping S into S itself. A constella-
tion S is said to be geometrically uniform (GU) if there exists a subgroup G of Iso(S)
whose action on S is simply transitive. Such a G is called a generating group for S:
for every s € S the mapping As : G — S defined by s : g € G +— gs € S is a bijection
called isometric labeling.

Given a GU constellation S C R™ with generating group G, define the S-AWGN
channel as the n-dimensional unquantized AWGN channel with input set S, output R™
with the usual Borel-Lebesgue measure structure, and transition probability densities
given by P(y|z) = N(y — x), where N(z) = (27r02)_”/26_||9””2/2"2 is the density of
an n-dimensional diagonal Gaussian random variable. Now let S’ be another GU
constellation such that S C S and G is isomorphic to a subgroup of Iso(S’). Let
us introduce the quantization map over the Voronoi regions of S’ ¢ : R® — S’
g(x) = argmin,cg ||z — s|| (resolving nonuniqueness cases by assigning to ¢(z) a value
arbitrarily chosen from the set of minima). We define the (S, 5")-AWGN channel as
the MC obtained by applying ¢ to the output of the S-AWGN channel. Note that the
special case S = S’ coincides with the so-called hard decoding rule. It is easy to see
that both the S~JAWGN channel and the (S, S")-AWGN channel are G-symmetric.

The simplest example of a GU constellation is the so-called one-dimensional an-
tipodal constellation {—1,1}, admitting Zs as a generating group. Another example
is given by m orthogonal equal-energy signals: in this case the symmetry group co-
incides with the permutation group S,,, and any group of order m is a generating
group. A two-dimensional example is the m-PSK constellation already introduced in
section 1. Notice that the symmetry group of the m-PSK is isomorphic to D,,, the
dihedral group with 2m elements. m-PSK always admits cyclic generating group Z,,.
When m is even, the m-PSK also admits a generating group isomorphic to D, s,
which is non-Abelian for all m > 6. Notice that the only cases when m-PSK has
a generating group admitting Galois field structure are when m is prime or m = 4.
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In fact, when m = 2" with r > 3 or m = p" with p > 3 prime and r > 2, Z is
not isomorphic to any subgroup of D,, and thus cannot be a generating group for
m-PSK.

Consider an MC (X,)Y, P) and two input elements z,z’ in X. The Schwarz
inequality gives

0< / VPR PE)duy) < / P(ylz)dv(y) / Plyla')du(y) = 1.
Yy Yy Yy

Moreover, the first of the previous inequalities holds as an equality iff P( - |x)P(-|2’) =
0 v-almost everywhere. Instead, the second inequality is equality iff P(-|z) = P(-|z’) v-
almost everywhere, which means that actually z and z’ have indistinguishable outputs.
Throughout this paper we will assume that 0 < [}, \/P(ylz)P(y|z")dv(y) < 1 for
every x # x’. While there is no loss of generality in the latter part of this assumption,
the former excludes from our analysis the class of channels whose 0-error capacity is
strictly positive. To any MC we can associate a function

A: X xX—Ry, Az, 2') = —log/y V P(y|z)P(y|z")dv(y).

This function is usually called the Bhattacharyya distance (or simply A-distance) of
the channel. A is symmetric: A(x,2’) = A(2/,x); moreover, A(z,z') =0 iff x = 2’.
The Bhattacharyya distance can be extended to direct products in a natural way.
Given z, 2’ in XV, we put A(z,z’') = Zij\;lA(xi, x}). The minimum A-distance of
a code C C XY is defined as

dnin(C) := min{A(z,2') | z,2" €C,  # x'}.

If the MC (X, ), P) is G-symmetric, it is easy to verify that A(gx, gz’) = A(z, ')
for all z,2' in X and g in G. Identifying X with G as usual, we can introduce the
so-called Bhattacharyya weight:

6:G— Ry, 0(z) = Az, 1g), z € Q@G.
In this way we have A(x,2') = §(z~12').
In the case of a BIOS channel, we have that
A, a)= Y S(zi—a)=86)[{1<i<N:az#aj} Va,a’ e
1<i<N
i.e., the A-distance is proportional to the Hamming distance (the number of different

entries of two strings).
For the m-ary symmetric channel of Example 2 we obtain

m—1

A(w,w')z—log(sﬁ—_f—i— (1_—5)6) H1<i< N :uz #al} Va,z' € XV,

so that, once again, the A-distance is proportional to the Hamming distance.
Finally, for the S-AWGN channel of Example 3, by considering any isometric
labeling A; : G — S, we obtain

N —(lly=As (@)l +lly=As (@})11%) /40°
e
/ — —
A(.’B,.’B) - kzz:l log/n (271_02)11/2 dy
loge al N
= e D () = As(@i)IP 5
k=1

i.e., the Bhattacharyya distance is proportional to the squared Euclidean distance.
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2.3. Group codes and type-enumerating functions. When transmitting
over an MC which is symmetric according to Definition 2.1, a natural class of codes
to be considered is that of group codes. A G-code of length N is any subgroup of the
direct group product GV. Group codes are generalizations of binary-linear codes (the
latter correspond to the case G ~ Zs). In fact, G-codes enjoy many of the properties
of binary-linear codes. For instance, when a G-code C is employed on a G-symmetric
MC, ML decision regions (Voronoi regions in the Gaussian case) are congruent, and
then the error probability does not depend on the transmitted codeword: this is called
the uniform error property [18].

For every G-code C of length N we now introduce some combinatorial quanti-
ties characterizing its performance. The type-enumerating function of a G-code C is
defined as

We:P(G)—Zy,  We®):= Y 1Ic(z) VOePG),

zeGy

where GY is the set of N-tuples of type 8. Notice that since C is a subgroup of GV,
1gn is always a codeword so that We(d1,) = 1.

Assume we have fixed a G-symmetric MC (X, ), P), and let § be its associated
Bhattacharyya weight. The minimum A-distance of a G-code C of length N is a
function of its type-enumerating function:

(2.3)
dmin(C) = min{é(z) |z € C\ {0}} = Ninf {(,0)|6 € P(G) \ {60} : Wc(6) >0} .

Type-enumerating functions and minimum Bhattacharyya distances play an impor-
tant role in the estimation of the ML decoding error probability of G-codes over
G-symmetric MCs. For instance, the so-called union-Bhattacharyya bound, for the
error probability of a G-code C of length N, can be written in the form

(2.4) €)<Y We(®)exp(—N(8,0)).
0cP(G)

Bounds tighter than (2.4) can be obtained for the error probability of G-codes over
G-symmetric channels based on variations of the Gallager bound [20, 39].

Observe that both (2.3) and (2.4) do not generally hold when a G-code is em-
ployed on an MC which is not G-symmetric. While this is not an issue for the highly
symmetric channels considered in Example 2, it does matter for the symmetric chan-
nels introduced in Example 3. As a concrete example, one may think of the 8-PSK
Gaussian channel: in this case, while both (2.3) and (2.4) are true for Zg-codes, for
a Z3-code C, and a fortiori for a Fg-linear code, neither (2.3) nor (2.4) holds. In
fact, the type-enumerating function of a Z3-code is not sufficient for characterizing its
performance on the 8-PSK Gaussian channel. In order to overcome this problem, an
average coset ensemble approach needs to be used [22, 4, 5].

It is a well-known result in information theory [20] that binary-linear codes
allow one to achieve the capacity of any BIOS channels. More in general, lin-
ear codes over the Galois field F- are known to achieve the capacity of any Z;-
symmetric channel [16]. A similar result was conjectured in [27] for G-codes on
G-symmetric MCs. In [11], the capacity Co achievable by G-codes on G-symmetric
MCs has been characterized for any finite Abelian group G. When G is cyclic of order
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m = pq;npggn .. .pZ?, for distinct primes pq,...,ps, it has been shown that
. Ops
(2.5) Cyz,, = max min — <C,
a€P({1,...;s}) lIm,l>1 N
> (g)
1<j<s J

where C; denotes the Shannon capacity of the Z;-symmetric channel obtained by
restricting the input of the original channel to the subgroup §*Z,,. It has been shown
in [11] that for a wide class of G-symmetric channels, including the p"-PSK Gaussian
channel (for prime p) both with quantized and unquantized output, G-capacity Cq
and Shannon capacity C' do coincide, while this is no longer the case for other G-
symmetric channels.

2.4. LDPC codes over Abelian groups. For any finite Abelian group G,
we now describe the ensembles of LDPC G-codes which will be considered in this
paper. For every given degree pair (c,d) in N2, we consider the set of admissible
block-lengths N4y :== {N € Ns.t. d | Nc}, and for every N in N4y we define
L = N¢/d. Consider the c-repetition operator

(2.6) Repy : GN =GN, (Repy ®); = @i/,
where [2] denotes the lowest integer not below z, and the d-check summation operator

id
(2.7) Sumf : GN¢ — GE, (Sum? x); = Z Tk
k=i(d—1)+1

Consider the group of permutations on Nc elements, Sy, and let ITy be a random
variable uniformly distributed over Sy.. Moreover, consider a subgroup F' of Aut(G),
the automorphism group of G, and let (Aj)i<j<ne be a family of independent ran-
dom variables identically distributed uniformly on F, independent of ITy. Define the
random diagonal automorphism IT%, € Aut(GV°¢) by (IIx); := Ajz; for 1 < j < Ne.
Finally, for every N € N, q) define the random syndrome homomorphism

(2.8) dy:GN - GF, @y :=Sum) TIT% Repl

and the associated random G-code Cy := ker ®5. This is called the (¢, d)-regular
F-labelled ensemble. F will be called the label group. The two extreme cases F' = {1}
and F = Aut(G) will be referred to, respectively, as the unlabelled and the uniformly
labelled (c, d)-regular ensembles.

The reason for considering only automorphisms as possible labels, avoiding the
use of noninvertible labels, is clarified by the following proposition. For any group H,
we denote the set of endomorphisms of H by End(H).

PRrROPOSITION 2.2. Assume that, for all N € ./\/(c7d), Oy : GN — G s de-
fined as in (2.8) with Wy uniformly distributed over Sy. and 1% € End(GN¢) is
defined by (Il x); == Ajx; for 1 < j < Ne, where (A;) are independently and identi-
cally distributed according to some probability distribution p € P(End(G)) such that
supp(p) € Aut(G). Then, for all k € G\ {0} such that Ak =0 for some A € supp(pu)

P(dpin (ker @) < (k) > 1— (1 — p(A))N =801

Proof. Consider A € supp(p) \ Aut(G), and k € ker A\ {0}. For 1 < s < N, let
ek € GN be the N-tuple with all-zero entries but the sth one, which is equal to k. If
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Aj = A for all (s — 1)c+ 1 < j < sc, then 1% Rep? e¥ = 0, so that ®ye = 0, and
dpin (ker @) < d(k). Since the events

EY =[] {A=8

(s—1)c+1<j<sc

are independent for 1 < s < N and all have probability 1 — p(A)¢, it follows that

P(duwin(ker@y) < 8(k) =P | |J EN | =1-(1-P(EN)" =1 - un))V. O
1<s<N

We wish to underline the fact that the proof of Proposition 2.2 strongly relied
on the independence assumption we made for the labels A;. Indeed, by introducing
proper dependence structures for the random labels which allow us to avoid certain
configurations, it is possible to consider ensembles of LDPC G-codes with noninvert-
ible labels as well. This possibility will not be considered in the present paper but
will be explored in a future work.

As LDPC G-codes are special G-codes admitting sparse kernel representation,
they suffer from all of the limitations in performance of G-codes. In particular, the ca-
pacity they can achieve on a G-symmetric channel is upper bounded by the G-capacity
of that channel. This explains why the authors of [4] had to restrict themselves to
prime values of m while studying LDPC Z,,-codes, albeit the average type-spectra
they obtained for the unlabelled ensemble did not need such an assumption. In fact,
they noticed that for nonprime m “expurgation is impossible” and LDPC Z,,-codes
result “bounded away from the random-coding spectrum.” The same restriction to
prime values of m (or more in general to groups G admitting Galois field structure)
was required both in [4] and [17] in order to study the uniformly labelled ensemble.

In this paper regular ensembles of F-labelled LDPC G-codes will be studied for
any finite Abelian group G. In particular we will find estimations for their average
type-enumerating functions We,, (6) and explicit combinatorial formulas for their av-
erage type-spectra defined as the limit of N~ log W¢,, (0). Coupling this analysis with
an ad hoc analysis of the type-enumerator functions for small weight codewords, we
will finally propose upper bounds to the repartition function of the minimum normal-
ized distance % dpmin (Cn). This will allow us to show that, if ¢ > 2, minimum distances
grow linearly in N with high probability. We will also show that the typical minimum
distance (more precisely the lower bound on it—conjectured to be tight—provided
by the average type-spectra) of the uniformly labelled LDPC ensemble is significantly
larger than the typical minimum distance of the corresponding unlabelled ensemble.

In [10] it was claimed that, for any m, the (¢, d)-regular ensemble allows one to
achieve a nonzero capacity over any Z,,-symmetric channel, and that this capacity can
be made arbitrarily close to the Z,,-capacity of the channel, if the parameters (¢, d)
are allowed to grow. In fact, the same is true for the uniformly labelled ensembles
as well; see section 6.2. This implies that LDPC Z,,-codes allow one to achieve the
Shannon capacity of a Z,,-symmetric channel whenever Z,,-codes do. While explicit
proofs of these facts will not be given here due to the lack of space, they can be
obtained from the combinatorial results of sections 3 and 4 using standard upper-
bounding techniques for the average error probability of group codes [20, 39]. Similar
reasonings can be made for minimum distances and error exponents of LDPC codes. In
particular, minimum Bhattacharyya distances of Z,,-codes have been studied in [12].
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3. Average type-spectra of LDPC G-codes. In this section we first present
some considerations on semidirect-product group actions. Then in section 3.2 we
introduce LDPC codes in a slightly more general setting, and we show how regular
F-labelled ensembles of LDPC G-codes introduced in section 2.4 can be cast in this
framework. In section 3.3 we prove the main result, Theorem 3.5, characterizing
the average type-spectra of regular F-labelled ensembles. Finally, in section 3.4 we
show how previous results in the literature can be recovered as particular cases of
Theorem 3.5, and we provide an explicit formula for the average type-spectrum of the
uniformly labelled ensemble over the cyclic group, which is instead an original result.

3.1. Group actions. We recall here some basic facts about semidirect group ac-
tions; the reader is referred to the standard textbook [23] for further details. Assume
that a group F acts on a set A. A subset B C A is said to be F-invariant if fb € B for
every b € B and f € F. Clearly, if B is F-invariant, F' acts on B as well. For every
a in A, the relative orbit Fa := {b € A s.t. b= fa for some f € F} is F-invariant
and its action on it is transitive. The set of orbits is denoted by A/F and called the
quotient of A by the action of F. There is a canonical surjection 7p : A — A/F
which associates an element a with the orbit it belongs to. Given a € A, we define
its stabilizer as Stabp(a) := {f € F s.t. fa = a}. The well-known class formula gives
|F| = |Fal - |Stabg(a)|.

If A and B are sets and the group F' acts on A, a map ¢ : A — B is said to be
F-invariant if ¢(fa) = ¢(a) for every a € A and f € F. As an example, the canonical
surjection 7p : A — A/F is an F-invariant map. Suppose we have an F-invariant map
¢ : A — B; then it is immediate to see that we can define a map ¢ : A/F — B such
that ¢ = ¢ o mr. Notice that if it happens that ¢ is onto and moreover ¢(a) = ¢(a’)
iff Fa = Fd’, then the map ¢ is a bijection, and thus A/F and B are in one-to-one
correspondence. We will often use this fact in order to characterize quotient spaces.

We now introduce an example which will play a fundamental role in our future
derivations. Given any set A, the permutation group Sy acts naturally on AY: given
a € AN and o in Sy, we define ca € AN by (ca); = a,-1(;). Orbits can easily be
described using types. Given a,b € AV, it is immediate to see that

JoeSy : ca=b < 04(a)=04(b).

This says that the subsets A} of type-0 N-tuples are exactly the orbits for the action
of the permutation group Sy on AV, and we have a natural bijection AV /Sy =~
Pn(A) (obtained through the mapping a — 04(a)).

Now suppose we are given an action of a group F' on the set A. This extends
to a componentwise action of F¥ on AN with the orbit set AN /FN ~ (A/F)N. We
would like to combine this action with the action of the permutation group on AY,
and the way to do this is as follows: we consider the semidirect product

Sy x FV, (01,91)(02,92) = (0102, (05 ' g1)g2)

and the action on AV given by (0,g)a = o(ga).
We now want to characterize the set of orbits of this semidirect action. Notice
that the map 7p : A — A/F induces a natural map Wlup : P(A) — P(A/F), where

[15.0](Fa) = 3 ycpq 0(b). Tt is easy to see that the following diagram commutes:

AN TN (A)F)Y
(3.1) 164 ﬂ 1604/
Pn(A) T Pn(A/F)
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(ie., Oa/pompy = wlﬁw 004).

In what follows we will use the notation va r = 04/pomp~ and call v p(a) the
(A, F)-type of a. The (A, F)-type is exactly what is needed to describe orbits with
respect to the action of the semidirect group Sy x FV. Indeed, it is immediate to check
that Py (A/F) is in bijection with the quotient AV /(Sy x FN): given a,b € AN we
have that

3(o,g) € SN X FN s, (0,9)a =b & vy r(a)=v4r(b).

If v € Py(A/F), we will use the notation AY := {a € AN | vs p(a) = v}. Using the
fact that va r = OA/F o T~ we obtain that

(3.2) A= (80) I 17t (@M.
a€cA/F

Now define OF := {6 € Pn(A) s.t. 7r§7(0) = v}. For every given v € P(A/F), and
N in N, we have

(3.3) Ay = {J 49,

6coyy

the union being disjoint. Notice that we also have |0} | = [oca/r |t (a)| Vo),

3.2. A general framework for LDPC ensembles over Abelian groups.
Fix an infinite subset A" C N, a group U, two sequences of finite Abelian groups Z(N)
and YY) (with N € NV), and two sequences of homomorphisms

gN.uN -z 5Nz Ly,

Consider, moreover, a sequence Iy of subgroups of Aut(Z®)), and assume that the
actions of Iy on Z(N) satisfy the following property: there exists a fixed finite set A
and a sequence of invariant maps Oy : Z) — P(A) such that x, y € ZWN) are in
the same orbit iff Oy (z) = On(y). In this way the quotient space Z(M) /Iy can be
naturally identified with the image of Oy inside P(A).

Now let IIxy be a sequence of random variables uniformly distributed over Iy.
For every N € N define

(34) q)N ==

The triple (ZY,ZN Iy) is called an interconnected ensemble, while (ker ® ) will
be the random code sequence associated with the ensemble. The set A will be called
the interconnection type alphabet of the ensemble.

Now consider the type-enumerating function Wy (0) for the ensemble. By taking
the expectation with respect to our probability space, we get

(3.5) Wi (0) :E[ > Il{o}(fI)N:B)} = ) P(@yz=0).

zcUY zeUY

Put ZJ") = Oy' (v), and define the following sets: for every v € P(A), 8 € P(U)
(3.6)

ZEN = {wEZE,N) | Efvw:0}, Ug:iv ={xzcU" | 0y(x) =0, On(EVx)=0}.
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We have the following simple result.
PROPOSITION 3.1. For every 6 in Pn(U)

Ugi 1257
(3.7) Wi (0) = Z W
vEP(A) v

Proof. If x € Ug,’ﬁf , using the fact that Iy acts transitively on Z,(,N) and the class
formula, we obtain

= : |Z5N||Stabry (2 (2))] _ |Z5™]
P(®yx = 0) = P(IINENx € Z5V) = =22 0 =y 1
Y 1| 1z

Now using (3.5), (3.7) follows immediately. O

We now frame the LDPC ensembles introduced in section 2 into this more general
setting. We use the notation introduced in section 2.4. Given (c,d) € N? and N €
Me.ay, consider L = Ne/d. Take U = G, ZW) = GNe, YIN) = GL. Also, take
=N =Rep?, EN = Sum), In = Syex FN¢. The ensemble (Rep’, Sumy’, Sy x FV¢)
is the (¢, d)-regular F-labelled ensemble. The type alphabet in this case is simply
A=GJF.

Irregular ensembles can be framed into this setting by simply modifying the rep-
etition and the sum operators. Also other interesting cases can be obtained by con-
sidering the interconnections among the inner and outer encoder done through some
vector structured channels and allowing only independent permutations on the various
channels. Finally, hybrid nonbinary LDPC codes can be considered in this framework
by replacing the product group U with the product of copies of different Abelian
groups U x -+ x U,ﬁv.

However, we will now focus on the evaluation of the type-spectra of the regular
F-labelled LDPC G-code ensembles. This will be done in the following subsection by
explicitly calculating the three terms entering in the formula (3.7).

3.3. The average type-spectrum of the (¢, d)-regular F-labelled ensem-
ble. In order to prove the main result of this section we will use some generating
function techniques. For a finite set A, consider the ring of complex-coefficient multi-
variable polynomials (briefly multinomials) C[A]. Given p € C[A] and k € Z4, we de-
note by |p(z)],, the coefficient of the term z* in p(2), i.e., p(z) = Zkezf Ip(2) ], 2*.
In particular, we will consider type-enumerating multinomials, i.e., homogeneous-
degree multinomials of the form p(z) = > gcp, (a) [P(2)] o 2N0 where each co-

efficient |p(z)] e equals the number of N-tuples a € AN of A-type 0, satisfying
certain properties. The easiest case is provided by the multinomial (3, 4 2)V =
ZBGPN( A) ( NNG) 2N simply enumerating the N-tuples of different A-types. The fol-
lowing result, proved in [9], characterizes the asymptotic growth rate of the coefficients
of powers of enumerating multinomials.

THEOREM 3.2. Let A be a finite set and p(z) € R[A] be a homogeneous-degree,
nonnegative, real-coefficient multinomial. For all @ € Py(A) and z € P(A) such that
supp(z) = supp(0), we have

(=)™

N D .1 N _ .
3.8) [p(2)" ] ye < NG Nhenj\lfeﬁlog [p(2)™ ] v = ze%l(fA): 20

supp(z)=supp(0)

log p(2)
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Moreover, the left-hand side of (3.8) is a concave (and thus upper semicontinuous)
[—00, +00)-valued function on P(A).

Observe that, by considering p(z) = > 24, (2.1) can be deduced from Theo-
rem 3.2.

The first type-enumerating multinomial which we will need in our derivations is
the one enumerating the 0-sum d-tuples over a finite Abelian group G:

d
Ba(z) € Clzg, g € G, Ba(z) = Z Lioy <ng> H 29
915,94 k=1

1<k<d

By introducing the group G of characters of G, i.e., homomorphisms of G in the
multiplicative group C* of nonzero complex numbers, it is possible to find an explicit
expression for 8,(z) as stated in the following lemma.

LEMMA 3.3. For every finite Abelian group G and d € N

< > zgx(g)> d-

geG

1
Ba(z) = 1G] Z

xe@

Proof. The inversion formula for the discrete Fourier transform (see [41, p. 168])
flg) = & X (fx0x(9), applied to f = o € L*(G), gives & 32, x(9) = L{o}(9)-
Then

Balz) = Y. 1{0}< >, gk) IT 2

91;---:9d 1<k<d 1<k<d

= Y HXA( X w) I

g1, X 1<k<d 1<k<d

- 9d
B ﬁz Z H X(gk)zgk
X 91,--,94 1<k<d
>
X

( > ng(g)) -

1
= 1

Recall that, given any subgroup F of Aut(G) and a degree pair (c,d) in N2,
the (c,d)-regular F-labelled ensemble of LDPC G-codes is described by the triple
(Repiv,Sumfiv, Sne X FNC). Let 7p : G — G/F be the canonical projection on the

quotient and 773; : P(G) — P(G/F) be the associated action on probabilities. Also,
define

(3.9) ¢:G/F =N, ¢ =|r5"(a)|

to be the map giving the cardinalities of the orbits of G under the action of F'.
Consider some admissible block-length N in N 4. Formula (3.2) shows that

|Z1(JN)| = () pNev for every v € Pn.(G/F). Moreover, in this case |Ugﬁf| =

(Jifve)]l{wfve} (v). Substituting into (3.7), and defining v := 74,0, we obtain

N Ne\™! —Ncv|rzi,N
(3.10) a8 = (p) () # 125"
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It remains to evaluate the enumerating weights | Z%| relative to the check summation
operator. In order to do that, we introduce the multinomial

(3.11) apq(t) € Clty, ¢ € G/F], arpq(t) : |G| Z Z L Zx(g)tq

xe& \4€G/F () 9€q

and present the following result, stating that the Lth power of apq(t) is the type-
enumerating multinomial of the normalized weights |Z5V|/@Vev.
LEMMA 3.4. For every N € N..q)

Zk
(3.12) > % Nev — (apq(8)"
'UG'PNC(G/F) SO

Proof. First, consider the type- enumerating multinomial B(z) € C[z,, g € G] for
the kernel of the inner homomorphism ZV = Sumd Since any x in GV¢ belongs to
ker Sum?’ iff it is the concatenation of L 0-sum d-tuples, from Lemma 3.3 we have
B(z) = (Ba(2))". Now consider the map

U : Clzg, g € G| — C[tyq, g € G/F], Ui p(2) = pltrp(g)s 9 € G).
It follows from (3.3) that, for all v in P(G/F), we have
(3.13)
ZZN| I.B JNCG L\IJB(t)JNc t
ch Z ch = Z SONC'U v = VB E :
0cONe VEPN(G/F) vEPN(G/F) New

Thus, the claim follows by observing that OB (t/¢) = (V4 (t/¢))" = apa(t)l. O
We are now ready to prove the main result of this section, stating that the average
type-spectrum of the (¢, d)-regular F-labelled ensemble of LDPC G-codes is given by

— ¢ : f
(314)  Tipea(@)=HEO) +5  _inf {1ogaF,d(t)+dD(7rFo||t)}.

supp(t)=supp(r’%0)

From Theorem 3.2 it follows that the spectrum I' (5. 4)(@) is an upper semicontinuous

function on the probability simplex P(G). Notice that, by choosing t = 7r§,0, we
immediately obtain the estimate

c

d
THEOREM 3.5. For the (c,d)-regular F-labelled ensemble of LDPC G-codes

L(pe,a)(0) < S logapg (WFB) + H(8).

1 -
ki ! 0) = L(r.c.0)(6)-
NeNoNe.a) 0g W (8) =T'(p,c,a)(0)

Proof. From (3.10), by recalling that N¢c = Ld and v = 7TF0 we get

1, — 1 N\, el |zZi¥ |
NlogWN(B)—Nlog <N0)+ log ( )
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From (2.1) we have lim % log (]éve) = H(@). Then we can first apply Lemma 3.4 and
then Theorem 3.2 (notice that (3.12) with L = 1 implies that a g 4(¢) has nonnegative
real coefficients and homogeneous degree), obtaining

i L
lim 1 log 1z Z"| = lim 1 log —{aF’d(t) JLd”
Ld Ld
N L (Ld’u) SOLdU N L (Ld’u) SOLdU
= in ara(t) _ dH (v)y. O
teP(G/F): tdv

supp(t)=supp(v)

3.4. Special cases of Theorem 3.5. Now we particularize Theorem 3.5 to
some important special cases, showing that all previously known results can be reob-
tained, while new interesting cases can be studied as well.

3.4.1. LDPC codes over Galois fields. Suppose G ~ Zj for some prime
number p and positive integer r. First, let F' coincide with the whole automorphism
group Aut(Zy), which is isomorphic to the general linear group of r x r invertible
matrices on Z,. In this case the probability that an N-tuple  in GV belongs to
the random LDPC code Cn = ker (Sumfiv Iy Rep ) depends only on the Hamming
weight (i.e., number of nonzero entries) of . Indeed, it is easily seen that the action
of Aut (Z;) on Z, has only two orbits: one containing the zero element only and one
containing all of the nonzero elements of Z;. Thus, the quotient space is G/F =
{90, q1}, with ¢(q0) = 1, ¢(q1) = p” — 1. Moreover, since all nontrivial characters are
orthogonal to the trivial one xo = 1, it follows that > . x(g9) = —x(0) = —1 for all

x € G\ {xo}. Then the average type-spectra of the (c,d)-regular Aut(Zy)-1abelled
ensemble of LDPC Zj-codes are given by
(3.15)

. N
oz en(®) = 160) + 5 int, Jiox (34522 (1= #50)") + apin |

where X :=1—6(0) and D(A|[t) := Alog 3 + (1 — A) log 1=2.

Now consider the case G ~ Z; again, but now with label group F' ~ F., the
multiplicative group of nonzero elements of the Galois field F,-. Observe that Fy.
can always be identified with a subgroup (proper if r > 1) of Aut(Z}). Nevertheless,
the action of Fy. on Zj has the same two orbits as the action of the whole Aut(Z,-)
on Zjy,. This shows that the (¢, d)-regular F.-labelled ensemble has the same average

p
type-spectrum of the Aut(Zj)-labelled ensemble, i.e.,

(3.16) Lpe,ed)(0) = Liau(zy),ea)(0) VO € P(Zy).

The expression (3.15) coincides with the spectrum of the [F;.-labelled ensemble
obtained in [4, 17]. We observe that in [32] it was numerically observed that the
density-evolution dynamical system [34] exhibits the same threshold value for the
[F;.-labelled and the Aut(Z)-labelled ensembles over the BEC. Formula (3.16) shows
that these ensembles have identical average type-spectra.

3.4.2. Unlabelled LDPC ensembles over cyclic groups. We now consider
the case when G ~ Z,, and F = {1}. In this case, the characters of Z,, are given
by xr(h) := em "% for h,k € Zy,, while, trivially, the quotient space Zm | F coincides
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with Z,, itself and ¢ =1 (see (3.9)). It follows that

aqiy,a(t) = Ba(t) = L Z Z ki,

1<k<m \1<h<m

Then the average type-spectrum takes the following form:
(3.17)

d
¢ : 1 2m g
L((1},c,a)(0) = H(O) + p zgl)r%%m) {log(E % (;e " Zh) > + dD(QHZ)}

supp(z)=supp(9)
The above spectrum coincides with the one obtained in [4] (see also [19, p. 49]).

3.4.3. Uniformly labelled ensembles over cyclic groups. Finally, consider
the case when G ~ Z,, again, but this time with F' isomorphic to Z},, the multiplica-
tive group of units of Z,,. Notice that Z;, acts by multiplication on the ring Z,,.
It is immediate to see that two a,b € Z,, are in the same orbit with respect to this
group action iff (m,a) = (m,b), where (k, h) denotes the greatest common divisor of
two naturals k and h. The quotient space Z,,/Z;, can be identified with the set of
divisors of m, Dy, := {l € Ns.t. I | m}. We have |Z¥,| = p(m), where ¢ : N — N,
p(n) = Hm €Nst.m<n, (n,m) = 1}|, is the Euler op-function. The projection
map is

gzt Lo — Dy, nz: (a) = ma)”
Notice that, for every I € D,,, the orbit 7. (I) coincides with Ty, and it is in
bijection with Z; through the map h — 2h. Then (1) = |77 (I)| = |Z;| = ¢(1).

In order to evaluate the average-type spectra of the (c,d)-regular Z, -labelled
ensemble of LDPC Z,,-codes, it is convenient to introduce the so-called Ramanujan
sums

ri(k) := Z e Tk l,EeN.

jez;

The Ramanujan sums are well known in number theory and can be explicitly evaluated
in terms of both the Euler p-function and Mdébius function:

1 if n=1,
w:N—7Z, pn)y=<¢ 0 if p?|n for some prime p,
(=1)* if  m =pips...px for distinct primes p;.

For every I,k € N it holds [21, p. 237] that

(3.18) (k) = <ﬁ) el
’ ¥
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We can now explicitly evaluate the multinomial az: 4(t), obtaining

d

azat) = & Y D am e

1<k<m \ l|m JEL;

= % Z Zﬁm(k)tl

d

F e (X daaly

It follows that the average type-spectrum of the (c,d)-regular Z, -labelled LDPC
ensemble of Z,,-codes is given by
(3.19)

Tz o) () = H(8) + 1nf{log( Z@( ) (Zﬂ ZEH%)C!) n dD(WZ;n0||z)},

T,k)

where the above infimum has to be considered with respect to all ¢ in P(D,,) such
that supp(t) = supp(7z: 8). Of course, when m is prime, formula (3.19) reduces to
(3.15). In particular, when m = 2, (3.15), (3.17), and (3.19) coincide. For nonprime
m instead, (3.19) is novel, to the best of our knowledge.

4. On low-weight type-spectra. In this section we will deal with estimations
of the average type-spectra of the regular F-labelled LDPC G-code ensembles for G-
types very close to the all-zero type §p. We will consider the variational distance on
P(G), 16— 0'|| = suppc{0(B) - 0'(B)}.

Recall that, since we are dealing with LDPC G-codes, the all-zero N-tuple is
always a codeword. Then Wy (dp) = 1 deterministically, i.e., for any realization of
IIy in the interconnection group Sy. x FN¢. Hence clearly L(Fe,a)(00) = 0. The
main result of this section is that there exists a punctured neighborhood of §y in
P(G), over which the spectra I'(p . 4)(6) are strictly negative. Actually, much more
precise results will be derived, characterizing the exact rate of decay (asymptotically
in N) of the sum of the average enumerating coefficients over all G-types 6 such that
0< 1|0 —do|| < 2

Throughout this section we will often use the following notation: for a,¢ in N we
define the discrete intervals I := [(t — 1)a + 1,ta] N N. Notice that, given a degree
pair (c, d) for every admissible block-length N in N, 4) we have {1, 2,.. .,Nc} =

U1<t<L U1<s<N IC

4.1. An upper bound to low-weight spectra. We start by deriving an upper
bound to low-weight type-enumerating coefficients for the inner encoder |Z5’N| =
|Gy kerSumév‘.

LeEMMA 4.1. Let (c,d) be a degree pair, and let N € N q). For every 6 in
Pne(G) such that

2
(41) 10— ol < 2,

we have

4 7= (i) (") )
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where w € NOMOY is defined by w(k) := NeO(k), and w := Y=, Yw(k) is the number
of nonzero entries in an Nc-tuple of type 0.

Proof. Let y in G§'© be any Nc-tuple of type 6. A necessary condition for y to
be in ker Sum?’ is that each of the first L intervals I contains either none or at least
two nonzero entries of y. It follows from (4.2) that |{t <L: ‘supp(y) N I,;i| > 2}| <
|w/2]|, while, for any choice of a dissection 1 < t; < -+ < tlwy2] < L (notice that
(4.1) implies w/2 < L), we have [{y € G§° : supp(y) C UJ“:”{ZJ Ifj}| < (dL“;J/QJ)(Z).
It follows that

1zgN < | |J {yeGg“: |supply) NI #1}
1<t<L
lw/2]
< U yeGy:supp(y) C | I
1<t1 <--<t|wy2) <L Jj=1

() () () 0

We now obtain an estimation for the average low-weight type-enumerators.

LEMMA 4.2. Let (c,d) be a degree pair, F < Aut(G), and N € N{c q4). For every
0 € Pn(G) satisfying (4.1) the average type-enumerator function of the (c, d)-reqular
F-labelled ensemble satisfies

“3) 7501 (o) (L)) (57)

where w := N¢(1 — 6(0)).

Proof. Counsider the projection map np : G — G/F and the associated map for
types 7r§, : G — G/F. Define v := 7r§,0 and u € ZG/F\{O} by u(k) = Ncv(k).
Also, for every 0’ in P(G), define w’ in ZG\{O} by w'(k) := Nc@'(k). Notice that
Socone (1) = (§2)e™e?. From (3.10), (3 13), and (4.2) we get

Ne —Ncwv i,N
(vo) (se) 7 3 "
eleoNc
L \(Ne\™! Lw/2 1d
|w/2] w
L [w/2] Lw/QJ 1...(lw/2]ld—w+1)
NO )\ |w/2] Ld(Ld—1)...(Ld—w+1)

A first consequence of Lemma 4.2 is the following upper bound on the average
type-spectra of the F-labelled LDPC ensembles.
PROPOSITION 4.3. For every degree pair (c,d) such that ¢ > 3 we have

W (0)

N
NO

IN

N
NGO
N

W) () () e 2 ()
< (wo) () G- 0

S

L(rea)(0) < fea(x) VO : [0 —doll <
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where x :=1—60(0), and
fed(x) :=H(z) + xlog(|G| - 1)+ SH (%x) + cxlog (%x) ,

with H(z) := —xlogx — (1 — ) log(1 — x) denoting the binary entropy.
Proof. From (4.3) it follows that, for every [|6 — do|| < 2, for the F-labelled
(¢, d)-regular ensemble we have

j— 1 N 1 L 1 eNaz\“N*
—logWn(0) < —1 —1 —1
N losWn() < N°g<N0)+NOg<p;NgJ>+N°g<2L>

N
NeN o H(0) + gH <gx) + +cxlog (ga:>

<  H(z)+zlog(|G| — 1) + cxlog (%lx) . O

It is easy to see that, whenever ¢ > 2, dd_zfad|z:o = —o0. Therefore, Proposi-
tion 4.3 implies that the spectra I' . 4)(0) are strictly negative in a sufficiently small
punctured neighborhood of dg in P(G). In section 5 this fact will be used in order
to show that the minimum A-distance grows linearly with N with high probability.
Here we derive more precise estimations for the average type-enumerating functions.

PROPOSITION 4.4. Let F be any subgroup of Aut(G), (c,d) a degree pair, and
N e ./\/(c)d). There exists a positive constant K such that the type-enumerator function
of the (¢, d)-regular F-labelled ensemble satisfies

> Wi(8) < KN*

F<lldo—06]<3

Proof. For every N in N 4y we define the quantities

gu(N):= > Wx(0), weN.
|160—6]|=77

For 6 in Pn(G) define w as in Lemma 4.1. For all w = 2,.

gu(N) < Y <NN(9)(L0%J)(%)M: (Lcéj)

0(0)="7"

N, (4.3) implies

2
d
( )1 = )
We have, for every 2 < w < |2dN |,

Juws2(V) (N —w\? (L [e2]Y 2\ e s
gl (N) = (G1-1) ( w ) (LC%J 22L> (1+w> < (|G]-1)"(3e)**N="°.

It follows that if ¢ > 3, then there exists Ny in N such that, for all N in /\/'(c)d) such
that N > Ny, Iu2 (V) <iforalll<w<|[2N|. Then we have

9 ()
L3N] L3N]
Y Wn(O) <gh(N) Y 27" Hgs(N) Y 27" < 205(N)+2g5(N) < KN>~°
Z<llso-6l1<3 w=2 w=2

for some positive constants K’, K", K, all independent of N. O
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4.2. On weight-one codewords. We now derive a more precise estimation of
the average enumerating functions for G-types of N-tuples with all but one entry
equal to zero. Fixed any NV in N k in G we define the G-type

1 1
TE = (1 — N) oo + N(Sk S PN(G),

and we look for upper bounds on the average spectra Wy (1) for the (¢, d)-regular F-
labelled LDPC ensembles. We will show how these estimations depend on the choice
of F among the subgroups of the automorphism group Aut(G).

We start with a few elementary considerations about closed walks and cycles in
directed graphs. A closed walk of length n in a directed graph G = (V, E) (where V
is a finite set and E C V?) is a Zj,-labelled string of vertices v € V% such that any
two consecutive vertices are adjacent, i.e., (vg,vp41) € F for all k € Z,. A cycle of
length n is a closed walk v € V% such that vy, # v; for all k # j € Z,. A self-loop
is a cycle of length 1. Every closed walk v of length n is the concatenation of k
cycles v',...,v" such that the sum of the lengths of v!,...,v* equals n. Observe
that in general k < n, while k¥ < |n/2], provided that the directed graph G contains
no self-loops.

Given a finite Abelian group G and a subset S of G, we denote by G(G,S)
the directed Cayley graph with vertex set G and edge set {(g,9+ s)|g € G, s € S}.
It is straightforward that closed walks v of length n in an Abelian Cayley graph
G(G, S) starting in any fixed vertex g € G (i.e., such that vg = g) are in one-to-one
correspondence with 0-sum n-tuples  in S™.

For a subset S C G and a positive integer n, consider a closed walk v of length n
in G. By the previous considerations, v is the concatenation of k(v) cycles. We put
b(S,n) equal to the maximum of k(v) over all possible closed walks v of length n in
G(G,S), with the agreement that b(S,n) = 0 whenever no closed walk in G(G, S) has
length n. The reason for this notation becomes evident with the following result.

LEMMA 4.5. Let F be any subgroup of Aut(G), (c,d) a degree pair, and N €
./\/'(c7d). Then, for all k in G, the type-enumerator function of the (c,d)-reqular F-
labelled ensemble satisfies

44 T <N () 7 :

Proof. Define v := 7h7, € P(G/F). Let y be any element of GN¢. Then for
Sum} y = 0 in G* it is necessary that Y, y,4; = 0 in G. Since y € GI* has
exactly ¢ nonzero entries all belonging to Fk, it follows that |Zf;N ‘ = 0 iff there are
no closed walks of length ¢ in the Cayley graph G(G, F'k). Then (4.4) immediately
follows in the case b(F'k,c) = 0.

Now assume that there exist closed walks of length ¢ in G(G, F'k). By the previous
considerations, each such walk decomposes in at most b(Fk,c) cycles. If we consider
the intervals I¢, for 1 <t < L, and put supp(y) N I{ == {ji, 55, ..., % }, we have

(Sumfivy)t:Zyj: Z Yyt Vi<t<L.

jeId 1<i<n

Therefore, if Sumfivy = 0, then it is necessary that v € GZn, v := Zlgiglyjf is a
closed walk in G(G, Fk) for all t such that supp(y) N I¢ is nonempty. It follows that
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supp(y) N I is nonempty for at most b(Fk, c) values of t. Therefore, by taking into
account the (b( FLk_C)) possible choices of b(Fk, ¢) intervals out of L possible ones, the

(b(Ff7c)) choices of ¢ positions out of b(Fk, ¢)d available ones, and the ¢(Fk)¢ choices
of an ordered c-tuple with entries from the orbit F'k, we get

. L b(Fk,c)d
i, N — N Nc < B c'
|Z5N| = |ker Sumj NGL¢| < <b(Fk,c)>< . )(p(Fk)
Then from (3.10) it follows that

T = iy = 79 (o) ()

V(o) [T 0

4.3. Main result. Building on the results of sections 4.1 and 4.2, we are now
ready to present the main result of this section. For a subgroup F' of Aut(G) and a
positive integer ¢ we define

(4.5) a(F,c) :=1—c+max ({1} U{b(Fk,c)|k € G\ {0}}),

where we recall that b(S,c) was defined in section 4.2 as the minimum number of
cycles in G(G, S) of total length ¢, with the agreement that b(.S, ¢) = 0 when no closed
walk in G(G, S) has length c.

Before stating the main result, we need a simple property of a(F,c). For every
k # 0, Fk does not contain 0, so that there are no self-loops in G(G, Fk), and then
b(Fk, c) l¢/2]. Tt immediately follows that

(4.6) 2—c<a(F,c) <1-[¢/2].

THEOREM 4.6. For every degree pair (c,d) such that ¢ > 3, and every subgroup F
of Aut(G), there exists a positive constant K such that for the (¢, d)-reqular F-labelled
ensemble it holds that

> Wa() <KENI N €eNca.
0<||60—0]|<2

Proof. First, we consider weight-one types. From (4.4) we have

b(Fk, ) _ por LHb(Fh,c)—
> Wn@)< > N - < K'Y NTREROTe < KGN )
v < b(Fk, c)) Le = < K]
0(0)="-1 keG\{O} keG\{0}

for some positive constant K’. The claim then follows by combining Proposition 4.4
with the previous estimation and observing that a(F,c¢) <2 —c¢ < —1. O

Now we explicitly evaluate a(F, ¢) for the three examples studied in the previous
section.

Ezample 4. Consider the case when G ~ Zj and either F' ~ Aut(Z;) or F' ~TF},.
In both cases Fk = Zj, \ {0} for all k € Z;, \ {0}. Then G(Z,, Fk) = (ZT Zy \ {0})
is the complete graph with p” vertices. It follows that G(Z,, Z;, \ {0}) contams closed
walks of any length n > 2 whenever p” # 2, while G(Zs,{1}) contains closed walks
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of even length only. Therefore, for G ~ Z; with p" # 2, a(F,c) = 1 — [c/2] for all c,
while for G ~ Zs, a(F,c) =1 — ¢/2 for even ¢ and 2 — ¢ for odd c.

Example 5. Consider the unlabelled ensemble over the cyclic group, i.e., G ~ Z,,
with F' = {1}. If (m,¢) = 1, then m/|ck iff m|k. Then, for all k € Z,, \ {0}, the Cayley
graph G(Z,,, Fk) = G(Z,,{k}) has no closed walks of length c¢. In this case clearly
a({1l},c) =2 —c.

Then consider the case when (m,c) > 1, and let Ipcf(c, m) be the smallest prime
common factor between ¢ and m. Consider any k in Z,, \ {0} such that G(Z,,, {k})
has a closed walk of length ¢, i.e., such that m | ck. The length of the shortest such
walk is given by - = ((”;f:)) = (a5 ©)- Thus, o | ¢, while clearly (”jk) | m.
But (m, k) < m, so that necessarily the shortest cycle i 1n G(Zy, {k}) Ty 1s not less
than lpcf(m ¢), with equality iff k € lpcf(m ety &m \ {0}. Thus, b({k}, ) = et
for k € mgtmglm \ {0}, and b({k},c) < Herom or k€ Zm \ lpcf(m pe(orey Lm- 1t
immediately follows that, whenever (m,c) > 1, a({1},c)=1—c+ Thef(ma) "

Ezxample 6. Consider the uniformly labelled ensemble over the cyclic group,
ie.,, G ~Z,, with F ~ Z7,. First, we claim, for n > 2, the following:

e if n is even, then all closed walks in G(Z,,Z ) have even length and there

exists a 2-cycle;

e if n is odd, then there exist both a 2-cycle and a 3-cycle.
To see this, first, since 1, —1 € Z%, (0,1) is a 2-cycle in G(Z,,, Z%,), both for even and
odd n. Then consider the case when n is even: clearly all k € Z; are odd, so that the
modulo-n sum of an odd number of elements of Z; cannot be equal to 0 modulo n.
Thus every closed walk in G(Z,,, Z}) must be of even length. On the other hand, if n
is odd, then 2 € Zy, so that (0,2,1) is a 3-cycle in G(Z,,,Z}).

Let us now consider some k € Z, \ {0}. Then, by applying the previous observa-
tion with n = (m oF one gets that, if ¢ is odd and (o) is even, there are no closed
walks of length ¢ in G(Z,,,Z}, k) so that b(Z k, c) = 0, while otherwise, if ¢ is even
or ot is odd, b(Z;,k, ¢) = le/2]. Tt thus follows that a(an, ¢) =1—1[c¢/2] unless ¢
is odd and m is an integer power of 2; in the latter case a(Z},,c) =2 — c.

4.4. Lower bounds on low-weight type-enumerators. In this section we
present some results, of independent interest, which show that the estimations given
by Theorem 4.6 are tight. All of the proofs are deferred to the appendix.

First, we deal with weight-one type-enumerators.

PROPOSITION 4.7. Let (¢,d) be a degree pair such that ¢ > 3, and let F be any
subgroup of Aut(G). Then there exists a constant K > 0 such that for all k in G\ {0}
such that a(F,c) =1 — c+ b(Fk,c) the type-enumerator function of the (c,d)-regular
F-labelled LDPC' ensemble satisfies

(4.7) P(Wy(n) > 1) > KN, N € Mo

Finally, we propose a lower bound on weight-two type-enumerators. For every k
in G define

Nj; 250 € P(G).

1 1
= —4 —i_
Tk Nk+N k+

PROPOSITION 4.8. For every degree pair (c,d) there exists a constant K > 0 such
that for every k in G\ {0} the type-enumerator function of the (c,d)-regular F-labelled
LDPC ensemble satisfies

(4.8) P(Wn(#) > 1) > KN*° VN € N ).
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5. Asymptotic lower bounds on the typical minimum distance. Through-
out this section we will assume we have fixed a G-symmetric MC (X, Y, P) with as-
sociated Bhattacharyya distance A and weight &, and we study the asymptotics of
the minimum A-distance of regular LDPC G-code ensembles.

Given a degree pair (¢, d), a natural candidate for the typical normalized minimum
A-distance of the (¢, d)-regular F-labelled ensemble is the quantity

(51) 7(F7c7d) = inf {<5, 0>‘ 0 c P(G) \ {50} s.t. F(F7c7d)(0) > 0} .

It turns out that (g, q) actually is a lower bound on the asymptotic normalized mini-
mum distance for the (¢, d)-regular F-labelled ensemble. This does not follow directly
from Theorem 3.5 since limg .5, I'(,c,q)(€) = 0. However, using both Theorems 3.5
and 4.6 the following result can be proved.

THEOREM 5.1. Let (c,d) be a degree pair such that a(F,c) < —1. Then for the
(¢, d)-regular F-labelled LDPC ensemble the following holds:

. . 1
P (it e 20 2 ) 1.

Proof. By (2.3) we have that

%dmin (ker ) = inf {(5,0> |0 € P(G)\ {do} s.t. Wn(8) > 1} = min{/i’]v,mx,},
where for every N in N 4) we define

Ky 1= inf{<5,0>‘ 0 < |16 — do|

Kl = inf{<5,0>‘ [|0 — do|| >

alv A

5 Wh(6) > 1},

Clearly, lim inf % dmin (ker ®n) = min {p’, p”}, where we put p' := liminfy £y and
p" = liminfy kY.

We start by establishing a lower bound on p”. Define Q := {6: [|6 — &|| > 2}
and, for each x in R, the set

(5.2) Q, :={0 € QNP(G) s.t. T(pea)(0) <z}

Now consider the quantity n(z) := inf {(5,0>‘ 0€Q\Q,}. Since (g, q)(0) is an
upper semicontinuous function of  and {2 is a closed subset of P(G), standard ana-
lytical arguments (see Lemma 8.1 in the appendix) allow us to conclude that 7 is a
nondecreasing and lower semicontinuous function.

Let us now fix some arbitrary € > 0. By successively applying a union bound
estimation, the Markov inequality, Theorem 3.5, and (5.2), we get

Pl U ww©o) >3] < S P0n(0) > 1) < Y Wa(B) < exp(~N(e— (V).

0cQ_. 0eQ_. 0cQ_.

with limy f(N) = 0. It follows that Y\ P(Ugeq_ {Wn(0) >1}) < 400, and
thus the Borel-Cantelli lemma implies that with probability one the event UGEQ_s
{Wn(8) > 1} occurs only for finitely many N in N 4). Hence,

P(p” <n(—e)) <P U (Wn(6)>0}pio NeNeg | =0 Ve>0,
0cQ)_.
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where i. 0. stands for infinitely often. Notice that x4y = 7(0). Hence, monotonicity
and lower semicontinuity of the function 7 allow us to conclude that
(5.3)

P (0" <Yrea) =P (" <n(0) <P <p” < limn (—%)) =lmP (p" <n(-1)) =0.

Now let us consider the term p’. By sequentially applying a union bound estima-
tion, the Markov inequality, and Theorem 4.6, we get for every N in J\/(Qd)

(54) P U @13 < > Wy(6) < KNP,
0<||0—d0||< 2 0<||6—00||< 2

where K is a positive constant independent of N. Since a(F,c) < —1, we get

>op U  {Ww@) =1} | <K) NI < oo,
N 0<||0—60||< 2 N
<2 {Wnx(0) > 1} occurs
only for finitely many N in N q) with probability one. This yields P (p’ = +o00) =1,
which, together with (5.3), implies the claim. O

We have proved the previous theorem under the assumption a(F,c) < —1. In
fact, for ¢ = 2 it is known, since Gallager’s work [19], that deterministically the
minimum distance cannot grow faster than logarithmically with the block-length N.
From (4.6) it follows that if ¢ > 5, then a(F,¢) < —1 for any F, and if ¢ = 3,
then a(F,c) = —1 for any F, while, when ¢ = 4, a(F,¢) < —1 for some choices
of F. However, one can weaken the assumption a(F,c) < —1 requiring only that
a(F,c) < 0 (thus including the cases ¢ = 3 and ¢ = 4 for some F'). In these cases,
Y(F,c,a) still gives an asymptotic lower bound for the normalized minimum distances
+ dinin (ker @) in a weaker probabilistic sense. In fact, a more detailed analysis
enlightens a nonconcentration phenomenon. In order to describe it, first, for every
degree pair (c,d) and every subgroup F' of Aut(G), we define the following quantity:
(5.5)
c { min{d(k)|k € G\ {0}:a(F,¢) =1—c+b(Fk,c)} if a(F,c)#2—c,
(Fye) =

min{(2 — b(Fk,c))d(k)| k € G\ {0}} it a(F,c)=2-c.

By the Borel-Cantelli lemma we get that the event (Jo9_s,

We have the following result.
THEOREM 5.2. Let (¢,d) be a degree pair such that a(F,c) = —1. Then

. 1

Moreover, if the random wvariables My defining the (c,d)-regular unlabelled LDPC
ensemble are mutually independent, we have

P < lim inf dmin (ker®n) = C(F,c)) =1

NG/\/.(C,d)

Theorem 5.2 is proved in the appendix. The probabilistic interpretation is as
follows. In the case a(F,c) = —1, with probability one, the sequence of the unnormal-
ized minimum distances (dmin (ker ®)) contains a subsequence converging to ((z,c)-
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Thus, while with increasing probability the minimum A-distance is growing linearly
with the block-length N, almost surely a subsequence with constant minimum dis-
tance shows up. We observe that, for irregular binary LDPC ensembles, even more
evident nonconcentration phenomena are known to arise; see [15, 31].

6. Numerical results. In this section we present some numerical results for the
minimum distances of the LDPC ensembles which have been studied in this paper.
We focus on a particular channel, the Zg-symmetric 8-PSK AWGN channel, and we
compare the average distance-spectra of the regular unlabelled and uniformly labelled
LDPC Zg-code ensembles. Our results indicate a strong superiority of the uniformly
labelled (i.e., the one with label group F' >~ Z) ensemble with respect to the unlabelled
one (i.e., F = {1}). Then we compare these results with some contradicting analysis of
the average error probability of these ensembles and discuss how this seeming paradox
can be explained by invoking so-called expurgation arguments.

6.1. Numerical results for the average distance-spectra. Let us start with
some general considerations. Suppose we are given any ensemble of G-codes with av-
erage type-spectrum I'(@). Let v := inf {(0,0)] 0 € P(G) \ {do} s.t. I'(8) > 0} be its
designated typical normalized minimum distance which we are interested in comput-
ing. Notice that T is a map defined over the (|G| — 1)-dimensional simplex P(G)
and therefore in general of difficult visualization whenever |G| > 2. It is then con-
venient and natural to introduce the average distance-spectrum as a one-dimensional
projection of I':

(6.1)
T : [0, max{d(x)| x € G}] — [—00, +0), Y(t) := sup {F(0)| 0cP(G):(8,0)=t}.

It is immediate to verify that v = inf {¢ € [0, max{d(z)|x € G}] : T(¢) > 0}. Notice
also that, for |G| = 2 and |G| = 3, all Bhattacharyya distances are proportional to the
Hamming distance, so that the average distance spectrum Y is independent (up to a
rescaling factor) of the chosen G-symmetric channel. For |G| > 4 instead, T really
depends on the choice of the Bhattacharyya distance A.

In Figure 6.1 the average distance-spectra of two regular LDPC Zg-code ensembles
are reported. We considered the Bhattacharyya distance A of the 8-PSK AWGN
channel and normalized it in such a way that max{d(x)|x € Zg} = A(0,4) = 1. In
each picture a degree pair (c,d) is fixed. The dash-dotted curve is the graph of the
distance-spectrum Y ({1} ,q)(t) of the (¢, d)-regular unlabelled LDPC ensemble, while
the solid curve is the graph of the distance-spectrum Yz . 4)(t) of the (c, d)-regular
uniformly labelled LDPC ensemble.

As a reference two dotted curves are also plotted in each picture. The one taking
the value 0 for ¢ = 0 is the distance spectrum of the binary (¢, d)-regular LDPC
ensemble T%c) d) (t). It is straightforward to check that it is a lower bound for the
distance spectrum of any Zg-LDPC ensemble: it suffices to restrict the optimization
in (6.1) to Zs-types 0 supported on the binary subgroup 4Zs.

The second dotted curve instead, taking value %log% for t = 0, corresponds to
the distance-spectra of the Zg-code ensemble (with no sparsity constraints) of the
same rate R = %log 8. This ensemble is defined as a sequence of kernels of random

homomorphisms (ker @ y), each ® 5 being uniformly distributed over Hom(Z%', Zév/ %),

the group of all homomorphisms from Z% to Zév/ 2, with no sparsity constraint. Zg-
code ensembles of codes are a natural generalization of the traditional linear-coding
ensembles over finite fields [20, 2] and have been considered in [10] and [11] in order to

characterize the capacity achievable by Abelian group codes over symmetric channels.
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Fic. 6.1. Bhattacharyya distance spectra of (c,d)-regular LDPC ensembles over Zg for the
8-PSK AWGN channel: the solid curve corresponds to the uniformly labelled ensemble, the dash-
dotted one corresponds to the unlabelled ensemble, and the two dotted curves correspond, respectively,
to the Zg-linear ensemble and to the binary LDPC ensemble.
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In [12] their average type-spectra have been characterized; for the Zg-code ensemble
of rate %1og8 this is given by

8

L2 (0) = H(0) ~ Flogls(0).  1(0) = s

Notice that I'z,(6) is an upper semicontinuous function over the simplex P(Zg), and
its discontinuities correspond to types supported on the subgroups 2Zs and 4Zs. In
fact a salient point is easily recognizable in the graphs reported around the abscissa
t = 0.05, corresponding to the intersection between the average spectrum of the bi-
nary subchannel and that of the Zg-subchannel. This salient point occurs before the
curve crosses the t-axis, which is coherent with the fact, proved in [12], that the typ-
ical normalized minimum distance of the Zg-code ensemble equals the corresponding
Gilbert—Varshamov bound. In other words, while for low values of ¢ the distance spec-
trum of the Zg-code ensemble is dominated by the term corresponding to the smallest
nontrivial subgroup (a phenomenon generally observable for Abelian group code en-
sembles), the value of the typical minimum distance is determined by types which are
not supported in any proper subgroup of Zs (this is instead related to the particular
constellation chosen, although it is conjectured to be true for many constellations of
interest).

Analogous considerations can be made about the LDPC distance-spectra based on
the simulations reported. In particular, for distances close to 0, the average distance-
spectra of both the unlabelled and the uniformly labelled Zg-LDPC ensembles are
dominated by the binary-subgroup supported types. However, these components do
affect the value of the typical normalized minimum distances (7y({1},¢,q) and Y(Z3 c.d)s
respectively) only for low values of the degrees (¢ = 3,4). For all of the other values of
the parameters, the typical minimum distance is instead determined by types which
are not supported in any proper subgroup of Zg. Another observation which can
be made is that, not surprisingly, as the values of the degrees (c,d) are increased
while keeping their ratio constant, the distance-spectra of both the unlabelled and
the uniformly labelled ensembles approach the one of the Zg-linear ensemble.

However, the most important conclusion which can be drawn from the graphics
reported concerns the different behaviors of the unlabelled and the uniformly labelled
ensembles. Indeed, it appears evident that the latter drastically outperforms the for-
mer at the distance level. In particular, already for relatively low values of the degrees
(c = 8, d = 16) the uniformly labelled ensemble typical minimum distance v(z; c.a)
is very close (practically equal) to the Gilbert—Varshamov bound. For the same val-
ues of the degrees instead, the unlabelled ensemble suffers from a remarkable gap;
this gap seems to be slowly filled up as the values of the degrees are increased, but
it still remains significant for relatively high values of ¢ and d. This indicates that
structural properties of these two ensembles are remarkably different. Some prudence
is nevertheless justified by the fact that ours are only lower bounds on the typical
asymptotic normalized minimum distance, while, as already mentioned in the intro-
duction, a concentration result for the type-spectra is needed in order to prove their
tightness. However, while this phenomenon appears here only at the distance level,
computer simulations of the performance of these codes reveal that a drastic superi-
ority of the labelled ensemble with respect to the unlabelled one is evident also under
belief-propagation decoding. We observe that this is coherent with Monte Carlo simu-
lations reported in [4], where the labelled ensemble was shown to be closer to capacity
than the unlabelled ensemble.
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6.2. The average word error probability of the LDPC codes ensembles.
In our analysis of the minimum distance properties of LDPC G-code ensembles, the
quantities ((p,.) show up as an almost sure lim inf for the unnormalized minimum dis-
tance only when a(F,c) = —1. However, these quantities characterize the asymptotic
ML average performance of these ensembles for all values of a(F, ¢).

For instance, let us consider in some detail the case G ~ Z,- for some prime p

and some positive integer r. Let us fix an admissible degree pair (¢, d), and denote
—(F,e,d
by pe(C N)( ) the average ML error probability of the (¢, d)-regular F-labelled en-

semble of LDPC Z,--codes over an arbitrary Z,--symmetric MC. Then it is possible
to show that there exists a threshold (1 — §)logp” < C(p,,q) < logp” such that, for

every Zyr--symmetric channel whose Z,--capacity (2.5) exceeds C(f . q), the average

———(Fed . . .
error probability p.(C N)( o goes to zero in the limits of large N. Moreover, if one

considers an increasing sequence of degree pairs (¢, d,) with a given designed rate
(1- (CTZ) log p" converging to R, then the corresponding LDPC thresholds C(., 4. )
converge to R.

More precisely, it is possible to show that over any Z,--symmetric channel whose
Zyr-capacity exceeds C(p, q) We have

(6.2) K N“FO < 5T < Ry Nethe)

for some positive constants K1, K5 both independent of N. Moreover, it can be proved
that

(F,c,d)

. pe(CN)
6.3 limsup ——————
( ) NEN(c,d) Na(F,c)

< Kz exp(((r,e))
for some positive constants K3 independent of the channel (and thus from A). The
results (6.2) are known in the binary case (see [29]); (6.2) was presented in [10] for
the unlabelled LDPC ensemble. Proofs of (6.2), (6.3) in their full generality can be
gathered coupling the estimations of section 4 with the standard bounding techniques
used in [28, 39, 29, 4] and will be given elsewhere.

Observe that if FF < F' < Aut(G), then

(64) CL(F, C) < CL(F/, C)7 C(F7c) > C(Fﬁc)-

Thus, from the point of view of the average performance, the smaller the label group,
the better the parameters. This stands in contrast with the numerical results pre-
sented in the previous paragraph, indicating that at the distance level the uniformly
labelled ensembles perform much better than their unlabelled counterparts. An ex-
planation for this seeming paradox can be obtained by invoking so-called expurgation
arguments. Indeed, it can be proved that, while the average error probability of the
LDPC ensembles is affected by a vanishingly small fraction of codes with low min-
imum distance and decays to zero only as a negative power of N, almost surely a
sequence of codes sampled from the same ensemble has error probability decreasing
to zero exponentially fast with N. It is this typical exponential behavior that has to
be considered representative of the ensemble, rather than the one of the average error
probability. It is also worth mentioning that the typical error exponent can be esti-
mated in terms of the average type-spectra, using techniques presented in [39]. This
phenomenon is well known in the LDPC code literature [19, 29]; proofs for LDPC
codes over Galois fields can be found in [17, 4].
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7. Conclusions. The following issues are left for future research:

e proving concentration results for the spectra of the LDPC ensembles for in-
stance using a second-order method (see [33]);

e giving an analytical explanation of the different behavior of the labelled and
unlabelled ensembles;

e generalizing the analysis to irregular ensembles following the approach of [15,
31);

e considering generalizations of the so-called stopping sets and pseudoweight
distributions which in the binary case characterize the iterative decoding per-
formance of LDPC codes (see [31, 43, 24]); while the distribution of stopping
sets has been studied for binary LDPC ensembles, the distribution of pseu-
docodewords is unknown even in the binary case.

8. Appendix.

8.1. A semicontinuity lemma. Let E be a compact metric space. It is a
standard fact that any lower semicontinuous function f : E — (—o0, +00] achieves its
minimum on every closed nonempty subset C of FE, i.e.,

(8.1) dzeCst. f(T) < fx) Vaoel.

In the proof of Theorem 5.1 we used the following fact.
LEMMA 8.1. Let g,h: E — (0,+00] both be lower semicontinuous. Then

f:R— (—o0,+00], f(y) ==inf {g(z)|z € E s.t. h(z) <y}

is nonincreasing and lower semicontinuous.

Proof. That f is nonincreasing immediately follows from its definition. In order
to prove semicontinuity, assume we are given a sequence (y,,) C (—o0, +00] converging
to some y € [—00, +00]. We want to show that

(8.2) liminfy, f(yn) = f(y)-

Observe that with no loss of generality we can restrict ourselves to the case when
yn > min{h(z) |z € E}, since otherwise the set {x € F s.t. h(z) < y,} is empty
and f(y,) = +oo. Since h is lower semicontinuous we have that the sets
{z € E s.t. h(z) <wy,} are closed in E. Therefore, since the function g is lower
semicontinuous as well, from (8.1) we have that there exists z, in E such that
flyn) = g(x,) and h(xz,) < y,. Since the space E is compact, from the sequence
() we can extract a subsequence (x,, ) converging to some T in E. From the lower
semicontinuity of h we get

h(Z) < liminfy h (z,,) < liminfg y,, = y.

It immediately follows that g(Z) > f(y). Finally, from the lower semicontinuity of g
we get
liminf,, f(y,) = liminfy g (z,,) > 9(%),
which, together with the previous inequality, implies (8.2). d
8.2. Proofs for section 4.4. Recall that the interconnection group for the F-
labelled ensemble is Sy. x FN¢. We will write the random variable Iy = (I, A),
where ITy is uniformly distributed over Sy, and A is uniformly distributed over F Ne,

Foralls=1,...,N,and k € G, let ef in GN be the vector whose components are all
zero but for the sth, which is equal to k.
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8.2.1. Proof of Proposition 4.7. Let k in G \ {0} be such that a(F,c) =
1 — ¢+ b(Fk,c), and define the event EY := {e¥ € ker®y}. We have Wy (1) =
Zivﬂ Lier oy (65) = Eivzl ]lEgV-

For 1 <t < L, define the random variable Ny := |II/y (I¢) N I¢|. Define the event

EY = (] {N =0}U{N; >0 and 3 closed walk of length N; in G(G, Fk)}.
1<t<L

It is not hard to check that EN D EN. Moreover, P(EN|EN) > |F|~¢, since, given
Eév, there exists at least one realization of the ¢ entries A(;_1)cq1,...,Ase in F such
that ® ek = 0.

Observe that IIx(IS) is uniformly distributed over the class of all subsets of
{1,..., Nc} of cardinality ¢ and that there exist at least (b( FL,€7C)) possible realizations
of IIn(IE) such that, for all 1 <t < L, N, is either 0 or equals the length of a closed
walk in G(G, Fk). It follows that

1 N 1 (Ne\ '/ L
. PEN) > — P (EN) > > KNV
(8.3) ( S)—|F|c ( 5)_|F|C<c> (b(Fk,C))_

for some K’ > 0 independent of N.

We now estimate the probability of the intersections EN NEN for 1 <r # s < N.
We have that, given that EN occurred, Iy (I¢) is uniformly distributed over the class
of subsets of of cardinality ¢ of {1,..., Nc} \ I (I¢). It follows that
(8.4)

pe o) < mEder) < () h (o) ("R < et

for some K" > 0 independent of N. By applying a union-intersection bound, and
using (8.3) and (8.4), we get

P(Wy(re) >1)> Y P(EN) =Y P(ENNEY)
s r#s
> K/Na(F,c) _ K//N2a(F,c) > KNa(Fk,c)7

the last equality holding true for some constant K > 0 and N large enough, since
a(F,c) <0. O

8.2.2. Proof of Proposition 4.8. For 1 < s# r < N and 1 <t < L, define
the event

L
EN, = ﬂ {N(1f) ﬁftd‘ = [N (I5)N Itd|}'

t=1

In the unlabelled (¢, d)-regular ensemble E}Y, is sufficient for the N-tuple e —e¥ (whose
G-type is 7%) to be in ker & . Indeed, in this case each check ends up summing an
equal amount of entries equal to k and —k. For the F-labelled ensemble it is easy
to see that P (ef — ek € ker @y | E}Y,) > |F|7%, since, given that E}, occurred, for

(e —e¥) to be 0 it is sufficient that the 2¢ corresponding labels equal the identity
automorphism. Thus,

N
P(Wy (7)) > 1) > P <Z Tieray (€F —eF) > 1) > |F| 7P (U EN> :

s>r s>r
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Now we introduce the events FN := J;_, {|lx (&) N I{| > ¢}. We have
c e\ [d\ [dL\ !
P(FN) < < —ld/2]
<o S () <
a=|d/2]+1

for some positive A independent of N and r. Clearly, we have that F~ implies EN

so that P (EN,| EN) = 0. Instead, we have P(EN,|FN) > (V7 1)0) > (eN)™©
Thus, there exist some positive Ny and K’ such that for every N > Ny,

P(EN) >P (E§S| F_N) P (F_TN) > (eN)~¢ (1 - AN—ld/QJ) > K'N~°.

For every unordered triple {q,r,s} C {1,..., N} we consider the event
EN. . ﬂ { N (IE) N I = [N (IE) N I = [T (I5) N I )

We have that

P (EN ) < (d _ 1)60!((N;1)c)_1(d _ 2)60!((N;2)c)_1 < K!"N—2¢

q,r,s

for some positive K independent of N. For every unordered 4-tuple {p, q, r, s} define
L
EN = ﬂ {|INn(I5) N I = [N (IS) NI = [Tn (I5) NI = Tn (1) N IE| }.

We have that

P(EN ) < (d_l)cd((Nzl)c)_l(d_2)ccl((N;2)c)_1(d_3)cc!((N;3)c)_1 < K" N3¢

p,q,7,8

for some positive K" independent of N. It follows that

P(Wy () >1) > |F|7*P (U Ef,ﬂ)
s>r
> Y P(EN)- D> PEN)- D> PEY..)
r<s g<r<s p<qg<r<s
> (];])K/N_C _ (];)K//N—Zc _ (JX)K///N—SC
2 KN276

for some positive K independent of N and N € N, q) large enough. |

8.3. Proof of Theorem 5.2. In order to show the first part of the claim, one
follows the steps of the proof of Theorem 5.1 until obtaining (5.3) and (5.4). Then
(5.3) implies that limy P (/13(, < 7(F7c7d)) = 0, while from (5.4), since a(F,c) < —1,
one gets limy P (Kfy < Y(pe,a)) < KN = 0.

For the second part of the claim, we first show that

(8.5) P (hm Linf diy (ker @) < C<F,c>) — 1.
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Indeed, let us first consider the case a(F,c) = —1 > 2 — ¢. From Proposition 4.7 it
follows that, for every k € G \ {0} such that b(Fk,c) = a(F,¢) — 14+ c=c— 2,

Y PWn(m)=1)> Y KNFI=K Y N7'=4oo
NGN(CYd) NGN(c,d) NGN(CYd)

We now recall that by assumption (IIy) is a sequence of independent random vari-
ables, so that the events {Wy (7;) > 1}, for N in J\/(C,d), are independent. We can
thus apply the converse part of the Borel-Cantelli lemma [7] to conclude that with
probability one the event {Wyx (7%) > 1} occurs for infinitely many N € N q). It
follows that, for all K € G\ {0} such that b(Fk,c) =c— 2,

(8.6) P(liminfy dmin(ker @) < 8(k)) > P({Wn (7%) = 1}i.o. N € Nca)) =1,

so that (8.5) follows. The case when ¢ = 3 can be treated similarly using Proposi-
tions 4.7 and 4.8 and the converse part of the Borel-Cantelli lemma.

It remains to prove that liminfy dmin (ker®y) > () with probability one.
First, consider the case ¢ = 3. For every k such that b(F'k, ¢) = 0 we have Wy (74,) =0
for every realization of Iy in the interconnection group Sy, x FN¢. It follows that
deterministically

dimin(ker @) > min {(2 — 1113 (b(Fk,))8(k)|k € G\ {0} } = ((r.0)-

When ¢ > 4, for every k in G \ {0} such that b(Fk,c) < 2 — ¢, Lemma 4.5 and
the Borel-Cantelli lemma imply that with probability one {Wx(7) = 0} occurs
only finitely often. Then using an argument similar to that in the proof of Propo-
sition 4.4 it is possible to show that Z%<H9*50H<% Wy(0) < KN72, and then
> 1 <|l0—b0l|<2 W (0) = 0 for all but a finitely many N. This implies (8.5). a
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THE LINEAR ARBORICITY OF GRAPHS ON SURFACES OF
NEGATIVE EULER CHARACTERISTIC*
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Abstract. The linear arboricity of a graph G is the minimum number of linear forests which
partition the edges of G. In the present, it is proved that if a graph G can be embedded in a surface
of Euler characteristic € < 0 and A(G) > /46 — 54e + 19, then its linear arboricity is |'A(2G) 7. Some
related results on the girth and maximum average degree are also obtained.
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1. Introduction. In this paper, all graphs are finite, simple, and undirected.
Any undefined notation follows that of Bondy and Murty [6]. For a real number
x, [x] is the smallest integer not smaller than x, and |x] is the largest integer not
larger than x. Given a graph G = (V, E), let N(v) = {u | uwv € E(G)} and Ny(v) =
{u | v € N(v) and d(u) = k}, where d(v) = |N(v)| is the degree of the vertex v.
We use A(G) and 6(G) to denote the maximum (vertex) degree and the minimum
(vertex) degree, respectively. A k-vertex is a vertex of degree k. If W C V(G), then
let N(W) = U,ew N(v). The girth of a graph G is the length of a shortest cycle in
G. The mazimum average degree, denoted by mad(G), of a graph G is the maximum
value of 2|E(H)|/|V(H)| taken over all subgraphs H of G.

A linear forest is a graph in which each component is a path. A map ¢ from
E(G) to {1,2,...,t} is called a t-linear coloring if (V(G), ¢~ !(«)) is a linear forest
for 1 < a < t. The linear arboricity la(G) of a graph G defined by Harary [10] is
the minimum number ¢ for which G has a t-linear coloring. Given a t-linear coloring
¢ and a vertex v of G, let CL(v) = {j | the color j appears i times at v}, where
i =0,1,2. Then |C)(v)| 4 |C,(v)| + |C2(v)| = t.

Akiyama, Exoo, and Harary [2] conjectured that la(G) = [(A(G) + 1)/2] for
any regular graph G. It is obvious that la(G) > [A(G)/2] for any graph G and
la(G) > [(A(G) 4+ 1)/2] for every regular graph G. So the conjecture is equivalent to
the following conjecture.

CONJECTURE A. For any graph G, f#} <la(G) < [%]

The linear arboricity has been determined for complete bipartite graphs [2], Halin
graphs [12], series-parallel graphs [14], complete regular multipartite graphs [15], and
regular graphs with A = 3, 4 [2] and [3], 5, 6, 8 [8], and 10 [9]. Péroche [11] proved
that the determination of la(G) of a graph G is a NP-hard problem, even when A = 4.
Alon, Teague, and Wormald [5] proved that there is an absolute constant ¢ > 0 such
that for every d-regular graph G, la(G) < % +cd?/3(log d)'/3. A slightly weaker result
has been proved in [4, p. 64]. Aft-djafer [1] obtained some results for graphs with
multiple edges. For planar graphs, Conjecture A has already been proved to be true;

*Received by the editors September 1, 2001; accepted for publication (in revised form) June 13,
2008; published electronically October 24, 2008. This work was partially supported by National
Natural Science Foundation of China (10631070, 60673059).
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see [13] and [17]. Wu also proved in [13] that if a planar graph G has A > 13, then
la(G) = [A/2], and some related results on the girth are obtained, too. It is noted
in [16] that these results can be extended to graphs embeddable in a surface of Euler
characteristic € > 0.

In the present paper, we prove that if a graph G is embeddable in a surface of
Euler characteristic e < 0 and A(G) > /46 — 54e + 19, then la(G) = [A/2]. We
also consider the relationship between linear arboricity and mad(G). Here surfaces
are all compact, connected 2-manifolds with boundary and any embedding of graphs
are 2-cell embedding.

2. Main results and their proofs. First, let us describe a result proved by
Borodin, Kostochka, and Woodall [7]. Let G be a graph, and let f : E(G) — N be a
function into the positive integers. A proper edge coloring of G is a coloring of E(G)
such that no two adjacent edges receive the same color. A graph G is said to be edge
f-choosable if, whenever we give lists of f(e) colors to each edge e of G, there exists
a proper edge coloring of G where each edge is colored with a color from its own list.

LEMMA 2.1 (see [7]). A bipartite graph G is edge f-choosable where f(e) =
max{d(u),d(v)} for e =uv € E(G).

If ¢ is a t-linear coloring of a graph G, a vertex v € V(G), and i € {0, 1,2}, then
let CZ (v) = {j | the color j appears i times at v}. Then |C(v)|+|C] (v)|+|CZ(v)| =t
and |C}(v)| + 2|C2(v)| = d(v), so that

(1) 2|CY(v)]| + |CL(v)] = 2t — d(v).

We now state and prove our main result.

THEOREM 2.2. Let d > /46 —54e + 19, and let G be a graph with maxi-
mum degree A(G) < d, embedded in a surface of Euler characteristic ¢ < 0. Then
la(G) < [4]. In particular, if A(G) = d, then la(G) = (#]

Proof. Let G be a minimum counterexample to the theorem. First, we prove
some claims for G.

Claim 1. For any uwv € E(G), dg(u) + dg(v) > d + 2.

Proof of Claim 1. Suppose that G has an edge uv with dg(u) + dg(v) < d+ 1.
Then G’ = G — uv has a (gw-linear coloring ¢ by the minimality of G. Let S =
C2(u) UC2(v) U (CL(u) N CL(v)). Since dar(u) + dar(v) = d(u) +d(v) —2 < d -1,
|S] < (%] Let p(uv) € {1,2,..., [%] 1\S. Thus ¢ is extended to a [%W—Iinear coloring
of GG, a contradiction. Hence Claim 1 holds. a

By Claim 1, we have §(G) > 2 and any two 2-vertices are not adjacent.

Claim 2. G has no even cycle vgvy - - - vap,—10p such that d(v1) = d(vs) = -+ =
d(’l}gnfl) = 2 and maxop<i<n |N2(U2i)| 2 3.

Proof of Claim 2. Suppose G does contain such an even cycle. Without loss
of generality, let Na(vg) > 3, which implies that vy is adjacent to at least three
2-vertices. Let u € Na(vg)\{van—1,v1} and v € N(u)\vo. By the induction hypothesis,
G*=G—{v1,...,va3p—1}—uvp has a (%]—linear coloring . Now we construct directly
a [4]-linear coloring o of G as follows.

First of all, if C2(vo) # 0, let o(uvg) = a(vov1) € CY(vo). Otherwise, |Cy(vo)| >
3, let o (uvg) € C(vo)\@(uwv) and o (vivg) € C}(vo)\o(uvo). After that, let o (vovan—1)
€ (CL(vo) UCY(vo))\{o(ug), o(vov1)}. So o(vov1) # o(vovan—1). Furthermore, for i
= 1,2,...,71 - ]., if O'(Uovgn,l) S C&,(’Ugi), let O'(Ugi,l’l}gi) = U(Uo’l}gnfl). Ot-
herwise, let U(’l}gi,lvgi) S (Ci,(vgi)\a(vgi,gvgi,l)) @] Cg(’l}gi). And O'(Ugi’l}gzurl) S
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(Cj,(vgi)\cr(vgi_lvzi)) U Cg(vgi). Finally, the uncolored edges of G are colored the
same colors as in ¢ of G*. This contradiction proves Claim 2. O

Let G2 be the subgraph induced by edges incident with 2-vertices. Since G does
not contain two adjacent 2-vertices, Gy does not contain any odd cycle. So it follows
from Claim 2 that any component of G5 is either an even cycle or a tree. So it
is easy to find a matching M in G saturating all 2-vertices (M contains alternate
edges of every even cycle of G, and if some component of Gs is a tree T, then we
repeatedly add to M a pendant edge e of T" and delete the endvertices of e from T').
If wv € M and d(u) = 2, then v is called a 2-master of u. Note that every 2-vertex
has a 2-master, which is necessarily a vertex of maximum degree, and each vertex of
the maximum degree can be the 2-master of at most one 2-vertex.

For an integer ¢t (3 <t < [4]), let X; C {v |2 < dg(v) < t} and Y; = N(Xy).
It follows from Claim 1 that X; is an independent set of G. Let K be the induced
bipartite subgraph of G with partite sets X; and Y;. Then dg (u) = dg(u) for u € X;.
If dg (v) > de(v) + 2(t — [4]) for each v € Yy, then K is called t-alternating.

Claim 3. G contains no t-alternating subgraph for any ¢ (3 <t < \_g])

Proof of Claim 3. Suppose that for some ¢t (3 < ¢t < |£]), G contains a t-
alternating subgraph H with partite sets X and Y such that 2 < dy(z) = dg(z) <t
for z € X and dy(y) > 2t + dg(y) — 2[2] for each v € Y. Then there is a [4]-linear
coloring o to color all edges of G — X by the minimality of G.

Let F = (X,Y”) be the bipartite graph obtained from H by splitting equitably
each vertex v € Y into two vertices v; and v, that is, such that vi,vo € Y’ and

LdHT(”)J =dp(v1) <dp(ve) = [dHT(”)] Similarly, split equitably the set C1(v) into two

subsets C” and C”, that is, C}(v) = C), UC), and L@J =10, | <|C,| = f@}
Thus for each vertex v € Y and its splitting vertices vy, vy € Y, let Gy, = C2(v) UC’
and C,, = C2(v) U C”. It follows that for any zy € E(F) with z € X and y € Y,
|Cy| = max{t,dr(y)} > max{dp(z),dr(y)} since |CO(v)] +|Ca(v)| + |CF(v)| = [4]
and 2|C2%(v)| + |CL(v)| = dg(v) — du(v). Now define the list A,, of zy as C,. By
Lemma 2.1, any edge zy of F' can be colored from its list A,,. If we use the same
coloring to return to color all edges of H, then we extend o to a fg}-linear coloring
of G, a contradiction with G being a counterexample. So this contradiction proves
Claim 3. O

Claim 4. If X; # 0, then there exists a bipartite subgraph M; of K; such that
dar, (x) =1 for each x € Xy, and 0 < day, (y) < 2t — 1 for each y € Y.

Proof of Claim 4. Let Hy = (X],Y}:), where X{ C X;, be a maximum bipartite
subgraph of K; such that dy,(z) = 1 for x € X] and dg,(y) < 2t —1 for y € Y;.
Clearly, H; is not empty since G has at least one edge from X; to Y;. Suppose X # X;.
Let v € X;\X,. An alternating path, P,, in K; is a path whose origin is v and edges
are alternating between FE(K;)\ E(H:) and E(H;). If K; has an alternating path
P, = vv1vg - - - Va,11 such that its terminus vo,,41 is in Y; and dg, (vamy1) < 2t — 2,
then H{ = (Hy — {v1v2, 0304, . . ., Vam—1V2m }) + {001, 0203, . .., VamVam1} is another
bipartite subgraph satisfying the claim, but |E(H;)| > |E(H;)|, a contradiction to
the maximality of Hy. So for every alternating path P, whose terminus is a vertex
v €Y}, we have dy, (v') = 2t — 1. Let Z, denote the set of all vertices connected to v
by alternating paths. Set X} = Z,NX; and Y/ = Z,NY;. Then X' = {v}U(Z,nX}),
Y/ = N(X/), and dp, (y) = 2t — 1 for any y € Y}”". Let F}; be the bipartite subgraph
induced by edges between X[ and Y}”. Then dp, (y) > dg, (y)+1 =2t > 2t +dc(y) —
2[4] for any y € Y. By the definition of X¢, dg(z) = dp, (z) < t for any 2 € X/ So
F; is a t-alternating subgraph of G, a contradiction to Claim 3. Hence X; = X and
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Claim 4 is true. ad

Here we call y the t-master of x in G for xy € M;. In particular, it follows from
the claim that for each ¢ and j (2 < ¢ < j < 5), every i-vertex has a j-master. We
shall use the important idea to redistribute charge below.

By Euler’s formula |V| — |E| + |F| > ¢, and by the fact that 2|E| > 3|F|, we have

> (d(x) - 6) = 2|E| - 6]V| < 6|F| — 4|E| — 6e < —6e.
zeV

Define a charge w on vertices of G by letting w(v) = d(v) — 6 for v € V(G). Now we
construct a new charge w* from w by the following rule.

For each i and j (2 < i < j < 5), each i-vertex receives charge 1 from its j-
masters. Clearly, 3° oy (g w(v) =2, ey (g w"(v) < —6e. We will get a contradiction
by proving that }_, () w*(v) > —6e.

Claim 5. For each vertex v € V, w*(v) > 0; moreover, w*(v) > L%J - 8 if
aw) > 4],

Proof of Claim 5. If 2 < d(v) < 5, then w*(v) = 0 since v receives 6 — d(v) in
total from its j-masters where j = d(v),d(v) +1,...,5. If d(v) = 6, then w*(v) = 0.
If 7 < d(v) < d— 4, then v receives and sends nothing in the redistribution since
dg(u) > 6 for each u € N(v) by Claim 1; so w*(v) = w(v) = d(v) — 6 > 0, and,
moreover, d(v) —6 > [4] — 8 if d(v) > [ £]. If d(v) = d — 3, then neighbors of v have
a degree of at least 5. This implies that v may be a 5-master of at most 9 vertices
in G by Claim 4. So w*(v) > w(v) =9 = ((d—-3)—9)—6 = (d —12) — 6. If
d(v) = d — 2, then dg(u) > 4 for u € N(v), and it may be a 5-master of at most
9 vertices and a 4-master of at most 7 vertices. So w*(v) > w(v)—9—7= (d—18) —6.
Similarly, we have w*(v) > w(v) =9 —-7—-5 = (d —22) — 6 if d(v) = d — 1 and
w*(v) >ww)—9—-T—5—-1=(d—22)—6if d(v) = d. Hence w*(v) > (d —20) — 8
if dg(v) > d— 3. Since d > 46 —54e + 19, d — 20 > [4]. So w*(v) > (2] — 8 if
d(v) > L%J Hence we prove Claim 5. O

Let U = {u | dg(u) < |£]} and W = N(U). Then U is an independent set of G
by Claim 1. Let F' be the induced bipartite subgraph of G with partite sets U and
W. If|[V(G)\U| < |4] +1, then for any vertex w € W, dp(w) = dg(w) — dg_uv(w) >
da(w) — [2] > de(w) — 2[4] + 2| 4], that is, F is a (| ])-alternating subgraph of G,
a contradiction to Claim 3. So [V(G)\U| > |4] + 2. Thus we have Yvevic) W) =

Seviey @ () 2 (1§] +2)(1§] —8) = (M550 | 4+ 2)(| =52 ] — 8) > —6e,
a contradiction. This completes the proof. 0

If the girth of a graph G embedded in a surface of Euler characteristic € < 0 is
at least 4, then |E(G)| < 2(|V(G)| —¢), that is, > . (d(v) —4) < —4e. By using a
similar argument we can prove the following theorem.

THEOREM 2.3. Let G be a graph embedded in a surface of Fuler characteristic
€ < 0. If G has girth at least 4 and A(G) > /45 — 36e + 7, then la(G) = [%]

We close the paper with a result on the maximum average degree.

THEOREM 2.4. Let G be a graph with mad(G) < t for some integer t > 2. If
A(G) > (t+1)(t —2) + 1, then la(G) = [29)].

Proof. Let G be a minimal counterexample. Sincet > 2 and A(G) > (t+1)(t—2)+
1, ¢ < |2 |, Thus it follows from the proof of Theorem 2.2 that §(G) > 2, G has
no k-alternating subgraph for any 2 < k£ < ¢, G has no even cycle vgvy -+ - Vo —109
such that d(v1) = d(vs) = -+ = d(vap—1) = 2 and maxo<i<n |Na(ve;)| > 3, and
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dg(u) + dg(v) > A(G) + 2 if ww € E(G). So every i-vertex has a j-master for
2<i<t—landj=ii+1,....,t—1.

Since mad(G) < t, > .y (d(x) —t) < 0. Define a charge w on vertices of G by
letting w(v) = d(v) — ¢t for v € V(G). Now we construct a new charge w*: Each
i-vertex receives 1 from all its j-masters where 2 <i<tand j=4,i+1,...,t— 1.
It is obvious that w*(v) = 0 if d(v) = 2,3,...,t and w*(v) = w(v) > 0 if ¢t <
) < AG) —t+2. Ifdw) = AG) — k where 2 < k < t — 3, then w*(v) >
v) —(2t—-3)—(2t—-5)—---—(2k—1) > 0. If d(v) = A(G) — 1, then w*(v) >
v)—(2t—3)—(2t—5)—---—5>0. If d(v) = A(G), then w*(v) > w(v) — (2t —3) —
2t=5)— - =5-1=A(G) — (t+1)(t —2) > 0. Therefore, }_ g w(v) =
vev(cyw"(v) >0, a contradiction. This completes the proof. O
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ON COSETS OF WEIGHT 4 OF BCH(2™,8), m EVEN, AND
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Abstract. We give exact expressions for the number of coset leaders in the cosets of weight
4 of binary primitive narrow sense Bose-Chaudury-Hocquenghem (BCH) codes of length n = 2™
(m even) with minimum distance 8 in terms of several exponential sums, including cubic sums and
Kloosterman sums. This allows us to bound the number of coset leaders in these cosets.
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1. Introduction. This paper is a natural continuation of our previous papers [3],
[4], [5], and [6]. In these papers, we studied the coset weight distributions of binary ex-
tended triple-error-correcting primitive narrow sense Bose-Chaudury-Hocquenghem
(BCH) codes. Such a code is of length 2™ and minimum distance 8, which we will
denote by BCH(2™,8), and is the extension of the binary cyclic code of length 2™ —1
and designed distance 7, i.e., the cyclic code with zeros set {a, a®, o’} (where « is
a primitive root of the finite field of order 2™).

In [3] and [4] we described coset weight distributions of BC'H (2™, 8) for odd m
for the cosets of any weight j = 1,2,3,4,5,6. For the cosets of weight 4, using an
approach developed in [11], we have found [4] the exact expressions for the number
of words of weight 4 in terms of the exponential sums of four different types, in
particular, of the Kloosterman sums over GF(2™). Using these results we obtained
new properties of Kloosterman sums, mainly their divisibility modulo 24 (see [5]).

The purpose of this paper is to obtain similar results in the case where m is
even. Here we extend these results for even m, obtaining explicit expressions for
the number of words of weight 4 of cosets of weight 4 of BCH(2™,8). For the codes
BCH(2™,8) the case of even m is much harder, since the exact expressions depend on
five different exponential sums. Analyzing these sums we reduce the final expressions
to the exponential sums of four different types, including cubic sums and Kloosterman
sums. Known bounds for values of these sums permit us to bound the number of words
of weight 4 in the cosets of weight 4.

This paper is organized as follows. In section 2, following [3] and [10] we give
some preliminary results concerning the codes BCH(2™,8) and exponential sums
over GF(2™), in particular, the cubic sums and Kloosterman sums. In section 3 we
consider a nonlinear system of equations, which defines the number of words of weight

*Received by the editors May 22, 2007; accepted for publication (in revised form) June 16, 2008;
published electronically October 24, 2008. This work was supported by INRIA-Rocquencourt, by the
Norwegian Research Council under grant 171094/V30, and also by the Russian Fund of Fundamental
Researches (project 06-01-00226).

http://www.siam.org/journals/sidma/23-1/69264.html

TINRIA, Domaine de Voluceau-Rocquencourt, BP 105-78153, Le Chesnay, France (pascale.
charpin@inria.fr).

fDepartment of Informatics, University of Bergen, N-5020 Bergen, Norway (torh@ii.uib.no).

§Institute for Problems of Information Transmission, Russian Academy of Sciences, Bol’shoi
Karetnyi per. 19, GSP-4, Moscow, 101447, Russia (zinov@iitp.ru).

59

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



60 PASCALE CHARPIN, TOR HELLESETH, AND VICTOR ZINOVIEV

4 in a coset of weight 4 of a code BCH(2™,8). In section 4 we solve the nonlinear
system of equations, which gives the number of words of weight 4 for any such coset.
We express the number of solutions to this system in terms of the exponential sums
of four different types: the two cubic sums, the Kloosterman sums, and the so-called
inverse cubic sum. Here we use the same approach as in [10], [11], [12]. Using known
results on exponential sums, we lower and upper bound the number of words of weight
4 in any coset of weight 4. In section 5 we compute all of the possible values of the
number of words for the first nontrivial values m = 6 and m = 8.

2. Definitions and preliminary results. The Hamming weight of any vector
(or word) z is denoted by wt(x). Generally, we denote by Fyr the finite field of order
2% However, we simply denote by F the field Fom. For any set E containing 0 we
denote: E* = E'\ {0}. Also, #F denotes the cardinality of any set E.

Let us denote by BC'H (2™, 8) a binary primitive (in narrow sense) extended BCH
code of length n = 2™, where m > 5, and the minimal distance is 8. This is the code
over GF'(2) with the parity check matrix given by

1 1 1 1 1
01 a a® - an2

Hp = 0 1 a® o ... =23 | >
0 1 oa® alo ... a(n72)5

where « is a primitive root of F (see [16, ch. 7, section 6]). We use the elements
of F as locators for the code BCH(2™,8), where the first position of BCH (2™, 8)
corresponds to the zero element of F.

Let D =ax+ BCH(2™,8) be a coset of BCH(2™,8). The weight of the coset
D is the minimum weight of the words of D. A leader of D is a codeword of D of
minimum weight. To this coset D we associate a syndrome, which is a vector, say S,
over F with four coordinates:

S - (Sl)S27S3)S4) = mHtB?

where z is any vector from D and H]tg is the transpose of the matrix Hg. In this
paper we consider only cosets D of weight four. Since the first component S; of
the syndrome S shows the parity of the vector z, in the rest of this paper, under a
syndrome of a coset D, we use the vector (S3,S3,S54), i.e., without the first (zero)
coordinate. Recall that the covering radius of BCH(2™,8) is 6 [9]. Therefore, the
weight ¢ of D is in the set {0,...,6}.

Let Tr(z) denote the absolute trace of x € F and, for even m, denote by =z —
Tr3*(x) the trace function from F to its subfield Fy.

LEMMA 1 (see [11]). Let a, b be two arbitrary elements of F*, a #b. Then

LEMMA 2 (see [15]). The quadratic equation 2*> + ax +b=0, a € F*,b € F, has
two different roots in F if Tr(b/a?) = 0 and no roots in F if Tr(b/a?) = 1.

LEMMA 3 (see [1]). The cubic equation 2° + ax +b = 0, where a € F and
b € F* = F\ {0}, has a unique solution in F if and only if Tr(a®/b?) # Tr(1).
Furthermore, if it has three distinct roots in F, then Tr(a®/b?) = Tr(1).
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Denote fy(z) = 2 + x + b, where b € F*. Let
M; =#{b : fi(x) has precisely i zeros in F }.

LEMMA 4 (see [13]). Let n = 2™ where m is even. Then clearly My =0 and

MO = (n— 1)/3,
Ml = 7’1,/2,
Ms = (n — 4)/6.

Denote
ela) = (-1

The function e(z) is an additive character of F. For any mapping f : F — F, the
expression of the type

> elf@)
zeF

is called an exponential (or a character) sum over F.
LEMMA 5 (see [4]). Let o be any mapping from F to F, and let A € F*. Denote
by H the kernel of the linear function x — Tr(Ax). Then

D elo(x) + Y elo(x) +Ax) =2 e(o(x)).
xeF xeF xeH

The exponential sums of polynomials of degree three over F are known; they
are known also from coding theory (see [16, chapter 15]). In particular, we need the
following result due to Carlitz [2]. For arbitrary elements a € F* and b € F, denote

C(a, b) = Ze(aaj?’ + bz), Cla) = C(a,0).

zeF

LEMMA 6 (see [2]). Let a € F*. For any even m = 2s we have that

B (=1)s*125%L  if a is a cube in F,
Cla) = { (—1)%2° otherwise.

Ifa =32, B EF, then

_ [ (=ertestle(ad) if Tryr (b6 =0,
Cla,b) = { 0 otherwise,

where xo denotes any solution of z* + x = S22,
Ifa# 3%, B€F, then

C(a,b) = (=1)*2%¢(az?),

where x, is the unique solution of a®z* +ax = b2, given by
, s—1 25 o
(45 4 1) g = 3 (@) a0
j=0
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We also need the exponential sums of such type for the case when the argument
2 runs over F with the fixed trace of the element 1/x. It is convenient for us to define
this partial sum multiplied by 2:

(2.1) P(a,b) = 2 Z e(ax® + bux).
z€F: Tr(1/z)=0

Recall that the classical binary Kloosterman sum, say K'(a), is defined for each
a in F* by

K'(a) = Y e<ax + %)

zeF*

The exponential sums, which we consider here, are generally defined on F*, the mul-
tiplicative group of F. In this paper we extend all of the sums to 0, assuming that
e(z7h) =e(z73) = 1forx = 0. Indeed, Tr(z~!) = Tr(x2m_1’1) so that we can define
Tr(z~1) = 0 for the case z = 0. Therefore, we define here the classical Kloosterman
sum K(a), a € F*, as

(2.2) K(a) = Ze(aw + 1) = K'(a) + 1.

X
zeF

We extend the sum K'(a) to a = 0, setting K(0) = 0.
Note that we have (where z = ya and 2% = y)

(2.3) Ze(%—kax):Ze<§+a2y>:26(%+az) = K(a).

zeF yeF z€F

And obviously K (a) = K(a?).

Using deep results on the number of rational points on certain elliptic curves,
Lachaud and Wolfmann [14] proved the following result.

LEMMA 7. The set K(a), a € F is the set of all the integers s = 0 (mod 4) with
value s in the range [—2("/2+1 41 2(m/2)+1 4 1],

Note that we deduce immediately that for m even and for any a € F, we have

(2.4) —2m/DH 4 4 < K (a) < 20/DHL,

Considering the coset weight distribution of Z4-linear Goethals codes, we obtained
the following result.
LEMMA 8 (see [10]). For any m > 3,

_ 4 mod 8 if Tr(a)=1,
K(a) = {0 mod 8 if Tr(a)=0.

We also need the following observation, partly given in [4].
LEMMA 9. For any a € F* and for any m,

K(a)=2 Z e(ax) = —2 Z e(ax).
z€F: Tr(1/z)=0 z€F: Tr(l/xz)=1
Proof. We first have

K(a) = Z e(ax) — Z e(ax).

z, Tr(1/z)=0 z, Tr(l/xz)=1
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Since

Z e(ar) =0= Z e(azx) + Z e(ax),

z€F z, Tr(l/xz)=0 z, Tr(l/z)=1

we obtain the equality of the lemma using

Z e(ar) = — Z e(ax). O

z, Tr(1/z)=0 z, Tr(l/x)=1

We also need the following sum G’(a,b), which we introduced in [4], and which
we call an inverse cubic:

G'(a,b) = Ze(aa:?’ + g), acF* beF.

ceF*

Here we also extend this sum to z = 0, setting bz~ = 0 at the point x = 0. Thus

G(a,b) = Ze<ax3 + g) = G'(a,b) + 1.

zeF

It is easy to check that G(a,a) = G(a?,a?). This follows immediately from the
equality G’(a,a) = G'(a?, a?), which was given in [4]. We also have to bound these
sums.

LEMMA 10. Let m be even. For any a,b € F, where (a,b) # (0,0), we have

(2.5) |G(a,b)| < 2m/2F2,

Proof. We gave an upper bound on |G’(a,b)| in [4, Lemma 14] for odd m, but it
is easy to check that our proof in [4] holds for even m too. This upper bound is as
follows:

G/ (a,b)] < 4v2m.

Since G(a,b) is a multiple of 4 for any a,b € F and G(a,b) = G'(a,b) + 1, the proof
is completed. d

Now, by the two next lemmas, we introduce some important relations linking
partial sums with other sums considered here. To see the difference between even and
odd cases, we formulate these results for both m, even and odd, and prove only the
even cases. The odd cases are, respectively, Lemmas 10 and 12 in [4]. We mention
that the partial sum P(a,b), defined in [4], is not doubled (as here).

LEMMA 11. Let a be any element of F*, where F has the order 2™. Then

B K(a) + 2C(a,a) if mis even,
Pla,a) = { K(a) if mis odd.

Proof. Let m be even. We first have

Z e(a(z® +z)) = Z e(a(z® +2)) + Z e(a(z® + x))

z€F z€F, Tr(1/xz)=0 z€F, Tr(l/z)=1

which means

(2.6) C(a,a) = = P(a,a)+ > e(a(z® + ).

z€F, Tr(l/z)=1

N =
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Moreover, in the case where m is even,

(2.7) {242 |zecF, Tr(l/z)=1 ={yecF |Tr(1/y)=1}.

1 1 1 1
T =Tr|{—+——+ 55—
T<x3—|—x) T<x+az—|—1+x2—|—1>’
and the equation z* + z + ¢ = 0 has a unique solution if and only if Tr(1/c) = 1. We

know that there are M; = 2™~! such ¢ and then 2™~ ! elements 23 + z (in the set
above on the right) since for every such ¢

()7 (2)-

(see Lemmas 3 and 4). So, both sets in (2.7) have the same cardinality M;. We
deduce

This is because

Z e(a(z® +2)) = Z e(ay).

z€F, Tr(l/z)=1 yeF, Tr(1/y)=1
Using (2.6) and Lemma 9, we get

P(a,a) = 2C(a,a) — 2 > e(ay) = 2C(a,a) + K(a). 0O
yeF, Tr(l/y)=1

LeEmMMA 12. For any a € F*,

_ G(a,a) + C(a) if mis even,
Pla,0) = { G(a,a) if mis odd.

Proof. Recall that we denote C(a) = C(a,0). Also

P(a,0) =2 Z e(az?®).
z, Tr(l/xz)=0
We have, using Lemma 5,
Z e(az™®) + Z elaz™® +2) =2 Z e(ax™?) = P(a,0),
zeF z€F z, Tr(z)=0

with

Z e(ax™3) = Z e(az®) = C(a)

zeF zeF

and, moreover,

G(a,1) = Z e(az® + 271 = Z e(a*y® +y~h)

zcF yeF
= Z e(az® +az™') = G(a,a),
z€F
with y = 2% and z = ay. d
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3. Cosets of weight four in terms of nonlinear systems of equations.
Let D be a coset of BCH(2™,8) with syndrome S = (a,b,c). To find the number of
coset leaders in D, one needs to solve the following system of equations over F:

r+y+z+ u=a,
(3.1) 3+ Y3+ 2+ Wl =0,
2+ Yt + 2+ W=c

Here x,y, z, and u are pairwise distinct elements of F. Here we are interested in
cosets of weight 4 which are not contained in the Reed—Muller code of order m — 2.
That is, {z,y, z,u} is not a 2-dimensional flat or, equivalently, a # 0 in (3.1). For the
case of odd m, cosets which are contained in the Reed—Muller code of order m — 2
have been described in [3]. The approach, which we used in [3] for odd m, can be
used, of course, for the case of even m.

Denote by p(a, b, ¢) the number of different solutions to the system (3.1), i.e., the
number of unordered 4-sets of different elements x,y, z,u of F, which satisfy (3.1).
So, for fixed elements a,b,c € F, this number defines exactly the number of leaders
of D.

We now recall some general properties of our system (3.1). They can be checked
easily and have been considered for odd m in more detail but with another terminology
in [3, Lemma 4.4].

PROPOSITION 1. A 4-tuple {x,y,z,u} is a solution to (3.1) for given (a,b,c) if
and only if a 4-tuple {gx,9y,gz,gu} is a solution to (3.1) for given (a’,’,c’), where
a =ga, b = g3, d =g, geF*.

PROPOSITION 2. A 4-tuple {z,y,z,u} is a solution to (3.1) for given (a,b,c) if
and only if a 4-tuple {x +h,y+h,z+h,u+h}, h € F, is a solution to (3.1) for given
(a',V, ), where

a =a, b =b+ ha(h+ a), d = c+ ha(h® + a®).

PROPOSITION 3. A 4-tuple {z,y,z,u} is a solution to (3.1) for given (a,b,c) if
and only if a 4-tuple {z%,y?, 2%, u?} is a solution to (3.1) for given (a’,V,c), where
/ 2 b/ — b2 CI _ C2.
For fixed a,b, and ¢, denote by V' (a, b, ¢) the set of all 4-sets {x,y, z, u} which are

solutions to (3.1), i.e., in our notation #V (a,b,¢) = u(a,b,c). Denote by V all of the
sets of 4-sets, which are solutions to (3.1) for some a, b, c,

V= U V(a,b,c).

a€F*, b,cEF

This set V can be partitioned into different orbits, which are induced by applying
Propositions 1-3.

DEFINITION 1. For given elements a,b,c € F we define the orbit O(a,b,c) as the
set of V(a', 0, "), which can be obtained from V (a,b,c) by all possible transformations
given in Propositions 1-3.

According to Propositions 1-3, all sets V(a’,V', ¢’) from the orbit O(a, b, ¢) have
the same cardinality p(a, b, c). For arbitrary element n € F, we denote by ¢, ., the size
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of the cyclotomic coset C,) = {n,72,7% ...} of i induced by the action of Frobenius
automorphisms of F = GF(2™), i.e.,

lym = #C, =min{s | s >0, n*" =7}

Now we are going to prove that all orbits O(a, b, ¢) have a cardinality which depends
on the value of ¢, ,,, only, for some 7 which is defined by the next lemma.

LEMMA 13. Let a,b,c be arbitrary elements of F, where a # 0. Let u(a,b,c) be
the number of solutions to the system (3.1).

(i) If Tr(b/a®) = 0, then

N(a7 b, c) = /1*(17 0, 77)7

c b2 b

(i) If Tr(b/a®) = 1, then

wla,b,c) = p(1,6,n),
where ¢ is an arbitrary element of F* with Tr(d) = 1 and where

c b b 9
UZE—FE—FE—FCS +5

Proof. Consider an arbitrary set V(a, b, ¢), where a,b, ¢ are arbitrary elements of
F and a # 0. Using Proposition 1 with g = 1/a, we obtain the set V(1,b/a?,c/a®),
which has the same cardinality as V' (a, b, ¢). Now we apply Proposition 2 to this set.
We obtain for any h,

V (1, b/a® + h(h + 1), ¢/a® + h(h® +1)).
First, assume that Tr(b/a) = 0. Consider the following quadratic equation on h:

b
(3.3) h2+h+§ = 0.

Since Tr(b/a3) = 0, this equation has two distinct roots hy and hy in the field F,
and we choose any one of these roots as h. In such a way we obtain the set V(1,0,7)
where

(3.4) n=— + K+ h

ab
Summing expression (3.3) and the expression obtained by squaring of (3.3), we arrive
at the following formula for h* + h:

b b?

4 —
B4 h = — 4

which does not depend on the choice of the roots h; and hy. Using this equality in
(3.4), we obtain the formula (3.2) for 7, given in Lemma 13 for the case (i).

Now consider the case (ii), when T'r(b/a®) = 1. In this case (3.3) has no solutions
in F. Hence we cannot eliminate the element b/a®, or even reduce it to 1. In this
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case we cannot do anything better than choose § € F* such that Tr(d) = 1, with h
satisfying

h? +h+ % +46 = 0.
a

For any such element § the equation above has two solutions, say hy; and hs. Hence,
for a given b/a®, we can take any element § with Tr(5) = 1. Then we get the set
V(1,9,n), which has the same cardinality as V' (a, b, ¢). The expression for 7 is obtained
in the same way as for n above. o

Note that for any i the set V'(1,0,7%") belongs to the orbit O(1,0,7), by definition
of the orbits. Also, we have

V(1,682,077 € O(1,8,n).

Thus, according to Lemma 13, the set V is partitioned into the orbits of two types:
O(1,0,n) and O(1,d,n). We are going to compute the cardinality of these orbits. Our
next proposition, together with Lemma 13, gives the length of any orbit O(a, b, ¢).

PROPOSITION 4. The parameters 1 and 6 are defined by Lemma 13. The length
of the orbit O(1,0,7n) and the length of the orbit O(1,6,7n) only depend on the size
Ly.m of the cyclotomic coset C,, of n. More precisely,

#0(1,0,n) = #0(1,6,7) = 2™ —1)2" ", .

Proof. First, note that by Lemma 13 we proved that for any (a,b,c), the set
V(a,b,c) is either in O(1,0,7n) or O(1,4d,n), for some ¢ such that T'r(d) = 1, where n
is uniquely defined.

Let n be any element of F. According to Definition 1, we have to count the
number of distinct sets V' (a, b, ¢) which belong to O(1,0,7). We can choose in 2m~!
ways an element 5 € F and, further, the element a € F* in 2™ — 1 ways. To be clear,
we proceed as follows:

(1,0,m) — (L,B=h*+hn+h*+h) — (a,fa’ (n+ 0+ )a’)
and obtain (2™ — 1)2™m~1 different triples
(a,b,c), b=pa®, and c= (n+ B+ [%)a’.

Moreover, for each such triple, the sets V(a,b,c;) with ¢; = (9> 4+ 8 + ($%)a® also
belong to O(1,0,n), which allow us to get at all (2™ — 1)2™~1¢, ., elements.

We proceed in the same way to count the number of distinct sets V' (a, b, ¢) which
belong to O(1,4d,n) (where Tr(d) = 1). We have, as before

(1,6,m) — (L,B=0+h>+hn+h'+h) — (a,80° (n+B+0+(8+0)%)a’)
and then (2™ — 1)2m~1 different triples
(a,b,¢), b=pd®, and c=(n+B+6+ (6+0)%)d".

Note that the image of the map h + h+h?+ 6 is the set of all 8 such that Tr(3) = 1.
This image does not depend on §. We have to take into account that V(1,82 , 7% be-
longs to O(1, §,n) for any i. Due to our previous remark, we have to consider only the
length of C,,, providing that the cardinality of O(1, §,n) equals (2™ —1)2m" 14, .. d
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Remark 1. In this section, we assume that a # 0 for the study of u(a,b, ¢). When
a = 0 then the corresponding coset, say D, is contained in the Reed—Muller code of
order m — 2. According to Proposition 3, it is clear that if {z,y, z,u} is a solution to
(3.1) for given (0,b,¢), then any 4-tuple {x+h,y+h,z+h,u+h} is a solution too, for
any h € F. In this case the coset D is such that each coordinate position is covered
by at least one leader of D. Since the weight of D is 4, the supports of two leaders
cannot intersect, proving that the number of leaders is 2™~ 2. Since any leader of D
is a minimum codeword of the Reed—Muller code of order m — 2, its support is an
affine subspace of dimension 2. As there are (2™ — 1)(2™ — 2)/6 linear subspaces of
dimension 2, there are also the same number of cosets of B of weight 4 corresponding
to triples of the form (0, b, c).

4. On the number of solutions to the system of equations and exponen-
tial sums. The main result of this paper is the following explicit expression for the
number of solutions to the system (3.1) in terms of four different types of exponential
sums. We repeat the corresponding result from [4] for odd m and a new result for
even m as one theorem (for completeness and to see the difference between these two
cases).

THEOREM 1. Let u(a,b,c) be the number of different 4-sets {x,y,z,u}, where
x,y, z,u are pairwise distinct elements of F, which are solutions to the system (3.1),

where a,b, and ¢ are arbitrary elements of a field F of cardinality 2™ (m > 4) and
a # 0. Let

b b (b c
(4'1) EZTT(ﬁ) and )\25(54—1)4'54—1.
If X #£0, then
1
(42) ,LL(CL, bv C) = ILL(E, A) = § M(é, )\)

where M (e, A) is even and equal to: for even m

8M(e,A\) =2" — 8 + 3G(A\A) + C(N)
(4.3) + (=1)°(2K(\) + 4C(\,N) — 8),
and for odd m

8M(e,A) =2 — 8 + 3G(AN)
(4.4) + (=) (2K (N) + 20(\N) — 8).
If X =0, then

u(e,0) = 0.

We want to solve the system (3.1) for the general case Tr(b/a®) = e. Thus, we do
not use the reduced form O(1,0,7n) or O(1,d,7n) of the orbits of solutions O(a, b, ¢),
obtained in the previous section. For our purposes we consider the system (3.1) in
the following form:

z+y+z+ u=1,
(4.5) 2t 2 =0,
b 4+ oyt 4+ 2+ =
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where ,7, 2, and u are pairwise distinct elements of F and where & = b/a® and
¢ = c/a® are arbitrary elements of F. From now on, we use the following notation:

F* =F\{0,1}.

Before we begin to prove the theorem we give one simple lemma and several
statements, which reduce some exponential sums to the sums, which we introduced
in section 2.

LEMMA 14. Let {z,y,z,u} be a solution to (4.5). Then a 4-set {x+1,y+ 1,2+
1,u+ 1} 4s a solution to (4.5).

Proof. The proof follows by direct checking. O

Define three following functions g;(v) from F** to F**:

ni) = A (5.
n0) = (o ).
93(v) = A<% + U—lkl)'

Denote by S(g) the following exponential sum:

PROPOSITION 5. Let A # 0. Then
S(g1) = S(g2) = C(AA) — 2.

Proof. Since g1(v) = g2(v + 1), we have that S(g1) = S(g2). Consider S(g1):

v+1

sl = 3 o(05)
veEF**

B XA

= 2 elmt
veEF**

= ) e\ +8Y)

geF**

= > e\ + Q)
CGF**

= C(\N) — 2,

where we twice changed the variable v = 1/ and £ = ( + 1. O
PROPOSITION 6. Let A # 0. Then

Slgs) = K() — 2.

Proof. This result is an instance of [7, Theorem 1]. We briefly give the proof for
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clarity and completeness:

S(a) = D e(%+vi1)

veF**

= 2 e(h/\jl—zl)

heF**

= > e (A(h+1)+%+1>

heF ==
= K(\) — 2,
where h = 1/v and using (2.3). O
PROPOSITION 7. Let A # 0. Then
S(g1+92+93) = P(AA) — 2
=20\ + K(\) — 2.

Proof. The partial sum P is defined by (2.1). First, we reduce S(g1 + g2 + g3) to
the simplified form as follows:

oot an— A v—|—1+ v +1+ 1
g1 1792193 = e Wr1)? o wrl

(ot 1
- (2 +0v)3  vi4wv)’

Changing the variable v? + v = ¢ with T (¢) = 0, we obtain

S(g1+92+93) = Y e (/\ <(1;241—v)3+v21+v>)

veF**

SR

E€F*: Tr(¢
=2 ) e+
CEF*: Tr(1/¢)=0
= P\ —
Here we have to explain why we return to summing over F*, but not F** as we started.
Indeed, Tr(1) = 0, hence the equation v? +v = 1 always has a solution in F, the field
of order 2™, for even m. Therefore, when we change v?> +v (v € F**) to £ we have
to extend F** into F*. Now using Lemma 11 we obtain the final expression. O
PRrROPOSITION 8. Let A # 0. Then
S(g1+92) = P(X,0) — 2
= C(\) + G\ A) — 2.

Proof. We have

v+1
= A
g1+ g2 < v+1)>

Il
J‘r‘r| >
Il
>
~

w
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where we change variables v2 + v = £ and then 1/¢ = (. Taking into account that
Tr(v? +v) =Tr(&) = Tr(1/¢) = 0, we rewrite S(g1 + ga2) as follows:

Sl +92) = 2 > e(A¢?)
CEF*: Tr(1/¢)=0
— P(\0) — 2.

Then we obtain the final expression using Lemma 12. O
PROPOSITION 9. Let A # 0. Then

S(g1+93) = S(g2+93) = G\ N) — 2.

Proof. Since g1(v) = g2(v + 1) and g3(v) = g3(v + 1) we deduce that S(g; +
g3) = S(g2 + g3). So it is enough to compute S(g1 + g3). First, we rewrite g1 + g3

as follows:
v+1 1 1
= )\ —
g1 + g3 (1)3 +v+v—|—1>

24+ ou+1 1
:)\(14—73—#14- )
v v+1

(v+1)3 v
= A .
( v3 + v+1

Obviously, the mapping v — (v + 1)/v is a 1-to-1 mapping from F** onto F**.
Therefore, changing £ = (v + 1)/v, we obtain for S(g1 + g3):

o= E e3¢+ 1)

EEF**
= G\A) — 2. O

The proof of Theorem 1. Solving the system (4.5), we will, for short, use b and ¢
during the proof instead of b’ and c’.
We introduce two new variables

r+y =wv Y = W.

As x,y, z, and u are all different, the element v belongs to the set F**. Using these
new variables we can express x° + y* as follows:

(4.6) 3+ P = 0P+ .

Asz+u=v+1and 22 +u® = (v+ 1) + zu(v + 1) we can obtain from the
second line of (4.5) that

(4.7) wv + zu(v+1) = v + v + b+ 1.

Now we want, using the third line of (4.5), to obtain an expression similar to (4.7),
which includes only new variables v and w and also the product zu. We have from
(4.6) and the second line of (4.5)

(z+y)P° =
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and
+u® + zu(z® +u?)

5
5+ ub + zu(z® +y3 +b)
P+ uwb + 2u(vP+wu+4b) = (v+1)°.

(2 +u) =

z
z
z
Using these two expressions above and the third line of (4.5), we obtain
4

(4.8) w?v + wod + zu@Ptwo+b) = vt + v+ e+ L

We multiply (4.8) by v+ 1 and replace z u by its value in (4.7), Thus, we get the
following quadratic equation for w:

w?v + w+v) + W+ D) dvtetl) + @ Hv+b+ 1) +b) = 0,
which gives, with A =c+ 1+ b(b+ 1),
2 2 A
(4.9) w® + wv+1) + *+0)(b+1)+b+c + il 0.

As we know from Lemma 2, this equation has two different roots in F if and only if

(4.10)

TT((’U2+U)(b+1)+b+C + /\/u) _ 0

(v+1)2

Denote by wi = w1y (v) and we = wa(v) two distinct roots of (4.9). Now we return to
the beginning of our proof. Two equalitiesz + y = vandzy = w;, i € {1,2}, as
well as two equalities 2 + u = v+ 1 and zu = (w;v +v?> +v+b+1)/(v+ 1) imply
the two following trace conditions (Lemma 1):

(3 o
(4.11) Tr <v_2) — 0
and
wiv+ovw+1)+b+1Y wiv+b+1Y
(4.12) Tr( CEE > =Tr <7(v—|— E > = 0.

As wy +wy = v+ 1, it is easy to see that the validity of both conditions of (4.11) for
one of w; implies the validity of these conditions for the other.

Recall Lemma 14. Assume that (z,y, z,u) is a solution to (4.5) corresponding to
wy = wi (v). Then it is easy to see that a 4-tuple (z+1,y+1,2z+1,u+1) is a solution
to (4.5) corresponding to wy = wa(v).

Now we want to rewrite the conditions (4.11) and (4.12) in a more acceptable
form. More exactly, using the fact that w; and ws are the roots of the quadratic
equation (4.9), we want to eliminate w; from the conditions (4.11) and (4.12). We
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start from the first condition (let w; = w):
w+wv+wv w(v+1) w
— T’r‘ 72 + —
v v
w(v + 1 +w >

’U2
b+1 b+c A
v? +v_3)
c+1+b(b+1) /\>
_|__

Tr b +

Trb +

2 3

i S
- (M
(v +)( b+1)+b+c + /\/u)
(
(

o ().

where we used the condition (4.9), that Tr(z) = Tr(2?) and Tr(1) = 0, since m is
even. Thus (4.11) can be written as follows:

(4.13) Tr ()\ (”;1) + b) — 0.

Now we have for the condition (4.12):

. wv+b+1 T wo+b+1+w+w
(v+1)3 ) (v+1)3

w+b+1 w
(v+1)3 (v—|—1)2>

w2+w(v+1)+(v+1)(b+1))
(v+1)*

(v+1)(b+1)+(v2+v)(b+1)+b+c+/\/v>

(
(
( (v+ 1)1
(
(
(

A +(b+1)(v2+1)+b+c)
v(vt 4+ 1) vt 41

A b+1 b+c
U(’U4+1)+’U2+1+U4+1)

ot A+1> - (ﬁ)

(N RS SRR SR
vw+1)3 v v+l (w12 (v+1)3

But

Hence we can rewrite the condition (4.12) as follows:

(4.14) Tr()\ ((1}—:—)71)3 + % + Uil)) — 0.
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Now we rewrite the condition (4.10). We have

(W +0)b+1)+b+c + Ao
TT( (0 +1)? )

ey bl bre
T T T or 2 T v+ 1)2

A A
=Tr(b
(o et )
using v + v = v2 + 1 + v + 1 and properties of the trace function.
Thus the condition (4.10) is equivalent to the following condition:

w o a (L ) -0

We continue the proof of the theorem. So, in order to find the number p(1,b,¢) =
(e, A) we have to find the following number, which we denote by M (e, A): how many
times all three conditions (4.13), (4.14), and (4.15) are simultaneously satisfied when
v Tuns over F**. It is easy to write the expression for the number M (e, A) in terms
of exponential sums. Denote that (recall that A\=n+1=0b(b+1)+c+1)

1
fle(”;)M,

f2

I
>
/
<
+le
—_
%
4
|
4
(4
+ |~
—
~

[

Il
>
YN
SN
+

4

+ |~
—_

~——
+
o

By the definition we have

M(e,\) = é Z (1 i (_1)Tr(f1)) (1 I (_1)Tr(f2)) (1 I (_I)Tr(fg)) .

veF**

Multiplying into the parentheses and using our notation e(a) = (—1)7"(®) and ¢ =
Tr(b), we obtain

SM(e )= > 1+ Y e(f)+ Y. e(f)

vEF** vEF** veF**
Y el Y elfit f)+ Y elhitf)
vEF** vEF** veF=
+ Y elfetfa)+ Y elfit fat fa).
veF** vEF**

Recall that S(g) denotes the following exponential sum of g:

Introducing the following notation:
S; = S(.fl)a i = 152735
Sij=8S(fi+f;), 1#3, 4,5 €1{1,2,3},
S1,23 =8S(f1 + fa+ fa),
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we obtain for the number M (e, n),
8M(e,\) =2" -2+ 51+ 5o+ S5
+ S12+ 513+ 523+ 51,23

Using the three functions g¢;(v), i = 1,2,3, introduced previously, and the fact
that g2(v) = ¢g1(v + 1), our separate sums can be written as follows:

S1 = S(g1(v) +b),
Sz = S(g2(v) + g3(v)),
S3 = S(gs(v) +b),
S12 = S(g91(v) + g2(v) + g3(v) +b),
S1,3 = S(g1(v) + g3(v)),
S2,3 = S(g2(v) +b),
S1,2,3 = S(g1(v) + g2(v)).

Since S(g 4+ b) = —S(g) for the case ¢ = Tr(b) = 1 and S(g + b) = S(g) for the
case € = T'r(b) = 0, we arrive at the following expression for the number M (e, A):

8M(e,\) =2™ — 2+ S(g1 + g2) + S(g1 + g3) + S(g2 + g3)
(4.16) + (=1)°(S(g1) + S(g2) + S(g3) + S(g1 + g2 + g3)) -

Using Propositions 5-9 for all of the sums in (4.16), and recalling our initial
notation

b (b
A=b'(b’+1)+6’+1=¥($+1>+a—65+1:n+1,

we obtain the expression for M (e, A) in the theorem for the case of even m. It remains
to prove (4.2). When we introduce the new variables v = x + y and w = zy, we could
choose  and y in 6 different ways from the four variables z,y, z,u. But it is easy to
see that two “opposite” choices of the new variables: v = x+y, w = zy, and v = z+4u,
w = zu result in the same quadratic equation (4.9) for w. Of course it is possible to
say the same about choices v =z + z, w = vz and v = y + u, w = yu (respectively,
v=x4u,w=zu,and v=y+ z, w =y2z2).

This means that for each proper value of v € F** (when all three trace conditions
(4.10), (4.13), and (4.14) are satisfied), we obtain a solution {z,y,z,u} as well as
a solution {z,u,z,y} (note that here any solution {z,y,z,u} we consider is up to
permutations between z and y and between z and wu). Therefore, when v runs over
F** each solution {z, y, 2z, u} occurs exactly three times. In other words, three distinct
proper values of v result in the same solutions, namely {z,y,z,u}, {z,2,y,u}, and
{z,u,y, z}. This means that

pleN) = 3 M(e, ),

i.e., we obtain the equality (4.2). The integer M (e, A) is even according to Lemma 14.

Now consider the case where A = 0 or ¢ + 1 = b*> + b (we again use the short
notation b and ¢ instead of b’ and ¢’). For this case the trace conditions (4.13), (4.14),
and (4.15) reduce, respectively, to

Tr(b) =0, Tr(0) =0, and Tr(b) = 0.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



76 PASCALE CHARPIN, TOR HELLESETH, AND VICTOR ZINOVIEV

TABLE 1
m=6; p(r) =28+ +1.

A Tr(X) C Co K G 1(0, ) w(l, \)
1 0 0 16 -8 0 2 4
a 0 8 -8 0 -8 2 0
a? 0 0 16 -8 0 2 4
a® 1 8 -8 12 0 4 0
o 0 8 -8 0 8 4 2
o 0 16 16 8 0 6 0
all 1 -8 -8 —4 16 2 6
al? 0 -8 -8 8 -8 0 2
al® 1 0 16 4 -8 2 2
a?! 1 — 16 16 12 8 2 6
a3 1 8 -8 —12 0 2 2
a?7 0 0 16 16 16 6 4
a3l 1 -8 -8 —4 0 0 4

Therefore, for the case e = Tr(b) = 1 our system (4.5) has no solutions, i.e., u(1,0) =
0. We proceed now with the case ¢ = Tr(b) = 0. According to Lemma 13 (with
a = 1), we have

w(1,b,¢) = p(1,0,c+ b +b) = u(1,0,1),

since b2 + b = ¢+ 1. Now consider the system (4.5) with b = 0 and ¢ = 1. It is easy to
check that {3, 3?,0,0}, where 3 € Fy is of order 3, is a solution of (4.5). We deduce
that the coset of syndrome (a,b,c¢) = (1,0, 1) has minimum weight 2 and then cannot
contain any codeword of weight 4, i.e., there is no solution of (4.5) composed of 4
pairwise distinct elements of F. This completes the proof of Theorem 1. d

As a direct corollary of Theorem 1, we obtain the following lower and upper
bounds for the number u(a, b, c), i.e., the number of coset leaders in any coset D of
weight 4 with syndrome (a,b,c) with a # 0. We use the bounds for the exponential
sums K(A), G(A, A) and C(X), C(\, A), involved in the number of solutions p(a, b, c)
(see Lemma 6, (2.4), and (2.5)).

THEOREM 2. Let a,b,c (a # 0) be any elements of F where F is the finite field
of order 2™, with m even and m > 10. Let A be defined as in (4.1). If A is a cube,
then

2™ — 8 — 2627 < 24 p(a,b,c) < 2™ + 262,
If further T3*((X\)%/3) # 0, then

2m — 8 —18 V2™ < 24 pu(a,b,c) < 2™ + 182,
If X is not a cube, then

2™ — 8 —21v2m < 24 p(a,b,c) < 2™ 4 21V/2m.

We note that the second bound is better than the corresponding bounds for odd
m, obtained in [4] and [8].
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TABLE 2
m=38; p(x) =28 +27 + 26 +2+1.

X Tr(\) C Co K G [ w0, | u(l,N)
1 0 —32 —32 32 32 10 16
a 0 16 16 —16 —16 10 8
a’ 0 0 —32 -8 32 12 14
a® 1 16 16 20 8 16 8
a’ 0 16 16 8 — 16 12 6
af 1 0 —32 28 -8 10 6
all 1 16 16 —28 8 12 12
al3 0 — 16 16 0 0 8 14
ald 1 0 - 32 4 —24 6 6
a7 0 16 16 32 —16 14
al? 0 16 16 8 16 16 10
ot 1 —32 —32 —4 8 4 16
a?3 0 — 16 16 —24 16 8 18
a?® 0 16 16 —16 16 14 12
a7 0 0 —32 16 —16 8 6
o?9 1 16 16 —4 -8 12 8
a3t 0 — 16 16 0 0 8 14
37 0 — 16 16 24 0 10 12
a39 1 32 —32 —12 -8 12
a3 1 16 16 20 -8 14 6
a? 0 0 —32 16 16 12 10
o7 1 — 16 16 12 8 10 14
bl 0 32 - 32 24 16 18 4
a3 1 16 16 —4 24 16 12
a’ 1 16 16 —4 8 14 10
ad? 0 — 16 16 —24 0 6 16
aft 1 — 16 16 —12 — 40 2 10
b3 1 0 - 32 4 8 10 10
a8 0 16 16 — 16 48 18 16
87 1 0 —32 —20 -8 6 10
a1 1 — 16 16 —12 8 8 16
a9 1 — 16 16 12 -8 8 12
alll 0 0 —32 -8 0 8 10
all? 0 16 16 8 32 18 12
al?7 0 — 16 16 24 — 16 8 10

5. Numerical results. We present in Tables 1 and 2 the values of all exponential
sums involved in the expression of u(a, b, c) for m = 6 and m = 8. In Tables 1 and 2,
the results are given for a set of representatives of the cyclotomic cosets only (since
it is the same for all elements from such coset). We distinguish for a given A two
cases: € = 0 or ¢ = 1 (with notation of Theorem 1). So for each value A we give two
numbers p(1, A) and w(0, ). For short, we use the following notation: K = K(\),
C = C(\A), Co = C(A,0), and G = G(A\, A). We denote by p(z) the primitive
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polynomial generating F.

6. Conclusion. In this paper, we extended to the even case our work [4] on
the coset leaders of cosets of weight 4 of the codes BCH(2™,8). By Theorem 1 we
summarized our results for both cases, m even and m odd. Recall that we gave in [6]
the coset distribution of all codes BCH (2™, 8).

Now, the main open problem remains the computation of the weight distribution
of all cosets. It has be shown for odd m that all is known as soon as the numbers
u(e, A), and the number of times they occur, are known [3]. We conjecture that this
property holds for even m. We introduced lower and upper bounds for the number
of coset leaders of cosets of weight 4. We conjectured in [3] that this number takes
all values between its bounds, up to some divisibility property. This conjecture was
disproved in [8]. So the first question is: Which values are suitable?

New properties of exponential sums K, G, and C arise from formula (4.3) and
(4.4) and from elements of their proofs. We developed this aspect in the odd case
[5]. In the even case, the relations between K and C are more interesting since the
spectrum of C' is more complicated. We will study this fact in a forthcoming paper.
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Abstract. Nonlinearity is the number of bits which must change in the truth table of a Boolean
function to reach the closest affine function. It may be expressed through the maximum of the
absolute value of a component in the function’s Walsh-Hadamard transform. Concentration of
nonlinearity is proved. The derived bounds on the concentration point and tails of the distribution
are tighter than the earlier known ones.
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1. Introduction and definitions. Nonlinearity is the number of bits which
must change in the truth table of a Boolean function to reach the closest affine func-
tion. The notion has multiple applications in coding theory and cryptography. For
example, nonlinearity can be used as a measure of strength of cryptosystems. It
is particularly useful to quantify the strength of invertible substitution tables when
predefined tables are a part of a cipher definition; see, e.g., [3]. Nonlinearity plays
an important role in relation to the covering radius of the first-order Reed—Muller
codes; see [5] and the references therein. Namely, the most nonlinear (bent) functions
correspond to the farthest-off, from the code, vectors in the ambient space. One of
the widely addressed problems in this context is enumeration of Boolean functions ac-
cording to their nonlinearity. This has been successfully accomplished by Berlekamp
and Welch [2] in the case of up to five variables and by Maiorana [9] for six vari-
ables. However, exact enumeration for a greater number of variables seems to be
intractable. Therefore, estimates on the distribution of nonlinearity become relevant.
This was attempted by Carlet [3, 4], Olejdr and Stanek [10], Rodier [11, 12], and
Wu [16]. Especially interesting was a recent result of Rodier [13] where by using a
method from harmonic analysis due to Haldsz [6] he proved a concentration of the
nonlinearity. In this paper we further develop this theme by proving tighter results
for the concentration point and the tails of the distribution. Moreover, though quite
technical, the developed approach is basically the second moment method (see, e.g.,
[1]) and is conceptually much simpler than the Haldsz approach.

Let f = f(x1,22,...,2m) and h = h(x1, 22, ..., 2m), z; €{0,1},i=1,2,...,m,
be Boolean functions taking on values from {0,1}. The (Hamming) distance between
two functions, d(f,h), is the number of strings x1, ..., &, for which f # h. Nonlin-
earity of f, nl(f) is

nl(f) = mind(f, h),
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where the minimum is taken over all affine functions h,
h=ay+ a1+ -+ amem, a; €{0,1},i=0,1,...,m.

The spectral amplitude of f, S(f) is

_ w)+v-u
S(f) = max | >, (=pferer),
ue{0,1}™
where v - u is the usual dot product. In other words, the spectral amplitude of f is
just the maximum absolute value of a component in the Walsh-Hadamard transform
of f. Indeed, let n = 2™, M be the n x n Walsh-Hadamard matrix, its rows being
M;, and entries M, ;, 4,5 =0,...,n — 1. We have

Mi,j _ (_l)inO"l’iljl+"'+in171jm717
where (ig,%1,...,%m—1)2 and (Jo,j1,---,Jm—1)2 are the binary expansions of i and

j correspondingly (indeed, M, ; is the ith character evaluated at point j). Then,
denoting

f; = (_1)f(j07~~;jm—1)

for the binary expansion (jo, ..., jm—1)2 of j, and

n

M (f) = fo M j,

j=1
we conclude that
(L.1) S(f)=_max_ [IMI()].

Notice that M; is the evaluation of the linear function
Li(z1,...,2m) =d021 + 9122 + - + im—1Tm—1,
namely,
Mij — (_1)L7L(j07~~)jmfl).

Moreover, all possible linear functions are presented as rows of M. Therefore, since

M (f) =n—2d(f, L),
there is a simple relation between the spectral amplitude and nonlinearity,

m—1 1
ni(f) =21 = =S()

It is a simple corollary of the Parseval identity,
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that
mas |M; (/)] > Vi = 2%.
Therefore, for any Boolean function in m variables,
nl(f) <2mt—2%71

and this bound is achieved only when m is even.

The introduced notions can be straightforwardly extended to general Hadamard
matrices; see, e.g., [7, 15]. Indeed, the Hadamard n x n matrices H consist of +1’s
and satisfy

HHT =1,

and the Walsh-Hadamard matrices, described earlier, constitute a subclass of Hada-
mard matrices for n = 2™. A well-known conjecture states that such matrices exist
for n = 2 and all natural n divisible by 4. Similar to the Walsh-Hadamard case, for
a +1-vector w of length n define its spectral amplitude and nonlinearity as

S(v) = max . |(HoT)l,

i=0,1,...,n—
and

n 1
nl(v) = 5 = 55(v),
correspondingly. To simplify, in what follows we restrict our claims to Boolean func-
tions; however, we keep in mind that a more general situation is under consideration,
and thus n can take on arbitrary positive integer values for which Hadamard matrices
of size n exist.

Now we are in a position to restate the result of Rodier in a more rigorous form
than it appears in [13]. We will use a probabilistic terminology. Namely, we will be
considering probabilities of events in the ensemble of 2" = 22" equiprobable Boolean
functions in m variables. The same can be undertaken in the general Hadamard case,
if one deals with the ensemble of 2™ equiprobable vectors of length n.

THEOREM 1.1 (Rodier-Haldsz).

1
In"n

Pr(|S(f)|>\/2n(1nn+5.41n1nn(1+0(1)))):O< - )

Pr (|S(f)| < +v/2n(lnn — 7TInlnn(1 + o(1))) ) =0 <1 }1 > .
n'n

A comment is in order here. Indeed the theorem claims concentration of the spec-
tral amplitude around v/2nInn. Notice that the summand const - Inlnn is inevitable
in the Haldsz approach and cannot be removed or decreased to some slower growing
in n function.

Before we state the results of the present paper, let us briefly examine the problem
from a geometrical point of view. Note that the functions f with ni(f) < p are those
for which there exists an i such that either d(f,L;) < p or d(f,L;) < p, where L;
is the 1’s complement of L;. Therefore, the problem of computing the number of
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functions with nonlinearity < p reduces to computing the volume V(p) of the union of
2n Hamming spheres, each of radius p, centered at + M, ¢ = 1,2,...,n. The center
of each sphere is at the Hamming distance n from one other sphere and at distance
n/2 from the remaining 2n — 2 spheres. The volume of intersection of any two of
the above nonantipodal spheres can easily be shown to be (see, e.g., [5, section 2.4,
“Hamming spheres”])

P n n n n
2 2 2 2 2
A ()0
<TJ_Z St+1 1/ \p—1

4,5=0

for p > n/4 and zero for p < n/4. The number of intersecting sphere pairs is < 2n?,
and consequently, the total volume of intersections is

V<2()( )
1/ \P— 1

The volume of one such sphere is of course > (’;), and consequently, the volume of

2n spheres is
Ve > 2n (”)
p

By the inclusion-exclusion principle,
Vs =Va <V(p) < Vs.

For all n, such that pg = n/2 — [V2nlun] > n/4, it can be seen that 2n - (;;)

is much greater than 2n* - (Zﬁ) (po’i/j / 4), in fact, asymptotically so (for growing n).
It should be noted here that for n < 164, we have py < n/4, and the spheres with
0 < p < po have empty intersection. For the sake of simplicity, we henceforth restrict
our treatment to n > 164.

Observe that (z)/(pf{f/4) decreases with growing p for n/4 < p < n/2 —1/2;
therefore, we conclude that for 0 < p < po, V(p) is asymptotically given by the union
bound Vs, (volume of one Hamming sphere times the number of spheres, n). However,
one of the conclusions of this paper is that the union bound, in fact, is asymptotically

tight for

n_n << n \/2n(lnn—0.51n1nn)7
2 4 2 2

which together with the previous statement provides the asymptotical exactness of the
union bound on the whole upper tail of the Boolean spectral amplitude distribution,
ie.,

0<p< n_ V2n(lnn — 0.51n1nn).
2 2

To achieve this we use the second moment method. Namely, we estimate the
probability of each |MZ| in (1.1) to exceed some threshold. Next, for arbitrary i
and j, we bound the probability that |[M7| and |M;‘| are simultaneously above the
threshold. This is followed by application of the Chebyshev inequality. Surprisingly
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enough this allows one to tighten the bounds on concentration of the nonlinearity.
We prove that the spectral amplitude is concentrated around v2n (Inn— $Inlnn).
Moreover, we are able to derive explicit bounds on the tails of the distribution. A
particular case of our main result is the following theorem.

THEOREM 1.2. Let n > 164. Then the following holds true. For —0.5Inlnn +
0.125 < 6(n) < —lnn +n/8,

N|=

Pr(|S(f)| > /2n(lnn + 8(n)) ) < (W(lnn—l—é(n))) e (1 4 0(1)).

Moreover, for —0.5Inlnn 4 0.125 < §(n) < o(y/n),

Pr(|S(f)|2 2n(lnn—|—5(n))):(w(lnn+5(n))) om0 (1 4 o(1)).

Finally, for the lower tail, —lnn 4+ 0.5Inlnn < §(n) < —=0.5Inlnn,

Pr (|5(f)| > /2n(lnn + 0(n)) ) < (ﬂ(lnn + 5(n)))% e (14 o(1)).

Comparing this bound with the one of Rodier, we notice that even in the case of
d(n) being of order Inlnn our bounds are tighter.

This paper is organized as follows. Section 2 gives tight bounds for sums of
binomial coefficients, appearing in all estimates of the binomial distribution tails. To
the best of our knowledge, these are tighter than has been known before and can be
useful in other research. In section 3, the tails of joint probability of two (dependent)
events are estimated. In section 4 the exact asymptotics for the upper tail of the
distribution of Boolean function nonlinearity is given, whereas section 5 provides a
tight upper bound on the lower tail of this distribution. We also elaborate on the fact
that the concentration point of the above distribution is localized more exactly than
known before.

The following notations are used throughout. The Gaussian (normal) distribution
with mean p and standard deviation o is denoted by N(u, o). The standard normal
cumulative distribution function (CDF) is denoted by Fg(x), and its complementary
(tails) function by Pg(z). Explicitly,

1 i 1 00
Po(z)=1— Fg(z) = E/ 208 — ﬁ//ﬁetzdt.

2. Bounds on binomial distribution tails. We start with auxiliary results
concerning binomial coefficients. The numerical factors in front of the subleading
terms are not optimal but were rather chosen to make simple expressions.

LEMMA 2.1. For 0 < €1 < +/3/32 and all n, such that n - (% — 61) 18 an integer,

n 2 2
2.1 2 "m. < Sy = e < 3é2.
24 (0o ey) 0¥y e a<ad

Moreover, for 0 < e < (2n)_1/4 and n > 164, such that n - (% — 61) s an integer,

n 2 > 3 1
2.2 27" >(1—g) ) — e 2, < “nef + —.
22) (n.(%—q)) z2d-w)y e esgtaty,

Proof. See section A.1 of the appendix. |
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Let us derive explicit error bounds for the approximation of sums of binomial
coefficients by a Gaussian CDF.
LEMMA 2.2. Let

Then, for n > 164 and vnlnlnn < d < n/2, the following inequalities hold:

d
. -n, < . £ e
23) 2 Snd) < () Fo () <
and for Vnlnlnn < d < (2n)3/4,

d 1 5d*
) n., > (1— . 2 ) om/n/32 — 4=
(2 4) 2 S(n,d) (1 §4) Pq (ﬁ) e , u< o + 3

Proof. See section A.2 of the appendix. d
COROLLARY 2.3. Under the appropriate conditions of Lemma 2.2, for

d=+/2n(lnn + 6(n)),

1 e—0(n)
(2.5) 2*"-S(n,d)gg-\/W_2/n-(l+<3).
Moreover,
(2.6) 27" S(n,d) > 1 L(n) (1=¢4) - (1—¢5)— efm, < .
n\/2rd¥n d?
Proof. The proof follows trivially from Lemma 2.2. |

3. The probability of intersection. Let us define the events
Ai(d) ={|M}| >d}, i=1,...,n,

and estimate the probability of A;, (d) A A;,(d), i1 # i2. Note that by construction,

Pof ==, )" L)

Likewise,
P(M}>a)=2""-5(n,a),

and we can use the results of section 2 to bound the probabilities of events A;(d) and
their intersections.
LEMMA 3.1. For iy # ig, under the conditions of Lemma 2.2,

(3.1) P(A; (d)NAiy(d) <4-(1+¢) - <PG <%)>2 ;

where 65 = o(n~'/*). (We omit the cumbersome explicit expression which can be
easily developed.)
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Proof. Recall that for some Boolean function f,
Mfl(f):fo'Mu,ja M;;(f):z:f;'Min'
j=1 j=1

Clearly, for i1 # io,
(3.2) P(A; (d) AN Ay, (d)) =4P (M, > dAM], > d) .

Note that M;,, M,, are two rows of some Walsh-Hadamard matrix; consequently,
they are orthogonal {—1,+1}" vectors, and

(3.3) E{M;, - M3, } = My, Mi,) = 0.

. M, +M; .
Hence, their vector half-sum, ¥;,;, = =22 has Z zeros and 2 nonzero posi-
) ) 172 2 2 2

tions, where M;, and M, are different or equal accordingly. Similarly, their vector
half-difference A;,;, = % has complementary 7 zeros and 7 nonzero posi-
tions, where M;, and M, are equal or different accordingly. Consequently, events
{¥ii, = a} and {A,;,;, = b} are independent for any a, b since they depend on mutu-
ally disjoint sets of independent random variables.

In order to establish the relation (3.5), we use the following trick. Assume for
the sake of discussion that f; are independently and identically distributed (ii.d.)
Gaussian random variables (rvs) and f; ~ N(0,1), j = 1,2,...,n. It follows from
(3.3) that Mj (f) and M7, (f) are then also i.i.d. Gaussian rvs (for Gaussian rvs, zero
cross-correlation implies independence), with M (f), M}, (f) ~ N(0,/n).

Consequently,

(3.4) P (M; >dAM;, >d) =P (M;, >d)-P(M;j,>d) = Pi(d/vn).

On the other hand, since X;,4,, A, 4, are i.i.d. ~ N(0, /%),

oo x—d
P (M > dA M > d) :/ P (i, = 1) dx/ P(Aps, = 1) dt
d —(z—d)

x—d
1 i 2 vnoo 2
— e " dx et dt.
™ ) _d _z—d
v v

Consequently, we have established that

1 o0 2 n 2
(3.5) - / Cean [ et a = P2/,
v ~n

Armed with (3.5), let us now consider our case where f/ are binary random
variables. Since ¥;,;, and A, ;, are i.i.d. (but not Gaussian in this case), we can
write

w3
o
|

P(d)=P (M, >dAM;,>d) =Y P(Si,=2a)- Y  P(A;, =2b).
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Since ¥;,;, and A; 4, are disjoint (independent) sums of & (binary, {+1,—1})
independent random variables, P (X;,;, = 2a) is the probability that the excess of
+1’s in ¥;,;, will be a; same for A;,;, and b. Hence

P (S =20 =2, ol z_a)> = Fula)
2 \2 n
P(Alllz = 2b) = 2771/2 ’ (n 1 § 2b ) = PQ(b)
2 (5 - 7)
For a < ag = 4\7%, by (A.4), and using /1 + 2z <1+ /z for z > 0,
2 1 —4a?/n
(3:6) Pifa) < v <1 + (nt/2Inlnn — 1)1/2) et
For |a| > ao,
(3.7)
2 1 __vn 2 _ v
Py(a) < Pi(ag) < \/ﬁ . <1 + (2 = 1)1/2) s dhmnn < \/;-e Ilnm
Consequently,
n _4d _4d
4 a—3 ao a—3 e
Pd) =Y Pi(a): Y. RO Pia) Y Pyb)+e i
a:% bzf(afg) a:% bzf(afg)
n a—2
—1/4 4 - —4a?/n N —4b%/n v/ -
< (l—l—o(n )) —_— e . Z e + e Whnlnn
™ =~ .,
a=3 b=—(a—3)

From here (shown in detail in subsection A.3), we see that

00 2x—d
(3.8) P@) < (140 t/4) - 1 / e da / =
™ )4 _2z—d
v v
Finally, by using (3.5) we have obtained
d 2
. < —1/4y) . il .
(3.9) P(d) < (1+o(n )) <PG <\/ﬁ)> 0

4. The upper tail. The results of the previous sections enable us to derive
an asymptotically exact result for the upper tail of the distribution of the spectral
amplitude S(f) of Boolean functions, as defined by (1.1).

THEOREM 4.1. For n > 164, let

d=+/2n(lnn+o(n)).

Then, for /2n(Inn — 0.5In1nn + 0.125) < d < n/2,

e=9(n) 7d
4.1 P M >d)| < ——— - [14+ — ).
(4.1) f(i_f?ﬁ%fnl i ) S ) ( )
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Moreover, for \/2n(Inn —0.5Inlnn +0.125) <d <o (n3/4) ;

—d(n)

(4.2) Pr (i_nllaxn M| > d) > S(1-o(1)).

~~~~~ Neraen)

Proof. Using the definition of A;(d) from section 3,

Pr<‘nl1ax | M| >d) :2-Pr<‘1r11ax M >d) =Pr (U Ai(d)> :
= i=1

=L..,n =1..,n

To prove (4.1), use

and Corollary 2.3.
For (4.2) use the inclusion-exclusion principle,

Pr <U Ai(d)> >3 Pr(Ai(d) = > Pr(A;, (d) A Ay (d)).
i=1 7 i1,

i1 > ig

From Corollary 2.3, for d = o(n®/*) and i = 1,...,n,

1
(4.3) Pr(A;(d)) =2Pr(M; > d) > - e (1 —-0(1)).
From Lemma 3.1,

2
Pr(A;, (d) A Ay (d)) = 4P (M} > dAM; > d) <4-(1+0(1))- (PG (%))

2 6—26(77,)

=02 7 (2n)

(1+0(1)),

where we once again used Pg(z) < e=2"/2 /(V2mx). From here, it follows immediately
that

n e—&(n) e—&(n)
p Ald) | > —m—— 1 - — | - (1 —0o(1)).
' (L_Jl ( )> NCID e
Note that the condition
e—&(n)

v !
nd?/(2n) 2

gives us the lower bound for the value of d > /2n(Inn — 0.5(Inlnn — In(4/7))), for
which the theorem holds. O

Remark 4.2. From Theorem 4.1 we see that for §(n) growing with n, the sum of
probabilities of all pairwise intersections

4i, (Van(n+ 5) ) A Ar, (v2a(nn +6(n)))
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is asymptotically smaller than the union bound

e—é(n)

m(lnn + d6(n))

From Theorem 4.1 we see that the distribution is indeed concentrated around a
point to the left of \/ 2n(lnn — 0.51Inlnn). Let us state this in the following corollary.

COROLLARY 4.3. For 0 < g < (n/lnlan)-lnn 4 ¢ 5

Inlnn
(4.4)
Pr ( max IMZ| > /2n(Inn —0.5Inlnn + Blnlnn + 0.125)) =0 <1 ;13 ) .
1=1,...,n nn
Proof. Take
(4.5) d(n) = (8 —0.5)Inlnn.

Substitute (4.5) into (4.1) and (4.2) to get

Pr (nllax M| > \/2n(Inn — 0.51n1nn—|—51n1nn+0.125))

- %(1 +o(1)). O

From Corollary 4.3, we have, for example,

1
Pr ( max |IM:| > /2n(Inn + 3.5Inlnn + 0.125)) =0 (1 1 ) .
1=1,...,n n n
5. The lower tail. Results obtained in the previous sections enable us to tightly
bound the lower tail of S(f), using a variation of the second moment method.
THEOREM 5.1. For n > 164 and

d=+/2n(lnn —6(n)), Vnlnlnn <d< /2n(lnn —0.5Inlnn),
(5.1) Pr <HllaX M| < d) < /md2/(2n) - e . (14 0(1)).

Proof. For the events A;(d) = {|M}] > d}, and their indicators
IA,i(d)(w) = [UJ S Az(d)], 1= 1,2, Lo, N,

let

A= Taw
i=1
Then,
Pr <l_r111axn |IM;| < d) =Pr(A=0).
By linearity of the expectation,

B{A} =2 n Pr(M >d).
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By Lemma 2.2,
d /T35
(52) Pr (MT > d) Z PG (ﬁ) (1 — §4) —e n/32.
Furthermore,

B{A’Y = > E{la,@ Ia,w}= Y, Pr(4,(d)AAd,(d).

i1=1,ip=1 i1=1,ip=1
By Lemma 3.1,
B{A?} <n(n —1)P(A;, (d) A Ay, (d)) + E{A} < n*P (A, (d) A Ay, (d)) + E{A}

< dn?. (1 +o(n—1/4)) : (PG (%))2 + BE{A).

Therefore

Var (A) = E{A%} — (E{A})®> < 4-n%-o(n~ /%) (PG (%))2 + E{A}.

Using the Chebyshev inequality,

< Var{A} < 1

P(AZO)SPGA_E{AHZE{A})— EQ{A} = E{A}

(1 +o(n~1/%) -E{A}) .

Note, finally, that applying Corollary 2.3 to the expression for E{A} obtained
above, we have

ed(n)
E{A — (1 —-0(1)). d
{4y = m(lnn —d(n)) ( 1)

From Theorems 4.1 and 5.1 we see that the distribution is indeed concentrated
around y/2n(Inn — 0.5Inlnn). Also, we see that away from the concentration point,
the distribution decays faster than established previously.

COROLLARY 5.2.

(5.3) Pr ( max |M;| > v/2n(lnn —0.5Inlnn — alnlnn)) =0 (L) .

i=1,... In“n

From Corollary 5.2, we have, for example,

Pr ( max |M}| > v/2n(lnn — 4.5lnlnn)> =0 <%> .
i=1,...,n In"n

6. Conclusions. Using only basic combinatorics, we provided the asymptoti-
cally exact upper tail and an upper bound on the lower tail for the distribution of
nonlinearity of Boolean functions. These bounds yield a concentration of nonlinearity
and are tighter than the earlier known ones. An open problem is estimating how
tight our bound is on the lower tail. Notice that Spencer [14] provides a noncon-
structive method guaranteeing an exponential number of functions with nonlinearity
in the range of the lower tail. However, the bounds we were able to derive using this
approach are very weak.
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Appendix.

A.1. Proof of Lemma 2.1. Let us first show the upper bound. For 0 < ¢; <
1/2 and any n > 0, we have

n! 1 1

(- G Gr e~ omn G ) (e (3 )b

where we have used (see, e.g., [8])

(A1) V2 - nT2 e T s <l < V21 -2 L et
Therefore, for 0 < €1 < % and any n > 0,
(A'2> ( ln ) < ; . enHe(%*ﬂ)’
n-(3-a) 2mn (5 — €2)
where H.(z) = —zlnx — (1 — 2) In(1 — z) stands for the natural entropy function.
Using also
1 ) 1
(A.3) H, 5@ <In2—2¢ for0<el<§,
and
1 3 3
— §1—|—Za: for0§x§§,
we have (€2 < 3/32)
(A4)
< 1n ) < 1 _en1n2—2nef <on. (1 +3€%) . /i . 6—2?16%.
ne(3—e) 2mn (3 — €3) .

Now to the lower bound. Using (A.1), we have for 0 < e; < 4 and any n > 0,

— 1 1
n! 1 e 12(%+61)n 12(%751)11

> . .
(n ) (% - 61))! (n (% + 61))! /2 (i - 6%) (% + 61)(%+61)n (% - 61)(%—51)71

Therefore, for 0 < €1 < % and any n > 0,

( n ) > . e He(3—e1)=1/(n(3-12¢2))
n-(3-a) 2mn (5 — €2)
For 0 <e¢ < (2n)’1/4 and n > 164,
1 3 1 1
Ho(z—ea)>m2-22- 2, and —— <.
(2 61) =meTsaT o MG B 12d) <

Since e™* > 1 — z for x > 0, we have

n 2 2 3 1
A. >om.y e (1-Znet—— ). 0O
(45) <n (% - 61)> - —— ( 2" 2n)
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A.2. Proof of Lemma 2.2. Let us first prove (2.3). Let
3
ko

2—"-S(n,d):z<n.(%_%) ;( %_%)):Sl(n,d)+52(n,d).

N |
k=5

Then,

Taking into account that the terms of Sa(n,d) are monotonously decreasing, let us
bound Sa(n, d) from above by the product of the first (biggest) term and the number
of terms in the sum, using Lemma 2.1,

Al 2 o vme < [ st
(A.6) Sa(n,d) < 64\/7(1 8) Vn-e 16 < € .

As for Si(n,d), we apply the upper bound of Lemma 2.1 to get

L (n, d) \/7 Z<1+—> e/,

Bounding the sum with an integral, noting that for d > v/nInlnn the integrands are
monotonously decreasing functions of k, and recalling

e
\/> ; e~ 2K /n \/> e 4 P (%)

[2 3 X2k 202 3d(2d+ 1) _2 3 d

= = = n 2 w L Pa ).

™m 2n Z n V3275 et in ¢ n
By assumption, we have

3d(2d + 1)/V32 < V2d?,  (d/n)> +1 < \/7/2,

we have

M\A

and

2 3d2d+1) 1

< .
™ V32mn® Vn

Summing up and using (A.6),

d 3 e 2n n
A. 27" Po | — 1+ — — . e73n/16,
(A.7) S(n,d) < Pg <\/ﬁ) ( + 4n> + + e
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Noting that

n 2 n d n a2
) e (12 2 < “ )< .e
(A.8) V 27d? ¢ (1 dQ) < Fe ( n) SV omz ¢

under the imposed conditions,

d2
T 2n 2 .
(A.9) e o v2md Ly N g () 65 g (4
d?—n n n

We finally have

Iy

d 6.55d 3n | a2
Al 27" d)<Pg|—] |14+ — BCARD
A0 sty < s (J5) (10 5 e B0

d 6.6d
P =) (1422
<re () (%)
where we have bounded 3/4 < d/20, d?/(2n) < n/8, and e~76 < d/(25n).
Now, let us prove (2.4). Starting from the lower bound in Lemma 2.1,

27" . 8(n,d)
(n?/2)¥
3kt 1 2 2
> 122 ). 2 2k /n
- Z < 2n3 2n> m
k=4
2
1
(n?/2)%
1 d n\ i 2 3k 2
> (1= ) [Pa (=) P ((5))|- = 22 e,
= (-m) [ () - (G Va X e
=3
To complete the proof, let us provide an upper bound for
1
(n?/2)7
2 k4
Sa(n,d) =/ —- > Sk g-2k?/m,

™ 2n3
k=3
Note that the maximum of k*¢=2+"/" is reached for k2 = n. If d > 2y/n, then the
summands in Ss(n, d) are monotonously decreasing and the sum can be bounded from
above by an integral as follows:

1
R
n°/2)%

2 ( ) 3k4 —2k%/n 3 1 [ 4 2
— E 53¢ < —/— e dx.
™ 2n qnV m Jaz

k=4 Van

2

On the other hand, if vInlnn < d/y/n < 2 (which can happen only when Inlnn < 2,
i.e., for n < 1619), then the summands increase for d/2 < k < /n and decrease

thereafter. The biggest summand is < de 2 < Je—(d=1)?/2,
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Clearly, S3(n,d) can be bounded from above in both cases as

5 ) ' 3k 3 [2 o
= OV 2 n o 2 [ 2 g, \/7/ e d
™ k_zd 2n3 € ~— 8V d—1 ¢ v
2

3 [d-1 (d—1)2+3+ 32\ g
320 | V2mn n 1

1
T3P (_)]
\/_
Analogously to (A.9), we have

_(d—1)?

e = 8.26(d — 1) d—1 8.26d d—1
A1l < Po|—— | < —— - P, .
(A1) NG n G( NG ) n G( NG )
Lumping the contributions
d—1)2 32 d—1)2 d?
(A.12) ( ) +3+—=< 4.55! < 4.55—,
d—1 n n
we get

3k 3 1[37.6d* 3 d—1
- . _3.6—2k2/n<_\/j|: 2+ﬁ:|PG< )
™ on 8nV 7 [4v2n 4
-2

_Asdt (Ao s (d
164/mn? ¢ vn nd ’

n
where in the last inequality we used
d—1 d—1 d?/n d d
P @d-Dfen  Z__— . _— 1~ Pyl —)<304-Pg|—
“ ( n ) d d?/n—-1 “\Vn “\Vn
Finally, noting that

1
1 8
Ps ((g)4> < \/_— cp /AL emV/n/32 e—./n/32’

we have

2n  nd

(A.13) 27" . S(n,d) > <1—i_5_d4) .pG< dn

a—4

A.3. Probability of intersection. Additional elaboration. First, note that
2

a4
(A.14) Soooeing /

e—4z2/nd2+e—(2a—d)2/n
b_—(a— ) —(a—%)
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In (A.14) we used the facts that e=4"/" is a symmetric convex function, and we are
summing symmetrically around zero.
By now we have (using d < n/4)

o 2a—d
2 2 v
P(d) < (1 + o(n_1/4)) C— g 4a®/n / e dx
TN _ 2a—d
a:% Vn
™ —
a=3
Using
Y o
—4a®/n —4a”/n - @ —z —d/n
e < Z e > /. e *dx+e
a=42 a=42 n
2 2
and
2?/:d o
(A.15) / e dz < / e dz = VT,
2a—d
2o oo
we have
(A.16)
% 2a—d 00 2x—d
vn N
674(12/”/ e dz < @/ e*w2dx/ e dz + ﬁe*‘f/".
_ 2a—d 2 _d _ 2xz—d
a=4 v Vo v
Summing up, we have shown that
—1/4 1 > —a? 21’:/%1 -z
P(d) < (1 +o(n )) - = e " dr e % dz
) d 22—d
v v
9 1

No
+ e 20InInn

+(1+omfvﬁ)-

3
3
3
S

= (1 + o(n_1/4)) .

S
—
L3
()
|
8
~N
QL
IS
—
N
9
=N
()
|
n
nN
IS8
N

E
E
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Abstract. In this paper, we shall characterize triangulations on the Klein bottle without Kg-
minors. Our characterization implies that every 5-connected triangulation on the Klein bottle has a
Keg-minor. The connectivity “5” is best possible in a sense that there is a 4-connected triangulation
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1. Introduction. Our motivation comes from the following result by Wagner,
and a wide open question concerning a characterization of graphs without Kg-minors.

THEOREM 1 (see Wagner [16]). A graph G has no Ks-minors if and only if G
can be obtained from planar graphs and subgraphs of Vs by means of clique-sums of
order at most three.

To understand this result, we need some notation. A graph H is said to be a
manor of a graph K if H can be obtained from a subgraph of K by contracting edges.
In this case, we say that K has an H-minor.

Let G; and G5 be graphs with disjoint vertex sets, let £ > 1 be an integer, and for
1=1,2,let X; C V(G;) be a k-clique in G}, i.e., a set of k mutually adjacent vertices.
For i = 1,2, let G be obtained from G; by deleting a (possibly empty) set of edges
with both ends in X;. Let G be the graph obtained from G and G} by identifying
X7 and Xs. Then we say that G is a clique-sum of order k, or simply a k-sum of G
and Go. Let Vg be the graph obtained from the 8-cycle Cg by joining each pair of
diagonally opposite vertices by an edge, which is sometimes called a Médbius ladder.

Theorem 1 implies that the four color theorem is equivalent to the statement that
every graph without Ks-minors can be colored with four colors (Wagner’s equivalence
theorem). This result prompted Hadwiger [6] to make his famous conjecture: every
graph without Kj-minor is (k — 1)-colorable. This conjecture is considered by many
as one of the deepest open problems in graph theory. To attack this conjecture, we
would like to know more about the structure of graphs with no Kg-minors.

The obvious choice would be the next case: what kind of graphs do not contain
a Kg-minor? We would like to make an attempt on this problem, but unfortunately,
this question is wide open, and even hopeless right now.

Robertson, Seymour, and Thomas [12] proved the following result when dealing
with Hadwiger’s conjecture for Kg-minor-free case. Let us recall that a graph G is an
apex graph if it has a vertex v such that G — v is planar.

*Received by the editors June 2, 2007; accepted for publication (in revised form) June 19, 2008;
published electronically October 24, 2008.

http://www.siam.org/journals/sidma/23-1/69354.html

TNational Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan
(k_keniti@nii.ac.jp).

fDepartment of Information Media and Environment Sciences, Graduate School of Environment
and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama
240-8501, Japan (d07tc019@ynu.ac.jp).

$Department of Mathematics, Faculty of Education and Human Sciences, Yokohama National
University, 79-2 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan (nakamoto@edhs.ynu.ac.jp).

96

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Kg-MINORS IN TRIANGULATIONS 97

THEOREM 2 (see Robertson, Seymour, and Thomas [12]). Let G be a graph with
no Kg-minor such that G is not 5-colorable, and subject to that, the number of vertices
of G is as small as possible. Then G is an apex graph.

This theorem implies that Hadwiger’s conjecture for Kg-minor-free case is equiv-
alent to the four color theorem. But, unfortunately, this theorem does not give any
structural characterization for graphs with no Kg-minor. In fact, Jorgensen [7] made
the following beautiful conjecture.

CONJECTURE 3 (see Jgrgensen [7]). Every 6-connected graph containing no Kg-
minor is an apex graph.

Mader [10] proved that the graph G mentioned in Theorem 2 is 6-connected.
Hence the above conjecture implies Theorem 2. This conjecture is still open, but
recently, DeVos et al. [3] proved the following remarkable result. (However, the proof
is lengthy and complicated since it needs some deep results in graph minor theory.)

THEOREM 4 (see DeVos et al. [3]). Jorgensen’s conjecture is true for large graphs.
More precisely, there exists a constant N such that every 6-connected graph with no
Kg-minor and with at least N vertices is apez.

One may ask the following: what about 5-connected graphs with no Kg-minors?
As far as we know, there are six families of graphs that do not contain Kg-minors.
These are planar graphs, apex graphs, double cross graphs, planar graphs plus a tri-
angle, graphs with hamburger structure, and graphs with hose structure. For double
cross graphs and the hose structure, see Figure 1, in which shaded “blobs” represent
planar graphs embedded in a disk with specified vertices on the boundary. For con-
secutive “blobs” in the hose structure, the five vertices are identified, not necessarily
in order as suggested by their closeness in the figure, but the three white vertices
are identified with white and the two black with black in the neighboring “blob.”
Graphs with hamburger structure are obtained from three 5-connected planar graphs
G; (i = 1,2,3), each of which has a specified vertex w; of degree 5. Let v;1,..., 05
be the neighbors of w; in the clockwise order around w;. To get a graph with ham-
burger structure, take G; — w1, G2 — wa, and G3 — w3 and identify for j = 1,...,5
their vertices vij,v24,v3;. These examples give rise to infinitely many 5-connected
graphs without Kg-minors and with a different structure. (For apex graphs, double
cross graphs, and planar graphs plus a triangle, we can easily prove that all of them
contain no Kg-minors, but for the hamburger structure and hose structure, the proof
for no Kg-minor is not so easy.)

At this moment it seems hopeless to characterize 5-connected graphs with no
Kg-minor, even for large graphs. This gives us an impression that a complete charac-
terization of graphs without Kg-minors is very hard, even hopeless, since we definitely
need to figure out which 5-connected graphs do not contain Kg-minors.

Fi1G. 1. (a) Double cross and (b) hose structure graphs.

Thus we set a more modest goal in this paper: we restrict ourselves to consider
graphs on a fixed surface. Actually, our main interest in this paper is a triangulation
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on the Klein bottle, that is, a simple graph embedded in the surface such that each
face is triangular. Let us see our motivation concerning this family of graphs. As we
pointed out, a double cross graph is one of the obstructions for a 5-connected graph
without Kg-minors. But it is easy to see that this graph is embeddable in the Klein
bottle, but cannot be embedded into a projective plane nor a torus. So it might
be interesting to consider 5-connected graphs on the Klein bottle. But this needs
a great deal of case analysis, and we are not sure yet whether or not this problem
is feasible, i.e., is it really much easier than the general 5-connected case? In [5],
Fijavz and Mohar proved that every 5-connected graph on a projective plane with
representativity at least 3 has a Kg-minor, but the proof still needs a great deal of
case analysis, and some of the deep results in graph minor papers. Their result does
not seem to be enough to give a complete characterization of projective planar graphs
without Kg-minors.

So, it seems that even the torus and Klein bottle cases are hard. But if we
restrict our attention to triangulations, then the situation is much different. In fact,
the results in [11] and the result in this paper give a complete characterization of
triangulations on the projective plane or the torus or the Klein bottle that do not
contain Kg-minors. Let us see these results.

For the projective plane and the torus, the following have been proved in [11].
A quadrangulation on a surface is a simple graph with each face quadrilateral. An
H-quadrangulation is a quadrangulation isomorphic to H as a graph.

THEOREM 5 (see Mukae and Nakamoto [11]). A triangulation G on the projective
plane has a Kg-minor if and only if G has no K4-quadrangulation as a subgraph.

THEOREM 6 (see Mukae and Nakamoto [11]). A triangulation G on the torus
has a Kg-minor if and only if G has no Ks-quadrangulation as a subgraph.

Figure 2 shows a Kjy-quadrangulation on the projective plane in the left-hand
side, and a Kj5-quadrangulation on the torus in the right-hand side. (In Figure 2, in
order to obtain the projective plane and the torus, we identify any pair of antipodal
points of the hexagon in the left-hand side, and identify the two horizontal segments,
and the two vertical segments, in the right-hand side respectively.)

Fic. 2. K4- and Ks-quadrangulations.

In this paper, we shall characterize triangulations on the Klein bottle without
Kg-minors and prove the following theorem corresponding to Theorems 5 and 6.

A Mobius triangulation (G,C) is a triangulation G on the Mdobius band with
boundary cycle C. Let @ be a 2-connected graph on the sphere, and let F;, F» be two
distinct faces of @, where C; is the boundary cycle of F;, for i = 1,2. Suppose that
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each face except Fi, Fy is bounded by a 3-cycle. Let G be the graph obtained from
Q@ by removing the interior of F; and Fy. We say that G = (G, C1,C2) is an annulus
triangulation, where each C; is called the boundary (or boundary cycle of G). A cycle
C of G is said to be essential if C' is homotopic to C7 and Cs in the annulus.
THEOREM 7. A triangulation G on the Klein bottle has no Kg-minor if and only
if G has two 4-cycles Cy and Cy separating G into two Mobius triangulations (M;, C;)
fori=1,2, and one annulus triangulation (A, Cy,Cs) such that
(i) the four vertices of C; induce K4 in (M;,C;) fori=1,2, and
(ii) (A, C1,Cq) satisfies one of the following:
(a) (A, C1,C3) has an essential 3-cycle, or
(b) (A, C1,C) has m essential 4-cycles D1, ..., Dy, for some m > 2 lying
on the annulus in this order such that C1 = D1,Cy = D,,, and for each
1, V(Di) n V(DiJrl) #+ 0.

Fic. 3. Structures of triangulations on the Klein bottle with no Ke-minor.

Note that in Theorem 7, if G is 4-connected, then (ii)(b) must happen, since the 3-
cycle in (ii)(a) separates G. (See Figure 3 which shows the structure of triangulations
on the Klein bottle with no Kg-minor. The top shows a triangulation on the Klein
bottle with an essential separating 3-cycle corresponding to (ii)(a) in Theorem 7, and
the bottom is one with four essential 4-cycles corresponding (ii)(b).)

The following is an immediate consequence from Theorem 7, since each triangu-
lation on the Klein bottle with no Kg-minor has a separating 3- or 4-cycle.

COROLLARY 8. Fwvery 5-connected triangulation on the Klein bottle has a Kg-
minor.

The connectivity “5” is best possible, since there is a 4-connected triangulation
on the Klein bottle without Kg-minors, as we pointed out above. For the projective
plane and the torus, Theorems 5 and 6 imply the same fact as Corollary 8. In view
of known 5-connected graphs without Kg-minors, it is perhaps true that every 5-
connected triangulation on any nonspherical surface has a Kg-minor.

2. Irreducible triangulations on the Klein bottle. Let us first consider
a topology of the Klein bottle, which admits three different types of simple closed
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F1c. 4. Klein bottle with a meridian o, a longitude 3, and an equator .

curves. Let Ni denote the nonorientable surface of genus k throughout this paper.
Then N; and Ny stand for the projective plane and the Klein bottle, respectively. A
simple closed curve ! on a nonspherical surface F? is said to be essential if [ does
not bound a 2-cell on F?. We say that [ is 1-sided if a tabular neighborhood of [ is
homeomorphic to a Moébius band, and 2-sided otherwise. See Figure 4, which shows
two developments of No. (We identify the top and bottom of the rectangle naturally
to get an annulus, and there are two ways to get Ny from the annulus. One is to
identify the two boundary components incoherently as in the left-hand side, and the
other is to identify each pair of antipodal points of each boundary component as in
the right-hand side. In particular, the expression of Ny in Figure 3 corresponds to
the right-hand side of Figure 4.) Let «, 3,7 be three essential simple closed curves
on Ny as in Figure 4, where each of «, 3, and « in both figures stands for the same
closed curve on Ny. Observe that « is a 2-sided simple closed curve cutting Ny into
an annulus, § is a 1-sided one cutting Ns into a Mobius band, and [ is a 2-sided one
separating Ng into two Mdbius bands. We say that v is an equator, and a cycle of a
graph on Ny homotopic to v is an equator cycle.

Let G be a triangulation, and let e be an edge of G. Contraction of e (or con-
tracting e) in G is to remove e, identify the two ends of e and replace two pairs of
multiple edges by single edges respectively. We say that e is contractible if the graph
obtained from G by contracting e is simple. Moreover, we say that G is contractible to
a triangulation H if G can be transformed into H by a sequence of contracting edges.
For a graph G on a surface and a vertex v, the link of v is the boundary closed walk
of the union of all faces incident to v in G. A cycle C of a graph G on a surface is
said to be essential if C' does not bound a 2-cell on the surface. For a graph G and a
subset S of V(G), let [S] denote the subgraph of G induced by S. For a path or cycle
C'in a graph G, a chord of C is an edge zy such that z,y € V(C) and zy ¢ E(C).

We say that a triangulation G is irreducible if G has no contractible edge. The
complete lists of irreducible triangulations on the sphere, the projective plane and the
torus have already been determined in [13], [1], and [8], respectively. For the Klein
bottle, Lawrenceko and Negami [9] and Sulanke [14] determined the complete list of
irreducible triangulations, in which 25 triangulations, denoted by Khl,..., Kh25, are
4-connected and the other four have equator 3-cycles.

LEMMA 9. All 4-connected irreducible triangulations on No except Kh25 have
Kg-minors.

Proof. We have checked that Kh3, Khb, Kh6, Kh7, Kh9, Kh13, Kh16, Kh17
include K¢ as a subgraph, as shown in Figure 5. On the other hand, each of Khl, Kh2,
Kh4, Kh8, Kh10, Khl1l, Kh12, Khl4, Khl5, Khl18, Khl19, Kh20, Kh21, Kh22,
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F1G. 5. Kg-subgraphs in trreducible triangulations on the Klein bottle.

Kh23, Kh24 has a Kg-minor as shown in Figure 6, in which vertices surrounded by
a single polygon corresponds to a single vertex of K after the contractions. a
The triangulation Kh25 is shown in Figure 7 in which we identify the sides as in
the left of Figure 4. We can see that the following holds for Kh25.
LEMMA 10. The irreducible triangulation Kh25 in Figure 7 has two equator 4-
cycles C1 = abed and Cy = abef such that for i = 1,2, the four vertices of C; induce
Ky in the Mébius triangulation cut off from G by C;.

3. Lemmas. We comprise several lemmas for proving Theorem 7. The first one
is the most famous theorem in graph theory, called “Kuratowski—Wagner’s theorem.”

LEMMA 11 (see [15]). A graph G is planar if and only if G contains neither a
Ks-minor nor a K3 3-minor.

Let us mention a fundamental result due to Wagner [16].

LEMMA 12 (see [16]). Suppose that a graph G is obtained from two graphs Hy
and Hy by a k-sum for some k < n — 2. Then G has a K,-minor if and only if one
of Hy and Hs has a K,-minor.

The following lemma immediately follows from Theorem 5 and Lemma 12.

LEMMA 13. Let G be a triangulation on No with an equator 3-cycle C, and let
G1 and G2 be the two triangulations on Ny obtained from G by cutting along C' and
capping off by 2-cells. Then G has no Kg-minor if and only if both of G1 and G4 have
Ky-quadrangulations as subgraphs.

Let D be a plane graph with boundary cycle C' and each inner face triangular,
and let x,y be distinct vertices of C. An x — y path P is said to be internal if P
intersects C' only at its endvertices « and y.

LEMMA 14 (see [2]). Let D be a plane graph with boundary cycle C and each inner
face triangular, and let x,y be distinct vertices of C with xy ¢ E(C). Then D has an
internal © — y path if and only if D has no chord pq for some p,q € V(C) — {z,y}
such that x and y are contained in different components of C' — {p,q}.

Let G be a 2-connected plane graph with outer cycle C' of length at least 4 such
that each inner face is triangular. Suppose that four distinct vertices vy, ve,vs, v4,
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Fic. 6. Kg-minors in irreducible triangulations on the Klein bottle.

called nodes, lie on C in this order but v; and v;11 do not need to be consecutive
in C, for each i. We call G a 4-patch with nodes {v1,vs2,vs3,v3}. The subpath in C
between v; and v;11 (not containing v;y2) is denoted by [v;, vi+1]. A v; — v;42 path
in G avoiding v;+1 and v;43 is called a diagonal or a v; — v;1o diagonal. (Note that a
v; — v;2 diagonal might not be internal v; — v; 2 path in the 4-patch G.)

The following lemma immediately follows from Lemma 14.

LEMMA 15. Let G be a 4-patch with nodes {vivavsvs}. Then, unless vivs € E(G),
G has a va — vy diagonal.

Let G be a 4-patch with nodes {vy1,v9,v3,v4}, and let C' be the outer cycle of G.
Suppose that vive,v3vy € E(C) and vivs ¢ E(G). Let us define a special vo — vy
diagonal in G. Let R = p; - - - p,, be the path in G consisting of the neighbors of v,
where p; = va, and p, is the first vertex lying on [v1,v4]. Let p, be the last vertex
contained in [ve,vs]. Let P = py---p,, and let @ be the subpath of [v,v4] joining
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Fic. 7. Kh25.

Pm and vy. Since vivs ¢ E(G), RUQ forms a vy — vy diagonal, which is called the
v — v4 diagonal closest to v1. We say that P and @) are called the initial and the
terminal segments of the diagonal.

The following is an important lemma.

LEMMA 16. Let A = (A, D, D’) be an annulus triangulation such that D and D’
are disjoint 4-cycles. Suppose that A has neither an essential 3-cycle nor an essential
4-cycle except D and D'. Then A has disjoint four paths P; joining V(D) and V(D')
for i =1,2,3,4. Moreover, if we let R; be the 4-patch bounded by P; and P;y1 for
i =1,2,3,4, then each R; has a diagonal D; such that for any disjoint i,j € {1,2,3,4},
V(D;) NV (D;) = 0.

Proof. Observe that A has at least eight vertices, and that the lemma clearly
holds when A has exactly eight vertices. So we suppose A has at least nine vertices.

Since (A4, D, D’) has no essential 3-cycle, (A, D, D’) has disjoint four paths P;
joining V(D) and V(D’), for i = 1,2,3,4, by Menger’s theorem. Suppose that
D = vyvavzvy and D' = vjvhvhvy, and that P; joins v; € V(D) and v, € V/(D'), for i =
1,2,3,4. Let R; be the plane subgraph of (A, D, D') bounded by P;, v;viy1, Piy1, v,
for i = 1,2,3,4. Then each R; is a 4-patch with nodes {v;, viy1,vj 1, vi}. We shall
prove that Rj, Ro, R3, R4 have pairwise disjoint diagonals in A if A has no essential
4-cycle except D and D’. Such an essential 4-cycle is said to be bad in this proof.

Suppose the lemma does not hold, and let A be the smallest counterexample of
the lemma. That is, A is an annulus triangulation with the fewest number of vertices
which has no bad 4-cycle, but R, Ro, R3, R4 do not have disjoint diagonals.

CLAM 1. vvj,,vjvip1 € E(R;) fori=1,2,3,4.

Proof. For contradictions, we may suppose that Ry has an edge v1v5 without loss
of generality. Observe that R; has no edge viv;y1 for i = 2,3,4 (otherwise, we would
find a bad 4-cycle through viv) and v}v;11, a contradiction). Hence each R; has a
v; — v, diagonal, by Lemma 15. Let Dy = vyv5. Take a v5 — v diagonal Do in Ry
closest to v, and a vy — v} diagonal D4 in Ry4 closest to v;. Replace P35 and Py so
that the initial segment of Do, denoted by Pj, lies on Pj, and the initial segment of
Dy, denoted by Py, lies on Py. (See Figure 8.) Since A has no bad 4-cycle, Rs has
no edge joining P} and P;. Hence, by Lemma 14, R3 has a v3 — v} diagonal avoiding
the vertices of P} and Pj. Therefore, Dy, Dy, D3, and Dy are required disjoint paths,
contrary to the assumption of A. O

If each P; has length one, then each R; admits both v; —v;, ; and v; —v;;1 internal
diagonals, since R; has no edge v;v;,; and vjviy1, by Claim 1 and Lemma 15. Hence
A has desired four disjoint paths, contrary to the assumption of A. Therefore, for
some i, P; (say ¢ = 1) has length of at least 2.
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V4 U3

U1 V2

F1G. 8. Case when viv) € E(R1).

Let x be the neighbor of vy in P, where  # v]. Now contract the edge vz
and let A’ be the resulting annulus triangulation with disjoint boundary cycles. If A’
has no bad 4-cycle, then A’ has desired four paths, by the minimality of A. Clearly,
the preimage of the four paths in A are required four disjoint paths, contrary to the
assumption of A. Hence [v1z] is contained in bad 4-cycles in A, where [vi2] is the
vertex of A’ obtained from viz by its contraction in A. Let C’ be the bad 4-cycle
of A’ through [v1z] bounding a fewest number of faces with D’. Let C be the 5-
cycle through v; and 2 which is the preimage of C’ in A. Moreover, C' intersects P;
exactly once for ¢ = 2,3,4. Hence putting {z;} = V(P;) UV(C) for i = 2, 3,4, we let
C = vzezszaz. (It may happen that C = vixzexszy, but in this case we can relabel
to get C' = vixox3xa.)

Suppose that C” does not intersect D’. Then the annulus triangulation A” in A’
bounded by C’ and D’ has no bad cycle. (Otherwise, if A” had a bad 4-cycle C”, then
either C” would be a bad 4-cycle in A, or the preimage of C” in A is a 5-cycle through
v1 and x which is closer to D’ than C. The former contradicts the assumption of A,
and the latter contradicts the assumption of C.) Hence A” has required four disjoint
paths, by the minimality of A. This means that A’ contains the required four paths,
and hence their preimages contradict the assumption on A.

Hence C intersects D’. So, avoiding a bad 4-cycle and using Claim 1, we shall
classify possible structure of A. We first observe x4 # v4. (For otherwise, A would
have a bad 4-cycle vizaxsvy, a contradiction.) We second have zg # vs. (For, if
r3 = vs, then we must have zo = vy, since A has no bad 4-cycle. On the other
hand, in this case, we must have x4 = v}, since C’ intersects D’. However, we must
have vsv) € E(A), contrary to Claim 1.) Moreover, we third have zo # v4, since
v1vhy ¢ E(A) by Claim 1. So, if z2 = va, then we must have (i), since vav ¢ E(A)
and C' N D’ # (). On the other hand, if x5 is an inner vertex of Py, then we have (ii),
(iii), and (iv), as in the following (see Figure 9):

(i) z2 =wva, x3 F#vs,v, and x4 =vj.

(i) @ # va,vh, 3 # vs,vs, and x4 = v}.

(ili) mg # vo,vh, mg=1vh, and x4 # vg, V).

(iil) @9 # ve,vh, x3 =15, and x4 = V).

We first consider the case (i). Rechoosing Ps; and P», we may suppose that the
vertices of the subpath, denoted by Pj, of Ps joining x3 and v} are adjacent to vj,
and that the vertices of P, are adjacent to vertices of Pj. Similarly, the vertices of
the subpath, denoted by P{, of P; joining  and v are adjacent to v}. Then, no edge
joins P| and P, (except vjvh) since A has no bad 4-cycle. Therefore, by Lemma 14,
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V4

(iii)

U1

Fic. 9. 5-cycle C = vizarszax in A.

the 4-patch with nodes {vy,ve,v},v]} admits an internal v; — v} diagonal, and we
put it as D;. Let Da be a vy — v§ diagonal in the 4-patch with nodes {va, v5, v§, x3},
which actually exists, by Lemma 14, since vhrs ¢ E(R3). (If vizs € E(Ry), then
A would have a bad 4-cycle vjvizsv).) Let D3 be the path starting at vs, reaching
x3 along P3, and ending at v}y through the edge vszv). Let D} be an z — vy diagonal
in the 4-patch with nodes {v1,x, v}, v4}, which actually exists, by Lemma 14, since
v1v) € E(R4) by Claim 1. Let Dy = D} U P|. Then Dy, Dy, D3, D4 are required four
disjoint diagonals.

The remaining three cases can be dealt with in almost the same way, but we
have to be careful in (iii) to take a v3 — x4 diagonal Dj in the 4-patch with nodes
{vs, v}, x4,v4} and a vg — x diagonal D) in the 4-patch with nodes {v4, x4, z,v1} so
that they are disjoint in A. We first observe that two diagonals D4 and D) exist since
vivg, v124 ¢ E(A) by the assumption for bad 4-cycles in A. Take D} to be closest to
vg, and D) to be closest to v1. If D and DJ shared a vertex, say v, then v would
be a common neighbor of v and vq, and the 4-cycle vizaviv would be bad in A, a
contradiction. Hence we can take D5 and D) to be disjoint in A. We need the same
consideration in (iv). O

4. Proof of Theorem 7. In this section, we shall prove Theorem 7. For a
short notation, the m equator 4-cycles Dy, ..., D,, in Theorem 7(ii)(b) with V(D;) N
V(D;11) # 0 for each i is called an equator 4-cycle system, or an m-equator 4-cycle
system if m is emphasized.

Proof of sufficiency. We shall prove that if the graph is as described in Theorem
7, then it has no Kg-minors. Let G be a triangulation on No with two equator 4-cycles
Cy and C5 separating G into two Mobius triangulations (M;, C;) such that the four
vertices of C; induce K4 in M;, for i = 1,2, and one annulus triangulation (4, Cy, Cs).

By Lemma 13, we may suppose that A has no equator 3-cycles. Then A contains
an m-equator 4-cycle system Dq,...,D,, with C; = D; and Cy = D,, for some
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m > 2. Let C7 = vjvavguy. Since C) separates G into two Mobius triangulations
and since V(C1) induces K4 in G, each of the 4-cycles vivavavs and vovsvyvs bound
a 2-cell on Ny. Let H; be the subgraph of G induced by vy, v2, v3,v4 and the vertices
in the interior of vivov vs. Note that Hy is the graph obtained from the plane graph
with boundary vivsv4v3 and two edges vivs4 and vovs, and that Hy has at least five
vertices, since the plane graph with boundary vyvovqvs has no edge vivs and vavy, by
the simpleness of G. Hence H; has no Kg-minor, since the graph obtained from H;
by removing one edge vivs is planar. Let H; be the subgraph of G defined similarly
for the 4-cycle vavsvivg. Let Ho and HS be the two subgraphs of G defined similarly
for Cy = ujususuy. Then each of Hi, Ha, H) has no Kg-minor either, similarly to Hj.

Let A be the graph obtained from A by adding four edges v1vs, vavy, u1ts, Usty.
Then G is obtained from A by 4-sums of Hy, H 1, Ho, H} applied repeatedly. Therefore,
by Lemma 12, since each of Hy, Hj, Ha, H} has no Kg-minor, we have only to prove
that A has no Kg-minor. We prove it as follows.

We use induction on the number m of the 4-cycles in an m-equator 4-cycle system
in A. Suppose m = 2, and then D (= C}) and Dy (= Cy). Here it is useful to consider
a planar embedding of A with four edges vy vs, vavy, v} v%, v4v) added, which is a planar
drawing of A with two crossings of edges. Since D; and Dj share a vertex, say v; = u1,
the removal of v; (= u1) in A eliminates the two crossings of edges. Therefore the
resulting graph is planar and hence has no Ks-minor, by Lemma 11. Thus, A has no
Kg-minor when m = 2 (since A is an apex graph).

Suppose m > 3. Cutting A along Ds, we get two annulus triangulations (A’, Dy,
Ds) and (A", Dy, D,,) with 2- and (m — 1)-equator 4-cycle systems, respectively.
Let A’ (resp., A”) be the graph obtained from A’ (resp., A”) by adding four edges
V10V3, V2V4, W1 W3, W2W4 (resp ’U,1U3,UQU4, wi1ws, ’UJQU}4) where Cg = W1 W2wW3W4 in A.
By induction hypothesis, A’ and A” have no Kg-minors. Applying a 4-sum, we get
AU {wyws, w2w4} which has no Kg-minor, by Lemma 12. Therefore, since A is its
subgraph, A has no Kg-minor. d

Proof of necessity. Suppose that a triangulation G on Ny has no Kg-minor.
Applying edge contractions to GG, we obtain an irreducible triangulation 7. Since G
has no Kg-minor, neither does T. Then, by Lemma 9, T is isomorphic to Kh25 or
has an equator 3-cycle. By Lemmas 10 and 13, T" has two equator 4-cycles C; and Cy
such that the Mobius triangulation cut off from G by C; has K, induced by V(C;),
for i = 1,2. We call these two Kys for a short notation.

CLAM 2. G has two Kys.

Proof. Suppose that G does not have two Kys. Let G =Ty, T1,...,Tm =T be a
sequence of triangulations on Ng such that T;; is obtained from 7T; by a single edge
contraction, for ¢ = 0,...,m — 1. As mentioned above, since T has two Kys, there
exists k such that Ty41 has two Kys but T} does not. Since Ky is 3-regular, we may
suppose that in T}, one edge of the K4 induced by V(C}) is subdivided, where Cy is
one of the two equator 4-cycles of Tx1. Let C5 be the equator 4-cycle of T other
than C7. Now cutting along C5, replacing the Mobius triangulation with boundary Cs
by a 2-cell D, putting a new vertex in D, and joining it to vertices of Cs, we obtain a
triangulation 7" on Nj. Since each of the two 4-patches in K48 with nodes V' (C1) has
at least one inner vertex, T” is a minor of T} and has no K -quadrangulation. Hence,
by Theorem 5, T’ has a Kg-minor. Since 7" is a minor of G, G has a Kg-minor, a
contradiction. d

By Claim 2, if a triangulation G on Ny has no Kg-minor, then G has two Kjys
induced by V(C1) and V(C2), where C; and C5 are two equator 4-cycles of G. Hence
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)

Fic. 10. 11, I, and Kg.

we shall determine the structure of the annulus triangulation (A, C7,Cs) obtained
from G by removing the Mdbius triangulations with boundaries C; and Cl.

By Lemma 13, we may suppose that A has no equator 3-cycle. Therefore we can
take four disjoint paths Py, Py, P3, Py from V(C1) and V(Cs), by Menger’s theorem.
We put C; = vivavsvy, Co = ujususuy, and suppose that for ¢ = 1,2, 3,4, P; joins
v; and u;. If A does not have a structure described in (ii)(b) of Theorem 7, then A
has two equator 4-cycles D and D’ such that the annulus triangulation (A’, D, D’)
has no equator 3- and 4-cycles except D and D’, where we put D = zyx9w374 and
D' = 2 zhzhx), and suppose that P; starts at v;, passes through z;, z} in this order,
and ends at u;, for i = 1,2, 3, 4. Then A’ satisfies all of the requirements of Lemma 16,
and hence A’ has disjoint ; — «j,; paths (or xj — x;41 paths) for all i = 1,2,3,4.
Contracting edges on the subpaths of P; between v; and x;, and z} and u;, and edges
of A’ suitably, we obtain an antiprism with eight vertices, denoted by II, which is
obtained from two cycles z1zax3x4 and 2 xbasa) of length 4 and joining x; to 2} and
xj,, for each i. (See the left of Figure 10.) Let II be the graph obtained from II by
adding four edges 123, zox4, x| xh, vh2). Then, contracting two edges « x5, x5, we
can transform II into Kg. Since G contains II as a minor, G has a Kg-minor. Hence
A must have an equator 4-cycle system. O

5. Remark. Although Hadwiger’s conjecture for K¢-minors is proved by Robert-
son, Seymour, and Thomas [12], the proof is quite lengthy. In this section, we give a
quick proof for the case where a given graph triangulates the Klein bottle. One may
be able to prove our setting with much careful case analysis. But on the other hand,
we do not see yet a very simple way to do it (within a half page proof), so we just
put our argument here, using our main result.

PRrROPOSITION 17. Let n be a natural number. Every triangulation on the Klein
bottle containing no K,-minor is (n — 1)-colorable.

For proving Proposition 17, we use the following lemma.

LEMMA 18 (see [11]). Let G be a plane graph whose outer cycle C is a 4-cycle
and each of whose inner faces is triangular. A 4-coloring of C' using precisely four
colors extends into a 5-coloring of G.

Proof of Proposition 17. 1t is easy to see that every triangulation on a nonspherical
surface has a K,,-minor for all n with 1 < n < 5. Moreover, every triangulation on Ng
is known to be 6-colorable [4], and hence the proposition obviously holds when n > 7.
Therefore, let us prove the case for n = 6.

By Theorem 7, if a triangulation G on Ny has no Kg-minor, then G has two
equator 4-cycles C7 = vyvavsvy and Co = wujususzuyg such that each C; cuts off a
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Mobius triangulation (M;, C;) with [V(C;)] = K4. Let A be the remaining annulus
triangulation. We first prove that A has a 5-coloring such that each of C7 and Cs is
colored by exactly four colors.

If C7 and C5 have an intersection in A, then we may suppose u; = v;. On
the other hand, if C; and Cs are disjoint, then we may suppose that v; and wuy
are not adjacent. (If such a nonadjacent pair of vertices cannot be chosen, then A
must contain a K4 4 with partite sets V/(C1) and V(C3). Since Ky 4 is not planar,
this is impossible, a contradiction.) Add edges vovs and usug to transform A into a
triangulation, denoted by A’, on the sphere. By four color theorem, A’ has a 4-coloring
such that v, v3,v4, and us, us, uq have distinct three colors, respectively. Now, since
v1 and wp are identical or nonadjacent, we can recolor v; and u; by a fifth color, and
hence we get a required 5-coloring of A.

Now it suffices to show that M7 (and My) is 5-colorable. We first color vy, v, v3, v4
by four colors. Second, extend the 4-coloring to a 5-coloring of the two plane graphs
with boundary 4-cycles v1vov4v3 and vovsvivy, using Lemma 18.

In each of My, Ms, A, the four vertices of the boundary 4-cycles are colored by
distinct four colors, and hence we can get a 5-coloring of G from these 5-colorings of
My, My, A after possibly permuting colors. Therefore, the proposition holds. d
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MINIMIZING SONET ADMs IN UNIDIRECTIONAL WDM RINGS
WITH GROOMING RATIO SEVEN*
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Abstract. In order to reduce the number of add-drop multiplexers (ADMs) in SONET/WDM
networks using wavelength add-drop multiplexing, certain graph decompositions can be used to form
a “grooming” that specifies the assignment of traffic to wavelengths. When traffic among nodes
is all-to-all and uniform, the drop cost of such a decomposition is the sum, over all graphs in the
decomposition, of the number of vertices of nonzero degree in the graph. The number of ADMs
required is this drop cost. The existence of such decompositions with minimum cost, when every
pair of sites employs no more than % of the wavelength capacity, is determined within an additive
constant. Indeed when the number n of sites satisfies n = 1 (mod 3) and n # 19, the determination is
exact; when n = 0 (mod 3), n #Z 18 (mod 24), and n is large enough, the determination is also exact;
and when n = 2 (mod 3) and n is large enough, the gap between the cost of the best construction
and the cost of the lower bound is independent of n and does not exceed 4.

Key words. traffic grooming, combinatorial designs, block designs, group-divisible designs,
optical networks, wavelength-division multiplexing
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1. Introduction. Traffic grooming in optical (SONET) rings arises from amal-
gamating C' low rate signals onto a higher capacity wavelength [15, 25, 26]; C' is the
grooming ratio. Nodes initiate or terminate traffic on a wavelength using an add-drop
multiplexer (ADM). Finding the minimum number of ADMs, A(C,n), required in an
n-node SONET ring with grooming ratio C, is equivalent to the following problem
in graphs [4]: Given a number of nodes n and a grooming ratio C, find a partition
of the edges of K, into subgraphs By, £ = 1,...,s, with |E(B/)| < C such that
D 1<v<s |V (Be)| is minimum.

“Optimal constructions for given grooming ratio C' have been obtained using tools
of graph and design theory [9]. Results are known for grooming ratio C' =3 [1], C =4
[5,23], C =53], C=6[2], C < gn(n—1) [5], and for large values of C' [5]. Related
problems have been studied for variable traffic requirements [8, 14, 22, 27, 29|, for
fixed traffic requirements [1, 3, 4, 5, 15, 21, 23, 24, 25, 28, 30|, and in the case of
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bidirectional rings [10, 13]. The explicit correspondence between grooming and graph
decomposition is developed in detail in [1, 11].

In this paper we consider grooming with grooming ratio 7. In section 2 we employ
linear programming duality to establish a general lower bound on A(7,n). In section 3
we present a complete solution to the existence problem of 4-GDDs of types 24%m!
and 84%m!, which will be used for recursion in subsequent sections. In section 4 we
determine A(7,n) with the possible exception of n = 19 when n =1 (mod 3). When
n =0 (mod 3) (section 5) we determine A(7,n) with finitely many possible exceptions
except when n = 18 (mod 24); in the latter case we establish a construction whose
cost exceeds the lower bound by 1. When n = 2 (mod 3) (section 6) we develop a
set of constructions to establish that, with finitely many possible exceptions, the cost
does not exceed the lower bound by more than 4, independent of n.

It is natural to ask why the case when C' = 7 is of independent interest. Unlike
all cases when C' < 6, the graph with the lowest ratio of number of vertices to number
of edges does not have C edges; rather it is Ky, a 6-edge graph. This necessitates
consideration of decompositions that do not use the minimum number of graphs, and
hence determining the minimum number of wavelengths required is quite different
than determining the minimum drop cost.

2. The lower bounds. We adapt a strategy using linear programming from [12]
that was used in [11] to determine both the cost and the structure of certain optimal
groomings. A grooming with ratio 7 is a decomposition of K, into subgraphs each
having at most 7 edges. Its drop cost, or just cost, is the sum of the numbers of vertices
of nonzero degree over all graphs in the decomposition. A(7,7n) is the minimum drop
cost of a grooming of K,, with grooming ratio 7. Figure 1 displays all of the connected
graphs having at most 7 edges. The naming convention is as follows. For each number
g of edges and p of vertices, suppose that there are 7, , nonisomorphic graphs. These
are named Gy q,p for 1 <€ < g,

In a decomposition, let ay 4, be the number of occurrences of Gy 4, and let
Qgp = Dp2% agqp- Then because every edge appears in exactly one of the chosen
subgraphs,

1) 333 g, - (5):

q=1p=1¢=1
In order to minimize drop cost, we must compute

8 Ya.p

7
(2) minZZZp -0, q.p-

q=1p=1/¢=1

Figure 1 does not list disconnected graphs, but the cost of a disconnected graph
is the sum of the costs of its components, so all feasible decompositions are accounted
for. For every graph Gy,qp, we find that £ > 2. Subtract 2 x (1) from (2) to restate
the minimum drop cost A(7,n) as

(3) @ + min 27: > 3 (p — %q) S, g,p-

In (3) the triple summation is always nonnegative; it can be zero only when all
graphs are isomorphic to K4. However, structural restrictions can prohibit such a
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Graph G, , |deg.seq. ¢y, , |¥p,, |Graph G, , |deg.seq. [Py, , |Vp,,
G, > 4222 4 pBs5 |G, KL .[33321 15 |15
G, B 3322 25 2 |G, =< 22111 |45 |45
Gos XL 43331 1 2 |G, o022 45 |45
Gos XX 33332 1 s |6, < 21 3 |45
G,y D> 42211 |4 5 Gio 1 22222 |6 3
G VN 5220221 |55 Bs |Gy, O 22221 45 |3
Gyo <O 422222 55 35 |G, 2o 32211 3 3
Gure P 532211 |4 35 |G P P331L |15 3
Guo [P la32221 4 Bs 1o S0 s e
Gue P2l 5 S G,,, <_l221111 |45 |6
Gige LT 332220 4 2 50 S><lhaim 3 s
G, ZI> |4421111 |4 65 |G, < |6lll111 |3 6
Gy P 5222111 55 |5 |G, 7222211 6 |45
Gy,, o< |a222211 |55 5 Geoy = 3222111 45 |45
Gy 2 5321111 4 5 g, <5 B3al 300 45
Gs,, VI laz22111 4 |5 G, K 332 P i
Gopy VB 25 5 g <] il s 4
Gyon L 2222222 |7 351G, [ P22 5 2.5
Gy, 222221 |55 P50 —hoat s 25
Gpy L p322211 4 B35 g Tk | |os
Gy A 1B332111 25 35 g T S—lnn s |ss
Gy N |71 |4 |8 Gpse 2 511111 35 |55
Grps |4l 4 8 |G, —o P21l 35 4
Gy, N 1522111155 |65 |G,  ST<B311 2 |4
Gors <= |2221111 55 |65 |Goyy Lol 22211 53
Gspe N Tl62111111 |4 65 |G., I |2222 4 2
Gery  ASN|S3LIL4 65 |G, < 3221 s |2
G, Sl 65 |g., o< W4 s s
Gyrs L 2222221107 5 Gros —7 22211 4 35
Gys  S= 2222111155 5 Gy —<|2111 5 35
Guns S 33221111 14 5 G., < = 3 |15
Groe <2 33311111 25 5 G.. 11 l2u 3 3
G.. X B33z o o e, —< pu 15 3
Go: < |42222 45 B3 G,y e 211 2 2.5
G,es L. 43221 3 3 G, — |l 1 2
Gyos < 33222 3 1.5 B

Fi1c. 1. The graphs.
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selection. In particular, considering the number (%) of edges modulo 6,

C s 0 (mod6)ifn=0,1,4,9 (mod 12),
_J 1 (mod6)ifn=2,11 (mod 12),
(4) Zl Zl 2 (qmod 6) - argp =9 5 (mod 6) if n = 3,6,7,10 (mod 12),
= 4 (mod 6)ifn=>5,8 (mod 12).
We can relax this congruence to linear inequalities. For example, if n = 3,6,7,10
(mod 12), then
8 V3,p 1 Ya,p 2 Ya,p
(5) Z ZO%B,I) + 3 Z Z Qegp | + 3 Z Z Q,q,p 21,
p=1 | ¢=1 qe{1,4,7} £=1 qe{2,5} =1

because if there is no graph on three edges, there must be at least three graphs having
1 (mod 3) edges, or one having 1 (mod 3) edges and one having 2 (mod 3) edges.

Every vertex of K, has degree congruent to n — 1 mod 3; placing a K4 in the
decomposition does not change this congruence class at any vertex, and hence sub-
graphs other than K4 may be needed to accommodate these vertex degrees. Let wy ¢
be the number of vertices whose degree is congruent to 1 modulo 3 in Gy 45, and let
Te,q,p be the number of vertices whose degree is congruent to 2 modulo 3. Now if
n =0 (mod 3), then every vertex has degree 2 modulo 3, and hence at every vertex
there must either be a graph itself having degree 2 modulo 3, or two graphs each
having degree 1 modulo 3 (there may be more). And if n = 2 (mod 3), then every
vertex has degree 1 modulo 3, and hence at every vertex there must either be a graph
itself having degree 1 modulo 3, or two graphs each having degree 2 modulo 3. For
convenience we write ¢z g, = $We.q.p + To,g,p a0d Yy gp = Wi gp + 370,q,p- LThese are
tabulated for each graph in Figure 1. We conclude that

8 Ya.p

Z Z Z Gogp-Qrgp>n if n=0 (mod3),

q=1p=1+¢=1

7 8 Ya,p

Z ng,q,p capgp>n if n=2 (mod 3).
q=1p=1/¢=1

THEOREM 2.1. The cost

A(7,n), is at least

of an optimal grooming of K, with grooming ratio 7,

2(%) if n=1,4 (mod 12),
HOES if n=7,10 (mod 12),
2+ 81 if n=0,36,1518,21 (mod 24),
2+ [2]+1 if n=9,12 (mod 24),
[3(5) + 31 if n=58,17 (mod 21)
or n = 2,23,32,53,56,77,62,83 (mod 84),
[2(2) + 22741 if n=14,35,20,41,44,65,74,11 (mod 84).

Proof. We follow the strategy in [12]. Form a linear program whose variables are
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the {a,q.p}s,

7 8
(7) miny Y D (0 - 54) - orgy

q=1p=1/¢=1

subject to (4) suitably relaxed, (6), and nonnegativity of each variable.

If z* is the minimum, then the cost of any grooming must be at least [2(}) + 2*],
since the cost is integral. By forming the dual of (7), any feasible solution to the dual
gives a lower bound on all primal feasible solutions, and hence a lower bound on z*.

Case 1. n =1 (mod 3): When n = 1,4 (mod 12), the linear program is con-
strained only by nonnegativity, and the dual optimum is 0. When n = 7,10 (mod 12),
(5) holds. Call its dual Variable y1. An assignment yi is dual feasible if y7 < p — 2
for every graph Gosp; yf < 2(p — 3q) for every graph Gy 4, with ¢ € {2,5}; and
y7 < 3(p— —q) for every graph Go,qp With q € {1 4,7}. By considering the graphs
in Figure 1 the dual optimum of 1 occurs when yj = 1. This raises the lower bound
by 1.

Case 2. n =0 (mod 3): Consider the inequality from (6), and let y2 be its dual
variable. Each graph G 4, leads to the dual inequality ¢y qpy2 < p — —q The dual
optimum of {5 arises when y2 = 12, the only graph whose dual mequahty is binding is
G175 with ¢1 75 =4 and 5 — . We can compute the slackness of each variable;
for ayq,p, the slackness is p — gq 2(;5@ q,p- A unit increase in the variable oy g,
increases the dual obJectlve function value by the slackness. The only Variables with
slackness at most 5 are ap 7,5 with slackness 1 5 3,75 and ay, 7,5 with Slackness 7, and
o,5,4 With slackness % Hence any decomposition of cost less than 12 + 2 consists
solely of graphs in {Gy 7 5}. To satisfy (6), ars > [§]. If a5 > %4 +0, then adjoining
this mequahty with dual variable y3 yields a dual solutlon {yg =0, y3 = 3} of cost
15 + ¢ £, increasing the bound when 6 > 3. So [§] < az5 < & + 3. Because all of the
graphs in the decomposition have six or seven edges, a7 5 = 0 (mod 3). Thus when
n=9,12 (mod 24), ay 5 = 3 (mod 6), violating (4). This increases the bound by 1
when n =9,12 (mod 24).

Case 3. n = 2 (mod 3): Again consider the inequality from (6), and let y be
its dual variable. Each graph Gy 4, leads to the dual inequality ¢ qpy2 < p — gq
The dual optimum of arlses when y2 21, the only graph whose dual inequality is
binding is G175 with wl 75 =3 ? and 5 3 We can compute the slackness of each
variable; for ay 4, the slackness is p—$q— 57 W .q,p- The only variables w1th slackness
at most % are ozz 7,5 and og.75 with slackness %, 0,75 With slackness 2 =, and o154
with slackness 2 =. An increase of 4 would result in an increase in the integer celhng
when n = 2,11, 14, 20 (mod 21), so in these cases we are restricted to K4s and graphs
in {Ggr5} to meet the bound. To satisfy (6), azs > [2"1 If a75 > 22 + 6, then
adjoining this inequality with dual variable y3 yields a dual solution {y2 = 0 Y3 = 3}
of cost 22 42 %, increasing the bound when § > 3. So [22] < a5 < 22 + 3 Because
all of the graphs in the decomposition have six or seven edges, o<7,5 = 1 (mod 3).
Thus when n = 21s+ z for z € {2,11,14,20}, ar 5 = 6s+ 1, 65+ 4, 65+ 4, 65+ 7,
respectively. This violates (4) precisely when n = 44,65; 11, 74; 14, 35; 20,41 (mod 84),
increasing the bound by 1 in these cases. O

We denote by £(7,n) the lower bound prescribed by Theorem 2.1.

3. Group divisible designs with block size four. A group divisible design
(GDD) is a triple (X, G, B), where X is a set of points, G is a partition of X into groups,
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and B is a collection of subsets of X called blocks such that any pair of distinct points
from X occur together either in some group or in exactly one block, but not both. A
K-GDD of type ¢ ¢5% - - - g% is a GDD in which every block has size from the set K
and in which there are u; groups of size ¢;, 1 =1,2,...,s.

A group divisible design (X, G, B) is resolvable if its block set B admits a partition
into parallel classes, each parallel class being a partition of the point set X.

A pairwise balanced design (PBD) with parameters (K;v) is a K-GDD of type 1°.

The interested reader may refer to [6, 9] for the undefined terms as well as a
general overview of design theory. The main recursive construction that we use is
Wilson’s fundamental construction (WFC) for GDDs (see, e.g., [9]).

CONSTRUCTION 3.1. Let (X,G,B) be a GDD, and let w : X — ZT U {0} be a
weight function on X. Suppose that for each block B € B, there exists a K-GDD of
type {w(x) : x € B}. Then there is a K-GDD of type {}_,ccw(x) : G € G}.

A double group divisible design (DGDD) is a quadruple (X,H, G, B), where X is
a set of points, H and G are partitions of X (into holes and groups, respectively), and
B is a collection of subsets of X (blocks) such that

(i) for each block B € B and each hole H € H, |BN H| <1, and

(ii) any pair of distinct points from X which are not in the same hole occur either

in some group or in exactly one block, but not both.

A K-DGDD of type (g1, hY)“ (g2, h3)“2 - - - (gs, h2)"* is a DGDD in which every block
has size from the set K and in which there are u; groups of size g;, each of which
intersects each of the v holes in h; points. (Thus, g; = hv for i = 1,2,...,s. Not
every DGDD can be expressed this way, of course, but this is the most general type
that we require.) Thus, for example, a modified group divisible design (MGDD) K-
MGDD of type g* is a K-DGDD of type (g,19)*. A k-DGDD of type (g, h")"* is an
incomplete transversal design (ITD) ITD(k, g; h¥) and is equivalent to a set of k — 2
holey MOLS of type h¥ (see, e.g., [9]). A DGDD is resolvable if its block set admits
a partition into parallel classes. We use the following existence result.

THEOREM 3.2 (see [20]). There exists a 4-DGDD of type (mt,m*)™ if and only
ift,n >4 and (t—1)(n —1)m =0 (mod 3) except for (m,n,t) = (1,4,6) and except
possibly for m = 3 and (n,t) € {(6,14), (6,15), (6,18),(6,23)}.

We also make use of the following simple construction for 4-GDDs.

CONSTRUCTION 3.3 (see [19]). Suppose that there is a 4-DGDD of type (g1, hy)™
(g2, h)"2 - (gs, h¥)% and that for each i =1,2,...,s there is a 4-GDD of type h¥a'
where a is a fived nonnegative integer. Then there is a 4-GDD of type h'a', where
h = Zle uzhl

The following results on transversal designs (TDs) are known.

THEOREM 3.4. A TD(k,m) exists if

1. k=5 and m >4 and m ¢ {6,10},
2. k=6 and m > 5 and m ¢ {6, 10,14, 18,22},
3. k=7 and m >7 and m ¢ {10, 14,15, 18, 20, 22, 26, 30, 34, 38, 46, 60, 62}.

Finally, we employ the following results on 4-GDDs.

THEOREM 3.5 (see [9, IV.4, Theorem 4.8]). A 4-GDD of type 3“m?! emists if and
only if either w = 0 mod 4 and m =0 mod 3, 0 <m < (3u—6)/2; or u =1 mod 4
and m = 0 mod 6, 0 < m < (Bu—3)/2; oru = 3 mod 4 and m = 3 mod 6,
0<m< (3u—3)/2.

THEOREM 3.6 (see [17, Theorem 1.7]). There exists a 4-GDD of type g*m* with
m > 0 if and only if g =m =0 mod 3 and0<m§3—2‘7.

THEOREM 3.7 (see [18, Theorem 1.6]). There exists a 4-GDD of type 6“m! for
every w > 4 and m = 0 mod 3 with 0 < m < 3u — 3 except for (u,m) = (4,0)
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and except possibly for (u,m) € {(7,15),(11,21),(11,24),(11,27),(13,27), (13, 33),
(17,39), (17,42), (19, 45), (19, 48), (19, 51), (23, 60), (23, 63) 1.

THEOREM 3.8 (see [16, Theorem 3.16]). There exists a 4-GDD of type 12“m!
for each u >4 and m = 0 mod 3 with 0 < m < 6(u— 1).

THEOREM 3.9 (see [16, Theorem 5.21]). There exists a 4-GDD of type 2“m* for
each u > 6, u =0 mod 3 and m = 2 mod 3 with 2 < m < u—1 except for (u,m) =
(6,5) and except possibly for (u,m) € {(21,17),(33,23),(33,29),(39,35), (57,44)}.

3.1. g € {24,84}.

LEMMA 3.10. For each u >4, uw ¢ {7,11,13,17,19,23}, there exists a 4-GDD of
type 24%m! with m =0 mod 3 and 0 < m < 12(u — 1).

Proof. For u = 4, see Theorem 3.6. For each w > 5, w ¢ {7,11,13,17,19, 23},
take a 4-GDD of type 6“v! with v =0 mod 3 and 0 < v < 3(u — 1), and remove the
points on the last group of size v; apply weight 4, using 4-MGDDs of type 4* and
resolvable {3}-MGDDs of type 42, to obtain a {3,4}-DGDD of type (24,6%)* whose
triples fall into 3v parallel classes. Adjoin 3v infinite points to complete the parallel
classes, and then fill in 4-GDDs of type 6“t! with ¢ = 0 mod 3 and 0 < ¢ < 3(u — 1)
to obtain a 4-GDD of type 24“(3v + t)!, as desired. O

LEMMA 3.11. For each u € {7,11,13,17,19,23}, there exists a 4-GDD of type
24%m* with m =0 mod 3 and 3(u—1) <m < 12(u — 1).

Proof. For each u, start with a TD(5,u) and adjoin an infinite point oo to the
groups; then delete a finite point in order to form a {5,u + 1}-GDD of type 4%u!.
Note that each block of size u+ 1 intersects the group of size u in the infinite point co
and each block of size 5 intersects the group of size u, but certainly not in co. Now,
in the group of size u, we give co weight 0 or 3(u — 1) and give the remaining points
weight 3, 6, or 9. Give all other points in the {5,u + 1}-GDD weight 6. Replace the
blocks in the {5,u + 1}-GDD by 4-GDDs of types 6%, 6%(3(u — 1))}, 6*31, 6%6', or
649! to obtain the 4-GDDs, as desired. a

LEMMA 3.12. For each u € {7,11,13,17,19,23}, there exists a 4-GDD of type
24%m! with m =0 mod 3 and 0 < m < 3(u — 2).

Proof. Starting from a 4-DGDD of type (24,6*)" coming from Theorem 3.2 and
applying Construction 3.3 with 4-GDDs of type 6“m! to fill in holes, we obtain most
of the designs except for (u,m) € {(7,15),(11,21), (11,24), (11,27), (13,27), (13, 33),
(17,39), (17,42), (19,45), (19, 48), (19,51), (23, 60), (23,63) }.

For the remaining choices for (u,m), take a 4-GDD of type 6“3! and remove the
points of the last group of size 3; apply weight 4, using 4-MGDDs of type 4* and
resolvable {3}-MGDDs of type 42, to obtain a {3,4}-DGDD of type (24,6%)* whose
triples fall into 9 parallel classes. Adjoin m — 9 infinite points to complete the parallel
classes and then fill in 4-GDDs of type 6“(m — 9). O

Combining Lemmas 3.10-3.12, we have the following theorem.

THEOREM 3.13. There exists a 4-GDD of type 24“m' for each v > 4 and
m =0 mod 3 with 0 <m < 12(u —1).

THEOREM 3.14. There exists a 4-GDD of type 84“m' for each u > 4 and
m =0 mod 3 with 0 <m < 42(u—1).

Proof. The proof is similar to that of Lemma 3.10. For each u, take a 4-GDD
of type 12%v! with v = 0 mod 3 and 0 < v < 6(u — 1), and remove the points on
the last group of size v; apply weight 7, using 4-MGDDs of type 7% and resolvable
{3}-MGDDs of type 73, to obtain a {3,4}-DGDD of type (84, 127)* whose triples fall
into 6v parallel classes. Adjoin 6v infinite points to complete the parallel classes, and
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then fill in 4-GDDs of type 12%t! with ¢ =0 mod 3 and 0 <t < 6(u — 1) to obtain a
4-GDD of type 84%(6v + t)!, as desired. 0O

4. Constructions: n =1 (mod 3). We settle the small cases first.

LEMMA 4.1. A(7,n) = L(7,n) forn € {4,7}.

Proof. The lower bound is met for n = 4 by a single K4. The lower bound is
realized when n = 7: Let V = {oc0}U{0,...,5}, and form the three G1,7 58 {{i,7+ 3},
{i,i+ 1}, {iyi+4}, {i+1,i+3}, {i+3,i+4}, {o0,i}, {o0,i+3}} fori € {0,1,2},
arithmetic modulo 6. d

LEmMA 4.2. A(7,10) = £(7,10) + 1 = 32.

Proof. The lower bound of 31 is not met. To see this, the only primal variables
with slackness at most % are for {Gr75}. But 62 + 7y = 45 and 4z + 5y = 31 admits
only the solution z = 4 and y = 3, i.e., four K4s and three graphs from {G¢ 7 5}. There
is a unique way to place four Kys in a K1, and its complement does not partition into
three graphs from {Gy 75}. To produce a decomposition of cost 32, on the 10 points
{0,...,9} form Kys on {0,1,2,3} and {0,4,5,6}, and form the graphs

G277,5 {{27 4}7 {27 5}7 {27 7}7 {27 9}7 {47 7}7 {57 7}7 {47 9}}7
G377,5 {{37 9}7 {57 9}7 {67 9}7 {77 9}7 {37 6}7 {37 7}7 {67 7}}7
G477,5 {{37 4}7 {37 5}7 {37 8}7 {47 8}7 {57 8}7 {17 4}7 {17 5}}7
G4,7,5 {{07 7}a {07 8}) {07 9}7 {77 8}7 {87 9}7 {17 7}7 {17 9}};
G1,5,4 {{178}a{176}a{278}7{276}7{678}}' a

LEMMA 4.3. L£(7,19)+ 1 < A(7,19) < L(7,19) + 2 = 117.

Proof. The lower bound of 115 cannot be met. A maximum packing on 19 points
has 25 Kys [7]. Consider the linear program using (5). Using slackness, the only way
to achieve a dual objective value of 1 in such a way that at least 21 = (129) —25-6 edges
do not appear in Kys is to use three graphs in {Gy 75}. There are 249 nonisomorphic
graphs that can be left by a maximum packing of 25 Kys in Kig [2]. G375 cannot
be used because it contains a Ky, and the 25 Kys form a maximum packing. Of the
249 graphs, 79 have degree sequence 3'4, 122 have degree sequence 6'3'2, and 48 have
degree sequence 62310, In order to use a G1,7,5 there must be at least five vertices of
degree 6 or larger; and for G 75 there must be at least three. Hence both are ruled
out and the only possibility is three G4 7 5s. This case can be eliminated by a simple
computer search. Thus the drop cost cannot be 115. A solution with drop cost 117
follows:

24 Ky’s: {0,1,2,4}, {0,3,5,6}, {0,7,8,9}, {0,10,11,12}, {0,13,14, 15},
{0,16,17,18}, {1,3,7,10}, {1,5,8,11}, {1,6,13,16}, {1,9,14, 17},
{1,12,15,18}, {2,3,8,15}, {2,5,9,18}, {2,6,10,17}, {2,7,12,13},
{2,11,14,16}, {3,4, 14,18}, {3,9,12,16}, {4,5,12,17}, {4,6,9, 15},
{5,10, 15,16}, {6,7,11,18}, {6,8,12,14}, {8,10,13,18}

one Go75: {{3,11},{3,13},{3,17}, {11, 15}, {11, 17}, {13,17},{15,17}}

two G750 {{4,7},{4,8},{4,16},{7,16},{7,17},{8,16},{8,17}} and
{{4,10},{4,11},{4,13},{9,10},{9,11},{9, 13}, {11,13}}

one Gree:  {{5,7},{5,13},{5,14},{7,14},{7,15},{10,14}}. O

THEOREM 4.4. When n = 1 (mod 3) and n ¢ {10,19}, A(7,n) = L(7,n).
Moreover, A(7,10) = £(7,10) + 1 and £(7,19) + 1 < A(7,19) < L(7,19) + 2.

Proof. When n = 1,4 (mod 12), there is a 4-GDD of type 1™ with drop cost
L(7,n). When n = 7,10 (mod 12) and n ¢ {10,19}, there is a 4-GDD of type
17=771 [7]; fill the hole with a solution from Lemma 4.1. O
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5. Constructions: n = 0 (mod 3). The lower bound is met for n = 3 by a
single K.

LEMMA 5.1. A(7,6) = L(7,6) + 1 = 12.

Proof. The lower bound of 11 is not met. A decomposition of cost 12 can be
produced as follows:

G2,775 {{07 1}a {07 2}a {07 4}7 {07 5}7 {17 4}7 {17 5}7 {27 4}};
G2,775 {{17 2}a {17 3}a {27 3}7 {27 5}7 {37 4}7 {37 5}7 {47 5}};
G112 {{0,3}}. O

LEMMA 5.2. A(7,9) = L£(7,9)+ 1 =27.

Proof. The lower bound of 26 is not met for n = 9 as follows. There can be
at most three K4s on nine points. If there are zero, then at least six graphs are
needed, each having a slackness of at least %; because the total increase in the dual
objective function is 2, all of the graphs must be from {G 75} and cannot account
for 36 edges. In the same manner, with one Ky, 30 edges must be accounted for by
graphs in {Gy 75}, each with a slackness of % and G 5,4 with a slackness of %; again
this is not possible as 25 is not a multiple of 7. There remain cases with two or three
Kys; each can be eliminated by an exhaustive search.

A decomposition of cost 27 using graphs on at most six edges is given in [2]. We

give a different solution here:

G1,7,5 {{07 7}a {07 8}) {17 7}7 {17 8}7 {27 7}7 {27 8}7 {77 8}};
G4,7,5 {{07 4}a {07 5}) {07 6}7 {17 4}7 {17 5}7 {17 6}7 {47 5}};
G4,7,5 {{27 4}a {27 5}) {27 6}7 {37 4}7 {37 5}7 {37 6}7 {47 6}};
G477,5 {{47 7}7 {47 8}7 {57 6}7 {57 7}7 {57 8}7 {67 7}7 {67 8}}7
G176,4 {{07 1}a {07 2}7 {07 3}7 {17 2}7 {17 3}7 {27 3}}7

G123 {{3,7},{3,8}}. O

LEMMA 5.3. A(7,15) = L(7,15) = 72.

Proof. Start with a Kirkman triple system of order 9 on {0,...,8}, in which the
first parallel class is {By, B1, Ba}. Then adjoin points {xg,z1,22,y0,91,y2}. Form
nine Kys by adding y; to each block of the (i + 2)nd parallel class. For i € {0,1,2},
form a K4 on {x;42} U B; and a Gy 7,5 in which the degree 4 vertices are x; and x;41
and the degree 2 vertices are the elements of B;. Form a K4 on {2, yo, y1,y2}. What
remains is a G36,5. d

LEMMA 5.4. A(7,18) < £(7,18) +1 = 105.

Proof. Form a 4-GDD of type 3° with groups {B; : j = 0,1,2,3,4}. Then adjoin
points {xg,z1,x2}. For i € {0,1,2}, form a Gy 75 by using the edge {Z;, Zi+1 mod 3}
join these vertices to each vertex in B;, and form a K, by adding x;42 meq 3 to B;.
For i € {3,4}, form a G365 by joining the vertices xy and x; to vertices in B;, and
form a K4 by adding x2 to B;. This decomposition is of cost 105. 0

LEMMA 5.5. A(7,24) = L(7,24) = 186.

Proof. We give the solution on {0,1,2,3,4,5,6,7} x Zs, writing element (i, j)
as 1;.

(00,01, 10, 42), (00,11, 50, 61), (00, 20,31, 32), (00,21, 51, 52),
(00722770772)7 (00760762771)7 (10711721770)7 (10722751761)7
(10731750771)7 (10732741762)7 (20721742761)7 (30750762772)7
(40,41,52,72), (30,40 :00,10,20), (30,41 :51,61,71).

The latter two orbits are graphs isomorphic to Gy 75. d

THEOREM 5.6. A(7,n) = L(7,n) when n =0 (mod 3), n # 18 (mod 24), and
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1. n>96 when n=0,3,6,9,15 (mod 24);
2. n > 276 when n =12 (mod 24);
3. n > 309 when n =21 (mod 24).
L(7,n) < A(7,n) < L(7,n) + 1 when n = 18 (mod 24) and n > 114.

Proof. If m = nmod 24 € {0,3,6,9,15,18} and n > 96, form a 4-GDD of type
24(n=m)/24n 1 from Theorem 3.13; place optimal groomings from Lemma 5.5 on each
group of size 24 and an optimal grooming of size m on the exceptional group (from
Lemmas 5.1, 5.2, or 5.3 when m = 6, 9, 15, respectively). When m = 18, use the
grooming from Lemma 5.4, missing the lower bound by 1. When m = 6, reduce the
drop cost by 1 by amalgamating the single edge from this grooming with a K4 of the
4-GDD to form a G375. When m = 9, reduce the drop cost by 1 by amalgamating
both edges of the G 3,2 of this grooming with Kys of the 4-GDD to form G3,7 5s.

When m = n mod 24 = 12, form a 4-GDD of type 20* and add four infinite points.
On each group, together with the four infinite points, place an optimal grooming from
Lemma 5.5 aligning a K4 on the four infinite points. Suppress the duplicate Kys so
produced. This establishes that £(7,84) = A(7,84). Then filling groups in a 4-GDD
of type 24!841 establishes that A(7,24t + 84) = L(7,24t + 84) when t > 8, i.e., for all
n > 276.

When m = nmod 24 = 21, form a 4-GDD of type 23* and add one infinite
point. On each group, together with the infinite point, place an optimal grooming
from Lemma 5.5. This establishes that £(7,93) = A(7,93). Then filling groups in a
4-GDD of type 24'93! establishes that A(7,24t + 93) = L£(7,24t + 93) when t > 9,
i.e., for all n > 309. O

6. Constructions: n = 2 (mod 3).
LEMMA 6.1. A(7,n) = L(7,n) forn € {5,8}.
Proof. For K5, note that G175 = K5 \ K3. Partition Kg is as follows:

G1,775 {{07 1}a {07 2}7 {07 3}7 {074}7 {17 2}7 {17 3}7 {174}}7
G1,775 {{67 7}7 {67 2}7 {67 3}7 {67 4}7 {77 2}7 {77 3}7 {77 4}}7
G3,7,5 {{17 5}a {27 3}) {27 4}7 {27 5}7 {37 4}7 {37 5}7 {47 5}};
G4,7,5 {{176}a{177}a{075}7{076}7{077}7{576}7{577}}' a

LEMMA 6.2. A(7,11) = £(7,11) = 39.

Proof. Partition Ki; on {001,009} U (Z3 X Z3) as follows. Include the Ky
{002,02, 12,22}. Form three G2)775S as {{io, (l + 1)1}, {io, (Z + 2)1}, {io, (Z + 1)2},
{io, (i4+2)2}, {1+ 1)1, (i +2)1}, {(G+ 1)1, (142)2}, {(i+2)1, (i+1)2}} fori € {0,1,2}.
Then include three G3)775S as {{001, io}, {001, il}, {001, iz}, {io, il}, {io, iQ}, {il, iz},
{OOQ,il}} for 7 € {0, 1,2}. Include one last G3)775I {{001,002},{002,00},{002, 10},
{002,20},{00,10},{00,20},{10,20}}. O

LEMMA 6.3. A(7,17) < £(7,17) + 1 = 94.

Proof. Start with an S(2,4,16) on Zq5 U {oco} with blocks {i,i+ 1,4+ 3,i + 7}
for i € Zy5 and {o0,4,i+ 5,1+ 10} for i € {0, 1,2,3,4}. We adjoin a new point o and
modify six of the blocks in the first orbit as follows:

Block Remove Add
{5,6,8,12} {8,12}  {a,5},{c,8}
{7,8,10,14}  {8,14} {a,7},{«a, 10}
{0,8,9,11} {0,8} {a,0},{c, 9}
(3,11,12,14} {12,14} {,3},{a,12}
{0,4,12,13}  {0,12} {o,4},{a,13}
{0,2,6,14}  {0,14} {2}, {o, 14}
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Now add the K4 on {0,8,12,14}. Then delete the K4 on {o0,1,6,11}; on {«, 00,1,
6,11}, place a K3 and a G1,7,5. The result has 14 Kys, one K3, and seven graphs in
{Ge5} O

LEMMA 6.4. When n = 2 (mod 6) and n > 14, A(7,n) < 2(3) + 2 =
5(3) + 3 11

Proof. Write h = %. When h = 1 (mod 3) and h > 7, a 4-GDD of type 2"
exists by Theorem 3.9. It has h groups and @ blocks. For each group, choose a
distinct block containing one point of the group (this is an easy exercise using systems
of distinct representatives). Then adjoin the pair of each group to its corresponding
block to obtain a G375 0

LEMMA 6.5. When n =5 (mod 6) and n > 23, A(7,n) < 2(5) + 22 4 2T,

Proof. Write h = "T’5 When h = 0 (mod 3) and h > 9, a 4-GDD of type 2"5!
exists by Theorem 3.9. For each group of size 2, choose a distinct block containing
one point of the group and adjoin the pair of each group to its corresponding block to
obtain a G'375. Then fill the group of size 5 using a solution from Lemma 6.1. a

In order to treat larger cases, we now develop a recursion.

LEMMA 6.6. There exists a decomposition of K21 into nine partial parallel classes
of K3s and six G1,7,5.

Proof. We present a solution on {0, 1,...,20} with rows as partial parallel classes:

0213 11215 91417 31020 4519 71116 6818
01820 1216 111719 31213 478 6910 51415
0111 131718 3916 41214 71019 256
035 1817 41316 7920 61115 21014
0814 1520 2317 41015 61319 111218
0915 11314 31819 4620 2712 5816
01016 1919 121720 3815 2411 5718
01219 11018 151617 6714 289 111320
51017 31114 4918 71315 61216 819 20.

The remaining edges partition into six G 758: {{7i+j, 7i+j5+2}, {7i+7, 7i+4},
{Ti+34, Ti+5}, {Ti+], Ti+6}, {Ti+j+2, 7i+4}, {Ti+5+2, 7i+5}, {7i+j+2, 7i+6}}
for j € {0,1} and i € {0,1,2}. O

We denote by X (n) the excess over the lower bound, i.e., X (n) = A(7,n)—L(7,n).

THEOREM 6.7. Let (V,G,B) be a resolvable group-divisible design of type 7", in
which the blocks of B are partitioned into parallel classes P1,...,Ps, and for 1 <i<'s
every block of P; has size k;. Suppose that, for 1 < i < s, a 4-GDD of type 3*io}
exists, and that Zle o; > 0. Then

A<7,21n+8+zs:ai> §E<7,21n+8+iai> + X <8+Zs:ai>.

i=1 i=1 i=1

Proof. Suppose, without loss of generality, that o; > 0. Give weight three to
each point of the GDD (V,G,B). For 2 < i < s, adjoin o; new infinite points,
and place a 4-GDD of type 3*:o} on the inflation of each block of P; together with
these infinite points. Then proceed similarly for P;, but adding only o7 — 1 infinite
points; in the 4-GDD, delete one point in the group of size o1 to form a {3,4}-GDD
of type 3% (o; — 1)! in which the blocks of size three form a (frame) parallel class
on the 3k; points. On each inflation of a group form a copy of the 21-point design
from Lemma 6.6. The nine partial parallel classes of blocks of size 3 formed can be
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completed to nine parallel classes on the 21n points using the triples from the {3,4}-
GDDs. Finally, add nine further infinite points and extend each of the nine parallel
classes to K4s using these infinite points. The resulting design has a hole on the
8+ >_:_, 0; infinite points added in total, which can be filled with a solution of cost
A(7,8+Zf:1 0;). d
COROLLARY 6.8.
1. X(92) < X(29).
2. Forn € {11,14,17,20,23,26,29}, X(84 +n) < X(n).
3. Forn € {14, 20,26, 32, 38,44,50}, X (1054 n) < X (n).
4. For 29 <n <71 and n =2 (mod 3), X (1474 n) < X(n).
Proof. Apply Theorem 6.7 using an RTD(k,7) with & = 3,4,5,7 as a resolvable
GDD of type 7% with s =7 and ky = --- = ky = k. O
COROLLARY 6.9.

1. For 29 <n <80 and n =2 (mod 3), X(168+n) < X(n).
2. For 32 <n <92 andn =2 (mod 6), X(189+n) < X(n).
3. For 41 <n <107 and n =5 (mod 6), X(231+n) < X(n).
4. For 44 <n <134 and n =2 (mod 6), X(273+n) < X(n).
5. For 53 <n <164 and n =2 (mod 3), X(336 +n) < X(n).
8,9,11,13,16 as a

Proof. Apply Theorem 6.7 using an RTD(7,n) wit
resolvable GDD of type 7" with s =n and ky =+ =k, _ and k, = n. ad

THEOREM 6.10. For z > 4,0 < m < 42(z — 1), m = 0 (mod 3), and r €
{11,14, 17, 20,23, 26, 29},

=2
s
Il

A7, 84z +m+r) < L(7,84x+m+7r) + X(m + 7).

FEquivalently, X (84x +m + 1) < X(m + 7).

Proof. Form a 4-GDD of type 84*m? from Theorem 3.14. Adjoin 7 infinite points,
and place a solution on each group of size 84 together with the r points, leaving a
hole on the r points (from Corollary 6.8(2.)). On the m + r points, place a solution
with excess X (m +r). O

THEOREM 6.11. For m = 2 (mod 3) and 2 < m < 83, L(7,84x + m) <
A(7,84z+m) < L(7,84x+m)+X (84x+m), where X (84x+m) is given in Table 1 (us-
ing the final bold entry for X (84x+m) in the row for m when the table does not provide
a value). In particular, A(7,84x + m) < L(7,84x + m) + 4 when 84x +m > 1094.

Proof. Apply Lemmas 6.1, 6.2, and 6.3 for x = 0 and m € {5,8,11,17}; then
apply Lemmas 6.4 and 6.5 to provide an upper bound on X (84z + m) in general.
Now apply Corollaries 6.8 and 6.9 to improve these upper bounds. Finally, apply
Theorem 6.10. O

7. Conclusions. Grooming with ratio 7 corresponds to the smallest ratio C
for which optimal groomings do not consist primarily of C-edge graphs. Conse-
quently, optimal grooming focuses on packings with Kys in this case. Despite this,
the structures of the edges not appearing in K4s appear to exhibit patterns that re-
peat modulo 12, 24, and 84 when n = 1,0,2 (mod 3), respectively. In the latter
case, techniques for constructing optimal groomings in all cases would necessitate
the direct construction of many “small” groomings. Therefore in this paper, we
have instead found near-optimal groomings in which the construction deviates from
the lower bound by a fixed constant independent of n. When n = 0,1 (mod 3),
much more complete characterizations are given. Our conjecture is that, with few
small exceptions, the lower bound proved here provides the correct cost of an optimal
grooming.
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TABLE 1
Least excesses for 84x + m.

x

m | 0 1 2 3 4 5 6 7 8 9 10 11 12 13

2 1 6 12 18 2 6 6 6 6 6 6 6 6 2

5 0 6 12 4 4 6 6 6 6 6 4

8 0 2 2 18 24 2

11 |0 0 12 4 0

1410 0 2 18 0

17 | 1 1 13 5 1

20 | O 0 2 2 0

23 | 2 2 14 6 2

26 | 1 1 3 3 1

29 | 2

32 | 2 8 2 4 2

35 | 2 0 2 20 0

38 | 2 8 2 4 2

41 | 2 0 2 20 0

44 | 2 8 2 4 2

47 | 3 1 3 21 1

50 | 3 9 3 5 3

53 | 4 2 2 22 4 2

56 | 4 10 4 6 4

59 | 4 2 2 22 4 2

62 |4 10 4 6 4

65 | 4 2 2 2 4 2

68 | 4 10 4 6 4

7|5 3 3 3 5 3

74|14 10 4 0 4 4 4 4 4 4 4 4 0

16 12 4 4 6 6 6 6 6 4

80 | 5 11 5 1 5 5 5 5 5 5 5 5 1

83 |6 12 4 4 6 6 6 6 6 4
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SUMS, AND FOURIER ANALYTIC APPROACH TO INCIDENCE
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Abstract. We study the Erdés—Falconer distance problem in vector spaces over finite fields with
respect to the cubic metric. Estimates for discrete Airy sums and Adolphson—Sperber estimates for
exponential sums in terms of Newton polyhedra play a crucial role. Similar techniques are used to
study the incidence problem between points and cubic and quadratic curves. As a result we obtain
a nontrivial range of exponents that appear to be difficult to attain using combinatorial methods.
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1. Introduction.

1.1. The Erdos distance problem. The Erdos distance conjecture in the Eu-
clidean space says that if F is a finite subset of R?, d > 2, then

(1.1) #A(E) & (#E),

where

YN

A(E) ={|z —y|: z,y € E},

with |z — y|* = (z1 — y1)° 4+ -+ + (@4 — ya)?, and here, and throughout this paper,
X < Y means that there exists C' > 0 such that X < CY and X T Y, with the
controlling parameter IV, means that for every ¢ > 0 there exists C. > 0 such that
X < C.N°Y.

Taking E = Z4 N [0, Né]d shows that (1.1) cannot, in general, be improved. The
conjecture has not been solved in any dimension. See, for example, [14], [2], and
the references contained therein for the description of the conjecture, background
material, and a survey of recent results.

In this paper we study the Erdds distance problem in vector spaces over finite
fields. This problem was recently addressed by Tao [19], who relates it to some
interesting questions in combinatorics, and, more recently, by Iosevich and Rudnev
[9]. We shall describe these results later.

Let IF, denote the finite field with ¢ elements, and let IFZ denote the d-dimensional
vector space over this field. Let F C Fg, d > 2. Then a possible analogue of the
classical Erdos distance problem is to determine the smallest possible cardinality of
the set

An(E) ={llz = ylln = (21 —92)" + -+ (xa —ya)" : 2,y € E},
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with n a positive integer > 2, viewed as a subset of F,,.

In the finite field setting, the estimate (1.1) cannot hold without further restric-
tions. To see this, let F = Fg. Then #E = ¢ and #A(F) = ¢q. Furthermore,
an interesting feature of the Erdos distance problem in the finite field setting with
n = 2 is the existence of nontrivial spheres of zero radius. These are sets of the form
{z € Fl:af+23+ - +23 = 0}, and several assumptions in the statements of results
below are there precisely to deal with issues created by the presence of this object. For
example, suppose —1 is a square in F,. Using spheres of zero radius one can show, in
even dimensions, that there exists a set of cardinality precisely q% such that all of the
distances, (21 — y1)*> + - - + (za — yq)°, are zero. What’s more, suppose F, is a finite
field such that ¢ = p?, where p is a prime. Then E = F{ is naturally embedded in F?,

has cardinality q%, and determines only ,/q distances. If n > 2, then the situation is
equally fascinating. For example, if n = 3 and d = 2, then the equation 3 + 23 = 0
always has at least ¢ solutions, since the cube root of —1 is —1. This equation may
have as many as 3¢ solutions if the primitive cube root of —1 is in the field.

With these examples as our guide, we generalize the conjecture originally stated
in [9] in the case n = 2 as follows.

CONJECTURE 1.1. Let E C IFZ of cardinality > Cq%, with C sufficiently large.
Then

#A,(F) 2 q.

The authors of [9] conjecture that the constant C' that appears above may be
taken to be any number bigger than one, at least in the case n = 2. It is interesting
to note that if n > 2, then the situation becomes more complicated. For example, as
we pointed out above, if n = 3 and d = 2, then the number of points on the curve
23 + 23 = 0 may be as high as 3¢, depending on whether or not the primitive cube
root of —1 is in the field. Thus a corresponding conjecture in the case n > 2 must be
designed with these issues in mind.

2. Previous results. A Euclidean plane argument due to Erdos [6] can be ap-
plied to the finite field set-up under the assumption of Conjecture 1.1 to show that if
d =2 and #F > Cq, with C sufficiently large, then

(2.1) #A,(E) 2 (#E)*.

This result was improved by Bourgain, Katz, and Tao [3], who showed using
intricate incidence geometry that for every € > 0, there exists § > 0 such that if
#E < ¢*¢, then

#05(E) 2 ¢2 7.

The relationship between € and J in the above argument is difficult to determine.
Moreover, matters are even more subtle in higher dimensions in the context of vector
spaces over finite fields, because the intersection of the analogues of spheres, both
quadratic and cubic, in Fg may be quite complicated, and the standard induction on
the dimension argument in R? (see, e.g., [2]) that allows one to bootstrap the estimate
(2.1) into the estimate

(2.2) #2ga(E) 2 (#E)?
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does not immediately go through. We establish the finite field analogue of the esti-
mate (2.2) below using Fourier analytic methods and number theoretic properties of
Kloosterman sums and its more general analogues.

Another way of thinking of Conjecture 1.1 is in terms of the Falconer distance
conjecture [7] in the Euclidean setting which says that if the Hausdorff dimension
of a set in R? exceeds %l, then the Lebesgue measure of the distance set is positive.
Conjecture 1.1 implies that if the size of the set is greater than q%, then the distance
set contains a positive proportion of all the possible distances, an analogous statement.

In [9], the authors proved the following result.

THEOREM 2.1. Let E C IFZ, d > 2, such that #FE > C’q#. Then if C 1is
sufficiently large, then Ao(E) contains every element of F,.

3. Main results of this paper.

3.1. Distances determined by a single set. Our first result is the version of
Theorem 2.1 for cubic metrics.

THEOREM 3.1. Suppose that q is a prime number congruent to 1 modulo 3. Let
EC IFZ such that #E > Cq%. Then if C is sufficiently large, then As(E) contains
every element of F,.

Suppose that d =2, and n > 2. Then if #F > Cq% for C sufficiently large, then
A (E) contains every element of Fy.

COROLLARY 3.2. Suppose that q is a prime number congruent to 1 modulo 3. Let
EC IE‘Z, d > 2, such that #E = Cq%, Then if C' is sufficiently large, then

#Ay(E) ~ (#E)TT,

In two dimensions, the same conclusion, with d = 2, holds for any n > 2.

Note that in the case d = 2, the exponent % obtained via the corollary, for the
given range of parameters, is a much better exponent than the one obtained by the
incidence argument due to Erdos described in (2.1). Also, we point out once more that
Erdos’ argument does not generalize to higher dimensions, at least not very easily,
due to the possibly complicated intersection properties of cubic varieties.

3.2. Szemerédi—Trotter-type incidence theorems and distances between
pairs of sets. As in the case n = 2, the proof of Theorem 3.1 can be modified to
yield a good upper bound on the number of incidences between points and cubic sur-
faces in vector spaces over finite fields. It is an analogue, and a higher dimensional
generalization, of the following classical result due to Szemerédi and Trotter.

THEOREM 3.3. The number of incidences between N points and M lines (or
circles of the same radius) in the plane is

<N+ M+ (NM)E.
Our incident estimate is the following theorem.

THEOREM 3.4. Suppose that q is a prime number congruent to 1 modulo 3. Let
E F C Fg, d>2. Then if j # 0, then

#{(@,y) EEXF (w1 —y)’ + -+ (24 —ya)’ = j}

[

SHE-#F-q7 47 - (#E)F - (#F)*.
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Similarly, if q is a prime number and j # 0, then
#{(z,y) € EX F: (11 _91)2+"'+($d—yd)2 =i}
SHE#F 07 40T (#E) - ().

In two dimensions, the same result holds, with d = 2, with Az replaced by A,, for
any n > 2.

Remark 3.5. In particular, if #F ~ #F =~ q%, then the number of incidences
between points in E and “spheres,” quadratic or cubic, centered at the elements of F’
is < ¢

To make the numerology more transparent, Theorem 3.4 says that if N ~ q#,
then the number of incidences between ~ N points and ~ N spheres, cubic or

quadratic, in Fg is <¢?=N 71, In two dimensions this says that the number

of incidences between N points and N circles is < N %, provided that N ~ q#,

matching in this setting the exponent in the celebrated result due to Szemerédi and
Trotter in the Euclidean plane (see Theorem 3.3).

An easy modification of the method used to prove Theorem 3.4 above yields the
following distance set result.

COROLLARY 3.6. Let E.F C Fg, d > 2. Suppose that q is a prime number
congruent to 1 modulo 3 and #E - #F > Cq?'. Let A3(E,F) = {||lx —y||3 : = €
E,y € F}. Then if C is sufficiently large, then As(E, F) contains every element of
Fr.

! As before, in two dimensions the same conclusion holds with d = 2 and Ajz re-
placed by A, (E).

Observe that if £ = F, then we can safely say that in fact Az(E, F') contains
every element of Fy, but if £ # F, then the zero distance may not be present.

We also call the reader’s attention to the fact that an analogous version of this
result was independently obtained by Shparlinski in [17].

4. Fourier analytic preliminaries and notation. Let IF, be a finite field with
q elements, where ¢ is a prime number. Let

27 t

x(t)=e

Given a complex valued function f on IFZ, define the Fourier transform of f by

Fm)=q* > x(—z-m)f(x).

z€Fd

We also need the following basic identity, typically known as the Plancherel the-
orem. Let f be as above. Then

ST Fm) = S 1f@)
mG]Fg zGJFg

5. Proof of the first part of Theorem 3.1. Let x(s) =e « °. Let S; denote
the characteristic function of the cubic sphere

{z € IFZ x|z = 5},
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where, as before,
l|]|s = 23 + - + 23

The key estimate of the paper is the following theorem.
THEOREM 5.1. Let ||z|]3 = 23 + -+ + a3. Suppose that q is a prime number
congruent to 1 modulo 3 and j # 0. Then if m # (0,...,0), then

For j # 0, consider
#{(z,y) e EXE: ||z —ylls = j}

= Y E@@)E(y)S;(z—vy)

r,yeng
~ 2 ~
=¢**> |E(m)|"S;(m) = A +B,
where
A = ¢*|E(0,...,0)|"5;(0,...,0),
and

~ 2~
B=¢ S |Em)’S;(m).
m#(0,...,0)
Using the second part of Theorem 5.1,
A g #E) ¢

Whereas using the first part of Theorem 5.1,

_dt1 7 2
BIS¢®™qe = > [E(m)
m#(0.....0)
_dg1 d—1
STt Y Ba) =47 - #E.
z€Fd

We therefore obtain that

#(x,y) eEXE:l|lx—vyllz=j} =A+B,

where

AZ (#E) ¢,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



128 ALEX IOSEVICH AND DOOWON KOH

and
Bl S#E-q% .
We conclude that if #F > C’q%, with C sufficiently large, then
#H(z,y) e EXE: |z —ylls =4} >0
for each j # 0. This completes the proof of Theorem 3.1. d
6. Proof of Theorem 5.1. We have
Sim)=q=* > x(-z-m)

{zeFg:||z|ls=j4}

=g '0(m) + g Y x(t(llzlls — 9)x(—z - m),

z teFy

where §(m) = 1 if m = (0,...,0) and 0 otherwise.
LEMMA 6.1. Let x be a nontrivial additive character of Fy, with g congruent to

1 modulo 3. Suppose that m = (my,...,my) € (IFZ)Z. Then for any multiplicative
character ¢ of Fy of order 3 and t # 0, we have

1
H Z X(—s;m; + s?t)
Jj=1s;€lF,

=yt Y x(si+sAmitT sy b mit T s D (s1) (1),
51,...,Sl€F;

where 3_3m§? is denoted by m? in the right-hand side of the equation.
We shall also need the following result due to Duke and Iwaniec [5].
THEOREM 6.2. Suppose that q is congruent to 1 modulo 3, and let 1 be a multi-

plicative character of order three. Then

Z as® + s) Zw -3 3as)71)
s€F, sE€F:
for any a € F.
It follows that

Z x(—sm;j + s3t) = Z x(s — sgtm;3)

s€F, s€F,

= Z D(st™Hx(s + m?t71373871)

selFy

since 1 is a multiplicative character of F, of order three and m; # 0. Absorbing 373
into m; to make the notations simple, we complete the proof of Lemma 6.1. o
LEMMA 6.3. Let x be a nontrivial additive character of Iy, with g congruent to
1 modulo 3. Then for any multiplicative character ¢ of Fy of order 3 and t # 0, we
have
1

RIS < ! ) o0 () (Bn)

selfy, r=0
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where (1) is a binomial coefficient , 1 is a positive integer, and the Fourier transform
of a multiplicative character v of Fy is given by

P) =g x(—vs)i(s).

seFy

Remark 6.4. ’Q/ZJ\(U) = O(q~2) for v #0.

To prove Lemma 6.3, we need the following theorem. For the proof, see [13,
Theorem 5.30, p. 217].

THEOREM 6.5. Let x be a nontrivial additive character of Fq, n € N, and ¥ a
multiplicative character of Fy of order h =gcd(n,q — 1). Then

h—1
ST x(ts™ +5) = x(b) S v () G, )
sely, k=1

Jor any t,b € Fq with t # 0, where G(¢*, x) = >, cpe ¥ (s)x(s).
q
By using Theorem 6.5, we see that for any multiplicative character ¢ of order
three,

l l

2
Yoxts®) | = (Do) D R x(s)
k=1

sclFy, SEF;

= 07 (8) D wls) x(s) +072(1) D ¢ (s)x(s)

SGIFZ SGJF:;

1 !
=G = TG
(1) +6a) =3 :( ! )Gl(t) "Ga(t)

r=0 "
where
Gi() =1 (1) 3 b(s)x(s),
SGF;
and

Ga(t) = 2(8) 3 2 (s)x(s).

sEF;
Note that G1(t) = g1 (t) ¥(—1) and Ga(t) = q—2(t) @(—1).
Thus we conclude that

l
Z x(ts3) _ zl: < 7{ ) qldf(”r)(t) (’@/ZJ\(—]_))I_T (ﬁ(—l))r.
0

s€lfy r=

We are now ready to prove Theorem 5.1. First, we assume that m = (0,...,0) €
F?. Then, using Lemma 6.3, we see that

Si0,....0=¢" > 1

{weFg:||z]]s=5}
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— Y (=) S x((lell))

tely

_ _d+1 _
=¢'+0( 7 )~q "

In the last equality, we used the fact that @(v) = O(q*%) for any multiplicative
character of I, with v # 0. Thus the second part of Theorem 5.1 is proved.

In order to prove the first part of Theorem 5.1, we shall deal with the problem in
case m = (ma,...,mq) # (0,...,0). Suppose that m; # 0 for j € J C {1,2,...,d}
and m; =0 for j € {1,2,...,d} \ J = J'. Without loss of generality, we may assume
that J = {1,2,..., 1} and J = {I+1,...,d} forsomel = 1,2,...,d. Using Lemma 6.1
and Lemma 6.3, we see that

Sim) =q 43" x (=) Y x(tllzlls —m - x)

ter; z€Fd

! d
_ q—dfl Z x(—tj) H Z X(tsi — MmgSk) H Z X(tsi)

tG]F; k=1 sy €lry k=Il+1 sp €lry
—d—1 A
= ¢ Xt ) D
teF; s1,0.,51€F

XX(81+_._+Sl+m?t—181—1+...+m?t718l—1)w(51)...¢(81)

. d—1 ( d—1 > qdfzdf(dfur)(t) (@Z(—l))d_l_r ({p\?(_l))r

> (471 Gen) T (Fen) Eatue o

teF;

X Z X(s1+ -+ s +mit sy 4+ mPtT s DY (s1) ().

81,0581 EFY

Since (“-1)(¥(—1)) (1h2(=1)) = O(g~2(@=D), we obtain that
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where A, (x, ) is given by

S x(=tpp= @) N

teF; $1,...,51€F
x x(s1+ s +mitTsy 4+ mPtT s (1) - Y(si).
We now apply the result of Adolphson and Sperber [1, Theorem 4.2, Corollary 4.3]

to see that for all r =0,1,...,d —,

1+1

[A-O6) Sq .

This completes the proof. a

7. Proof of the second part of Theorem 3.1. As in the proof of the first
part of Theorem 3.1, it suffices to prove the following estimation.

THEOREM 7.1. Let ||z||,, = 2} + a4 for x € F and n > 2. Suppose that q is a
prime number and j # 0. Then if m # (0,0), then

’gj(m)F a2 > x(=em)| Sq,

{z€F3:||z|ln=7}
and if m = (0,0), then
Sim)=q' +0(q %) ~ g,
To prove Theorem 7.1, we observe that for j # 0 and m € Fz,

Sim)y=q¢2 Y x(-z-m)
{2 €F2i [zl ln=7}

=7 0m) + a3 3 bzl — 7))x(—a - m),

z tefFy

where §(m) = 1 if m = (0,0) and 0 otherwise.

First, we shall prove the second part of Theorem 7.1. Let 1 be a multiplicative
character of F, of order h = ged(n,q — 1). For each i = 1,2,...,(h — 1), we denote
by §; a nonnegative integer. Then by Theorem 6.5, we see that

2

> x(ts™)

s€lfy

= Z ﬁ!ﬁhilw%ﬁﬁ...ﬂmnﬁh_l)(t)qz(1;(_1))61_N (ﬁ:(_l))ﬁh_l.

Bi+:+Pr-1=2

It therefore follows that

~ 2! — ~ B1 — Bh-1
0= T R ) ()
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where ’y(h,Aﬂ) is given by 81 + 202+ -+ (h—1)Br—1.
Since ¢h(v) = O(q~2) for each multiplicative character ¢ and v € [y, we conclude
that

5(0,0)=¢ ' +0(g"2) =g .

This completes the proof of the second part of Theorem 7.1. O

It remains to prove the first part of Theorem 7.1. The cohomological interpreta-
tion can be used to estimate the exponential sums. We now introduce the cohomology
theory based on the work of the authors in [4] and [1]. Let g be a polynomial given
by

(7.1) g:ZAaxaqu[xl,...wd],
acJ

where J is a finite subset of (NU{0})4, and A, # 0 if a € J. We denote by > _(g) the
Newton polyhedron of g which is the convex hull in R? of the set J U (0,...,0). For
any face o (of any dimension) of > (g), we put

Jo = Z A,z

aconJ

DEFINITION 7.2. Let g € Fy[x1,...,24] be a polynomial as in (7.1). We say that
g is nondegenerate with respect to Y (g) if for every face o of > (g) that does not
contain the origin, the polynomials

99, 990
Ox1’ 7 Oxg

have no common zero in (F, )¢, where ¥, denotes an algebraic closure of Fy. We say
that g is commode with respect to > (g) if for each k = 1,2,...,d, g contains a term
Apap* for some ay, >0 and Ay # 0.
The general version of the following theorem can be found in [4, Theorem 9.2].
THEOREM 7.3. Let g be a prime number. Suppose that g : IFZ — Fg,d > 2, is
commode and nondegenerate with respect to > (g). Then

> xlg(x)) = O(q?).

z€Fd

d
2

Proof. We now prove the first part of Theorem 7.1. Since m # (0,0), we have
> sere X(—z - m) = 0. We therefore see that for j # 0,
q

Sitm)y=q¢% 3 xgttanz)=q¢2 Y. x(glt,z1,22)),

(t,x1,22)EF} X F2 (t,z1,22)€EF

where g(t, x1,x2) = ta} + tzh — mix; — mazs — jt.

If mq - ma # 0, then g is commode. By Theorem 7.3, it suffices to show that g is
nondegenerate with respect to Y (g). Note that Y (g) has five zero-dimensional faces,
eight one-dimensional faces, and three two-dimensional faces which do not contain
the origin. It is easy to show that for every face o of > (g) that does not contain the
origin, the polynomials

995 995 09o

Ot a1’ Do
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have no common zero in (F;)?’ because we may assume that ¢ is sufficiently large
and so n is not congruent to 0 modulo g. This implies that g is nondegenerate with
respect to Y (g). We now assume that m; - mo = 0. Without loss of generality, we
may assume that my # 0, and ms = 0 because m # (0,0). By using Theorem 6.5, we
obtain that for a multiplicative character ¢ of Fy of order h = ged(n,q — 1),

h—1
Sim)=q¢* > x(ta} —muxy —jt) Y v (g (1)
(t,x1)€F; xF, k=1

h—1
¢ =1 Y XY — mua - jt)
k=1

(t,z1)€F; XFq
h—1
_9 _1 —
Sa?q ) [Re(F ),
k=1

where Ry, (%, x) is given by
> eTRx(tl — mua — ji).

(t,z1)€F; Xy

For each k = 1,2,...,h — 1, define ¢»y¥(0) = 0. Then we can obtain that

R ™ )= > o FO)x(tal —mizi — jt).

(t,x1)EF g xFq

Applying Theorem 7.3, we have

This completes the proof. a

8. Proof of Theorem 3.4 and Corollary 3.6. As we mentioned in the intro-
duction, this is a simple variation on the proof of Theorem 3.1. Indeed,

#{(z,y) € EX F ||z —ylln = j}

= ¢ E(m)F(m)S;(m)

)

=#E #F-5;0,....,00+¢* > E(m)F(m)S;(m) =T+1L
m#(0,...,0)
By the second part of Theorem 5.1 (or Theorem 7.1),
I<S#E - -#F.-¢ L.

Applying Cauchy-Schwarz, Theorem 5.1 (or Theorem 7.1), and Plancherel, we
see that

_dx1 o~ =~
S ¢*q ™ Y |Em)||F(m)|
m#(0;...,0)
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1
2

1

2
_d+1 ~ 2 ~ 2
<@g (D IEmM)T) | D] IFm)

2

1
2
_dati
<@g D IE@P) (D IF@)

:q%.,/#E.ﬂ/#F.

This completes the proof of Theorem 3.4. O
Proof. In order to prove Corollary 3.6, we observe that by the second part of
Theorem 5.1 (or Theorem 7.1),

[>#E -#F.¢ L.

On the other hand, we have seen above that

1| S q"= - V/#E - J#F,

and the result follows by a direct comparison. O
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INTEGER EXACT NETWORK SYNTHESIS PROBLEM*

S. N. KABADIT, J. YANt, D. DU', AND K. P. K. NAIR'

Abstract. Given an integer, nonnegative, symmetric matrix R = (ri;)nxn, we consider the
problem of synthesizing an undirected network G on node set V = {1,2,...,n} with nonnegative,
integer edge capacities such that (i) for any pair {3, j} of distinct nodes in V, the value of maximum
flow between ¢ and j in G equals exactly r;; and (ii) the sum of capacities of edges in G is minimum.
Chou and Frank [IEEE Trans. Circuit Theory, CT-17 (1970), pp. 192-197] claim to give an algorithm
for this problem. But, Schrijver [Algorithms Combin. 24, Springer-Verlag, Berlin, 2003, pp. 1049—
1057] gives a counter-example to their claim. We present an O(n2) algorithm for the problem.

Key words. combinatorial algorithm, cut-tree, network flows, strongly polynomial algorithm
AMS subject classifications. 90C27, 90B10

DOI. 10.1137/050641776

1. Introduction. Let R = (7;;)nxn be a symmetric, nonnegative matrix of min-
imum flow requirements between all pairs of distinct nodes in the set V.= {1,2,...,n},
where r;; =0 (i = 1,2,...,n). We call an undirected network G = [V, E, u] on node
set V with edge set F and nonnegative edge capacities {u. : e € E} a realization of
R if and only if for every pair {i,j} of distinct nodes in V, the value of maximum
flow between ¢ and j in G is at least r;;. We say that G is an ezact realization of R
if and only if for every pair {i,j} of distinct nodes in V', the value of maximum flow
between ¢ and j in G equals exactly r;;. If R has an exact realization, then we say
that it is exactly realizable.

The network synthesis problem (NSP) constructs a realization of R with a min-
imum sum of edge capacities, while the exact network synthesis problem (ENSP)
constructs an exact realization of R with a minimum sum of edge capacities, or else
concludes that it is not exactly realizable. In these two problems, if the elements of
R are integers and we require all of the edge capacities of G to be integers, then we
get, respectively, the integer network synthesis problem (INSP) and the integer exact
network synthesis problem (IENSP).

The main focus of this work is the last problem and our main contribution is to
present an O(n?) combinatorial algorithm for the IENSP. We review existing results
for these four problems below.

The NSP (and its generalization to the case of synthesizing a network with min-
imum weighted sum of edge capacities) has a polynomial size linear programming
formulation [8] which can be solved in strongly polynomial time using Tardos’ algo-
rithm [26]. However, the Tardos’ algorithm is not very efficient in practice, nor does
it provide any insight into the combinatorial structure of the problem. In [9, 21] effi-
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cient, combinatorial, and strongly polynomial algorithms are presented for the NSP.
The Gomory—Hu algorithm in [9] has a computational complexity of O(n?). Also,
when all of the elements of the matrix R are integers, then the edge capacities in the
final network are multiples of half. Alternately, combinatorial algorithms for the NSP
are also presented in [10, 25].

In [3] and independently in [24], combinatorial algorithms of computational com-
plexity O(n?) are presented for the INSP and it is shown that whenever max{r;; :
j €V —A{i}} > 1 for all i € V, the problem has integer rounding property (i.e., the
difference between the sum of edge capacities in the optimal networks for the integer
and continuous versions of the problem is less than 1). Alternate algorithms for the
problem are given in [18, 23]. In [6], a strongly polynomial algorithm is given for a
generalization of this problem to one in which we want to increase given integer edge
capacities by integer amounts so as to obtain a realization of a given integer matrix
R such that the sum of additional edge capacities is minimum.

For the weighted cases of the NSP and INSP, strongly polynomial combinatorial
algorithms are known only for the special case in which the network is restricted to be
a cycle [12, 13]. Results on generalizations of these problems are reported in [11, 14]
for the case of 2-commodity flows, in [7, 17] for the case of hop-constrained flows, and
in [1, 2, 16] for the case of multipath flows [19].

As pointed out in [23], a modification of the Gomory—Hu algorithm in [9] produces
an optimal solution to the NSP that is also an optimal solution to the corresponding
ENSP whenever the latter has a feasible solution. It is shown in [15] that generaliza-
tion of the ENSP to the case of 2-path flows [19] is NP-hard.

In [3], Chou and Frank claim to give an algorithm for the IENSP. However,
n [23], Schrijver gives a counterexample to their claim, and hence leaves open the
status of the problem.

The purpose of this work is to devise an O(n?) combinatorial algorithm for the
IENSP. To facilitate presentation of our algorithm, we define four subproblems and
present an algorithm for each of them. The final algorithm for the IENSP invokes
these algorithms as subroutines.

The rest of this paper is organized as follows. After presenting notation and some
basic results in section 2, we discuss the four subproblems in sections 3, 4, 5, and 6,
respectively. Our algorithm for the IENSP is then presented in section 7.

2. Notation and preliminaries. Throughout this paper, all networks are sim-
ple, undirected, and edge-capacitated, and all of the edge capacities considered are
nonnegative. Let G = [V, E, u| be a network on node set V= {1,2,...,n} with edge
set E and edge capacities {u. : e € E}.

The degree deg(v) of a node v € V is the number of edges incident to it in
G. For any nonempty set X C V, we denote the sum of capacities of all of the
edges in the subgraph of G induced by node set X as u[X] = > {u. : e = (4,5) €
E, {i,j} € X}. For any nonempty and proper subset X C V and its complement
X =V — X, we denote the cut separating node sets X and X as [X,X] = {e:e =
(i,j) € E,i € X, j € X} and denote the capacity of cut [X, X] as 6,[X] = > {ue :
e € [X, X]}.

DEFINITION 2.1. Two networks G* = [V, E',u'] and G* = [V, E?,u?] on the
same node set V and with edge capacities {ul : e € E'} and {u? : e € E*} are said
to be flow-equivalent if for any pair {i,j} of distinct nodes in V', the mazimum flow
values between i and j in the two networks are the same. An edge-capacitated tree
T = [V, ET uT] that is flow-equivalent to a network G is called a flow-tree of G.
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The following result is easy to prove and implicit in [9, 21].

LEMMA 2.2. Let T' = [V,EYul] and T? = [V,E?u?] be a pair of edge-
capacitated trees on the same node set V. For each i € {1,2}, let u ; = min{ul : e €
E}, and let T}, T3, . .. 7T£ii be the subtrees formed by deleting from T* all the edges
of capacity ul . Then T' and T? are flow-equivalent if and only if ul, = u2; ,
0y = by = L and there exists a permutation ¢ on {1,2,...,0} such that le s flow-
equivalent to Tg(j) for each j € {1,2,...,(}.

DEFINITION 2.3. Given a tree T = [V, E] and any edge f = (i,7) € E, let Vy; and
Vi; be the node sets of the two subtrees formed by deleting edge f from T such that
i € Vi and j € Vyj. Then the cut [Vy;, Vy;| is the fundamental cut of T' corresponding
to edge f.

DEFINITION 2.4 (see [5]). Given a network G = [V, E,u], an edge-capacitated tree
T = [V, ET,u"] is said to be a cut-tree of G if and only if for each edge f = (i,j) € ET,
the fundamental cut [V, V] of T corresponding to edge f is a minimum capacity
cut separating nodes i and j in G, and u? = 0u[V}i].

We also need the following results.

LEMMA 2.5 (see [9]). Let T = [V, ET,uT] be a cut-tree of a network G = [V, E, u].
Then T is a flow-tree of G. Moreover, for any pair of distinct nodes {x,y} inV, let
f = (i,j) € ET be an edge on the unique path in T joining nodes x and y with the
smallest value of u}r Then the fundamental cut [Vy;, Vi;] of T corresponding to edge
f is a minimum capacity cut separating nodes x and y in G.

THEOREM 2.6 (see [9]). For a symmetric, n X n, nonnegative matriz R, let GE
be a complete network on node set V.= {1,2,...,n} with the capacity of each edge
(i,7) equal to rij. Then we have the following.

1. Every mazimum weight spanning tree T = [V, E] of G® with edge capacities
Ue =15 for all e = (4, ) € E is a realization of R.
2. The following three statements are equivalent.
(a) R is exactly realizable.
(b) ri; > min{rk, ri;} for all distinct i,5,k € V.
(c) Every mazimum weight spanning tree T = [V, E] of GF with edge capac-
ities ue = 145 for all e = (i,7) € E is an exact realization of R.

The following is a corollary to the above.

COROLLARY 2.7 (see [9, 21]). There ezists an O(n?) algorithm to test whether a
given matriz is exactly realizable.

LEMMA 2.8 (see [3, 21]). If R is exactly realizable, then there exists a mazimum
weight spanning tree of G® that is a path.

We give below a version of the Gomory—Hu algorithm [9] for the NSP that we
will require in later sections.

Algorithm GOMORY-HU

Input. An n X n, symmetric, nonnegative matrix R.

Output. An optimal solution G* = [V, E*,u*] to the instance of the NSP.

Step 0. Select a Hamiltonian cycle H = vyvs - - - v,v1 on node set V. Find a max-
imum weight spanning tree T' = [V, E] in GE. Set E° = E, F° = [V, EY],
70 = rap, and u¥ = 0 for all e = (a,b), where a,b € V and a # b. Initialize
i=0.

Step 1. Arbitrarily choose a connected component T% = [V, E'] of F' with at least
two nodes. Let V¢ = {{1,0a,..., 0, }, where {1,0s,... L, appears in that
order along the cycle H. Define cycle C* = (10 - -+ £,,, 1. Set

0 = min{r’ : e € F'};
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Al — %6” if e is an edge in C?,
710 otherwise;
utt = ul 4 Alu, Ve;
’I“i+1: 7’2—91 VGEEZ:, N
¢ r Vee E"— E".

€

Step 2. Delete from E° all the edges with 7it = 0 to get edge set Et!. Set

Fi+1 _ [V, Ei+1],
1 =1+ 1.

1. If F* contains only isolated nodes, then set

E* ={e:u >0},
uf = ul Ve € E*.

Output G* = [V, E*, u*] and stop.
2. Else, go to Step 1.

THEOREM 2.9 (see [9]). Let m; = max{r;; : j € V —{i}} for each i € V.. The
network G* output by Algorithm GOMORY—HU is an optimal solution to the NSP with
uw V] = 33 ey m. Also, if r0 is even for all e € T (a mazimum weight spanning
tree in GT), then u® is integer for all e.

THEOREM 2.10 (see [23]). Suppose R is exactly realizable. If in Step 0 of Al-
gorithm GOMORY-HU we choose a mazimum weight spanning tree in G that is a
path and choose H as the cycle obtained by joining the endnodes of the path, then the
network G* output by Algorithm GOMORY—HU is an optimal solution to the ENSP
on R.

The following result generalizes Theorem 2.10.

THEOREM 2.11. Suppose R is exactly realizable. Let T' be any mazimum weight
spanning tree in GT. Let the Hamiltonian cycle H in Step 0 of Algorithm GOMORY—
Hu be such that every fundamental cut of T contains precisely two edges of ‘H. Then
the network G* output by Algorithm GOMORY—HU has T as its cut-tree, and hence it
is an optimal solution to the ENSP on R.

The proof of this theorem follows from the proof of Theorem 6.5. Hence, we shall
not give details here. The following simple scheme for constructing such a Hamiltonian
cycle was pointed out to us by Punnen [22]. For any planar embedding of T', join the
leaf nodes of T to obtain a Halin graph G [4]. Then a Hamiltonian cycle in G satisfies
the desired property and can be obtained in linear time [4].

We explain the key ideas of our approach and the organization of the rest of this
paper. To avoid technical complication, we assume that 7;; > 1 for all 4, j. The cases
when some elements of R are zero or one are easy to handle, as we show in section 7.
First, we check (using Theorem 2.6) whether matrix R is exactly realizable. If the
answer is positive, then we use the observations below that follow from the previous
discussion. Let M’ be the set of all the maximum weight spanning trees of G*. Then
(i) M % is the set of all cut-trees of all the possible exact realizations of R and (ii) for
any T € M, M is the set of all the trees that are flow-equivalent to 7.

We consider a slight modification of the IENSP which we call the optimal cut-
tree realization problem (OCRP): Given an edge-capacitated tree T' = [V, E, u] with
integer edge capacity u. > 1 for all e € F, construct a network G* = [V, E* u*] that
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*

has T as its cut-tree such that (i) u*

> ecp+ Uy minimum.

is an integer for each e € E* and (ii) u*[V] =

We present an O(n?) algorithm for this problem in section 6 and show that the
optimal objective function value equals

ey Ti + [VE(D) + [V2(T))
2 3

where for each node i € V, m; = max{u. : e = (i,5) € E}, V1 = {i € V : ; is odd},
Vo =V =V, and VE(T) (V(T)) is the set of nodes in Vi (V3) each of which has an
even (odd) number of odd edges (edges with capacity u. odd) incident to it in 7.

The values {m; : i € V} are the same for each T € M. Hence, if we choose
T € M% with a minimum value of |V;#(T)| + |V5(T)|, then an optimal solution to the
corresponding instance of the OCRP will be an optimal solution to the IENSP. We
therefore consider the problem of finding such a tree, which we call the flow-equivalent
tree problem (FETP) and present an O(n?) algorithm for it in section 5.

The algorithms for the OCRP and the FETP require as subroutines algorithms
for two other problems, which we call the tree path covering problem (TPCP) and the
degree constrained spanning forest problem (DCSFP), respectively. We therefore first
discuss these two problems and present efficient algorithms for them, respectively, in
sections 3 and 4.

Finally in section 7, we combine the results in the previous sections to present
our algorithm for the IENSP.

3. Subproblem 1: The tree path covering problem (TPCP).

Statement of the problem. We are given a tree T' = [V, E] and partitions (V1, V)
and (E1, E2) of node set V' and edge set E into sets of odd-even nodes and odd-even
edges, respectively, such that each node in V; has at least one edge in F incident to it.
The problem is to find a set P = {p1,p2, ..., pr} of edge-disjoint paths in T covering
all of the edges in E; and not containing any edge in Es such that (i) every node in
V1 (i.e., every odd node) is an endnode of some path in P and (ii) & is minimum. We
denote the minimum value of k by A(T).

Let V°(T) C V4 and Vi (T) C V4 be such that each node in VP(T)U VY (T) has an
odd number of odd edges (edges in E4) incident to it in T'. Let V&(T) = Vi — V(T
and V5 (T) = Vo — VP(T). Then each node in V*(T') U ViF(T) has an even number of
odd edges incident to it in 7. The following observation is easy to verify.

OBSERVATION 3.1. In any feasible solution to an instance of the TPCP, every
node in V2 (T) U VY (T) must appear as an endnode of a path an odd number of times
and every node in VE(T)UVE(T) must appear as an endnode of a path an even number
of times.

THEOREM 3.2. For any instance of the TPCP, an optimal set P* of edge-disjoint
paths with optimal value

Vil [VE@)] + V()

\T) = [P7| -

can be computed in O(n) time.

Proof. From the statement of the problem and Observation 3.1, we infer that in
any feasible solution, each node in V{f(T") occurs as an endnode of some path at least
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twice and each node in Vi*(T') occurs as an endnode at least once. Thus,

NT) = total number of endnodes in an optimal solution
B 2

o Wal+ V()] + [V (T)]
= 2

Let X be the multiset containing nodes in V(T'), V(T'), and two copies of each
node in VE#(T). The cardinality of X is obviously even. Let EM be a perfect matching
of elements of X such that no element of V(T is matched with the copy of itself.
Then each connected component of G = [V, E; U EM] (here the duplicated nodes are
contracted to recover the original node set V') is an Eulerian graph [20]. We can find
Eulerian tours Cy, Ca, . . . , C¢ in the connected components of G in O(|E;UEM|) = O(n)
time [20]. It is easy to see that since each node in V; has at least one edge of E; incident
to it, such tours can be chosen such that no two edges in EM are adjacent in any
tour. Deleting the edges in EM from these Eulerian tours gives us a set of paths P*
with

Vil + V(D) + [V (T)]

| = |EM| = .
[P = |BM| >

This proves the theorem. a

4. Subproblem 2: The degree constrained spanning forest problem
(DCSFP) on a complete graph.

Statement of the problem. Given an integer n > 2 and positive integer weights
w1, Wa, ..., Wy, find a spanning forest F' = [V, E] on node set V = {1,2,...,n} with
a maximum number of edges |E| such that degp(i) < w; for all i € V.

THEOREM 4.1. For any instance of the DCSFP, an optimal spanning forest
F* = [V, E*] with optimal value

|E| :min“#J ,n—l}

can be computed in O(n) time.

Proof. Each of L#J and (n — 1) is obviously an upper bound on the number
of edges in any optimal solution to the DCSFP. Next, we construct a feasible spanning
forest F* = [V, E*] with the claimed value.
Partition the node set V into twosets V' ={i € V:w; > 2} and V' = {i € V :
If [V'| = 0, then a maximum cardinality matching on node set V" is the desired

F* with
o 3 [ [ )

If V'] > 1 > |V"|, then a path on node set V with the node in V", if it exists, as
an endnode of the path is our desired F* with |[E*| =n — 1.

So in the following we assume |V’| > 1 and |V”| > 2. First, we form a path
P that visits each node in V' and two distinct nodes u,v € V" exactly once such
that w and v are endnodes of this path. Next, let V' = {i € V' : w; —2 > 0} and
V" = V" — {u,v}. Partition V” into two parts V{' and V§' = V" — V{’ such that
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|‘A/1”| =min {},.y (w; — 2), [V”| — 2}. Then, arbitrarily join each node in ‘71” with
some node in V' to form a forest F (a set of stars) such that degp(i) = 1 for all
i € V{ and degp(i) < w; — 2 for all i € V'. Finally, find a maximum cardinality
matching M in 1//\'2”. We now show that the superimposing of P, F', and M gives us
the desired F*. Evidently, the superimposed graph is a spanning forest and satisfies
the degree constraints, and hence is feasible. Moreover, the claimed objective function
value follows from

V3]
2

B = (V| + 1)+ V'] + { 5

N v —9_— ‘7//

J 2|V’|+|V”|+min{ > (wi—2),|V”|—2}

2V VT IV &V
B 2 2
:min{{MJ SN — 1}.
2
All the operations involved can be done in O(n) time. This proves the theorem. O

5. Subproblem 3: The flow-equivalent tree problem (FETP). We first
introduce notation useful in this section. For any edge-capacitated tree T' = [V, E, u]
with integer-valued edge capacities, let m; = max{u. : e = (i,j) € E} for all i € V.
We call Vi = {i € V : m; is odd} and Vo = V — V; the sets of odd and even nodes,
respectively. We call B} = {e € F : u, is odd} and E; = E — F; the sets of odd and
even edges of T, respectively. As defined in the previous section, let V(T (V¥ (T'))
be the set of nodes in V; (V2) each of which has an even (odd) number of odd edges of
T incident to it. It follows from Lemma 2.2 that the values {m; : i € V'} and therefore
the node sets V7 and V5 are the same for all of the trees flow-equivalent to T'.

Statement of the problem. Find an edge-capacitated tree T* = [V, E*, u*] that is
flow-equivalent to a given edge-capacitated tree T' = [V, E, u] with integer-valued edge
capacities such that the optimal objective function value A(T*) of the corresponding
instance of the TPCP with the node and edge partitions (V1, V) and (Ef, E3), re-
spectively, is minimum.

We propose the following recursive algorithm for the FETP. The algorithm
deletes from the given tree T all of the minimum capacity edges, recursively ob-
tains optimal solutions (flow-equivalent trees) to the instances of the FETP on each
of the subtrees obtained, and then optimally links these optimal subtrees to get an
optimal solution to the given instance of the FETP.

Algorithm TREE-FINDING

Input: An edge-capacitated tree T = [V, E,u] on node set V = {1,2,...,n} with
integer-valued edge capacities.

Output: A tree T* = [V, E*,«*] that is an optimal solution to the instance of the
FETP.

Step 1. If |V] < 2, then output T* = T and stop. Else, compute {m; : i € V'}, node
partition (Vi, Va), and edge partition (E1, E2). Find tmin, = min{u, : e € E}.
Let T* = (Vi E%), i = 1,...,¢, be the subtrees resulting from deletion of all
of the edges of capacity upyi, from tree T'.

Step 2. Foreachi € {1,2,...,¢}, recursively find an optimal solution 7% = [V, E*
u*?] to the FETP with tree T as input.
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1. If umin is even, then arbitrarily choose a node z; € V' for each i €
{1,2,...,0}. Let B ={(x;,xiy1) 1 € {1,2,...,0—1}}. . .

2. If Umin is odd, then set Vi = ViNVy, Vi = ViNVa, and w; = V"% +|Vy°)
for each i € {1,2,...,¢}, where Vf’e is the set of nodes in V{, each of
which has an even number of odd edges of T* incident to it, and V;O
is the set of nodes in V4, each of which has an odd number of odd edges

of T* incident to it. Renumber the trees T*!, T*2 ... T*¢, if necessary,
such that for some integer m, w; > 1 for any ¢« < m and w; = 0 for any
> m.

(a) If m = 0, then arbitrarily choose a node x; € V* for each i €
{1,2,...,0}. Let E = {(2;,241) :i € {1,2,...,0—1}}.

(b) If m = 1, then choose x; € V;"° U V,"* and arbitrarily choose a
node x; € V' for each i € {2,....0}. Let E = {(z;,zi41) : i €
{1,2,...,0—1}}.

(c) If m > 1, then find an optimal solution F' = [M, E] on node set
M = {1,2,...,m} to the DCSFP with weights w1, ws,...,w,, as
input. Define set E as follows:

e For each edge (i,§) € E, associate with the edge distinct nodes
r e VieuUVi®and y € VJE UVJ (i.e., no node is associated with
two edges in E in this process) and add edge (z,y) to E.
e Arbitrarily delete one edge (a, b) from E. Let E = (Uf E*i)UE
e Let the node sets of the connected components of the graph G=
[V, E] be V1, V2,..., V% Without loss of generality, let a € V'*
and b € Vq. Arbltrar11~y choose a node z; € Vi for each i €
{2,...,9—1}. Add to E edges {a,z2), (x2,23),...,(x4—1,b)}.
Step 3. Let E* = (U'_, E*") U E. Define
. { ult if e € E* for some i € {1,2,...,(},
ur = . ~
¢ Umin 1f e € F.
Output tree T* = [V, E*,u*] and stop.
The following two properties are easy to verify and will be useful in the proof of
validity of the algorithm.
LEMMA 5.1. For any edge-capacitated tree T on node set V, |Vi| + |VE(T)| +
|VP(T)| is an even number. Hence, for any two flow-equivalent trees T and T? on
the node set V,

(VE(@H] + Ve (Th]) = (IVE(T?)] + [V5(T?)]) mod 2.

LEMMA 5.2.  For any tree T on a node set V and any S C V, let Be =
>ies degp(i). Then the set S =V — S contains at least 37 — 2|S| + 2 leaf nodes
of T. )

Proof. This follows from the fact that 82 = 2(|V|—1) — 35 = 2|5| — (85 — 2|S| +
2). O

We will now prove the validity of Algorithm TREE-FINDING.

THEOREM 5.3. For any instance of the FETP, Algorithm TREE-FINDING con-
structs an optimal tree in O(n?) time.

Proof. For |V| < 2, the tree T is obviously an optimal solution to the given
instance of the FETP. It follows from Lemma 2.2 and the inductive hypothesis that
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for any value of |V, the tree T* output by the algorithm is flow-equivalent to the
given tree T'. Let us now prove the optimality of T*.

Suppose T* is optimal for any |V| < k for some k > 2. Let us consider the case
V| =k+1. Let T',T?,...,T* be the subtrees of T obtained by deleting from 7" all of
the edges with capacity = upyiy in Step 1 of Algorithm TREE-FINDING. It follows from
the induction hypothesis that for each i € {1,2,...,¢}, tree T* obtained recursively
by the algorithm with tree T as input is an optimal solution to the corresponding
instance of the FETP. Also, for each i such that |V¢| > 2, (V{{, V4) is precisely the
odd-even node partition in T°.

Suppose Uiy is even. By Theorem 3.2, for any tree 7', the optimal objective
function value of the TPCP on T is independent of the structure of even edges of T
It follows from this and Lemma 2.2 that the tree T obtained by the algorithm by
joining trees T*Y, T*2 ..., T** using (£ — 1) edges each of capacity umi, is an optimal
solution to the given instance of the FETP.

Suppose Uiy is odd. Let integer m be as defined in Step 2 of the algorithm and
let w = |VE(T*)|+ |V (T*)|. Then A\(T*) = w It is easy to see that (i) if m =0,
then w = 2, (ii) if m = 1, then w = wy, and (iii) if m > 1, then w = Y"1 w; — 2|E]|,
where F' = [M, E] is the optimal solution to the DCSFP obtained in Step 2 of the
algorithm. By Theorem 4.1, |E| = min{2 >""  w;, m — 1}. Thus, in general, for any
m>0,w=>y " w—2z, Where z = mln{— S wi,m— 1}

If =457 w;, then w =0 and \(T*) = I‘g—l‘ By Theorem 3.2, in this case T
is obviously optimal.

Suppose z =m — 1. Then

Vil + >0 1w1—2m+2
2

MNT™) =

Consider any other feasible solution 7' to the problem. By Lemma 2.2, if we delete
from T all of the edges of capacity tmin, then we get subtrees T, 72, ..., T that are
flow-equivalent to subtrees 71, T2,..., T of T. Let V¢ (V3°) be the set of nodes in
Vi (V4) each of which has an even (odd) number of odd edges of T* incident to it,
and let w; = |V/¢| + |V4°|. By optimality of T*%, we have w; > w;. Let T be the tree
obtained from 7T by contracting each subtree T? to a supernode a;, i = 1,...,¢. Let
S={a,...,am}, ﬁ% = ZlesdegT( i), and let X C {aq,...,ar}—S be the nodes not
in S that are leaf nodes of T. Then node set U™, V7 contains at least Y ;- w; — ﬁ%
elements of the set VE(T) U VQ(T).

By Lemma 5.2, | X| > ﬂ% 2m + 2. For each i € X, w; = 0; therefore, it follows
from Lemma, 5.1 that w; is an even number. Hence, V? contains at least one element
of VE(T) U VP(T). Thus,

S—2m42> ) wi—2m+2.
=1

H\\O}

VE(D)|+ V(D) = D i — B+ |X| > Z
i=1 i=1

And )\( ) Vil+> 12w, 2m+2 /\(T*)

In each iteration of the recursive process, all of the operations can be done in
O(n) time. The total number of iterations is O(n). Hence, the overall computational
complexity of the algorithm is O(n?). This proves the theorem. a
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6. Subproblem 4: The optimal cut-tree realization problem (OCRP).

Statement of the problem. Given an edge-capacitated tree T = [V, E,u] with
integer edge capacity u. > 1 for all e € E, construct a network G* = [V, E* u*] that
has T as its cut-tree such that (i) u} is integer for all e € E* and (ii) u*[V] = > p. ul
minimum.

We first establish a lower bound on the optimal objective function value of the
OCRP and then we give an algorithm that achieves this bound. Thus, for any node
i eV, let my = max{u. : e = (i,j) € E}. Let Vi = {i € V : m; is odd} and
Vo =V —Vi. Let By = {e: e € E;u, is odd} and Es = E — E;. As before, we
define V¥(T) (V@ (T)) as the set of nodes in V4 (V2), each of which has an even (odd)
number of odd edges (edges with capacity u. odd) incident to it in T'.

LEMMA 6.1. Suppose a network G = [V, E, 4], with integer-valued edge capacities
{iic : e € B}, has T = [V, E,u] as its cut-tree. Then

o) > Ziev T VEDL+ VD)
> . .

Proof. Since G has T as its cut-tree, G is flow-equivalent to T'; therefore, §;[i] > m;
for each i € {1,2,...,n}.

Consider any node v € Vi¢(T) U VP (T). Let the set of odd edges incident to
vin T be E, = {e1,...,e¢}, and let the set of even edges incident to it in T be
F,={f1,...,fq}. Foreache; € E,,i=1,...,4, if we delete ¢; from T, we get two
subtrees. Let Y; be the node set of the subtree not containing v. Similarly, for each
fi € F,, define Z; as the node set of the subtree of T' obtained by deleting edge f;
that does not contain the node v.

In G, contract node sets Y1,...,Yy, Z1,...,Z, to nodes yi,...,Ys, 21,---,2q
respectively, to get a network G = [V, E, 4] on node set V= {v,91, .- Yo, 215 -, 2¢}-
Then, 6z[v] = 6z[v]. Since T is a cut-tree of G, dz[yi] = da[Vi] = ue, for each
i€{l,...,¢} and 0zlz;] = 0a[Z;] = uy, for each i € {1,...,¢}. Thus,

l q
(6.1) > dala] :Zueﬁzuﬂwﬂ[v].

weV

In (6.1), Y7 juy, and Y- ¢ dalz] = 2a[V] are both even. Hence, if v € V¢, then
Zle U, is even, implying dz[v] is even and if v € VP, then 22:1 Ue, is odd, implying
da(v) is odd. In either case, dz[v] > 7, + 1. Therefore, we have

iVl =5 bl > 5 (Z i+ VE] + |v;|> -

i€V eV

We now present an algorithm for the OCRP that produces a feasible solution to
the problem with sum of edge capacities equal to the lower bound established in the
above lemma and hence is an optimal solution to the problem.

Before giving a formal description of our algorithm, we briefly explain the main
ideas. This will facilitate understanding of the algorithm and the proof of its validity.

Given an edge-capacitated tree T' = [V, E, u] with an integer edge capacity u, > 1
for all e € E, our algorithm first defines edge capacities {@. : e € E} as follows:

- Ue if u, is even,
Ue = . .
¢ e — 1 if u, is odd.
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Since u, is even for all e € E it follows from Theorem 2.9 that the Gomory-Hu
algorithm, with T = [V, E, ] as the choice of the tree in Step 0 of the algorithm,
outputs a network that is an optimal solution to the corresponding instance of INSP.
The network constructed by the algorithm depends on the choice of the Hamiltonian
cycle H on node set V' in Step 0 of the algorithm. We choose the cycle H = H* such
that the solution G = [V, E, @] obtained has the following two properties:
(I) T is a cut-tree of G.
(IT) We can add to G some edge set E, with unit capacity per edge to get a network
G* = [V, E*,u*] such that (i) T' is a cut-tree of G* and (ii) }_ . 5. u} equals
the lower bound established in Lemma 6.1.
Property (I) is ensured by choosing H* such that every fundamental cut of T
contains precisely two edges of H*.
In our approach to ensure property (II) above, the case when T is a star network
plays a crucial role, and we illustrate the basic idea using the following example.
Let T = [V, E,u], where V. ={1,2,...,10}, E = {(1,i) : ¢ = 2,...,10}, and

(3 iti=2,...,6,
Yi=13 2 ifi=7,...,10.

In this case the fundamental cuts of T are {[{i},V — {i}] : i = 2,...,10} and every
Hamiltonian cycle on node set V' contains precisely two edges of each of the fun-
damental cuts of T. To ensure property (II) we proceed as follows: We first find
an optimal solution P to the instance of the TPCP with input 7. It is easy to see
that P={(2—-1-3), (4 —-1-5), (1 —6)} is such an optimal solution. We choose
E, ={(4,7) : i and j are the endnodes of a path in P} = {(2,3),(4,5)(1,6)}.

Node 1 is the unique nonleaf node of T" and edge (1, 6) is in E,. Hence we choose
node 6 as a special node z. If node 1 is not incident to any edge in E,, then we choose
z such that uq, = m1. Now we construct H* such that the two nodes incident to every
other edge in E, lie on the two subpaths formed by deleting nodes 1 and 6 from H*.
It is easy to verify that H* = (1—-2—4—6—5—3—1) is one such choice. The Gomory—
Hu algorithm with choice of T' and H* in Step 0 outputs network G = [V, E, 4] with
E=1{(1,2),(2,4),(4,6),(6,5),(5,3),(3,1)} and @;; = 1 for all (i,5) € E. The tree T
can be easily seen to be a cut-tree of G. In fact, it can be easily verified that for any
p#Y CV,

SalV] = 2 if node set Y forms a subpath of H*,
YT > 2 otherwise.

The final network G* = [V, E*,u*] is obtained by adding to G the edge set E,
with unit capacity per edge. It is easy to see that

‘ 3 ifi=2,...,6
sl ={ 3 277

For every nonempty proper subset Y of V, such that {1,2,...,6} ¢ Y ¢
{7,...,10}, and the node set Y forms a subpath of H*, we need d,[Y] > 3; therefore,
the cut [V, Y] should contain some edge in E,. But this follows from the choice of H*.

Now let us consider the general case (when T is not a star network). We first find
an optimal solution P to the instance of TPCP with input 7" and define

E, ={(i,7) : i and j are the two endnodes of a path in P}.
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As will be clear from the proof of the validity of our algorithm, to ensure property (II),
it is sufficient for the Hamiltonian path H* to satisfy the following local property.

For any nonleaf node v of T, let T, ..., T be the subtrees on node sets V!,... V¢,
respectively, formed by deleting node v from 7. Then each node set V? must form a
subpath p’ of H*, and if for each i, we contract 7% in T and p’ in H* to supernode ¥,
then the resultant star network 7" and cycle H must satisfy the conditions discussed
previously with respect to the set £, = {(a,b) : a # b and there exists (i,j) € E,
such that a = i or (for some ¢, a = y* and i € V*) and b = j or (for some 7, b = y"
and j € V")}.

Algorithm CUT-TREE-REALIZATION

Input. An edge-capacitated tree T = [V, E,u] on node set V = {1,2,...,n} with
integer-valued edge capacity u. > 1 for all e € E.

Output. A network G* = [V, E*,u*] that is an optimal solution to the instance of
the OCRP.

Step 0. Find an optimal solution P to the instance of the TPCP with input 7', node
partition (V1,V3), and edgepartition (E7, Es). Arbitrarily choose a nonleaf
node v € T. Initialize S =0, T =T, = 0.

Phase 1: Node ordering.

(In this phase, we construct an appropriate Hamiltonian cycle H* on node set V.
This cycle has two important properties: (i) every fundamental cut of 7' contains two
edges of the cycle and (ii) certain pairs of paths in P cross in H* (i.e., the endnodes
v and z of one of the paths are in the two separate subpaths obtained by deleting the
endnodes s and ¢ of the other path from H*, implying that the four nodes occur in
H* in the order of vsztv).

Step 1. Let T",T%2, ..., T% be the subtrees with more than one node, each resulting
from deletion of node v from tree T
1. Out of these subtrees, add to set S those that are also subtrees of T.

2. InT, contract each T (j = 1,...,4;) to a supernode y;; to get a star net-
work G = [V, FE, ﬂ] on node set V = {1}, T1,22, oy Thys Yil, Yi2y - - - ,yigi},
where 2, € V (b = 1,...,k;), Uyz, = Uvz,, and Uyy,; = Uy, Where

(v,2) € E and node z is in T%.

3. For each path p in P and each j € {1,2,...,4;}, replace the subpath of
p in T% (if any) by node y;;. Let P be the collection of resultant paths
of positive size.

4. If there exists a path p € P with v as its endnode, then choose one
such path and denote its other endnode by z. Else, let z be such that
Ty = Uyy- ' -

5. Construct a cycle AH' = vajas---ag,+¢,v on node set V such that
(1) Uphitiy = 2 and (2) for every path p € P passing through node v,
the two endnodes s and ¢ of the path are in the two subpaths formed
by deleting the nodes v and z from AH® (i.e., the nodes v, 2, s,t appear
in AH® in the order of vsztv.). If i = 0, then set H® = AH? and go to
Step 3.

Step 2. Delete from A’ the supernode from the set {yi1,..., %, } that does not
correspond to any subtree of T to get a path. In H*~! replace the supernode
corresponding to T by this path to get the cycle H.

Step 3. If S # (), choose an element of S, denote it by 7', and delete it from S. Let v
be the node in T that is incident to some edge not in 7. Increment i =4 + 1
and go to Step 1. Else, set H* = H".
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Phase 2: Design of the optimal network.
Step 4. Define

i { Ue Y e € E such that u. is an even number,
7 1 ue—1 Veé€FE such that u, is an odd number.

Let T = [V, E, ). Define 7;; = the maximum flow value between nodes i and
j in T. Construct a network G = [V, E,ﬁ] using Algorithm GoMORY—-HU
with matrix R = (Tij )nxn as input and with T as the choice of the maximum
weight spanning tree, and with H* as the choice of the cycle on node set V
in Step 0 of Algorithm GoMoRYy—HU.

Step 5. Let E, = {(¢,) : ¢ and j are the endnodes of some path in P}. Set E* =

EUE,.
Ue VeEE—Ep,
ug =4 U.+1 Veec ENE,,
1 VeecE,—FE.

Output the network G* = [V, E*, v*] and stop.

The following results will be useful in proving the validity of Algorithm CuT-
TREE-REALIZATION.

LEMMA 6.2. Let T° = [VO, E° 4% be an edge-capacitated tree. For some edge
e = (p,q) € E°, let T be the subtree containing node q formed when edge e is deleted
from T°. Let T' = [V1, EY ul] be the tree obtained by contracting in T the subtree
T to a supernode y. For each k € {0,1}, let 7¥ = max{u¥ : e = (i,;) € E*¥} for all
ieVEk VE={ieVF .k isodd}, E¥ = {e € EF : u* is odd}, Vi = VE - VF,
and B = E* — EF. Let P° be an optimal solution to the instance of the TPCP with
input {T°, (V2, V), (EY, E9)}. Then the path set P! containing all of the paths in
PO with no endnode in T, together with the path in P° containing the edge e (if such
a path exists), with its subpath in T replaced by node y is an optimal solution to the
instance of the TPCP with data {T*,(V{,V3), (EL, E3)}.

The proof of the above lemma follows easily from the results in section 3 and is
omitted.

LEMMA 6.3. Let T = [V, E, u] be the input to Algorithm CUT-TREE-REALIZA-
TION. Then, for any fundamental cut [X, X] of T, X (and hence also X ) is the node
set of a subpath of the Hamiltonian cycle H* constructed in Phase 1 of the algorithm.

Proof. We shall prove the result by induction on |V| = n. The result is obviously
correct for n < 3. Suppose the result is true for all n < k for some k > 3. Let us
consider the case n =k + 1.

For |X|=1or n—1 (= k), the result is obviously correct. So let us suppose that
1 < |X| < n—1. Let [X, X] be the fundamental cut of T' corresponding to an edge
e=(z,y) € E with y € X.

Suppose the nonleaf node v of T" selected by Algorithm CUT-TREE-REALIZATION
in Step 0 satisfies v € {x,y}. Without loss of generality, let us assume that v = y.
Then in Step 1 in the first iteration, the subtree of 7" on node set X is replaced by
a supernode y; or z;, and in subsequent iterations, this supernode is progressively
replaced by a path on node set X in H*.

Suppose the node v selected by the algorithm in Step 0 is neither x nor y. Without
loss of generality, let us assume that v € X — {y}. Then in the first iteration, for some
X C S C V, the subtree of T on node set S is contracted in Step 1 to a supernode
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y; or z;, and in subsequent iterations, this supernode is progressively replaced by a
path on node set S in H*. It follows easily from Lemma 6.2 and the description of
the algorithm that if in 7' we contract the subtree on node set S to a supernode a to
get a tree TT = [V, E' ul] and perform the algorithm with input 7" and choose in
Step 0 the same node v and path set P! as defined in Lemma 6.2, then the algorithm
will produce the same path on node set S. But [V!| < k and [X, X — S U {a}] is
a fundamental cut of T'. Hence, it follows by induction that node set X forms a
subpath of this path. This proves the lemma. O

The following is a corollary of Lemma 6.3.

COROLLARY 6.4. Let [X, X] be the fundamental cut of T = [V, E,u] correspond-
ing to some edge e = (i,j) € E. Then we have the following.

1. The Hamiltonian cycle H* constructed in Phase 1 of Algorithm CuUT-TREE-
REALIZATION contains precisely two edges of the cut.

2. Every cycle C* constructed by Algorithm GOMORY-HU invoked in Step 4 of
Algorithm CUT-TREE-REALIZATION contains either zero or two edges of the
cut.

We shall now prove the validity of Algorithm CUT-TREE-REALIZATION.

THEOREM 6.5. For any instance T = (V, E,u) of the OCRP with ue > 1 for
all e € E, Algorithm CUT-TREE-REALIZATION constructs in O(n?) time an optimal
network G* = [V, E*,u*] for the problem with optimal value

2icv i + VI + V2

u'[V] = 5 .

Proof. 1t follows from Theorem 2.9 that the network G* output by the algorithm
has integer edge capacities. Also, the computational complexity of the algorithm can
be easily seen to be O(n?).

For the tree T = [V, E, @] constructed in Step 4 of the algorithm, let 7; = max{, :
e=(i,j) € E} for any i € V. Then

-~ m— 1 Vz’eVl,
i = T Vie Vs

It follows from Theorem 2.9 that the network G = [V, E, @] constructed in Step 4
using Algorithm GOMORY—HU satisfies

aV] :%Zfri: % <Zm—|v1|> :

eV eV

Also, it follows from Theorem 3.2 that |E,| = $(|Vi| +|Vi?| + |V5]). Thus

* ~ 1 € o
WVl =alV]+| Byl = 3 <Zm+lvll+lvz I>-
eV

Thus, from Lemma 6.1, G* (if feasible) is an optimal solution to the instance of the
OCRP. Let us now prove the feasibility of G*.

For any edge e = (s,t) € E, let [X, X] be the fundamental cut in T' corresponding
to e with s € X and t € X. By the definition of cut-tree, to prove the feasibility of
G* it is sufficient to prove that d,«[X] = u. and every other cut [Y,Y] separating s
and t has 0,+[Y] > ue.
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It follows from the description of Algorithm GOMORY—HU that
Ue = Z {Hi :nodes s and ¢ lie on the cycle Ci} .

By Corollary 6.4, it follows that cut [X, X] contains precisely two edges of each such
cycle C* and no edge of any other cycle. Thus,

1 . .
da[X] = Z {2 . 56” :nodes s and ¢t lie on the cycle CZ} = Te.

If u, is even, then u, = Ue. In this case, no path in P covers edge e, and hence, no
edge of E, lies in cut [X, X]. Thus,

8o [X] = 64[X] = fle = te.

If we is odd, then ue = u. + 1. In this case, precisely one path in P covers edge e, and
hence, exactly one edge of E, lies in cut [X, X]. Thus,

Oy [X] = 0a[X] + 1 = te + 1 = ue.

Now, consider any other cut [Y,Y] with s € ¥ and ¢ € Y. We will show that
§u<[Y] > ue. Cut [Y,Y] obviously contains at least two edges of each cycle C* con-
structed by Algorithm GOMORY—HU that contains both nodes s and ¢. Thus,

1., .
dalY] > Z {2 : 501 :nodes s and ¢ are in Cl} = .

If %, = ue, then
5u* [Y] > 6’0,[Y] > ﬂ/e = Ue,

and the result is proved. So, suppose %, = u. — 1, and therefore u. is odd. For each
f € E,up > 2. Since ty is an even integer, it is implied that @y > 2. Hence, gt > 2
and is an even integer for each i. If [Y,Y] contains four or more edges of any C°
containing both s and ¢, then

8u-[Y] > 6a[Y] > e +2 > ue.

So, suppose [Y, Y] contains precisely two edges of each C* containing both nodes
s and t, and therefore of C° = H*. Then node set Y forms a subpath of H*. Since u,
is odd, a path of P covers edge e.

If s and ¢ are the two endnodes of a path in P, then (s,t) € E,, and therefore

Ou Y] > 8aY]+12> te+ 1= u.

If not, then we consider three cases.

Case 1. {s,t} C V4, and s is the endnode of a path p' € P that contains edge
(s,t).

Let the other endnode of path p' be z;, and let another path p?> € P have
endnodes t and zy, where {21,202} C V — {s,t}. Then, node ¢ is not a leaf node of
T, and therefore in some iteration ¢ of Phase 1, the algorithm must choose v = t.
Let nodes s, z1, and 25 belong to supernodes y;1, yi2, and y;3, respectively. Then it
follows from part (5) of Step 1 of the algorithm that in cycle AH?, nodes t, yi1, yia,
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and y;3 appear in the order ty;1y;3y:;2t. Hence in H*, nodes t, s, 21, z2 appear in the
order tszozit. If any of (t,22) and (s,21) lies in cut [Y,Y], then we are done. Else,
s €Y and t € Y together implies a contradiction to the fact that nodes in Y form a
subpath of H*, and the result is proved.

Case 2. {s,t} C V4, and neither s nor ¢ is the endnode of any path in P that
contains edge (s, t).

Let {p1,p2,p3} C P be such that the endnodes of py, pa, and ps are, respectively,
{s,21}, {t, 22}, and {23, 24}, and path p3 contains edge (s,t). Without loss of general-
ity, let 23 € X and z4 € X. Then since s € Y andt € Y, we have z; € Y and 2, € Y
and either {23,24} CY or {z3,24} C Y. For else, an edge of E, is in cut [V, Y], and
we are done.

The above implies that neither s nor ¢ is a leaf node of T'. Hence, in some iterations
7 and j of Phase 1, the algorithm chooses v = s and v = t, respectively. Without loss
of generality, let i < j.

In iteration 4, let node set {t, 22, z4} belong to supernode y;1, and let z3 and z;
belong to supernodes y;o and y;3, respectively. Then it follows from part (5) of Step 1
of the algorithm that nodes s, v;1, 42, and ;3 appear in cycle A’ in the order
SYi1Yi3Yi2S-

In iteration j, let node set {s, 21,23} belong to supernode y;,, and let z4 and z»
belong to supernodes y;, and y;,, respectively. Then nodes ¢, y;1, y;2, and y;3 appear
in cycle AH7 in the order 1Y;1Y;3Yj2t.

Hence in H*, nodes {s,t, z1,29,2324} appear in the order sz3zizaz4ts or
Ssz3z1tzazes. In either case, we have a contradiction to the fact that nodes in Y
form a subpath of H*, and the result is proved.

Case 3. {s,t} N Va # 0.

Without loss of generality, let us assume that ¢t € V5. Then there exists an edge
f=(t, z1) in E such that uy is even and m = 4y = uy > ue +1 > G, + 2.

Hence, in some iteration i, Algorithm GoMORY-HU constructs a cycle C' con-
taining nodes ¢ and z; but not containing node s and assigns to this cycle a capacity
%Gi > 1. If this cycle contains any node in Y, then

6u=[Y] > 04[Y] > e + 60" > ue,

and the result is proved.

Hence, let us assume that the cycle C* does not contain any node in Y. This
implies that z; € Y, and therefore the subpath of H* containing nodes t and z; but
not containing node s is in Y.

Let p1 be the path in P containing the edge e. Let z2 and z3 be the endnodes of p;
in Y and Y, respectively. We have to consider only the case when |{z2, 233N {s,t}| =0
or 1.

Node ¢ is not a leaf node of T'. Hence, in some iteration j of Phase 1, the algorithm
chooses v = t. If t # zo, then the cycle AH7 formed in the jth iteration contains
node ¢ and supernodes y;, , ¥;,, and y;,, containing, respectively, nodes s, z1, and z2,
in the order ty; y;,y;,t. Hence, in the cycle H*, nodes s, t, z1, and 22 occur in the
order szq29ts. Therefore z5 € Y.

If z3 € Y, then the edge (23,22) € E, lies in the cut [Y,Y], and the result is
proved.

Let us consider the case s # z3 € Y. In this case, node s is the endnode of some
path ps € P. Let the other endnode of ps be z4. Since node s is not a leaf node of
T, in some iteration ¢ of Phase 1, the algorithm chooses v = s and forms the cycle
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AH* in which node s and the supernodes v;,, ¥i,, and y;,, containing, respectively,
the nodes ¢, z3, and z4, occur in the order sy;, yi,yi,s. Hence the nodes s, t, 23, and
z4 occur in H* in the order stzqzzs. Since {t,23} C Y, this implies that z, € Y and
hence the edge (s, z4) € E,, lies in the cut [Y,Y]. This proves the theorem. a

7. An algorithm for the IENSP. We will now present a combinatorial, strongly
polynomial algorithm for the IENSP. The algorithm invokes as subroutines the algo-
rithms for the subproblems discussed in the previous sections.

Algorithm EXACT-SYNTHESIS
Input. A symmetric, integer, nonnegative matrix R = (74 )nxn.
Output. A network G* = [V, E*, u*], that is an optimal solution to the instance of
the TENSP.
Step 0. Find a maximum weight spanning tree T = [V, E,u] in G (the complete
graph on node set V' with edge weight u. = r;; for all e = (¢, 7), ¢ # j).
1. If T' does not exactly realize R, then conclude that “R is not exactly
realizable” and stop.
2. Otherwise, let £ = {e¢ : e € E, u, < 1} and F = [V,E — E,u].
Let TV, 72,...,T* be the connected components of F with node sets
V1 ..., V¥ respectively.
Step 1. For each i € {1,2,...,k}, find an optimal solution T** = [V, E* uf] to the
FETP with input 7" using Algorithm TREE-FINDING.
Step 2. For each i € {1,2,...,k}, find the optimal solution G** = [V E*! 4*!] to
the OCRP with input T*%.
Step 3. Construct network G* = [V, E*,u*] with E* = (U*_, E*') U E and

« uit if e € E* for some i € {1,2,...,k},
Ue ifeeFE.

Output the network G* and stop.

The theorem below now follows from the results in the previous sections.

THEOREM 7.1. Algorithm EXACT-SYNTHESIS produces an optimal solution to
the IENSP in O(n?) time.

Proof. Suppose an input R = (i )nxn to the IENSP is exactly realizable. Let
T = [V, E,u] be the maximum weight spanning tree in G¥ computed in Step 0 of
Algorithm EXACT-SYNTHESIS.

If ue > 1 for all e € E, then the desired result follows from Theorems 6.5 and 5.3
and the fact that the set of all maximum weight spanning trees of Gt is precisely
(i) the set of all cut-trees of all possible exact realizations of G and (ii) the set of all
the trees flow-equivalent to 7.

Suppose u, = 0 for some e € E. Let the corresponding fundamental cut of T
be [X, X]. Then R being exactly realizable implies that r,, = 0 for any z € X and
y € X. Therefore in any feasible solution G to the instance of the IENSP, node sets
X and X are disconnected in G. Hence, an optimum solution to the problem can be
obtained by solving the subproblems on node sets X and X with input R x and R,
respectively. Here R|g is the principal submatirx of R restricted to subindex set S for
any S C V.

So we assume u, > 1 for all w € T in the rest of the argument. Suppose there
exist k > 1 edges in T such that u, = 1. Let the subtrees obtained by deleting these
k edges from T be T, ..., T**! on node sets X',..., X**1 respectively. Then R
being exactly realizable implies that, for any two nodes z,y € V, ry, > 1 if they
are in the same subtree and r,, = 1 if they are not. Hence, in any feasible solution
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G to the TENSP, (i) if we contract node sets X', ..., X**! to supernodes, then we
must get a tree with & edges and (ii) the subnetwork of G spanned by X" is a feasible
solution to the IENSP with input R|x: for every i. Now each T" is a maximum weight

spanning tree in GRixi and by Theorem 2.6; each R|x: is exactly realizable. Hence,
it follows from Theorems 6.5 and 5.3 that each subnetwork G** constructed by the
algorithm is an optimal solution to the corresponding subproblem. Therefore, the
overall optimum solution can be obtained by finding optimum subnetworks for the
IENSP with R|x1, ..., Rjxx+1 as inputs, respectively, and adding to these subnetworks
the k edges on T with e, = 1. This proves the theorem. O

We now show that our algorithm for the IENSP leads to an algorithm for the
INSP. Thus, consider an instance of the INSP with a nonnegative, integer, and
symmetric matrix R as input. Let m; = max{r;; : j € V — {i}} for all i € V.
For convenience, we will consider only the case m; > 1 for all . Define a matrix
R = (Fij)uxn as T;; = min{m;,m;} for all i # j. Then any exact realization of R
is a realization of R. It is easy to see that T* = [V, E,u] with £ = {(1,j) : j €
V — {1}} is an optimal solution to the corresponding FETP with A(T*) = (I‘é_ﬂ}
Thus, by Theorem 7.1 Algorithm EXACT-SYNTHESIS produces an exact realization
G* = [V, E*,u*] of R with integer capacities and Y. p. uf = [£ 3,01, m]. We thus
get the following corollary.

COROLLARY 7.2. If the input matriz R satisfies m; = max{r;; : j € V—{i}} > 1
for all i € V', then the optimal objective function value of the corresponding instance
of the INSP is [+, ., mi].
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Abstract. In this short note we prove that there is a constant ¢ such that every k-edge-coloring
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1. Introduction. The Ramsey number R(t; k) is the least positive integer n such
that every k-coloring of the edges of the complete graph K, contains a monochromatic
K;. In 1916 Schur showed that R(3;k) is at least exponential in k& and at most a
constant times k!. Despite various efforts over the past century to determine the
asymptotics of R(t; k), there were improvements only in the exponential constant in
the lower bound and the constant factor in the upper bound. It is a major open
problem to determine whether there is a constant ¢ such that R(3;k) < c* for all k
(see, e.g., the monograph [9]).

In 1981, Erdés [6] proposed studying the following generalization of the classical
Ramsey problem. Let p,q be positive integers with 2 < ¢ < (’2’) A (p, g)-coloring of
K, is an edge-coloring such that every copy of K, receives at least ¢ distinct colors.
Let f(n,p, q) be the minimum number of colors in a (p, g)-coloring of K,,. Determining
the numbers f(n,p,2) is equivalent to determining the multicolor Ramsey numbers
R(p; k), as an edge-coloring is a (p,2)-coloring if and only if it does not contain a
monochromatic K,. Over the last two decades, the study of f(n,p,q) drew a lot
of attention. Erddés and Gyérfas [7] proved several results on f(n,p,q); e.g., they
determined for which fixed p and ¢ we have where f(n,p,q) is at least linear in n,
quadratic in n, or (}) minus a constant. For fixed p, they also gave bounds on the
smallest ¢ for which f(n,p, q) is asymptotically (5). These bounds were significantly
tightened by Sérkozy and Selkow [15] using Szemerédi’s regularity lemma. In a dif-
ferent paper, Sdrkozy and Selkow [14] show that f(n,p,q) is linear in n for at most
log p values of ¢q. (Here, and throughout the paper, all logarithms are base 2.) There
are also results on the behavior of f(n,p,q) for particular values of p and ¢. Mubayi
[13] gave an explicit construction of an edge-coloring which together with the already
known lower bound shows that f(n,4,4) = n'/2t°(1), Using Behrend’s construction
of a dense set with no arithmetic progressions of length three, Axenovich [2] showed
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that #571 —3< f(n,5,9) < 2n'te/Viegn  These examples demonstrate that special
cases of f(n,p,q) lead to many interesting problems.

As was pointed out by Erdés and Gyérfas [7], one of the most intriguing problems
among the small cases is the behavior of f(n,4,3). This problem can be rephrased in
terms of another more convenient function. Let g(k) be the largest positive integer n
for which there is a k-edge-coloring of K, in which every K, receives at least three
colors, i.e., for which f(n,4,3) < k. Restated, g(k) + 1 is the smallest positive
integer n for which every k-edge-coloring of the edges of K, contains a K, that
receives at most two colors. In 1981, Erdds [6] showed that g(k) is superlinear in k by
an easy application of the probabilistic method. Later, Erd6s and Gyarfas used the
Lovész local lemma to show that g(k) is at least quadratic in k. Mubayi [12] improved
these bounds substantially, showing that g(k) > 2¢(lo8 k)* fo1 some absolute positive
constant ¢. On the other hand, the progress on the upper bound was much slower.
Until very recently, the best result was of the form g(k) < k°* for some constant c,
which follows trivially from the multicolor k-color Ramsey number for K. This bound
was improved by Kostochka and Mubayi [10], who showed that g(k) < (logk)°* for
some constant c. Here we further extend their neat approach and obtain the first
exponential upper bound for this problem.

THEOREM 1.1. For k > 2109 we have g(k) < 22000k,

While it is a longstanding open problem to determine whether R(t; k) grows faster
than exponential in k, it is not difficult to prove an exponential upper bound if we
restrict the colorings to those that do not contain a rainbow K for fixed s. Let
M (k,t,s) be the minimum n such that every k-edge-coloring of K, has a monochro-
matic K; or a rainbow K. Axenovich and Iverson [4] showed that M (k,t,3) < okt”
We improve on their bound by showing that M (k,t,s) < st for all k., t,s. In the
other direction, we prove that for all positive integers k and ¢ with k even and t > 3,
M (k,t,3) > 2Ft/4 thus determining M (k,t,3) up to a constant factor in the exponent.

The rest of this paper is organized as follows. In the next section, we prove our
main result, Theorem 1.1. In section 3, we study the Ramsey problem for colorings
without rainbow K. The last section of this note contains some concluding remarks.
Throughout the paper, we systematically omit floor and ceiling signs whenever they
are not crucial for the sake of clarity. We also do not make any serious attempt to
optimize absolute constants in our statements and proofs.

2. Proof of Theorem 1.1. Our proof develops further on ideas in [10]. Like
the Kostochka—Mubayi proof, we show that the K, we find is monochromatic or is a
Cy in one color and a matching in the other color. Call a coloring of K; rainbow if
all (;) edges have different colors. Let g(k,t) be the largest positive integer n such
that there is a k-edge-coloring of K,, with no rainbow K, and in which the edges of
every K, have at least three colors. We will study g(k) by investigating the behavior
of g(k,t).

Before jumping into the details of the proof of Theorem 1.1, we first outline the
proof idea. Note that g(k) = g(k, k) for k > 2 as a rainbow K} would use (g) >k
colors. We give a recursive upper bound on g(k,t) which implies Theorem 1.1. We
first prove a couple of lemmas which show that in any k-edge-coloring without a
rainbow K3, there are many vertices that have large degree in some color ¢. We then
apply a simple probabilistic lemma to find a large subset V5 of vertices such that
every vertex subset of size d (with d < t) has many common neighbors in color i.
We use this to get an upper bound on g(k,t) as follows. Consider a k-edge-coloring
of K,, with n = g(k,t) without a rainbow K; and with every K, containing at least
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three colors. There are two possible cases. If there is no rainbow K, in the set Vs,
then we obtain an upper bound on g(k,t) using the fact that |V5| has size at most
g(k,d). If there is a set R C Vs of d vertices which forms a rainbow K, then the
(g) colors that appear in this rainbow K, cannot appear in the edges inside the set
N;(R) of vertices that are adjacent to every vertex in R in color ¢, for otherwise we
would obtain a K, having at most two colors (the color ¢ and the color that appears
in both R and in N;(R)). In this case we obtain an upper bound on g(k,t) using the
fact that |N;(R)| < g(k — (g),t). Finally, if the coloring has no rainbow Ky with d
constant, it is easy to show an exponential upper bound.

For an edge-coloring of K, a vertex x, and a color 4, let d;(z) denote the degree
of vertex x in color ¢. Our first lemma shows that if, for every vertex = and color i,
d;(z) is not too large, then the coloring contains many rainbow cliques.

LEMMA 2.1. If an edge-coloring of the complete graph K, satisfies d;(x) < dn for
each © € V(K,,) and each color i, then this coloring has at most %5754 (’Z) nonrainbow
copies of K.

Proof. If a K; is not rainbow, then it has two adjacent edges of the same color
or two nonadjacent edges of the same color. We will use this fact to give an upper
bound on the number of K;’s that are not rainbow.

Let v(i,t,n) be the number of copies of K; in K, in which there are at least two
adjacent edges of color i. To bound the number of such K; we can first choose the
vertex, then the two edges with color ¢ incident to this vertex and then the remaining
t — 3 vertices. Hence, the number of K;’s for which there is a vertex with degree at
least two in some color is at most

S0 <Y (M) (273 <ni (3 (270)

i i xeV

o3 (t\° (n 1 n
<— (= =53 ).
<5 () ()=20)
Here we used the fact that ), (diéz)) < 5’1(52"), since d;(z) < on, Y, di(x) =n—1,
and the function f(y) = (}) is convex.

Let v (i,¢,m) be the number of copies of K; in K, in which there is a matching
of size at least two in color i. Let e; denote the number of edges of color i. Since

n 0
e; < —maxd;(z) < =n?,
YT 2 zev (@) < 2
then the number of K;’s in which there is a matching of size at least two in some color
is at most

P (16 )40)

where again we used the convexity of the function f(y) = (g) together with e; < dn?/2
and Y, e; < n?/2. Hence, the number of K;’s which are not rainbow is at most
$6t3(7) + §6t4(7) < 26t*(}), completing the proof. O

For the proof of Theorem 1.1, we do not need the full strength of this lemma
since we will use only the existence of at least one rainbow K;. We also would like
to mention the following stronger result. Call an edge-coloring m-good if each color
appears at most m times at each vertex. Let h(m,t) denote the minimum n such
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that every m-good edge-coloring of K, contains a rainbow K;. The above lemma
demonstrates that h(m,t) is at most mt*. It is shown by Alon et al. [1] that there are
constant positive constants ¢; and cy such that

cimt?/logt < h(m,t) < comt®/logt.

The following easy corollary of Lemma 2.1 demonstrates that in every k-edge-
coloring without a rainbow K, there is a color and a large set of vertices which have
large degree in that color.

COROLLARY 2.2. In every k-edge-coloring of K,, without a rainbow Ky, there is a
subset Vi C V(Ky,,) with |Vi| > 55 and a color i such that di(x) > 575 for each vertex
xz e V.

Proof. Let V' C V(K,,) be those vertices = for which there is a color ¢ such that
di (33) Z 271?.

Case 1: |V'| < n/2. In this case, letting V' = V(K,,) \ V', [V"| > n/2 and no
vertex in V" has degree at least #% < [V”[/t* in any given color. By Lemma 2.1
applied to the coloring of K, restricted to V" with § = ¢t=4, there are at least %(‘Vtﬁ‘)
rainbow K3’s, contradicting the assumption that the coloring is free of rainbow K;’s.

Case 2: |[V'| > n/2. In this case, by the pigeonhole principle, there is a color i
and at least g vertices = for which d;(x) > i, completing the proof. O

The following lemma is essentially the same as results in [11] and [16]. Its proof
uses a probabilistic argument commonly referred to as dependent random choice,
which appears to be a powerful tool in proving various results in Ramsey theory (see,
e.g., [8] and its references). In a graph G, the neighborhood N(v) of a vertex v is
the set of vertices adjacent to v. For a vertex subset U of a graph G, the common
neighborhood N (U) is the set of vertices adjacent to all vertices in U.

LEMMA 2.3. Let G = (V, E) be a graph with n vertices and let Vi C V be a subset
with |Vi| = m in which each vertex has degree at least an. If B < m~%"  then there
is a subset Vo C Vi with |Va| > a’m — 1 such that every d-tuple in Vo has at least On
common neighbors.

Proof. Let U = {x1,...,x5} be a subset of h random vertices from V' chosen
uniformly with repetitions, and let V{ = N(U) N V;. We have

N\

E / — — |— h

V=Y Prwe NU) =Y ( . ) > a'm
vEV] veV;

The probability that a given set W C V; of vertices is contained in V7 is (an)‘)h

Let Z denote the number of d-tuples in V} with less than Sn common neighbors. So

E[Z] = > Pr(W c V{) < C;) A <miph < 1.
WCVL,|W|=d,|N(W)|<8n

Hence, the expectation of | V]| — Z is at least a/*m — 1 and thus, there is a choice Uy for
U such that the corresponding value of |V]| — Z is at least am — 1. For every d-tuple
D of vertices of V{ with less than Sn common neighbors, delete a vertex vp € D
from VY. Letting V5 be the resulting set, it is clear that V5 has the desired properties,
completing the proof. d

The proof of the next lemma uses the standard pigeonhole argument together
with Lemma 2.1.
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LEMMA 2.4. Let d, k be integers with d,k > 2. Then every k-edge-coloring of K,
with n > d'2* and without a rainbow K4 has a monochromatic K4. In particular, we
have g(k,d) < d*?*.

Proof. Suppose for contradiction that there is a k-edge-coloring of K, with n >

and without a rainbow K, and without a monochromatic K. By Lemma 2.1
with t = d and § = d—%, this graph contains a vertex z; with degree at least 5 in
some color ¢;. Pick this vertex x; and let V7 be the set of vertices adjacent to x; by
color ¢;. We will define a sequence 1, ..., x4+ of vertices, a sequence c1, ..., Cogt1
of colors, and a sequence V(K,) D Ny D --- D Napyy of vertex subsets. Once z;,
c¢j, and N; have been defined, pick a vertex ;11 in IV; such that there are at least
U;i{‘ vertices in IN; connected to x;41 by edges of the same color c¢;;1. Let N;y; be
the set of vertices in N; that are adjacent to x;;1 by edges of color c;4;. Note that
[Nj1] > d™*|N;| so

d12k

|Nogy1| > (d*)**'n > 1.

Therefore, there is a color ¢ that is represented at least three times in the list
C1,...,Cak+1 and the three vertices z;,,x;,,z;, together with a vertex from Najyi
form a monochromatic K4 in color ¢, where ¢;, = ¢, = ¢;, = cwith j; < ja < j3. a

LEMMA 2.5. Let d,k,t be positive integers with 3 < d <t and d > 40logt. If
k> (g), then

(2.1) g(k,t) < max <4kg(k,t)”b°“g(k, d),2() g <k - (g) t>) .

Otherwise, we have g(k,t) = g(k,d).
Proof. Note that if k < (g), then a k-edge-coloring cannot have a rainbow K.

Therefore, g(k,t) = g(k,d) in this case. So we assume k > (g) By the definition
of g(k,t), there is a k-edge-coloring of K, with n = g(k,t) with no rainbow K
and in which every K4 receives at least three colors. Consider such a coloring. By
Corollary 2.2, there is a color 4 and a subset Vi C V(K,,) with [Vi| > g and d;(z) >

53z for every vertex x € Vi. Apply Lemma 2.3 to the graph of color ¢ with o = ﬁ,
8 = 27(5), m = |Vi| > 4, and h = 4d'logn. We can apply Lemma 2.3 since
B < 2-4/4 = p=d/h < |y;|=d/h So there is a subset Vi C Vi such that

n
4k

_ 20logt
d

Va| > am — 1 > almy/2 > (2¢4) 44 loan . = > p1= 205 /(4
d
and every subset of V5 of size d has at least On = 2_(2)n common neighbors in color
i.
There are two possibilities: Either every K4 in V5 is not rainbow, or there is a
K in V5 that is rainbow. In the first case, the k-edge-coloring restricted to V3 is free
of rainbow K, so

201log t
d

glk,d) > [Va| > n'~ /(4k).

Since n = g(k,t), we can restate this inequality as

20log t

g(k,t) < 4kg(k,t) 4 g(k,d).

In the second case, there is a rainbow d-tuple R C V5 such that N;(R), the common
neighborhood of R in color 4, has cardinality at least Gn. The (g) colors present in R
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cannot be present in N;(R) since otherwise we would have a K4 using only two colors
(the color ¢ and the color that appears in both R and in N;(R)). In this case we have

g <k - <;l> ,t) > [N;(R)| > Bn =2~ &gk, 1).
In either case we have

g(k,t) < max <4kg(k,t) 5 Gk, d), 2(2) g <k - (Z) t)) :

which completes the proof. d

Having finished all the necessary preparation, we are now ready to prove Theorem
1.1, which says that g(k) < 22900% for k > 2100 The iterated logarithm log* n is de-
fined by log*n = 0 if n < 1 and otherwise log* n = 1+1log™ logn. It is straightforward
to verify that log* n < logn holds for n > 8.

Proof of Theorem 1.1. Note that g(k) = g(k, k) since no k-edge-coloring contains
a rainbow Kj. Assume k > 2'°0 and suppose for contradiction that there is a k-
edge-coloring of K,, with n = g(k) > 229°0% such that every K, has at least three
colors.

Let t; = k, and if t; > 200 let t;, 1 = (logt;)%. We first exhibit several inequalities
which we will use. We have t;11 > 100logt; and 20125% = 20/logt; < % Let ¢ be
the largest positive integer for which ¢, is defined, so 100? < t, < 2'%0. Note that
¢ < 2log™ k, as one can easily check that t; 11 = (logt;)? = (2loglogt;_1)? < logt;_.
Since ¢ < 2log* k < 2logk and n > 22000k then (4k)€ <n'12 For1<i</{-—1, we
have 20/logt,_; < 57% Indeed, for i = 1, since t;_; > 2190 we have 20/logt, | <
1/5. Suppose by induction on i that we already have 20/logt, ; < 5°*. Then
to_; > 229" and therefore we have 20/ logt, ;1 = 20//f;_; < 2027105 < 5=i-1,
Therefore, Y.'7} 20/logt; < 3.7°, 57 < 1/4. Putting this together, we have

(4k)e_lnz:f;11 20/logti - ,1/3

To get an upper bound on g(k, k) we repeatedly apply Lemma 2.5. Given k' < k
and t = t;, to bound g(k’,t), we use this lemma with d = t;11. Note that we have
d = t;+1 > 100logt;, so indeed the condition of the lemma holds. If k' < (tigl), then
g(K',t;) = g(k',t;y1). Otherwise, we have one of two possible upper bounds given by
(2.1). If the maximum of the two terms in (2.1) is the left bound, then

logt 20logt

gk 1) < Ak g(K )™= g(K, d) < 4kn = g(K/, d) = 4kn2/ 198t g (k! d);

otherwise we have g(k',t) < 27g(k’ — j,t) with j = (4). Since g((l,j,,;)) < 4kn?0/logts if

the left bound holds, we can accumulate only up to a total upper bound factor of

-1
H4kn20/logti _ (4k)€’1n25511 20/logti - 1/3
i=1

in all of the applications of the left bound. When we use the right bound, we pick up

g(k' ;1)
g(k'—j,t)
the process k' > 3, this can give only another multiplicative factor of at most 2* in
all of the applications of the right bound.

a factor of < 27 with j = (g) and also decrease k' by j. Since in the end of
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As we already mentioned above, if k' < (*#), then g(k’,t;) = g(k’, ti11). There-
fore when we finish repeatedly applying Lemma 2.5 we end up with a term of the
form g(ko,t,) with ko < k. In that case, we use that t, < 219 together with Lemma
2.4 to bound it by g(k,t,) < t}2k < 21200k Putting this all together, we obtain the
upper bound

n=g(k) = g(k, k) <n'/32%g(k, 1) < 2"0%Fn'/3,

which implies that n < 2290°% This completes the proof. o

3. Monochromatic or rainbow cliques. In this section, we prove bounds on
the smallest n, denoted by M (k,t, s), such that every k-edge-coloring of K,, contains
a monochromatic K; or a rainbow K. The following proposition is a straightforward
generalization of Lemma 2.4.

PROPOSITION 3.1. We have M (k,t,s) < s**t.

Let My(t1,...,tx) be the maximum n such that there is a k-edge-coloring of K,
with colors {1,...,k} without a rainbow K, and without a monochromatic Ky, in
color i for 1 <4 < k. The above proposition follows from repeated application of the
following recursive bound.

LEmMMA 3.2. We have

My(ty,. .. tg) <s* max M(t, ... ti—1,... 1)

Proof. By Lemma 2.1, for every edge-coloring of K,, without a rainbow K, there
is a vertex v with degree at least n/s* in some color i. If the coloring of K,, does not
contain a monochromatic Ky, in color ¢, then the neighborhood of v in color ¢ has at
least n/s* vertices and does not contain K;, 1 in color i, completing the proof. O

Using a slightly better estimate by Alon et al. [1] (which we mentioned earlier)
instead of Lemma 2.1, one can improve the constant in the exponent of the above
proposition from 4 to 3. Together with the next lemma, Proposition 3.1 determines
M (k,t,3) up to a constant factor in the exponent.

LEmMMA 3.3. For all positive integers k and t with k even and t > 3, we have
M (k,t,3) > 2kt/4,

Proof. To prove the lemma, it suffices by induction to prove M(k,t,3) — 1 >
21/2 (M (k —2,¢,3) — 1) for all k > 2 and ¢ > 3. Consider a 2-edge-coloring C of
K,, with m = 2%/2? and without a monochromatic K;. Such a 2-edge-coloring exists
by the well-known lower bound of Erdés [5] on the 2-color Ramsey number R(t;2).
Consider also a (k — 2)-edge-coloring Cy of K, with r = M(k — 2,¢,3) — 1 without
a rainbow triangle and without a monochromatic K;. We use these two colorings to
make a new edge-coloring C5 of K,,, with k colors: We first partition the vertices of
K, into m vertex subsets Vi,...,V,, each of size r, and color any edge e = (v, w)
with v € V;,w € V}, and ¢ # j by the color of (¢,7) in the 2-edge-coloring C; of
K,,, and color within each V; identical to the coloring Cs of K,.. First we show that
coloring C3 has no rainbow triangle. Indeed, consider three vertices of K,,,. If all
three vertices lie in the same vertex subset V;, then the triangle between them is not
rainbow by the assumption on coloring Cs. If exactly two of the three vertices lie in
the same vertex subset, then the two edges from these vertices to the third vertex will
receive the same color. Finally, if they lie in three different vertex subsets, then the
triangle between them receives only colors from C and is not rainbow since C is a
2-coloring. Similarly, one can see that coloring Cs has no monochromatic K, which
completes the proof. O
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4. Concluding remarks. In this paper we proved that there exists a constant
¢ such that every k-edge-coloring of K, with n > 2° contains a K, whose edges
receive at most two colors. On the other hand, for n < 2¢(log k)z, Mubayi constructed
a k-edge-coloring of K, in which every K, receives at least three colors. There is still
a large gap between these results. We believe that the lower bound is closer to the
truth, and the correct growth is likely to be subexponential in k.

Our upper bound is equivalent to f(n,4,3) > (logn)/2000 for n sufficiently large.

Kostochka and Mubayi showed that f(n,2a,a + 1) > cabgﬁ%, where ¢, is a

positive constant for each integer a > 2. Like the Kostochka—Mubayi proof, our proof
can be generalized to demonstrate that for every integer a > 2 there is ¢, > 0 such
that f(n,2a,a + 1) > c,logn for every positive integer n. For brevity, we do not
include the details.

We do not yet have a good understanding of how M (k, ¢, s), which is the smallest
positive integer n such that every k-edge-coloring of K, has a monochromatic K; or
a rainbow K, depends on s. From the definition, it is an increasing function in s.
For constant s, we showed that M (k,t,s) grows only exponentially in k. On the
other hand, for (;) > k, we have M (k,t,s) = R(t; k), so understanding the behavior
of M(k,t,s) for large s is equivalent to understanding the classical Ramsey numbers
R(t; k).
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Abstract. A well-known theorem of Nash-Williams and Tutte gives a necessary and sufficient
condition for the existence of k edge-disjoint spanning trees in an undirected graph. A corollary of
this theorem is that every 2k—edge-connected graph has k edge-disjoint spanning trees. We show that
the splitting-off theorem of Mader in undirected graphs implies a generalization of this to finding
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1. Introduction. In this article we consider the application of splitting-off tech-
niques to obtain integer decomposition theorems and rounding algorithms for undi-
rected network design problems such as the Steiner forest problem and others. A
well-known theorem in graph theory is the following.

THEOREM 1.1 (Nash-Williams and Tutte). Given an undirected multigraph G =
(V, E), there exist k edge-disjoint spanning trees Ty, Ts, ..., Ty in G if and only if for
every partition Vi, Vo, ..., Vs of V' the number of edges between the node sets of the
partition is at least k(£ — 1).

An easy corollary of the above is the following.

COROLLARY 1.2. If G is 2k—edge-connected, then there exist k edge-disjoint
spanning trees in G.

Let Ag(u,v) denote the connectivity between v and v in G. We consider packing
Steiner forests instead of spanning trees and obtain the following generalization of
Corollary 1.2 for Eulerian graphs.

LEMMA 1.3 (the forest packing lemma). Given a Eulerian graph G and pairs
of nodes siti, sata, ..., sety such that for 1 < i < £, Ag(s;,t;) > 2k, there are k
edge-disjoint forests Fi, Fa, ..., Fy, such that in each Fj, s; and t; are connected for
1<i<e.

We give a proof of this result (in section 3) that relies on a simple application of
Theorem 1.1 and the classical splitting-off technique of Mader [32]. A special case is
proved in [17] where the goal is to pack Steiner “S-trees,” i.e., trees that each contains
a given subset S of the nodes. Splitting-off for packing Steiner trees in general graphs
is also considered in [26]. While simple, the extension above to forests, rather than
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trees, is of interest in its own right and has already been of use in a related con-
text [29].

Our algorithmic motivation for proving Lemma 1.3 actually arises from the fol-
lowing network design problem, which is “dual” to the forest packing problem. In the
Steiner forest problem (also called the generalized Steiner problem) we are given an
edge-weighted undirected graph G = (V, E,w) and a set of pairs s1t1, Sata, .. ., Sete.
The goal is to find a minimum cost subgraph H of G such that, for 1 <i < /¢, s; and
t; are connected in H. This problem has been studied intensively, with some of the
most general outcomes appearing in [21, 25]. Ultimately we seek results for packing
more general classes of subgraphs, not just forests, in connection with network design
arising from certain supermodular set functions. We outline this more general frame-
work in the following subsections and state Theorem 1.5, a strict generalization of the
forest packing lemma, that we prove in this paper.

1.1. Approximate integer decomposition properties. In this article we
work exclusively with the standard cut-based linear programming (LP) relazation for
our network design problems. For e € E there is a variable z. € [0, 1] that indicates
if e is part of the subgraph. We seek to minimize ) wex. subject to the constraint
that for each S C V that separates some pair s;t;, x(6(S)) > 1 . The primal-dual
2-approximation algorithms of Agrawal, Klein, and Ravi [3] and later Goemans and
Williamson [20] show that the integrality gap of the cut-based LP is (2 —2/h), where
h is the number of distinct terminals. We obtain an alternative proof of a gap of 2,
and of more interest, we show the relaxation (and our 2-approximation algorithm)
has a stronger “integrality” property. We can describe this now.

Let « be a solution to the LP, and let k£ be an integer such that kx is integral.
Consider the graph G’ = (V, E’) obtained by taking 2kx. copies of each edge e € E.
By Lemma 1.3 it follows that E’ contains k edge-disjoint forests, each of which is a
feasible solution to the Steiner forest problem. Thus the vector 2kx dominates a sum
of k integral solutions. By convexity it follows that one of the k forests is of cost no
more than 2w - z, in other words twice the cost of the original LP solution.

The above approach yields a 2-approximation algorithm with a stronger property
than those from earlier methods in the following sense: it is always the case that if
the integrality gap of an LP relaxation for a minimization problem is o > 1, then
ax dominates a convex (i.e., fractional) combination of integral solutions. However,
in general, it does not follow that akz, when kx is integral, dominates a sum (i.e.,
integral combination) of k integral solutions. If this stronger property holds for any
feasible fractional solution z, we say the relaxation has the a-approzimate integer
decomposition property; more precisely, this is a property of the polyhedron consisting
of feasible solutions for the relaxation. If & = 1, the above decomposition property
is called the integer decomposition property (IDP) and is well-studied, cf. [34]. Baum
and Trotter [5, 6] show, for instance, that a matrix A is totally unimodular if and
only if {z : Az < b,z > 0} has the IDP for each integral b. Approximate integer
decomposition for maximization problems, in particular packing problems, can be
defined in a fashion similar to that for minimization problems. For a fractional solution
x, one considers an integral vector kx but seeks a decomposition (or cover) of kx into
at most ak > k integer feasible solutions: kz = Ezti]fj gi- Obviously, one of the g;’s
is an integral solution whose weight (profit) is at least é times that of x.

This decomposition approach is perfectly natural and is often the technique used
in the literature to establish an approximation ratio (the first mention of a connection
to the IDP seems to appear in [10]). Some well-known combinatorial problems have
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an integrality gap equal to their approximation ratio for integer decomposition. For
instance, it is an exercise to show that the natural LP relaxation for the knapsack
problem has the 2-approximate IDP. It is not always obvious, however, when such a
property does hold. In this paper, we ask, for example, whether recently celebrated
2-approximation results of Jain [25] can be extended to have the 2-approximate IDP
(see section 1.2.1).

We believe it is not only worthwhile to make the integer decomposition approach
explicit (including its connections to traditional polyhedral results for IDP) but also
that such stronger decomposition results are potentially important in their own right.
For instance, the results of [10] for packing paths in trees provided the stronger IDP.
These results were subsequently used in [1, 2, 13], where the integer decompositions
corresponded to partitioning pairwise demands so that each class of demands could be
routed with a distinct wavelength in an optical network. In some recent work, Fuku-
naga and Nagamochi [14] applied the approximate integer decomposition methodology
to obtain algorithms for the set connector problem.

Before continuing with our main focus, approximations for network design, we give
another application of integer decompositions, this time to yield an approximation
result due to Goemans and Williamson [20] for the prize-collecting Steiner tree prob-
lem. Namely, we mention that their result can be alternatively derived from a result
of Bang-Jensen, Frank, and Jackson [4] on packing arc-disjoint Steiner arborescences
in directed graphs. We give some details below. In the prize-collecting Steiner tree
problem we are given an undirected edge-weighted graph G = (V, E, ¢) and a root node
r € V. Each node v also has a nonnegative penalty value 7(v). The objective is to find
a tree T' = (V(T'), E(T)) rooted at r that minimizes .. p(r)c(€) + X2, gy () (V).
The first constant factor approximation algorithm for this problem was given in [7]
and subsequently [20], which gave a primal-dual algorithm that finds a tree T' such
that 3 cp(r) cle) + 232, gy () m(v) < 20PT, where OPT is the optimum value of the
natural LP relaxation for the problem. This result has found use in other approxima-
tion algorithms, notably for the k-minimum spanning tree problem [8, 18] and several
others. The result can be obtained from [4] as follows: consider a fractional solution
x to the LP relaxation: x. is the value on edge e and z(v) is the flow from r to v
supported by x. We obtain a directed graph by bidirecting each edge e and placing
a value of z. on both of the resulting arcs. This clearly increases the cost of edges
by a factor of 2. Now we apply Theorem 2.1 in [4] to obtain a convex combination
of arborescences rooted at r in which each v occurs in at least z:(v) arborescences.
Picking the lowest cost arborescence yields the desired result. The remaining details
are left to the interested reader.

1.2. Constrained forest problems and f-connected networks. Goemans
and Williamson [20] obtain 2-approximation algorithms for a large class of network
design problems that they refer to as constrained forest problems; they apply their
primal-dual framework for this. Each of these problems is determined by an integer-
valued function f that for each set S C V gives a requirement value f(.5). (In some
cases, we only require this for sets in a given family F—see section 1.2.1.) A solution
to the connectivity problem modeled by f is a collection of edges A such that at least
[AN§(S)| > f(S) for each S C V. Such a solution will be called f-connected, or an
f-connector. The optimization problem is to find a minimum cost f-connector.

The most general class of functions for which the network design problem is known
to have a constant factor approximation is the set of integer-valued skew supermodu-
lar functions. In establishing this result, Jain [25] introduced a new iterative rounding
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approach to obtain a 2-approximation for such skew supermodular problems, called
Steiner network design problems. As we see in section 1.2.1, many natural (NP-hard
or otherwise) network design problems are modeled as minimum cost f-connector
problems for a skew supermodular function f. In section 5 we discuss a kind of in-
verse problem which we believe deserves further investigation. Given a requirement
function, does it encode a natural class of network design problems? We give sev-
eral results on when {0, 1}-valued requirement functions encode certain connectivity
augmentation design problems.

Jain’s approach, based on the framework designed for submodular flows [12, 31],
requires finding a basic solution to the cut LP relaxation for f-connected subgraphs.
One of our motivations for studying primal rounding methods via a decomposition-
based approach is to find a combinatorial rounding algorithm for the Steiner network
problem. The LP for the Steiner network problem can be solved to any given precision
using efficient combinatorial methods [19], and hence a rounding approach that works
with any feasible primal solution would yield an efficient and combinatorial (2 +
€)-approximation for the problem. A second motivation is to determine whether
the f-connected subgraph relaxation for the much larger class of skew supermodular
functions f possesses the 2-approximate IDP. Our main result, Theorem 1.5, provides
some evidence that this may hold. Theorem 1.5 is a decomposition theorem and
rounding algorithm that applies to some of the more general f-connector problems
studied in [21].

1.2.1. Steiner networks and supermodular functions: Results and ter-
minology. Let G = (V, E) be an undirected graph. A family F of subsets of V is
skew crossing if for each A, B € F, either A— B, B— A€ For ANB,AUB € F
(or both). Let f: F — Z* be an integer-valued function. We call a subgraph H of
G f-connected if for each A € F, we have that [0y (A)] > f(A). The main problem
considered in this paper is that of finding a minimum cost f-connected subgraph for
some interesting classes of functions f that capture natural network design problems.
We present our arguments as though F = P(V'), but one easily verifies that the results
hold even in the case where f’s domain is an arbitrary skew-crossing set family.

We focus on the natural LP relaxation for this problem:

(1) P(G, f) ={z €[0,1]7 : 2(6(A)) > f(A) for each subset A € F}.

The f-connectivity problem asks us to find an integer vector x € P(G, f) which
minimizes w-z = ) . WeTe. The most general class of functions we consider are skew
supermodular functions [16] (also called weakly supermodular in [25]).1 A function f is
skew supermodular if for each pair of sets A, B € F, at least one of the following holds:

1. ANB,AUB € Fand f(A)+ f(B) < f(ANnB) + f(AUB),
2.A-B,B-—AcFand f(A)+ f(B) < f(B—A) + f(A— B).

The class of {0, 1} skew supermodular f-connectivity problems captures a variety
of well-known combinatorial problems, many of which are outlined in the survey [21].
Let us reconsider a few special cases of this problem.

First if f(A) = 1 for every proper subset A of V, then this coincides with the
minimum spanning tree problem. Given a set of terminals T C V if we define f by
F(A) = 1if Asplits T (that is, ANT # ) and ANT # T'), then f captures the NP-hard

L Andras Frank, at a workshop in Bertinoro, Italy, has convinced the authors that skew super-
modular is a more appropriate name than weakly supermodular. He indicates that David Shmoys
suggested this name in 1993.
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Steiner tree problem. If f(A) = 1 for each A = {v} and f(A) = 0 otherwise, then
this is just the minimum node cover problem. Another case of interest is obtained as
follows: consider some pair of nodes s,t € V. Define the following skew supermodular
function f: f(A) = 1 for each subset A that separates s and ¢. Then f-connectivity
is just asking for the minimum cost s-¢ path. Suppose that the maximum number of
edge-disjoint s-t paths is k, and define f(A) =1 for each A that induces a minimum
s-t cut. Then the f-connectivity problem asks for a minimum cost subset of edges
which, if we duplicate, increases the connectivity from k to k 4+ 1. Call this the s-t
connectivity augmentation problem.

For certain classes of functions f, the polytope P(G, f) has integral extreme
points. Examples include the shortest path and connectivity augmentation functions
defined above. This is not always the case, for instance, the NP-hard Steiner tree
problem. It was shown in [36] that for all {0,1} skew supermodular functions the
optimum over P(G, f) is no better than a factor of 2 from the optimum over the integer
hull of P(G, f). This is proved via a primal-dual algorithm. Jain [25] generalized
this to all integer-valued skew supermodular functions using a different approach of
iterative rounding.

Encouraged by the decomposition results for Steiner forests in Lemma 1.3, we
conjecture the following.

CONJECTURE 1.4. For any graph G and {0,1} skew supermodular f, if v €
P(G, f) and kx is integral, then there exist f-connected integer vectors hyi, ha, ... hy
such that 2kx > ", h;.

Indeed, we know of no reason why the statement could not hold for general
integer-valued skew supermodular functions. Although we are unable to prove the
above conjecture, our main theorem establishes some positive evidence by establishing
it for certain classes of skew supermodular functions introduced by Goemans and
Williamson [20]. We introduce these classes now.

A {0, 1} function is termed maximal if the following holds: for any disjoint subsets
A,BCV, f(AU B) < max(f(A), f(B)). Equivalently, if A and B are disjoint, then
f(A) = f(B) = 0 implies that f(AU B) = 0. A function is symmetric if for each
AcCV, f(A) = f(V—-A). A {0,1} function is proper if it is maximal, symmetric,
and f(V) = 0. Another special class of skew supermodular functions are downward
monotone functions which satisfy the property that f(A4) > f(B) if A C B.

THEOREM 1.5. For any graph G and {0, 1} function f where f is either proper or
downward monotone, if x € P(G, f) and kx is integral, then there exist f-connected
integer vectors hi, ho, ..., hy such that 2kx > Ele hi. Moreover, given x we may
find this decomposition in polynomial time.

Note that the above theorem generalizes Lemma 1.3 since the Steiner forest prob-
lem is defined by a {0, 1} proper function. One consequence of the above theorem is a
new polynomial-time 2-approximation algorithm for the minimum cost f-connectivity
problem for proper and downward monotone functions. These new algorithms are pri-
marily of theoretical interest since their running times are not competitive with the
primal-dual algorithms [20].

In addition to proving Lemma 1.3 and Theorem 1.5, we consider the general
question of whether f-connectivity problems arise in a natural way from other basic
problems. We show in section 5 that this is indeed the case for intersecting supermod-
ular functions: they are effectively disguised connectivity augmentation problems in
both the directed and undirected settings. We also characterize the (supermodular)
functions which define Steiner forest problems. Negative results are given, however,
for proper and skew supermodular functions.
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1.2.2. Further related work. Our approach to finding approximate integer
decompositions for {0,1} network design problems amounts to packing forests, each
satisfying some connectivity requirement. As alluded to earlier, one special case of
this has been considered more extensively in the literature. Given an undirected
graph G = (V, E) and set S C V of terminals, find the maximum number of edge-
disjoint S-Steiner trees in G. This problem has been studied from a polyhedral and
computational point of view by Grotschel, Martin, and Weismantel [23, 24]. Their
motivating application is routing in VLSI design. Kriesell [27] considered the same
problem and conjectured that Corollary 1.2 generalizes to packing Steiner trees; that
is, if a set S is 2k—edge-connected in G, then there are k edge-disjoint S-Steiner trees
in G. As mentioned earlier, if G is Eulerian, Frank, Kiraly, and Kriesell [17] show
that if S is 2k—edge-connected in G, then there are such disjoint Steiner trees. They
also showed that if S is 3k—edge-connected and V — S is a stable set, then there are
k edge-disjoint S-Steiner trees. In general graphs, Jain, Mahdian, and Salvatipour
[26] showed that if S is k-edge-connected, then there are gk edge-disjoint Steiner
trees, where a5 — ﬁ. They also give results on fractional packing of Steiner trees,
and for this case they use the duality between fractional packing and approximation
algorithms [9, 22]. As observed in [27, 26], the known results had not guaranteed two
edge-disjoint Steiner trees even if S is k—edge-connected for any k = o(n). Recently,
Lau [28] showed that a k-packing of Steiner trees can in fact be found if S is 26k-
edge-connected, in the process obtaining the first constant factor approximation for
integer packing of Steiner trees. In [29] Lau extended his ideas to the Steiner forest
packing problem; given node pairs s1t1, .. ., Sgt¢ such that Ag(s;t;) > 32k for 1 <i < ¢
then there are k edge-disjoint forests such that each s;t; is connected in each of the k
forests. This extension was partly motivated by our work in this paper.

2. Preliminaries. The central tool used in this article is that of splitting off
edges. We state Mader’s splitting-off theorem, that was conjectured earlier by Lovasz
[30].

THEOREM 2.1 (Mader [32]). Let G = (V U {s}, E) be an undirected multigraph,
where s has positive even degree and s is not incident with a cut edge of G. Then s
has two neighbors u and v such that the graph G’ obtained from G by replacing su
and sv by wv satisfies Aa/(z,y) = Ag(z,y) for all z,y € V \ {s}.

In this paper we apply the above splitting-off theorem only for Eulerian graphs
which do not have cut edges.

The following claim is standard.

CrLamM 2.2.  In an undirected graph G, for any three distinct nodes u,v,w,
Ac(u, w) > min{Ag(u, v), Ag(v,w)}.

Let S be a proper subset of the nodes V' of an undirected graph G = (V, E). We
denote by 6(5) the cut induced by S, that is, the subset of edges E with exactly one
endpoint in S. For an edge vector z : E — R and E' C FE, we use z(E’) to denote the
quantity » o x.. We say that a set X splits a set S, or is S-splitting, if both X N.S
and X — S are nonempty. We call a set of nodes S an f-island, if for any u,v € S,
Ac(u,v) > €. From Claim 2.2, it follows that the maximal ¢-islands are unique and
disjoint. We also refer to S as being a fractional ¢-island with respect to some edge
vector x*, if for any S-splitting set U, z*(§(U)) > <.

For a vector z € R¥ we call a subset S’ deficient if 2(5(S”)) < 1 and strongly
deficient if the inequality is strict. Each strongly deficient set S’ evidently satisfies
f(8")y =0if x € P(G, f). We make repeated use of the following lemma. It follows
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directly from the well-known fact that the function §(S) is posi-modular,? a definition
introduced by Nagamochi and Ibaraki [33].

LEMMA 2.3. For any graph G and x € Rf, if 8" and S" are deficient sets, then
at least one of S — S"” and 8" — S’ is deficient.

We need another simple lemma given below.

LEMMA 2.4. Let x* € Rf, and let K be a minimal deficient set. Then K induces
a fractional 1-island in the graph obtained by contracting V — K to a single node.

Proof. Let G* be obtained by contracting V — K to a single node v*. If K is
not a fractional 1-island, then there exists some proper subset Y’ of K such that
2*(0g+(Y")) = 2*(6c(Y")) < 1. But then Y’ is strongly deficient for z*, contradicting
the minimality of K. o

We give a corollary of Theorem 1.1 that is useful in subsequent sections.

LEMMA 2.5. Let G = (V' U {s}, E) be such that V' is a 2k-island in G and
|0c(s)| < 2k. Then the subgraph induced by V' has k edge-disjoint spanning trees.

Proof. Let G’ = (V', E’) be the subgraph of G induced by V'. Let V1, V,,...,V;
be any partition of V/ in G'. We claim that Ele [0c: (Vi) > 2k€—10G(s)| > 2kL— 2k,
and hence the number of edges in G’ between nodes of the partition is at least k(£ —1).
Thus G’ satisfies the conditions of Theorem 1.1 and hence has k edge-disjoint spanning
trees. d

3. Packing Steiner forests. In this section we prove Lemma 1.3. Recall that
we are given a Eulerian graph G = (V, E) and pairs of nodes s1t1, sata, . .., Skl such
that A\g(si,t;) > 2k for 1 < i < k. Given G let S1,S55,...,S5, be the maximal 2k-
islands. In fact we prove the following theorem, which can be easily seen to imply
Lemma 1.3.

THEOREM 3.1. Let G = (V, E) be a Eulerian graph, and let S1,Sa,...,S}) be the
maximal 2k-islands in G. Then, there are k edge-disjoint forests Fy, Fa,..., F in G
such that, in each Fj and for 1 <i < h, S; is contained in a connected component of
F;. Given G and k, there is an algorithm that finds such a packing in time polynomial
inn and logk.

Proof. The proof is by induction on |V|. The base cases with |V| < 2 are easy to
see. We call v € V' a Steiner node if v is a singleton island; otherwise it is a terminal.
We reduce the problem to basic instances, defined as instances in which U;S; = V and
|S;| > 2 for 1 < i < h; in other words there are no Steiner nodes. We get rid of Steiner
nodes by splitting off the edges incident to them. Let s be a Steiner node. Since G
is Eulerian, d(s) is even. From Theorem 2.1, there are edges su and sv incident to
s such that su and sv can be split off without affecting the connectivity of any pair
of nodes not involving s. A solution to the problem on the modified graph can be
extended to a solution to the original graph by replacing the edge uv by the path
consisting of su and sv. Hence we can repeatedly split off edges incident to s until
the degree of s is 0. We can eliminate all Steiner nodes in this way and reduce the
graph G to a basic instance.

We now assume that G is basic. If h = 1, then, from Corollary 1.2, we can find
k spanning trees, and hence we are done. If h > 2, we may apply Lemma 2.4 to find
a set K := U1 S; such that |dg(K)| < 2k, and contracting V' — K to a single node s
produces a graph G’, where K is a 2k-island. To see this, simply choose z* to be the
edge vector with weight 1/2k on each edge and let K be a minimal deficient set. Since
a deficient set cannot be S;-splitting for any 4, the S;’s inside K form our set I. From

2A function f: F — Ry is posi-modular if f(A)+ f(B) > f(A—B)+ f(B—A) forall A, B € F.
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Lemma 2.5 we can find k edge-disjoint trees in G[K] that do not use edges incident
to s. Let these be T1, Ty, ..., Tx. Now consider the graph G” obtained by shrinking
K in G to a single node s’. We can apply induction to G” since it has fewer nodes
than G (note that |K| > 2 since the instance is basic) to obtain edge-disjoint forests
F{,Fy,...,F} such that each S;, i € I, is contained in a single component in each of
the forests. We obtain the desired forests I, F5, ..., F in GG as follows: to obtain F;
we replace s’ in F] with T;. Note that two nodes v and v which are connected in F
via s’ will still be connected in F; since T; is spanning on K. This finishes the proof
of the existence of the packing.

We now prove that the packing can be found in time polynomial in n and log k. To
obtain a time polynomial in log k, the decomposition will be output in a compact form
with some forests having integer multiplicities. We assume without loss of generality
that the number of edges between any two pairs of nodes is at most 2k; otherwise
we can remove some edges without violating the connectivity requirements. We first
observe that the maximum number of edge-disjoint spanning trees in a given graph
can be found in time polynomial in n and log k (see Chapter 51, pp. 887-889 in [35]).
Therefore the trees in Lemma 2.5 can found in poly(n,log k). There are two nontrivial
steps to verify polynomial running time.

First, we describe the implementation of the splitting-off step. Let v be a Steiner
node with v1,ve,...,vp as its neighbors, and let ¢(v,v;) be the number of edges be-
tween v and v;. Let ¢(v) = ), ¢(v,v;). From Theorem 2.1, we can split off edges
incident to v in pairs. After we split off all of the edges incident to v, let ¢/(v;, v;) be
the number of new edges generated between v; and v;. It follows that there exists a
pair v;,v; such that ¢/(v;,v;) > max{1,c(v)/(2¢?)}. For each pair v;,v; we can find
the maximum number of edges that can be split off at v to generate edges between v;
and v; by doing a binary search in the range [0, min{c(v,v;), c(v,v;)}]. Each search
involves finding the edge connectivity between all pairs of nodes to ensure that the
splitting-off is legal. Thus we can split off edges incident to v in time polynomial in
log k and n.

Second, when G is basic and h > 2, we need to find a minimal set K such that
|0c(K)| < 2k. This can be accomplished in polynomial time as follows: we compute
the minimum-cut value Ag(s,t) for all node pairs s,t. Pick an arbitrary node u, and
let K be the set of all nodes v such that Ag(u,v) > 2k. From Claim 2.2 it is easy to
see that K is a desired minimal set.

This finishes the proof. |

4. Skew supermodular functions. We have essentially examined the problem
of decomposing fractional solutions into forests so that any pair of nodes that were
originally 1-connected (fractionally) are in the same component of each forest. In
this section we study this scheme for more general {0, 1} connectivity functions. In
particular we prove Theorem 1.5 on proper and downward monotone functions. For
skew supermodular functions we describe a reduction to a special case.

4.1. Proper functions. First, we ask if for such a function f, the following
property holds: for any fractional solution to the f-conmector problem, a feasible
integral solution is obtained from any forest which includes each maximal island in a
common component. We show that that this holds true for the class of {0,1} proper
set functions. Hence Lemma 1.3 will imply our desired decomposition result.

THEOREM 4.1. Let z be a fractional f-connector of G = (V, E), and let X1,..., X,
be the maximal islands for x. If f is proper, then any forest F' that includes each X;
in a common connected component is an f-connector of G.
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Proof. Note that the X;’s partition V(G). It is sufficient to show that f(S) =1
implies that there is an ¢ such that S splits X;. Suppose this is not the case, and let
S be a minimal such set. We may write S as the union of some of the islands. But
then by repeated application of the maximality of f, at least one of these islands X
must have f(X) = 1. Thus by the minimality of S, and without loss of generality,
we may assume that S = X;. Now, since X; is an island, we have that for each node
u € X1 and each node v € X7, there is a subset S’ C V — X containing v such that
x(6(5")) < 1; that is, S’ is strongly deficient. Note that f(S’) = 0.

By Lemma 2.3, if S/, 8" are strongly deficient sets and S’ — S§”, 8" — 8" # 0,
then at least one of 8" —S”,S” — S’ is strongly deficient. Now to complete the proof,
consider a minimal collection of strongly deficient sets that covers V — S; such a
collection exists since each v € V — S is in a strongly deficient set, as we argued above
(recall that S = X;). If for some pair S’,S” we have that S’ — §”,S” — 5’, and
S’ NS are nonempty, then by our previous claim, we may assume that S’ — S” is
also deficient. We may thus replace S’ by the set S’ —S”. Clearly we may repeat this
process until the family of strongly deficient sets we obtain is a partition of V — S. By
our assumption, f(S) = 1 and therefore, by symmetricity, f(V —.S) = 1. However,
V — S is the disjoint union of sets S’ with f(S’) = 0 contradicting the maximality of
f. This contradiction completes the proof. O

Given a fractional solution x € P(G, f) let k be such that kz is integral. It
follows that 2kx induces a Fulerian graph G*. It is easy to see that the 1-islands
induced by z in G are precisely the 2k-islands in G*. From Theorem 3.1 in G*
there are k edge-disjoint forests Fi, Fy, ..., Fy such that each island is connected in
each of the F;. Thus, from Theorem 4.1 each F; is an f-connector. This establishes
that 2kx can be decomposed into k f-connectors when f is a {0, 1} proper function.
Further the decomposition can be found in time polynomial in n and log k as shown
by Theorem 3.1.

4.2. Downward monotone functions. We now consider the the class of {0,1}
downward monotone functions. Recall that f downward monotone implies that
f(A) > f(B) if A ¢ B. Whereas for proper functions, one can apply the forest-
packing lemma directly, one must do more work in the case of downward monotone
functions. We identify a collection of subproblems for which we apply Lemma 2.5,
and collectively these will give the desired f-connected forests. Thus the second claim
of Theorem 1.5 will be established.

Let z € P(G, f) and k be an integer such that kz is integral. We denote by G*
the Eulerian graph induced by 2kx. Suppose there is no strongly deficient set in G.
Then G* has k edge-disjoint spanning trees, each of which is an f-connector, and we
are done. Otherwise let & = {S51,55...,S5¢} be the minimal strongly deficient sets
for x. Lemma 2.3 implies that these sets are disjoint. Let S =V '\ (U;S;). Note that
S could be the empty set. We observe some useful properties. First, (i) for each 4,
f(S;) = 0 since S; is strongly deficient; (ii) by downward monotonicity, f(Y) = 0 if
S; CY. Second, if S # (), for any Y C S, Y is not strictly deficient; otherwise S would
not be the set of all minimal strongly deficient sets. Each S; is a minimal strongly
deficient set, and hence from Lemmas 2.4 and 2.5 we can find %k disjoint spanning
trees in G*[S;]. Let 7; = {T;1,...,T; 1} be such a set of trees.

First, we consider the case that S = (), which implies that Si,Ss,..., S, par-
tition V. Let F = {Fi,...,Fy} be a collection of k edge-disjoint forests, where
F; = U_|E(T; ;). Tt is easy to see that the Fj are edge-disjoint. Each Fj is an
f-connector by remark (ii) above.
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We now consider the case that S # (). Obtain a graph G5 from G* by shrinking
V'\ S into a single node s. We note that S is a 2k-island in G since neither S nor any
of its subsets was strongly deficient in G. Therefore, for any u,v € S, Agx (u,v) > 2k.
Let the degree of s in G} be 2k’. Since S was not strongly deficient in G, k' > k. We
modify G7 by splitting off edges incident to s, while preserving the connectivity of
nodes in S, until the degree of s is exactly 2k. Let G5 be the resulting graph. Using
Lemma 2.5, there are k edge-disjoint spanning trees T1,...,Ty in G5[S]. Let E; be
the edge set of T;. An edge e € E; is either an original edge from G* or is an edge
that is obtained by splitting off two edges ¢/, e” incident to s. In the latter case, note
that e’ and e’ also correspond to original edges from G* (possibly incident to distinct
nodes in U;S;). Let E! C E(G*) be the set of edges obtained from E; by replacing
each split-off edge e € E; by its corresponding edges ¢’, ¢”. We remark that E/ may no
longer induce a connected component on S in the graph G*. Finally, let e1,es, ..., ek
be the edges incident to s in G5. We also associate these edges to their original edges
in G*. We obtain the desired edge-disjoint f-connectors F = {Fi,...,Fg} in G*
as follows: we set F; = {e;} U E} U (Uj_, E(Ti;)). By construction, the Fj’s are
edge-disjoint.

LEMMA 4.2. For 1 < j <k, F}; is an f-connector.

Proof. Recall that we already argued the the case when S = (). Let Y C V such
that f(Y) = 1. Note that Y cannot contain S; for any 4; otherwise f(Y) = 0 since
f(S;) = 0. In addition, if Y “properly” intersects some S;, then there is an edge
e € E(T; ;) that crosses Y (that is, e € dg+(Y")). Therefore it is sufficient to restrict
attention to those sets Y such that ¥ C S. Note that e¢; € dg+(S) and e; € Fj;
therefore e; satisfies S if f(S) = 1. So suppose Y is a proper subset of S. Since T} is
a spanning tree in G5[S], there is an edge e in E; that crosses Y. If e is an edge from
G*, then e € E; and hence e € F};. Otherwise e is an edge obtained in the splitting-off
process at s, and we replace e by ¢’ and €’ in E}. Since at least one of ¢’ and e”
crosses Y in G*, the proof is complete. O

We have thus shown the existence of k f-connectors in G*. It remains to argue
that these f-connectors can be found in time polynomial in n and log k. We observe
that the only nontrivial parts in converting the existence proof into an algorithmic
proof are the splitting-off step at s when S # () and the use of Lemma 2.5 to find
spanning trees in G*[S;], for 1 < ¢ < ¢, and in G5[S]. The arguments in the proof
of Theorem 3.1 can be used identically here to implement these steps in polynomial
time.

4.3. Reduction to split instances. We now consider arbitrary {0,1} skew
supermodular functions. We describe a reduction of Conjecture 1.4 to a restricted
class of instances that we next define. Given a function f and a feasible fractional
solution x € P(G, f), we call (G, f,x) a split instance if x € P(G, f) and there is a
subset of nodes S C V such that

e for every A C S, z(6(A)) > 1; that is, no subset of S is strongly deficient for
z, and
o for every ACV\S, f(A)=0.

THEOREM 4.3. Let f be a {0,1} skew supermodular function and x € P(G, f)
such that kx is integral. Given G,x, and k there is an algorithm that obtains a
split instance (G', f',x") such that (i) f' is a {0,1} skew supermodular function, (ii)
' € P(G', f"), and (iil) 2kx is decomposable into k f-connectors in G if 2kx’ is
decomposable into k f'-connectors in G'.

If the following conjecture is true, so is Conjecture 1.4.
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CONJECTURE 4.4. Let f be {0,1} skew supermodular function on G, and let
(G, f,x) induce a split instance. If kx is integral, then there exist f-connected integer
vectors hy, ha, ..., hy such that 2kx >3 h;.

Theorem 4.3 does not claim polynomial time for the algorithm that reduces a
given instance to a split instance. We give a sketch of the proof of Theorem 4.3.
In the following we assume that kz is integral and that G* is the Eulerian graph
induced by 2kz and G. The algorithm starts with an instance (G, f,z) and loops
between two phases: a deficient shrinking phase and a 1-set shrinking phase; and it
stops once it produces a split instance. In each phase some nonsingleton subset of
nodes Y is shrunk into a single node y, and the connectivity function is modified for
the new graph G’. More precisely if f is the original function on G, then we obtain
a new {0,1} function f’ in G’ as follows: (i) f'({y}) = f(Y), (ii) for A C V' \ Y,
f'(A) = f(A), and (iii) for AD Y, f'({y} U(A\Y)) = f(A). Tt is easy to check that
for any Y the function f’ is skew supermodular if f is.

Deficient shrinking phase. This phase is similar to the first step in section 4.2
on downward monotone functions. Given x € P(G, f), let S = {S1,52...,S¢} be the
minimal strongly deficient sets for . Lemma 2.3 implies that these sets are disjoint.
Also, by Lemma 2.5, for 1 < i < ¢, we can find k edge-disjoint spanning trees in the
graph G = G*[S;].

Consider the problem G’, f’ obtained by shrinking each S; to a single node and
defining f’ as the restriction of f to this modified graph. Let ' C F(G’) and E” be
a subset of edges from the Gj’s. If E’ induces an f’-connected graph in the smaller
instance G, f’, and E” includes a spanning tree for each G, then E' U E” induces
an f-connected subgraph of G. Moreover, for any f-connected subgraph H = (V, F)
we must have that F'N F(G’) induces an f’-connected graph in G’. Thus it suffices
to focus on the reduced problem for G’, f’.

If we have a split instance after the deficit shrinking step, we stop the procedure.
Otherwise, we continue to a 1-set shrinking phase.

1-set shrinking phase. Such a phase begins with an instance G’, f’ and a
subset S (possibly empty and arising from the deficient shrinking phase in G, f, with
S = V(G) — (U;5;)) such that (1) for each v € V(G’') — S, we have f’(v) = 0 and
(2) for each subset Y C S, Y is not strongly deficient. Note that property (1) follows
from our processing because f(S;) = 0 since S; was strongly deficient and property
(2) follows since otherwise Y would contain a minimal strongly deficient set and so
would have been one of the S;’s in the deficient shrinking phase.

We now consider any minimal A C V(G’) \ S such that f'(A) = 1. One notes
that the minimal sets of this type are node-disjoint by the skew supermodularity of
f’. Also, if there is no such set, we have a split instance, and so we would have
terminated. Note also that since each v € V(G’) \ S satisfies f'(v) = 0, we have that
|A] > 2 for any such A. We shrink A without affecting feasibility, since any set ¥’
with f/(Y) = 1 is not A-splitting; for otherwise skew supermodularity would imply
a proper subset of A has f’(A) = 1 which contradicts the minimality of A. Since
|A| > 2, such a shrinking operation reduces the size of the graph. Upon completion
of 1-set shrinking we return to deficient shrinking.

This completes the description of the procedure. After every pair of phases, we
shrink some nontrivial subset, and hence after at most n iterations, we obtain a split
instance. This finishes the proof sketch of Theorem 4.3.

Recall that we do not claim that the the reduction to a split instance can be
carried out in polynomial time. The bottleneck is the step in the 1-set reduc-
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tion that requires us to find a minimal set A C V(G') \ S such that
Py =1.

5. What problem is f-connectivity solving? Given a specific {0,1} skew
supermodular function f, it is natural to ask, What problem is f-connectivity solving?
In other words, in which cases does a supermodular function f encode a problem of
more natural combinatorial significance? To make this more concrete, we give several
(positive and negative) results related to this agenda.

In each case, we may have a graph G = (V, E') and a skew supermodular function
f. Our goal is to build minimum cost networks that are f-connected. Throughout
this section, we refer to a set A as good if f(A) = 1; otherwise it is bad. As usual,
G represents where we may install capacity, and so it does not play a central role in
this section. Instead, we explore whether certain functions f can be interpreted as a
connectivity problem in a related network.

5.1. Connectivity augmentation. We first examine two instances where f-
connectivity is encoding a connectivity augmentation problem in some graph G’ =
(V, E'), in other words, where there is a set of edges E’ and list of terminal pairs s;t;
for some i = 1,2...,k such that a set S C V is good (for f) if and only if §g/(S) = 0
and there is some pair with s; € S;t; € S.

5.1.1. Fully supermodular functions. A set function f is fully supermodular
if (V)= f(0) = 0and for all A, B we have f(A)+ f(B) < f(AUB)+f(ANB). Again,
more generally these may be defined in terms of an intersecting family F of sets, but we
only present our arguments in the case where all sets are in the family. Such functions
can be used to generalize a number of classical results in combinatorial optimization,
including Edmonds’ disjoint branching theorem [11]. This was proposed by Frank [15],
who actually introduced the more general class of intersecting supermodular functions
that only require the inequality above for A, B, with nonempty intersection.

We show that f-connectivity network design for {0,1} fully supermodular func-
tions f arises as a connectivity augmentation problem. Namely, we show that there
is a set of “auxiliary” edges E’ such that in the graph G’ = (V, E’) there exist nodes
s,t and f(S) =1 if and only if S is {s, t}-splitting and 6(S) N £’ = (). Thus finding a
minimum cost f-connected graph is the same as finding a minimum cost set ' C E
of edges such that s,t¢ are connected in G[V, E’ U F|. We mention that the following
argument applies equally well to directed network design problems.

For any pair of good sets A, B we have AN B, AU B are also good. Thus there is
a unique maximal good set M and a unique minimal good set S. Since M # V, S # (),
we may choose an arbitrary s € S and an arbitrary ¢ € V — M, and so every good set
contains s and not t.

We obtain the above claimed G’ by starting with the empty graph G° := (V,0)
and adding edges in an iterative fashion. In iteration i we find a single edge e’ that
we add to G* to obtain G**!. This is done as follows: suppose there is some bad set
X such that dg:(X) = 0. (If there is no such set, then G’ = G*, and the procedure
terminates.) We show that there is some edge e’ = uv such that u € X,v ¢ X, and ¢’
is not contained in any 6(A) for a good set A. Suppose this is not the case; then for
each u € X and v € V — X there is a good set Y, containing v but not v. Fix some
v € V — X, and note that Y (v) = UyexYuy is also good and X C Y (v). But then
Myev—xY (v) is also good, and evidently this set is just X, a contradiction. Thus
after some £ < (g) iterations, we have that in G* a cut 65« (A) is empty if and only if
it is good. A similar proof yields an analogous result for directed graphs.
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5.1.2. Fastidious functions. Recall that a {0,1} proper function f is a sym-
metric set function f : V' — {0,1} such that f(A U B) < max{f(A), f(B)}. In the
next section, we see that not all proper functions arise from connectivity augmenta-
tion. In this section we consider a subclass of proper functions that arise from Steiner
forest problems. A symmetric function is fastidious if no good set is the union of bad
sets. (For proper functions, no good set is the disjoint union of bad sets.) We show
that fastidious functions are precisely those that encode Steiner forest problems. One
direction is clear: a Steiner forest problem obviously gives rise to a fastidious function.
We now show the converse.

Given a fastidious f, we define a graph H = (V, E(H)), where

E(H) = {uv : every {u,v}-splitting set S is good (that is, f(S) =1)}.

Let S1, 55, ..., be the connected components of H. We now claim that a set X is
good according to f if and only if it splits some S;, which would give us the desired
result. Suppose this is not the case, and let X be a minimal good set such that
0 (X) = 0. That is, for any u € X and v € V — X, there is a bad set Y, such that
u € Yy, and v € Y,,,. Consider two cases. Suppose first that for some pair such a set
exists with X — Y, nonempty. Then, since f is proper, either X — Y, or Y, N X
is good. By minimality of X, there is some edge zw of H with z € X — Y, and
w € Yy, N X. But any such edge must lie in dy(Y,,), contradicting the fact that
f(Yuw) = 0.

In the second case, for every pair uv with u € X,v € V' \ X, we have X C Yy,.
But then the (V — Y,,)’s are a collection of bad sets whose union is the good set
V — X, a contradiction.

5.2. Skew supermodular functions and embedded connectivity. We have
seen several cases of supermodular functions encoding an underlying (or hidden) con-
nectivity problem. We cannot expect to be as lucky for general skew supermodular
functions. Consider the node cover problem that arises from the skew supermodu-
lar function f : V — {0,1}, where a set S is good if and only if S is a singleton.
One may deduce that there is no graph G’ = (V, E’) for which f encodes a con-
nectivity augmentation problem on G’. However, we may cast the problem in this
form if we embed it in a larger graph and allow higher connectivity requirements:
take H = (V + s,{sv : v € V}). Consider the problem of adding edges E” to H
so that each node v is 2-edge-connected to s in H + E”. The good sets for f now
correspond precisely to the “deficit cuts” for this 2-connectivity problem. In general,
we may define an embedded connectivity problem as consisting of a pair of graphs
G=(V,E),H = (V',E"), with V. C V’; £ node pairs s1t1,..., sgts, where s;,t; € V'
for each i; and integers k; for ¢ = 1,2...,¢. For such an instance, we call a subset
S C V' a target set if for some i, S is {s;, ¢; }-splitting, and |dg(S)| < k;, the target
connectivity for s;,t;. The following is easily shown.

FacT 5.1. Any embedded connectivity problem gives rise to a skew supermodular
function.

We believe that analyzing which functions encode embedded connectivity prob-
lems is a potentially fruitful direction for further study. Such embedding problems
would seem, however, of limited use unless the size of H’ is polynomially bounded
in G (and somehow f). The focus should thus be on p-bounded problems, where in
addition |V'| < p(|V]), for some polynomial p.

6. Conclusions. We have shown how splitting off, combined with Theorem 1.1,
yields decomposition and rounding algorithms for a large class of 0-1 network design
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problems. Several open problems remain. First, it would be interesting to resolve Con-
jecture 1.4. If the decomposition algorithm can be generalized to integer-valued skew
supermodular functions, it would yield an alternative algorithm to that of Jain [25]. It
would also yield a combinatorial rounding algorithm for the Steiner network problem.
Second, the inverse f-connectivity questions raised in section 5 are of interest in their
own right and may also prove useful in resolving Conjecture 1.4.
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INTEGRALITY GAPS OF SEMIDEFINITE PROGRAMS FOR
VERTEX COVER AND RELATIONS TO ¢; EMBEDDABILITY OF
NEGATIVE TYPE METRICS*
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Abstract. We study various semidefinite programming (SDP) formulations for VERTEX COVER
by adding different constraints to the standard formulation. We show that VERTEX COVER cannot
be approximated better than 2 — O(\/log logn/logn) even when we add the so-called pentagonal
inequality constraints to the standard SDP formulation, and thus almost meet the best upper bound
known due to Karakostas [Proceedings of the 32nd International Colloquium on Automata, Lan-
guages and Programming, 2005], of 2 — Q(y/1/logn). We further show the surprising fact that by
strengthening the SDP with the (intractable) requirement that the metric interpretation of the solu-
tion embeds into ¢; with no distortion, we get an exact relaxation (integrality gap is 1), and on the
other hand, if the solution is arbitrarily close to being ¢1 embeddable, the integrality gap is 2 — o(1).
Finally, inspired by the above findings, we use ideas from the integrality gap construction of Charikar
[SODA °02: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, Philadelphia, 2002, pp. 616-620] to provide a family of simple examples for negative type
metrics that cannot be embedded into #1 with distortion better than 8/7 — e. To this end we prove
a new isoperimetric inequality for the hypercube.
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1. Introduction. A VERTEX COVER in a graph G = (V, E) is a set S C V such
that every edge e € E intersects S in at least one endpoint. Denote by vc(G) the
size of the minimum vertex cover of G. It is well known that the minimum vertex
cover problem has a 2-approximation algorithm, and it is widely believed that for every
constant € > 0, there is no (2—e¢)-approximation algorithm for this problem. Currently
the best-known hardness result for this problem, based on the PCP theorem, shows
that 1.36-approximation is NP-hard [10]. If we were to assume the Unique Games
Conjecture [19], the problem would be essentially settled as 2 — (1) would then be
NP-hard [20].

In [15], Goemans and Williamson introduced semidefinite programming (SDP)
as a tool for obtaining approximation algorithms. Since then semidefinite program-
ming has become an important technique, and for many problems the best-known
approximation algorithms are obtained by solving an SDP relaxation of them.

The best-known algorithms for VERTEX COVER compete in “how big is the little
oh” in the 2—o0(1) factor. The best two are in fact based on SDP relaxations: Halperin
[16] gives a (2 — Q(loglog A/log A)) approximation where A is the maximal degree
of the graph while Karakostas obtains a (2 — Q(1/+y/logn)) approximation [18]. As
we later show, our lower bound almost meets the latter upper bound even in this
resolution of the little oh.
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The standard way to formulate the VERTEX COVER problem as a quadratic in-
teger program is the following:

Min o (1 + 2ow;)/2
st (@i —xo)(z; —20) =0 VijeFE,
:L'ié{—].,].} VZE{O}U‘/,

where the set of the vertices i for which x; = xg corresponds to the vertex cover. Re-
laxing this integer program to a semidefinite program, the scalar variable x; becomes
a vector v; and we get

Min (1 +vov;)/2
(]_) s.t. (Vi — Vo) : (Vj - VO) =0 Vij ek,
[vil =1 Vie{0juV.

Kleinberg and Goemans [22] proved that SDP (1) has an integrality gap of 2 — o(1).
Specifically, given e > 0 they construct a graph G. for which ve(G.) is at least
(2 — €) times larger than the solution to SDP (1). They also suggested the following
strengthening of SDP (1) and left its integrality gap as an open question:

Min . (1+vovi)/2

@) st (vi—vo)-(v;—vo)=0 VijeFkE,
(Vvi—vi)-(vj—vE) >0 Vi,5,ke{0}UV,
[lvill =1 Vie{0}UV.

Charikar [6] answered this question by showing that the same graph G but a different
vector solution satisfies SDP (2)! and gives rise to an integrality gap of 2 — o(1) as
before. The following is an equivalent formulation to SDP (2):

Min 37y 1= [lvo = vil[?/4

() s.t. HVi—V0||z+ [v; —V0||22: ||Vi_Vj||22 Vij € E,
Vi = vill® + (v = vil* > [lvi — vjl| Vi, j, ke {0}UV,
vil = 1 Vie{0}uV.

Viewing SDPs as relaxations over £;. The above reformulation reveals a
connection to metric spaces. The second constraint in SDP (3) says that || -||? induces
a metric on {v; : ¢ € {0} UV}, while the first says that vq is on the shortest path
between the images of every two neighbors. This suggests a more careful study of
the problem from the metric viewpoint, which is the purpose of this article. Such
connections are also important in the context of the SPARSEST CUT problem, where
the natural SDP relaxation was analyzed in the breakthrough work of Arora, Rao,
and Vazirani [5] and it was shown that its integrality gap is at most O(y/logn). This
later gave rise to some significant progress in the theory of metric spaces [7, 4].

Let f : (X,d) — (X',d') be an embedding of metric space (X,d) into another
metric space (X', d’). The value sup, ¢ x % X SUDP,, e x % is called
the distortion of f. For a metric space (X,d), let ¢1(X,d) denote the minimum
distortion required to embed (X, d) into ¢;. Notice that ¢1(X,d) = 1 if and only if
(X, d) can be embedded isometrically into ¢;, namely, without changing any of the
distances. Consider a vertex cover S and its corresponding solution to SDP (2), i.e.,

1To be more precise, Charikar’s result was about a slightly weaker formulation than (2) but it is
not hard to see that the same construction works for SDP (2) as well.
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v; =1 for every i € SU{0} and v; = —1 for every i ¢ S. The metric defined by || - ||
on this solution (i.e., d(i,5) = ||v; — v;||?) is isometrically embeddable into ¢;. Thus
we can strengthen SDP (2) by allowing any arbitrary list of valid inequalities in ¢; to
be added. The triangle inequality is one type of such constraints. The next natural
inequality of this sort is the pentagonal inequality: A metric space (X, d) is said to
satisfy the pentagonal inequality if for S, T C X of sizes 2 and 3, respectively, it holds
that 37 jer di, ) = 32 jesdisj) + 32, jer d(i, 7). Note that this inequality does
not apply to every metric, but it does hold for those that are /;-embeddable. This
leads to the following natural strengthening of SDP (3):

(4) 2
Min ey 1= Ivo = vil*/4

st [lvi = voll? + [[vj — voll* = ||lvi = v, Vij ek,
diesjer Vi — vi|? > Diges vi— vj[*+ VS, TC{ojuV,
Sijer Vi —vil? |S|=2,[T|=3
lvil| =1 Vie{0juWw

In Theorem 5, we prove that SDP (4) has an integrality gap of 2 — o(1). It is
important to point out that a priori there is no reason to believe that local addition
of inequalities such as these will not improve the integrality gap; indeed in the case
of SPARSEST CUT triangle inequality is necessary to achieve the O(y/logn) bound
mentioned above. It is interesting to note that for SPARSEST CUT, it is not known
how to show a nonconstant integrality gap against pentagonal (or any other k-gonal)
inequalities, although recently a nonconstant integrality gap was shown in [21] and
later in [8], in the presence of the triangle inequalities.?

One can further impose any f¢;-constraint not only for the metric defined by
{v;i i € VU{0}}, but also for the one that comes from {v; :4 € VU{0}} U{—v;:
i € VU{0}}. Triangle inequalities for this extended set result in the constraints
Vi —v;l|? + |[vi — vi||? + ||v; — vk||* < 2. The corresponding tighter SDP is used in
[18] to get an integrality gap of at most 2 — Q(ﬁ) Karakostas [18] asks whether
the integrality gap of this strengthening breaks the “2 — o(1) barrier”: we answer
this negatively in section 4.3. In fact we show that the above upper bound is almost

asymptotically tight, exhibiting integrality gap of 2 — O(y/ 12&lesn)

logn

Integrality gap with respect to £; embeddability. At the extreme, strength-
ening the SDP with ¢;-valid constraints would imply the condition that the metric
defined by || - || on {v; : i € {0} UV}, namely, d(i, j) = ||v; — v;||?, is 1 embeddable.
Doing so leads to the following intractable program:

Min 1 —|lvo— vi||?/4
(5) st |lvi—voll2+ [|vj — vol|® = [[vi — v;)? VijeFE
[lvil] =1 Vie{0}uV
a({viie {0fuVL[-[I?) =1

In [1], it is shown that an SDP formulation of MINIMUM MULTICUT, even with
the constraint that the || - ||? distance over the variables is isometrically embeddable
into ¢4, still has a large integrality gap. Let us next consider the MAX CUT problem,
which is more intimately related to our problem. For this problem it is easy to see

2As Khot and Vishnoi note, and leave as an open problem, it is possible that their example
satisfies some or all k-gonal inequalities.
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that K3, the complete graph on three vertices, exhibits an integrality gap of 8/9. Now
since every metric space on three points is isometrically embeddable into 1, the ¢;
embeddability does not prevent integrality gap of 8/9.3 It is, therefore, tempting to
believe that there is a large integrality gap for SDP (5) as well. Surprisingly, SDP (5)
has no gap at all: we show in Theorem 2 that the value of SDP (5) is exactly the size
of the minimum vertex cover. A consequence of this fact is that any feasible solution
to SDP (2) that surpasses the minimum vertex cover induces an £3 distance which is
not isometrically embeddable into £;. This includes the integrality gap constructions
of Kleinberg and Goemans, and that of Charikar’s for SDPs (2) and (3), respectively.
The construction of Charikar is more interesting in this context as the obtained (3
distance is also a negative type metric, that is, an ¢3 metric that satisfies triangle
inequality. See [9] for background and nomenclature.

In contrast to Theorem 2, we show in Theorem 3 that if we relax the embeddability
constraint in SDP (5) to e;({v; :i € {0} UV}, ||-]|?) <1+ for any constant § > 0,
then the integrality gap may “jump” to 2 — o(1). Compare this with a problem such
as SPARSEST CUT in which an addition of such a constraint immediately implies
integrality gap at most 1+ 6.

Negative type metrics that are not £; embeddable. Negative type metrics
are metrics which are the squares of Euclidean distances of set of points in Euclidean
space. Inspired by Theorem 2, we construct in section 5 a simple negative type metric
space (X, || - |?) that does not embed well into ¢1. Specifically, we get ¢1(X) > & — ¢
for every € > 0. In order to show this we prove a new isoperimetric inequality for the
hypercube @,, = {—1,1}", which we believe is of independent interest. This theorem
generalizes the standard one, and under certain conditions provides better guarantees
for edge expansion.

THEOREM 1 (generalized isoperimetric inequality). For every set S C Q.,

|E(S, 59| = |S](n —log; |S]) + p(9),

where p(S) denotes the number of vertices u € S such that —u € S.

Khot and Vishnoi [21] constructed an example of an n-point negative type metric
that for every 6 > 0 requires distortion at least (loglogn)'/®=% to embed into ¢;.
Krauthgamer and Rabani [23] showed that, in fact, Khot and Vishnoi’s example
requires a distortion of at least (loglogn). Later Devanur, Khot, Saket, and Vishnoi
[8] showed an example with distortion (loglogn) even on average when embedded
into ¢; (we note that our example is also “bad” on average). Although the above
examples require nonconstant distortion to embed into ¢1, we believe that our result is
still interesting because (i) our construction is much simpler than the ones in [8, 21, 23];
in comparison, showing that triangle inequality holds requires a lot of technical work in
[8, 21, 23], whereas in our construction it is immediate that (ii) very few examples are
known of negative type metrics that do not embed isometrically into ¢;, and any such
example reveals some underlying structure. Prior to Khot and Vishnoi’s result, the
best-known lower bounds (see [21]) were due to Vempala, 10/9 for a metric obtained
by a computer search, and Goemans, 1.024 for a metric based on the Leech Lattice.
We mention that by [4] every negative type metric embeds into ¢; with distortion

O(y/lognloglogn).

3Notice that an SDP to this problem does not have the auxiliary vector vy (as does SDP (5))
in addition to the vectors that correspond to the vertices of the graph, but even if we add such a
vector, it has no effect on the program, and it could be simply set to identify with one of the other
vectors.
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2. Preliminaries and notation. A vertex cover of a graph G is a set of vertices
that touch all edges. An independent set in G is a set I C V such that no edge e € E
joins two vertices in I. We denote by «(G) the size of the maximum independent
set of G. Vectors are always denoted in bold font (such as v, w, etc.); ||v]| stands
for the Euclidean norm of v, u - v for the inner product of u and v, and u ® v for
their tensor product. Specifically, if v,u € R", u ® v is the vector with coordinates
indexed by ordered pairs (i,j) € [n]? that assumes value u;v; on coordinate (4, ).
Similarly, the tensor product of more than two vectors is defined. It is easy to see
that (u®@v)- (W' ®@v') = (u-u')(v-v'). For two vectors u € R" and v € R™, denote
by (u,v) € R*™™ the vector whose projection to the first n coordinates is u and to
the last m coordinates is v.

Next, we give a few basic definitions and facts about finite metric spaces. As we
have already defined above, we say that a metric space (X, dx ) embeds with distortion
at most D into (Y, dy), if there exists a mapping ¢ : X — Y so that for all a,b € X,
v -dx(a,b) < dy(é(a),d(d)) <D -dx(a,b), for some v > 0. We say that (X,d) is
{1 embeddable if it can be embedded with distortion 1 into R™ equipped with the ¢;
norm. An /3 distance on X is a distance function for which there there are vectors
v, € R™ for every z € X so that d(z,y) = ||[ve — vy ||?. If, in addition, d satisfies
triangle inequality, we say that d is an 2 metric or negative type metric. It is well
known [9] that every ¢; embeddable metric is also a negative type metric.

3. ¢; and integrality gap of SDPs for vertex cover — an “all or nothing”
phenomenon. It is well known that for SPARSEST CUT there is a tight connection
between /1 embeddability and integrality gap. In fact, the integrality gap is bounded
above by the least ¢; distortion of the SDP solution. At the other extreme stand
problems like MAX CuT and MuLTI CUT, where ¢; embeddability does not provide
any strong evidence for small integrality gap. In this section we show that VERTEX
COVER falls somewhere between these two classes of ¢i-integrality gap relationship
witnessing a sharp transition in integrality gap in the following sense: while ¢; em-
beddability implies no integrality gap, allowing a small distortion, say 1.001, does not
prevent an integrality gap of 2 — o(1)!

THEOREM 2. For a graph G = (V, E), the answer to the SDP formulated in SDP
(5) is the size of the minimum vertex cover of G.

Proof. Let d be the metric solution of SDP (5). We know that d is the result of
an /2 unit representation (i.e., it comes from square norms between unit vectors), and
furthermore it is #; embeddable. By cut representations of /; embeddable metrics
(see, e.g., [9]) we can assume that there exist Ay > 0 and f; : {0} UV — {-1,1},
t=1,...,m, such that

(6) Ivi = v5lI* = D Al fel@) = £ ()],

for every i, j € {0} U V. Without loss of generality, we can assume that f;(0) = 1 for
every t. For convenience, we switch to talk about INDEPENDENT SET and its relax-
ation, which is the same as SDP (5) except the objective becomes Max ), v, |[vo —
vi||?/4. Obviously, the theorem follows from showing that this is an exact relaxation.

We argue that (i) I; = {i € V : fi(i) = —1} is a (nonempty) independent set for
every ¢, and (ii) > Ay = 2. Assuming these two statements we get

2 m . m
ZMZZthlAt“ ft(Z)| :Z)‘tlltl <maX|It|§a(G),

i€V eV 4 = 2 telm

and so the relaxation is exact and we are done.
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We now prove the two statements. The first is rather straightforward: For i,j €
Iy, (6) implies that d(i,0) + d(0,4) > d(i,7). It follows that ij cannot be an edge or
it would violate the first condition of the SDP (we may assume that I; is nonempty
since otherwise the fi(-) terms have no contribution in (6)). The second statement is
more surprising and uses the fact that the solution is optimal. The falsity of such a
statement for the problem of MAX CuUT explains the different behavior of the latter
problem with respect to integrality gaps of /1 embeddable solutions. We now describe
the proof.

Let v = (\/A1/2f1(2), ... \/Am/2fm(?),0). From (6) we conclude that ||v} —
VilI? = |lvi — v;]I?; hence there exists a vector w = (w1, wp, ..., wmi1) € R™ and
a linear isometry T on span{v} + w : 0 <4 < n} such that

vi=T (Vi +w).

Since the constraints and the objective function of the SDP are invariant under
linear isometries, without loss of generality we may assume that

/
vi=Vv,+Ww,

for i € V.U {0}. We know that
(7) L= [vill* = [V + wl? —wm+1+2(\Ft £ii) + )

Since || V}||? = ||vp]? = Et-{-l /2, for every i € VU{0}, from (7) we get v(-w = v;-w.
Summing this over all ¢ € V', we have

VIvh-w) =) vi-w= Z (IV| = 2|L]) /Mo /2wy,

i€V

or
lemwt S (VI — 241 /5 B,
t=1
and therefore
5) fjut Tour — 0.

Now (7) and (8) imply that

L LYo UNSW)
(9 max|n| > Z\/At 24(0) + wy) |It|=2( t'Qt'+w§|It|)zZ =
=1 t=1

t
&lm t=1

As we have observed before

i/\ _ g vimvoll” IIVz—VoH2

t=1 i€V

which means (as clearly ), w > a(@)) that the inequalities in (9) must be
tight. This implies w?|I;| = 0, for every 1 <t < m. But since |I;| # 0, we get that
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wy =0 for 1 < ¢ < m. Furthermore by (7) and tightness of the first inequality in (9),
we get that wy,+1 = 0. Hence w = 0, and then from (7) we get the second statement,
ie., Y. A = 2. This concludes the proof. O

Now let § be an arbitrary positive number, and let us relax the last constraint in
SDP (5) to get

Min 3,01 [[vo —vil|?/4
st [lvi = vol* + [lv; — voll* = [[vi — v, Vij € E,
[lvil]| =1 Vie{0tuV,
ci({vi i € {0JUVH|-I?) <1+6.
THEOREM 3. For every € > 0, there is a graph G for which :ggg; > 2 — ¢, where
sd(G) is the solution to the above SDP.
The proof appears in the next section after we describe Charikar’s construction.

4. Integrality gap for stronger semidefinite formulations. In this section
we discuss the integrality gap for stronger semidefinite formulations of vertex cover.
In particular we show that Charikar’s construction satisfies both SDPs (11) and (4).
We start by describing this construction.

4.1. Charikar’s construction. The graphs used in the construction are the
so-called Hamming graphs. These are graphs with vertices {—1,1}", and two vertices
are adjacent if their Hamming distance is exactly an even integer d = yn. A result
of Frankl and Rodl [12] shows that ve(G) > 2™ — (2 — §)™, where 6 > 0 is a constant
depending only on «. In fact, when one considers the exact dependency of § in 7 it
can be shown (see [13]) that as long as v = Q(y/logn/n), any vertex cover comprises
1—0(1/n) fraction of the graph. Kleinberg and Goemans [22] showed that by choosing
a constant v and n sufficiently large, this graph gives an integrality gap of 2 — € for
SDP (1). Charikar [6] showed that in fact G implies the same result for the SDP
formulation in (2) too. To this end he introduced the following solution to SDP (2):

For every u; € {—1,1}", define u} = u;/+/n, so that u} - u}, = 1. Let A =1 — 27,
q(r) = 2% + 2tA\** "1z and define yo = (0,...,0,1), and

1— 2
yi=1/ q(lf u® ... @u, V2t -1, 0 | + Byo,
~—_———

2t times

where § will be determined later. Note that y; is normalized to satisfy ||y;|| = 1.
Moreover y; is defined so that y; - y; takes its minimum value when ij € E, i.e.,

when uj - u} = —X. As is shown in [6], for every € > 0 we may set t = Q(1), 5 =

O(1/t),v = ; to get that (yo—y:)-(yo—y;) = 0 forij € E, while (yo—y:)-(yo—y;) >
0 always.

Now we verify that all the triangle inequalities; i.e., the second constraint of SDP
(2) is satisfied: First note that since every coordinate takes only two different values
for the vectors in {y; : i € V'}, it is easy to see that ¢;({y: : i € V},||-||?) = 1. So
the triangle inequality holds when ¢, 7,k € V. When ¢ = 0 or j = 0, the inequality is
trivial, and it only remains to verify the case that k =0, i.e., (yo —yi) - (Yo —¥;) >

) . 1
0, which was already mentioned above. Now > . . (1 +yo -y:)/2 = %ﬁ V| =

(3 +0(e)) |V|]. In our application, we prefer to set v and € to be Q(\/loil%) and
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since, by the above comment, vc¢(G) = (1 — O(1/n))|V| the integrality gap we get is

_ B loglog |V|
(1-0(1/n))/(1/2+0(€)) =2-0(e) =2-0 <\/ W) :

4.2. Proof of Theorem 3. We show that the negative type metric implied by
Charikar’s solution (after adjusting the parameters appropriately) requires distortion
of at most 1+ . Let y; and u} be defined as in section 4.1. To prove Theorem 3, it
is sufficient to prove that ¢;({y; : i € {0} UV}, | - ]|?) = 1+ o(1). Note that every
coordinate of y; for all i € V' takes at most two different values. It is easy to see that
this implies ¢;({y; : i € V}, [ - [|?) = 1. In fact,

1-6%( 2 2
(10) fiyim Tlf ﬁu; ®...0u], ﬁw\?t*lu;
————

2t times

is an isometry from ({y; :i € V},|| - ||?) to ¢1. For i € V, we have

1-82 (2 o2 2 ., .1 1- 32
i =— 2 [ S x — 4 =2\l —40) = — 2+ 4N .
5l = o (5 % o+ =28 o 0) = I (2 )
Since = O(3), recalling that A = 1 — 2%:7 it is easy to see that for every i € V,

1
T
limy—oo || f(¥:)|l1 = 2. On the other hand, for every i € V

tlim lyi — yoll® = tlim 2—2(y;-yo) = tlim 2—-203=2.
So if we extend f to {y; : ¢ € V. U{0}} by defining f(yo) = 0, we obtain a mapping
from ({y;:i € VU{0}},]-]I?) to ¢1 whose distortion tends to 1 as t goes to infinity.

4.3. Karakostas’ and pentagonal SDP formulations. Karakostas suggests
the following SDP relaxation, which is the result of adding to SDP (3) the triangle
inequalities applied to the set {v;:i € VU{0}}U{-v;:i € VU{0}}.

Min Y,y (1+vovi)/2

st. (vi—vo)-(v;—vg)=0 VijeE
(11) (Vi—Vk)'(Vj—Vk)ZO Vi,j,kev
(Vi-l—Vk)'(Vj—Vk)ZO VijkeV
(vi+ve) - (vj+vi) >0 Vi jkeV
lvil] =1 Vie{0juWV.

THEOREM 4. The integrality gap of SDP (11) is 2 — O(y/loglog |V|/log|V]).

Proof. We show that Charikar’s construction satisfies formulation (11). By [6]
and from the discussion in section 4.1, it follows that all edge constraints and triangle
inequalities of the original points hold. Hence we need only consider triangle inequal-
ities with at least one nonoriginal point. By homogeneity, we may assume that there
is exactly one such point.

Since all coordinates of y; for ¢ > 0 assume only two values with the same absolute
value, it is clear that not only is the metric they induce ¢;, but also taking +y; for
i > 0 gives an f; metric; in particular, all triangle inequalities that involve these
vectors are satisfied. In fact, we may fix our attention to triangles in which +yq is
the middle point. This is since

(£yi — xy;) - (Yo — £y;) = (Fy; — ¥o) - (Fyi — Yo)-
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Consequently, and using symmetry, we are left with checking the nonnegativity
of (yi +yo) - (yj +yo) and (=yi — yo) - (¥; — ¥o)-

(yi+yo) (yj+yo) = 1+yo- (yi+y;)+yiy; > 1+28+58°— (1 — B%) = 28(1+p3) > 0.

Finally, (=yi —yo0) - (y; —Yo) =1+yo- (¥yi—y;j) —¥i'y; =1-yi-y; 20 as y;,y;
are of norm 1. O

By now we know that taking all the ¢; constraints leads to an exact relaxation, but
not a tractable one. Our goal here is to explore the possibility that stepping towards
{1 embeddability while still maintaining computational feasibility would considerably
reduce the integrality gap. A canonical subset of valid inequalities for ¢; metrics is
the so-called Hypermetric inequalities. Metrics that satisfy all these inequalities are
called hypermetrics. Again, taking all these constraints is not feasible, and yet we do
not know whether this may lead to a better integrality gap (notice that we do not
know that Theorem 2 remains true if we replace the £; embeddability constraints with
a hypermetricity constraint). See [9] for a related discussion about hypermetrics. We
instead consider the effect of adding a small number of such constraints. The simplest
hypermetric inequalities beside triangle inequalities are the pentagonal inequalities.
These constraints consider two sets of points of size 2 and 3, and require that the sum
of the distances between points in different sets is at least the sum of the distances
within sets. Formally, let S,T C X, |S| = 2,|T| = 3, and then we have the inequality
ZiES,jET d(i,j) > Zm.es d(i,7) + Zi,jET d(i,7). To appreciate this inequality it is
useful to describe where it fails. Consider the graph metric of K3 3. Here, the LHS of
the inequality is 6 and the RHS is 8; hence K> 3 violates the pentagonal inequality. In
the following theorem we show that this strengthening past the triangle inequalities
fails to reduce the integrality gap significantly.

THEOREM 5. The integrality gap of SDP (4) is 2 — O(;/loglog|V|/log|V]).

Proof. We note that in order to satisfy the triangle inequalities, the conditions
that should be satisfied by the “tensoring-polynomial” used in the construction (“g”
in the notation of the previous subsection) are rather modest. Essentially we needed
that ¢'(—X) = 0, ¢(—\)/q(1) approaches —1, and that ¢””(—\) > 0. For the pentagonal
inequalities we need to require more properties from ¢, namely that it is convex on its
entire domain and that its derivative satisfies certain linear conditions, all of which
turn out to be true.

We show that the metric space used in Charikar’s construction is a feasible so-
lution. By ignoring yo the space defined by d(i,j) = |ly; — y;||? is £1 embeddable.
Therefore, the only ¢;-valid inequalities that may be violated are ones containing
yo. Hence, we wish to consider a pentagonal inequality containing yo and four other
vectors, denoted by yi1,y2,y3,y4. Assume first that the partition of the five points
in the inequality puts yg together with two other points; then, using the fact that
d(0,1) = d(0,2) = d(0, 3) = d(0,4) and triangle inequality we get that such an inequal-
ity must hold. It remains to consider a partition of the form ({y1,¥y2,¥s}, {y4,¥o}),
and show that

d(1,2)+d(1,3)+d(2,3)+d(0,4) < d(1,4)+d(2,4)+d(3,4) +d(0,1) +d(0,2) +d(0,3).

As the vectors are of unit norm, it is clear that d(0,i) = 2 — 28 for all i > 0
and that d(i,j) = 2 — 2y;y;. Recall that every y; is associated with a {—1,1} vector
u; and with its normalized multiple u}. Also, it is simple to check that y; - y; =
B% + (1 = B%)q(u} - uf)/q(1) where g(z) = 2" + 2A*'"'z. After substituting the
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distances as functions of the normalized vectors, our goal will then be to show

2q
1+

—~

1)

(12) E = q(u]-u))+g(u]-uj)+g(us-uj)—g(u)-u})—q(us-uy) —g(us-uy) > —

Q.

The rest of the proof analyzes the minima of the function E and ensures that
(12) is satisfied at those minima. We first partition the coordinates of the original
hypercube into four sets according to the values assumed by ui, us, and us. We may
assume that in any coordinate at most one of these get the value 1 (otherwise multiply
the values of the coordinate by —1). We get four sets, Py for the coordinates in which
all three vectors assume value —1, and Py, P», P3 for the coordinates in which exactly
uj, Us, ug, respectively, assumes value 1.

We now consider uy. We argue that without loss of generality, we may assume
that uy is “pure” on each of the Py, P;, P>, P3 at a minimum of F; in other words it
is either all 1 or all —1 on each one of Py, Py, P», Ps.

PROPOSITION 1. If there is a violating configuration, then there is one in which
uy is either all 1 or all —1 on each one of Py, P1, Ps, Ps.

Proof. Assume for the sake of contradiction that there are w coordinates in Py
on which uy assumes value —1, and that 0 < w < |Py|. Let uj (similarly uj)
be identical to uy except we replace one 1 in Py by —1 (replace one —1 in Py by
1). We show that replacing uy by uj{ or by u,; we decrease the expression E. Let
pi=w;-uy, p; =u-(uf), and p; =u}-(u;) for i =1,2,3. Notice that the above
replacement changes only the negative terms in (12) so our goal now is to show that

SF L alp) < max{Y7_, a(p}), X0, a(py)}. But

3

3 3 + = 3 + =
max {Z 4y, Zq(pn} 23 ) taw) 5, <7%> =>"alv).

i=1 =1

where the last inequality is using the (strict) convexity of g. This of course applies to
Py, P>, and Pj5 in precisely the same manner. O

For Py, we can in fact say something stronger than we do for Py, Ps, Ps:

PROPOSITION 2. If there is a violating configuration, then there is one in which
wy has all the Py coordinates set to —1.

The above characterizations significantly limit the type of configurations we need
to check. Proposition 1 was based solely on the (strict) convexity of q. Proposition 2
is more involved and uses more properties of the polynomial ¢q. If ¢ was a monotone
increasing function it would be obvious, but of course the whole point behind ¢ is that
it brings to minimum some intermediate value (—\) and hence cannot be increasing.
We postpone the proof of Proposition 2 till the end of the section, and we will now
continue our analysis assuming the proposition.

The cases that are left are characterized by whether uy is 1 or —1 on each of
P1, Py, P3. By symmetry all we really need to know is £(us) = |[{¢ : ugis 1 on P }|.
If £(ug) = 1 it means that uy is the same as one of uy, ug, or uy; hence the pentagonal
inequality reduces to the triangle inequality, which we already know is valid. If £(uy) =
3, it is easy to see that uju) = ujuj, and likewise upu) = ujuf and ujul, = ujus;
hence F is 0 for these cases, which means that (12) is satisfied.

We are left with the cases {(u4) € {0,2}.

Case 1: &(uy) = 0. Let @ = 2|Pi|,y = 2|P,|, and z = 2|Ps]. Notice that
x4y +z=2(|Pi| + |P2| + |P3]) <2, as these sets are disjointed. Now, think of

E=ql-(z+y)+q(l—(z+2)+q(l - (y+2) —q(l —2)—q(l-y)—q(l-=2)
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as a function from R? to R. We will show that E achieves its minimum at points
where either z,y or z are zero. Assume that 0 <z <y < 2.

Consider the function ¢g(§) = E(x — 6,y + J,2). It is easy to see that ¢'(0) =
¢ (1—(z+2))—¢' (1—(y+2))—¢ (1—2)+¢ (1—y). We will prove that ¢’(8) < 0 for every
0 € [0,z]. This, by the mean value theorem, implies that F(0,z + vy, 2) < E(x,y, 2),
and hence we may assume that = 0. This means that y; = y4 which reduces to the
triangle inequality on yo,¥y2,¥s.

Note that in ¢’(0), the two arguments in the terms with positive signs have
the same average as the arguments in the terms with negative signs, namely, p =
1—(z+y+2)/2. We now have ¢'(0) = ¢'(n+b) —q'(n+5) —q'(p—5) +q'(p =),
where b = (x —y +2)/2,s = (—z + y + z)/2. After calculations:

g'(0) =2t [(n+ 0>+ (u—=0)>"" = (u+ )" = (u—s)*""]

20—=1\ o100
4ti§;€n( ; >u (" —s").
Observe that g > 0. Since z < y, we get that s > b > 0. This means that
g'(0) < 0. Tt can be easily checked that the same argument holds if we replace z,y
by x — § and y + §. Hence ¢'(6) < 0 for every § € [0,x], and we are done.
Case 2: £(uy) = 2. The expression for F is now

E=q(1-(z+y)+q(l—(r+2)+ql - (y+2))—q(l—2)
—q(l-y)—q(l = (z+y+2))

Although E(x,y, z) is different than in Case 1, the important observation is that if
we consider again the function ¢(6) = E(x— 4§,y +4, z), then the derivative ¢’() is the
same as in Case 1, and hence the same analysis shows that E(0,z+vy,z) < E(z,y, 2).
But if z = 0, then y5 identifies with y4 and the inequality reduces to the triangle
inequality on yg,y1,¥3. ad

To complete the proof, it remains to prove Proposition 2.

Proof of Proposition 2. Fix a configuration for uj, us,us and as before let x =
2|Py|, y = 2|Ps|, z = 2|Ps|, and w = 2|Py|, where w > 0. Consider a vector uy that
has all —1’s in Py. Let H; = %H(ui, uy), where H(u;,uy) is the Hamming distance
from uy to u;, i = 1,2, 3. It suffices to show that replacing the Py part of uy with 1’s
(which means adding w to each H;) does not decrease the LHS of (12), i.e.,

q(1 — Hy)+q(1—Hz) +q(1 — Hs) > q(1 - (Hy +w)) +q(1 — (Hz +w))

(13) gl — (Hs +w)).

Because of the convexity of g, the cases that we need to consider are characterized
by whether uy is 1 or —1 on each of Py, P», P;. By symmetry there are four cases to
check, corresponding to the different values of {(uyg). In most of these cases, we use
the following argument: consider the function g(§) = ¢(1 — (Hy1 +6)) + ¢(1 — (H2 +
9)) +q(1 — (Hs +9)), where 6 € [0,w]. Let a; =1 — (H; + ). The derivative ¢'(d) is

9'(0) = —(d'(a1) + ¢ (a2) + ¢'(az)) = =2t (a7 ™" + a3~ + a3’ +3X7).

If we show that the derivative is negative for any ¢ € [0,w], that would imply that
g(0) > g(w) and hence we are done since we have a more violating configuration if we
do not add w to the Hamming distances.

Case 1: £(uy) = 0. In this case Hy =z, Hy =y, and Hs = z. Note that x +y +
z 4w = 2. Hence, if H; > 1 for some 4, say for Hy, then Ho +§ <1 and H3 + 6 < 1.
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This implies that as > 0 and ag > 0. Thus
g6 < — (143371 <1-3/e<0

since A1 = (1 — 5;)%~! > 1/e. Hence we are done.

Therefore, we can assume that H; < 1 for all 4, i.e., 1 — H; > 0. We now compare
the LHS and RHS of (13). In particular we claim that each term ¢(1 — H;) is at least
as big as the corresponding term ¢(1 — (H; + w)). This is because of the form of
the function gq. Note that ¢ is increasing in [0, 1] and also that the value of ¢ at any
point = € [0, 1] is greater than the value of ¢ at any point y € [—1,0). Therefore since
1 — H; > 0 and since we only subtract w from each point, it follows that (13) holds.

Case 2: £(ug) = 1. Assume without loss of generality that uy is 1 on P; only. In
this case, H; =0, Ho = x + y, and H3 = x + z. The LHS of inequality (13) is now

LHS =q(1) +q(1 = (z +y)) +¢(1 — (z + 2)),
whereas the RHS is
RHS =q(1-w)+q(1 - (z+y+w))+ql - (z+2+w))
=q(1—w)+q(-1+2)+q(-1+y)

by using the fact that x +y +w =2 — 2.

Let oy =1, ag = 1—(x+y), and ag = 1—(x+2). The LHS is the sum of the values
of ¢ at these points whereas the RHS is the sum of the values of ¢ after shifting each
point «a; to the left by w. Let o = o; —w. The difference A = ¢(1) — ¢(1 —w) will al-
ways be positive since ¢(1) is the highest value that ¢ achieves in [—1, 1]. Therefore, to
show that (13) holds it is enough to show that the potential gain in ¢ from shifting as
and a3 is at most A. Suppose not and consider such a configuration. This means that
either g(a4) > q(az) or g(af) > q(as) or both. We consider the case that both points
achieve a higher value after being shifted. The same arguments apply if we have only
one point that improves its value. Hence we assume that g(ay) > g(az) and g(aj) >
q(as3). Before we proceed, we state some properties of ¢, which can be easily verified.

CLAM 1. The function q is decreasing in [—1,—A] and increasing in [—X\,1].
Furthermore, for any 2 points x,y such that © € [-1,2 — 3\ and y > 2 — 3, q(y) >
q(z).

Using the above claim, we argue about the location of ay and asg. If ay >
2—3X > —), then g(az2) > ¢(cy). Thus both ay and as must belong to [—1,2—3)\] =
[-1,-1+ %] We will restrict further the location of as and asg by making some
more observations about g. The interval [—1,2 — 3] is the union of A; = [—1, —A]
and Az = [—A,2 — 3], and we know ¢ is decreasing in A; and increasing in A;. We
claim that ag, a3 should belong to A4; in the worst possible violation of (13). To see
this, suppose as € Ay and ag € Ay (the case with an € Ag, ag € A7 can be handled
similarly). We know that ¢ is the sum of a linear function and the function 2%!. Hence
when we shift the 3 points to the left, the difference ¢(1) — ¢(1 — w) is at least as big
as a positive term that is linear in w. This difference has to be counterbalanced by
the differences g(a) — g(a2) and q(a) — q(a3). However, the form of ¢ ensures that
there is a point (a2 € Ay such that g(a2) = ¢(¢2) and ditto for as. By considering the
configuration where as = (o and a3 = (3 we will have the same contribution from the
terms g(ay) — q(ae) and ¢(af) — ¢(as3) and at the same time a smaller w.

Therefore, we may assume that w < |A;] = % By substituting the value of g,
(13) is equivalent to showing that

1—(1—w)? +6tA2" 1w > (g —w)? — a3’ + (a3 — w)? — a2t
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It is easy to see that the difference 1 — (1 — w)?! is greater than or equal to the
difference (g — w)?* — a3! by convexity. Hence it suffices to show

6N w > (a3 — w)?t — a2t

We know that the LHS is at least (6t/e)w. The difference (a3 — w)?* — a3! can be
estimated using the derivatives of %' and turns out to be at most (6¢/e)w. Therefore,
no configuration in this case can violate (13).

Case 3: £(uy) = 2. Assume that uy is 1 on Py and P,. Now Hy =y, Hy = z,
and Hs =z + y + z. The LHS and RHS of (13) are

LHS =q(1 -y) +q(1—2)+q(1— (z+y+2)),
RHS =q(1 - (y +w)) +q(1 = (z +w)) + q(-1).

As in case 2, let ay = 1 —y, ao = 1 — =z, and a3 = 1 — (x + y + z) be the
three points before shifting by w. First note that either ¢y > 0 or ap > 0. This
comes from the constraint that  + y + z + w = 2. Assume that a; > 0. Hence
g(ar) —qla; —w) > 0. If ag & [—1,2 — 3)], then we would be done because by the
above claim, ¢(ag) — g(az —w) > 0. Therefore, the only way that (13) can be violated
is if the nonlinear term (a3 — w)? — a2 can compensate for the loss for the other
terms. It can be easily checked that this cannot happen. Hence we may assume that
both ag, a3 € [-1,2 — 3)] and that g(az — w) > g(az), ¢(ag — w) > q(ag). The rest
of the analysis is based on arguments similar to case 2 and we omit it.

Case 4: £(uy) = 3. This case can be handled using similar arguments to cases 2
and 3.

5. Lower bound for embedding negative type metrics into ¢;. While, in
view of Theorem 3, Charikar’s metric does not supply an example that is far from
{1, we may still (partly motivated by Theorem 2) utilize the idea of “tensoring the
cube” and then adding some more points in order to achieve negative type metrics
that are not ¢; embeddable. Our starting point is an isoperimetric inequality on the
cube that generalizes the standard one. Such a setting is also relevant in [21, 23]
where harmonic analysis tools are used to bound expansion; these tools are unlikely
to be applicable to our case where the interest and improvements lie in the constants.

THEOREM 1 (generalized isoperimetric inequality). For every set S C @y,

[E(S, 5] = |5](n —log, [S]) + p(9),

where p(S) denotes the number of vertices u € S such that —u € S.

Proof. We use induction on n. Divide @, into two sets V3 = {u : u; = 1}
and V.3 = {u:u = —1}. Let S; = SNV and S_; = SNV_;. Now, E(S,S5°)
is the disjoint union of E(S1,V1 \ S1), E(S—1,V_1\ S_1), and E(S;,V_1 \ S_1) U
E(S_1,V1\ S1). Define the operator ~ on Q,, to be the projection onto the last n — 1
coordinates, so, for example, 3\1 ={u€Q,_1:(1,u) € S1}. It is easy to observe that
|E(S1, Vo1 \ S.1)UE(S-1,V1\ S1)| = |§IA§_\1| Without loss of generality assume
that |S1| > |S—1]. We argue that

-1

(14) p(S)+ 151 = 1521l <p (1) +p (551) +[S1855.

To prove (14), for every u € {—1,1}""!, we show that the contribution of (1,u),
(1,—u), (=1,u), and (—1,—u) to the right-hand side of (14) is at least as large as
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their contribution to the left-hand side: This is trivial if the contribution of these
four vectors to p(S) is not more than their contribution to p(Si), and p(S_1). We
therefore assume that the contribution of the four vectors to p(S), p(S1), and p(S_;)
are 2, 0, and 0, respectively. Then without loss of generality we may assume that
(1,u),(—1,—u) € S and (1,—u),(—1,u) ¢ S, and in this case the contribution to
both sides is 2. By induction hypothesis and (14) we get

|B(S,5°) = |E(S1, Qn-1\ S1)| + | B(5_1,Qn-1\ 5_1)| + [S1AS 1|
> |51|(n —1—log, [S1]) +p(S1) + [S-1](n — 1 —log, [S—1])
+ p( 1)+ |S1A5 1]
> |5|n— IS — (151]logg [S1] + [S-1]logy [S—1]) + p(S1)
+p(5-1) +[S1A8
> |S|n — (2[S-1] + [S1]logy [S1] + [S—1|logy |S—1]) + p(S5).
Now the lemma follows from the fact that 2|S_1| + |S1|logs |S1| + |S-1]logy |S-1] <
|S|logy | S|, which can be obtained from the assumption [S_;| < |Si| using easy
calculus. a
We call a set S C Q,, symmetric if —u € S whenever u € S. Note that p(S) = |S]

for symmetric sets S.
COROLLARY 1. For every symmetric set S C Q,

|E(S; 59) = |S](n —log, [S| +1).

The corollary above implies the following Poincaré inequality.

PROPOSITION 3 (Poincaré inequality for the cube and an additional point).

Let f : Qn U{0} — R™ satisfy that f(u) = f(—u) for every u € Q,, and let
In2

o =

482
Then the following Poincaré inequality holds.
1 4
on 7 (dat+1/2) o =@k <a Y lIf(@-f H1+ > If)=f0)[h

u,veQny uveFE uEQn

Proof. 1t is enough to prove the above inequality for f : V' — {0,1}. We may
assume without loss of generality that f(0) = 0. Associating S with {u: f(u) =1},
the inequality of the proposition reduces to

138

(15) o7

= (4o +1/2)[S]]5°) < o] E(S, 59)| +5]/2,

where S is a symmetric set, owing to the condition f(u) = f(—u). From the isoperi-
metric inequality of Theorem 1 we have that |E(S, S¢)| > |S|(z+1) for x = n—log, | 5]
and so

( alz+1)+1/2

) ISlIse] < alE(s. 59+ Isi/2

Lemma 1 below shows that %&m attains its minimum in [1,00) at = 3 when

(y(xlté)j;l/ 2> 4“;;;/ 2 and Inequality (15) is proven. O
LEMMA 1. The function f(x) = % fora = % attains its minimum

n [1,00] at x = 3.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



192 HAMED HATAMI, AVNER MAGEN, AND EVANGELOS MARKAKIS

Proof. The derivative of f is

a(l—277) - (a(z+1)+1/2)In(2)27"
(1—2-7)2 '

It is easy to see that f/(3) =0, f(1) =4a+1 > 8/7, and lim,_,~ f(z) = co. So it is
sufficient to show that

gx)=1-2""—(a(z+1)+1/2)In(2)27"
is an increasing function in the interval [1,00). To show this note that
g () =2""In(2) (1 — a+azxln(2) + aln(2)) >0

for x > 1. a

THEOREM 6. Let V ={u:u € Q,}U{0}, where @ = u®u. Then for the semi-
metric space X = (V, || - |?) we have c1(X) > & — ¢, for every € > 0 and sufficiently
large n.

Proof. We start with an informal description of the proof. The heart of the
argument is showing that the cuts that participate in a supposedly good ¢; embedding
of X cannot be balanced on one hand, and cannot be imbalanced on the other. First
notice that the average distance in X is almost double that of the distance between 0
and any other point (achieving this in a cube structure without violating the triangle
inequality was where the tensor operation came in handy). For a cut metric on
the points of X, such a relation occurs only for very imbalanced cuts; hence the
representation of balanced cuts in a low distortion embedding cannot be large. On the
other hand, comparing the (overall) average distance to the average distance between
neighboring points in the cube shows that any good embedding must use cuts with
very small edge expansion, and such cuts in the cube must be balanced (the same
argument says that one must use the dimension cuts when embedding the hamming
cube into ¢; with low distortion). The fact that only symmetric cuts participate in
the ¢; embedding (or else the distortion becomes infinite due to the tensor operation)
enables us to use the stronger isoperimetric inequality which leads to the current lower
bound. We now proceed to the proof.

We may view X as a distance function with points in u € @, U{0}, and d(u,v) =
|[a—v||%2. We first notice that X is indeed a metric space, i.e., that triangle inequalities
are satisfied: notice that X \ {0} is a subset of {—1, 1}”2. Therefore, the square
Euclidean distances is the same (upto a constant) as their ¢; distance. Hence, the
only triangle inequality we need to check is [0 — v||? < ||[a — 0||? + ||v — 0]|?, which
is implied by the fact that @ - v = (u-v)? is always nonnegative.

For every u,v € Q,, we have d(u,0) = [[a|> = a-a = (u-u)? = n? and
d(u,v) = |[[a—v|]? = [|a|?+||v]?—2(a-V) = 2n%2 —2(u-v)2. In particular, if uv € E
we have d(u,v) = 2n? — 2(n — 2)? = 8(n — 1). We next notice that

2
Z d(u,v) = 2" x2n?—2 Z(u-v)Q =22y on?—2 Z (Z uivi> = 22"(2n%—2n),
u,veQ, u,v u,v i

as »., ., Wivil,;v; is 22" when i = j, and 0 otherwise.
Let f be a nonexpanding embedding of X into £;. Notice that

d(u,—u) = 2n? — 2(u-v)* =0,
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and so any embedding with finite distortion must satisfy f(u) = f(—u). Therefore
inequality (3) can be used and we get that

Y ver IF@) = FO)h + 5 Xueq, 1@ = fO)1 _ 4
16 > _—(4 1/2).
1o IS v, 1F@) — @], > zlat+1/2)
On the other hand,
a ZUVEE d(u7 V) + % EUEQ.,L d(u’ O) o 8a(n2 - n) + n? . 1
(17) 5o duy) = T = p(at1/2)+o(l).

The discrepancy between (16) and (17) shows that for every e > 0 and for suffi-
ciently large n, the required distortion of V' into ¢; is at least 8/7 — e. d

6. Discussion. We have considered the metric characterization of SDP relax-
ations of VERTEX COVER and specifically related the amount of “/; information”
that is enforced with the resulting integrality gap. We showed that no integrality gap
exists in the most powerful extreme, i.e., when ¢; embeddability of the solution is
enforced. We further demonstrated that integrality gap is not a continuous function
of the possible distortion that is allowed, as it jumps from 1 to 2 — o(1) when the
allowed distortion changes from 1 to 1+ §.

The natural extensions of these results are as follows: (i) check whether the
addition of more k-gonal inequalities (something that can be done efficiently for any
finite number of such inequalities) can reduce the integrality gap or prove otherwise.
It is interesting to note that related questions are discussed in the context of LP
relaxations of VERTEX COVER and MAX CUT in [3, 11]; (ii) use the nonembeddability
construction and technique in section 5 to find negative type metrics that incur more
significant distortion when embedded into ¢;. After the completion of this work, point
(i) above was partially resolved [14], as it was shown that the integrality gap remains
2—0(1) even when all k-gonal inequalities with k& = O(y/logn/loglogn) are added to
the standard SDP. It is also important to understand our results in the context of the
Lift and Project system defined by Lovasz and Schrijver [24], specifically the one that
uses positive semidefinite constraints, called LSy (see [2] for relevant discussion). A
new result of Georgiou, Magen, Pitassi, and Tourlakis [13] shows that after a super-
constant number of rounds of LS, the integrality gap is still 2—o(1). Such results are
related, however incomparable in general, to Theorem 5. For more related discussion
we refer the reader to [14].

Last, we suggest looking at connections of ¢;-embeddability and integrality gaps
for other NP-hard problems. Under certain circumstances, such connections may be
used to convert hardness results of combinatorial problems into hardness results of
approximating ¢; distortion.

Acknowledgment. Special thanks to George Karakostas for very valuable dis-
cussions.

REFERENCES

[1] A. AcARWAL, M. CHARIKAR, K. MAKARYCHEV, AND Y. MAKARYCHEV, O(y/logn) approzima-
tion algorithms for min UnCut, min 2CNF deletion, and directed cut problems, in STOC
’05: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing,
ACM Press, New York, 2005, pp. 573-581.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



194

2]

[3]
[4]

[6]

[7]

(8]

[9]
[10]

18]

[19]
[20]

21]

[22]
[23]

[24]

HAMED HATAMI, AVNER MAGEN, AND EVANGELOS MARKAKIS

S. ARORA, M. ALEKHNOVICH, AND I. TOURLAKIS, Towards strong nonapproximability results
in the Lovdsz-Schrijver hierarchy, in STOC ’05: Proceedings of the Thirty-seventh Annual
ACM Symposium on Theory of Computing, ACM, New York, 2005.

S. ARORA, B. BoLrLoBAS, L. LovAsz, AND I. TOURLAKIS, Proving integrality gaps without
knowing the linear program, Theory Comput., 2 (2006), pp. 19-51.

S. ARORA, J. LEE, AND A. NAOR, Euclidean distortion and the sparsest cut [extended abstract],
in STOC’05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
ACM, New York, 2005, pp. 553-562.

S. ARORA, S. RAO, AND U. VAZIRANI, Ezpander flows, geometric embeddings and graph par-
titioning, in Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
ACM, New York, 2004, pp. 222-231 (electronic).

M. CHARIKAR, On semidefinite programming relaxations for graph coloring and vertex cover,
in SODA ’02: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, 2002, pp. 616-620.

S. CHAWLA, A. GUPTA, AND H. RACKE, Embeddings of negative-type metrics and an improved
approximation to genmeralized sparsest cut, in SODA ’05: Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, Vancouver, BC, Canada, 2005,
pp. 102-111.

N. DEVANUR, S. KHOT, R. SAKET, AND N. VISHNOI, Integrality gaps for sparsest cut and
minimum linear arrangement problems, in Proceedings of the Thirty-eighth Annual ACM
Symposium on Theory of Computing, 2006.

M. DEzA AND M. LAURENT, Geometry of Cuts and Metrics, Springer-Verlag, Berlin, 1997.

I. DINUR AND S. SAFRA, On the hardness of approximating minimum vertex-cover, Ann. Math.,
162 (2005), pp. 439-486.

W. FERNANDEZ DE LA VEGA AND C. KENYON-MATHIEU, Linear programming relaxations of
mazcut, in Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms, 2007.

P. FRANKL AND V. RODL, Forbidden intersections, Trans. Amer. Math. Soc., 300 (1987),
pp. 259-286.

K. GEORGIOU, A. MAGEN, T. Prrassi, AND I. TOURLAKIS, Integrality gaps of 2 - o(1) for vertex
cover sdps in the Lovész-Schrijver hierarchy, in FOCS, 2007, pp. 702-712.

K. GEORGIOU, A. MAGEN, AND I. TOURLAKIS, Vertex cover resists SDPs tightened by local
hypermetric inequalities, in Proceedings of the 13th Conference on Integer Programmong
and Combinatorial Optimization (IPCO 2008), pp. 140-153.

M. X. GOEMANS AND D. P. WILLIAMSON, Improved approzimation algorithms for maximum
cut and satisfiability problems using semidefinite programming, J. Assoc. Comput. Mach.,
42 (1995), pp. 1115-1145.

E. HALPERIN, Improved approzimation algorithms for the vertex cover problem in graphs and
hypergraphs, SIAM J. Comput., 31 (2002), pp. 1608-1623.

H. HaTaMmI, A. MAGEN, AND E. MARKAKIS, Integrality gaps of semidefinite programs for vertex
cover and relations to £1 embeddability of negative type metrics, in APPROX-RANDOM,
2007, pp. 164-179.

G. KARAKOSTAS, A better approrimation ratio for the vertex cover problem, in Proceedings of
the Thirty-Second International Colloquium on Automata, Languages and Programming,
2005.

S. KHOT, On the power of unique 2-prover 1-round games, in Proceedings of the Thirty-Fourth
Annual ACM Symposium on Theory of Computing, ACM, New York, 2002, pp. 767-775.

S. KHOT AND O. REGEV, Vertex cover might be hard to approrimate to within 2 — €, in Pro-
ceedings of the 18th IEEE Conference on Computational Complexity, 2003, pp. 379-386.

S. KHOT AND N. VisHNOI, The unique games conjecture, integrality gap for cut problems and
embeddability of negative type metrics into £1, in Proceedings of The 46th Annual Sympo-
sium on Foundations of Computer Science, 2005.

J. KLEINBERG AND M. X. GOEMANS, The Lovdsz theta function and a semidefinite programming
relazation of vertex cover, SIAM J. Discrete Math., 11 (1998), pp. 196-204.

R. KRAUTHGAMER AND Y. RABANI, Improved lower bounds for embeddings into l1, in Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms, 2006.

L. LovAsz AND A. SCHRIJVER, Cones of matrices and set-functions and 0-1 optimization, SIAM
J. Optim., 1 (1991), pp. 166-190.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



SIAM J. DISCRETE MATH. (© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 195-204

DISJOINT COLOR-AVOIDING TRIANGLES*

RAPHAEL YUSTER'

Abstract. A set of pairwise edge-disjoint triangles of an edge-colored K, is r-color avoiding if it
does not contain r monochromatic triangles, each having a different color. Let f(n) be the maximum
integer so that in every edge coloring of K, with r colors, there is a set of fr(n) pairwise edge-disjoint
triangles that is r-color avoiding. We prove that 0.1177n2(1 — o(1)) < f2(n) < 0.1424n2(1 + o(1)).
The proof of the lower bound uses probabilistic arguments, fractional relaxation and some packing
theorems. We also prove that f.(n)/n? < %(1 —0.145""1) 4 o(1). In particular, for every r, if n
is sufficiently large, there are edge colorings of Kj, with r colors so that the removal of any o(n?)
members from any Steiner triple system does not turn it r-color avoiding.

Key words. edge coloring, packing, triangles
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1. Introduction. All graphs considered here are finite, undirected, and simple.
For standard graph-theoretic terminology the reader is referred to [1]. The study of
properties of edge colorings of K, is a central topic of research in Ramsey theory and
extremal graph theory. In this paper a coloring always refers to an edge coloring.

A subgraph of a colored K, is monochromatic if all of its edges are colored with
the same color. A set of pairwise edge-disjoint subgraphs of a colored K, is r-color
avoiding if it does not contain » monochromatic elements, each having a different color.
For an r-coloring C' of K,, and for an integer k > 3, let f, x(C) be the maximum
size of a set of pairwise edge-disjoint copies of K} in K, that is r-color avoiding. Let
fr.k(n) be the minimum possible value of f, ;(C), where C ranges over all r-colorings
of K,,. When k = 3, we denote f, 1 (C) = f(C) and f, x(n) = fr(n). Thus, the value
f2(n) guarantees that in any red-blue coloring of K, we will always have a set of
f2(n) edge-disjoint triangles that either does not contain a blue triangle or else does
not contain a red one. The main result of this paper establishes nontrivial lower and
upper bounds for fa(n).

THEOREM 1.1.

fa(n)  3v5-5
< n?2 < 12

0.1177 — o(1) + o(1).

Notice that (3v/5 —5)/12 < 0.1424. The term o(1) denotes a quantity that tends
to 0 as n — oco. The constant 0.1177 in the lower bound in Theorem 1.1 may be
taken to be (38% — 3%)/12, where 8 = 0.7648.. .. is the smallest root of 2* — 323 + 1.
Multiplying the constants by 600, we obtain that, in terms of covering percentages,
we can always cover more than 70% of the edges with a set of triangles that is 2-color
avoiding, while we cannot, in general, expect to cover more than 86% of the edges
with such a set. The main difficulty in the proof of Theorem 1.1 is in the lower bound.
Our proof for it requires the use of some probabilistic arguments, some known packing
theorems, and the use of fractional relaxation and a connection between it and the

*Received by the editors August 2, 2006; accepted for publication (in revised form) July 28, 2008;
published electronically December 17, 2008.
http://www.siam.org/journals/sidma/23-1/66666.html
fDepartment of Mathematics, University of Haifa, Haifa 31905, Israel (raphy@math.haifa.ac.il).
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integral problem. Closing the gap between the upper and lower bounds in Theorem
1.1 is currently beyond our reach.

The upper bound follows from a general construction. Notice that a (§ — o(1))n?
upper bound for f,.(n) is trivial since every set of pairwise edge-disjoint triangles (we
also use the expression triangle packing) has at most n(n — 1)/6 elements. In fact, it

is well known that f.(n) = (3 — o(1))n? if r is sufficiently large as a function of n, as

Kirkman [9] proved that there are triangle packings with %2(1 —o(1)) triangles. Our
construction, however, shows that no finite number of colors suffices to guarantee an
asymptotic optimal r-color avoiding triangle packing for all n.

THEOREM 1.2. For all r > 2, frn(gn) < (1 =¢"Y 4 o(1), where ¢ = # >
0.145.

We briefly mention three related parameters that have been investigated by several
researchers. Erdds et al. [4] considered the function N(n, k), which is the minimum
number of pairwise edge-disjoint monochromatic K in any 2-coloring of K,. Erdés
conjectured that N(n,3) = n?/124o0(n?). This conjecture is still open. A lower bound
of slightly more than n?/13 is given in [8]. Similarly, let N’(n, k) be the minimum
number of pairwise edge-disjoint monochromatic Ky, all in the same color, in any
2-coloring of K,,. Jacobson (see, e.g., [4]) conjectured that N’(n,3) = n?/20 + o(n?)
(there is a simple example showing this would be the best possible). Again, the result
from [8] immediately implies a lower bound of slightly more than n?/26. For a fixed
graph H and a 2-coloring C of K, let fy(C) be the number of edges that do not
belong to monochromatic copies of H. Now let f(n, H) = maxc fg(C). It is shown
in [7] that if H is a complete graph (or, in fact, any edge-color-critical graph) and n
is sufficiently large, then f(n, H) equals the Turdn number ex(n, H).

The rest of this paper is organized as follows. The proof of the lower bound
in Theorem 1.1 is given in section 2. The proof of the general upper bound yielding
Theorem 1.2 is given in section 3. Notice that the case = 2 of Theorem 1.2 coincides
with the upper bound in Theorem 1.1. In section 4 we give some nontrivial proofs
of the exact value of fa(n) for n < 8. The final section contains some concluding
remarks and open problems.

2. A lower bound for fa(n). The proof of the lower bound in Theorem 1.1
is obtained by combining two different approaches; one approach (which we call the
quadratic approach) is more suitable for colorings where no color is significantly more
frequent than the other, and the second approach (the fractional approach) is more
suitable when one color is significantly more frequent than the other.

For an integer k > 3, a Steiner system S(2,k,n) is a set X of n points, and a
collection of subsets of X of size k (called blocks), such that any 2 points of X are in
exactly one of the blocks. In the case k = 3, we have a Steiner triple system, which
exists if and only if n = 1,3 mod 6. The case k = 4 is known to exist if and only if
n = 1,4 mod 12; see, e.g., [2].

In the proof of the lower bound for Theorem 1.1 we assume that C' is a red-blue
coloring of K,, with a(%) blue edges and (1 — ) (%) red edges, and 1/2 < o < 1. We
will also assume that n = 1 mod 12 as this does not affect the asymptotic results.
Each approach will yield a lower bound for f2(n) in terms of n and a. For each
plausible «, one of these lower bounds will be at least as large as the claimed lower
bound in Theorem 1.1.

2.1. The quadratic approach. For a red-blue coloring C of K,, let ¢(C) be
the number of monochromatic triangles. Let ¢(n,m) be the maximum value of ¢(C)
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ranging over colorings with m blue edges. Clearly, t(n,m) = t(n, (5) — m) = O(n?).
Goodman [5] conjectured the value of ¢(n,m). This conjecture has been proved by
Olpp [10], who determined t(n, m), and also determined at least one coloring with m
blue edges having ¢(n, m) monochromatic triangles.

Before we state Olpp’s result we need to define two graphs. Let u and v be two
integers which satisfy m = (S) + u, where 0 < u < v — 1. Note that for every m > 0,
v and u are uniquely defined. Let Hi(n,m) be the n-vertex graph which is composed
of a clique on v vertices and, if u > 0, a unique vertex outside the clique, which is
connected to exactly u vertices of that clique. (The remaining vertices, if there are
any, are isolated.) Note that H;(n,m) has exactly m edges. Let Ha(n,m) be the
complement of Hi(n, ('2’) — m). Note that Hz(n,m) has exactly m edges. Olpp has
proved the following lemma.

LEMMA 2.1 (see Olpp [10]). Let Cy be the coloring of K, where the edges colored
blue are defined by Hy(n,m). Let Cy be the coloring of K,,, where the edges colored
blue are defined by Ha(n,m). Then t(n,m) = max{t(C1), t(C2)}.

Note that Lemma 2.1 also supplies a formula for ¢(n,m) since t(C) and t(Cs)
can be explicitly computed.

LeEMMA 2.2. If C is a red-blue coloring with m = oz(g) blue edges and o > 0.5,
then

]

n
£(C) = (1 +3a(1 = Va)) - o(n?).
Proof. Let C7 and C3 be the colorings in Lemma 2.1, where m = a(g). By
examining the graphs Hi(n,m) and Ha(n, m) it is easy to verify that

€)= ()1 = 3al1 = V@) - ofu?),
< > (1-3(1—a)(1—-+V1—-a))—o(n?).
>

Since a > 0.5, we have t(C1) > t(C2). Thus, by Lemma 2.1,

(2.1) HC) < t(n,m) = <§> (1 - 3a(1 — va)) — o(n).

Fix a Steiner triple system S(2,3,n). A random permutation 7 of [n] that maps the
vertices of K, to the elements of S(2,3,n) corresponds to a random triangle packing
L, of K, of order n(n — 1)/6. Every triangle is equally likely to appear in L.,
each with probability 1/(n — 2). The expected number of monochromatic triangles
in L, is, therefore, equal to ¢(C)/(n — 2). Fix a 7 for which L, contains at most
t(C)/(n — 2) monochromatic triangles. Thus, there is a packing M C L., of size at
least |L,| —t(C)/(2n — 4) which is 2-color avoiding. By (2.1),

n(n—1)  ¢(C)
6 2n —4

DL (50300 - @) - o)

> 12(1—}—304(1—\/_))—0(712). O

f2(C) >
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2.2. The fractional approach. We start with the definition of our fractional
relaxation. For a red-blue coloring C of K, let 7, be the set of triangles that con-
tain a red edge and let 7, be the set of triangles that contain a blue edge. A frac-
tional blue-avoiding packing is a function v : 7, — [0, 1] satisfying, for each edge e,
Y eerer. V(T) < 1. Similarly, a fractional red-avoiding packing v : 7, — [0, 1] satis-
fies, for each edge e, > ez ¥(T) < 1. The value of v is |v| = 3 p.7 v(T), where
¢ =1 or ¢ = b, depending on whether v is blue-avoiding or red-avoiding. Let r*(C)
(resp., b*(C)) be the maximum possible value of a fractional blue-avoiding (resp.,
red-avoiding) packing. Let f5(C) = max{r*(C), b*(C)}. Finally, let f5(n) be the
minimum of f5(C) ranging over all red-blue colorings of K.

It is easy to see that f3(n) > fa(n), by considering only functions v that take
values 0 and 1. It is also not difficult to construct examples showing strict inequality.
For example, we trivially have fo(4) = 1, while f3(4) = 2. Tt is interesting, however,
and far from trivial, that the gap between f5(n) and f2(n) cannot be too large. Haxell
and R6dl showed in [6] that the gap between a fractional and an integral triangle
packing is o(n?). This, however, is not sufficient since our graphs are colored. In other
words, our packings are not allowed to assign positive values to certain triangles. In
[11] the author has extended the result from [6] to packings whose elements are taken
from any given family of graphs, using a different (probabilistic) approach. In fact, the
same proof from [11] also holds for induced packings. More formally, let F be any given
family of graphs. An induced F-packing of a graph G is a set of induced subgraphs of
G, each of them isomorphic to an element of F, and any two of them intersecting in
at most one vertex. Let vz(G) be the maximum cardinality of an induced F-packing.
Similarly, a fractional induced F-packing is a function that assigns weights from [0, 1]
to the induced subgraphs of G that are isomorphic to elements of F, so that for each
pair of vertices x,y, the sum of the weights of the subgraphs containing both z and y
is at most one. Let v3(G) be the maximum value of a fractional induced F-packing.

THEOREM 2.3 (see Yuster [11], induced version). Let F be a family of graphs. If
G is a graph with n vertices, then vy(G) — ve(G) = o(n?).

From Theorem 2.3 it is easy to show that f5(n) and fa(n) are close.

COROLLARY 2.4. f3(n) — fa(n) = o(n?).

Proof. Consider a red-blue coloring C' of K,,. Let r(C) be the maximum cardi-
nality of a blue-avoiding triangle packing and let b(C) be the maximum cardinality
of a red-avoiding triangle packing. It suffices to show that 7*(C) — r(C) = o(n?)
and that b*(C) — b(C) = o(n?). Let G be the n-vertex graph obtained by taking
only the edges colored red. Consider the family F = {Kj3, K12, Ki2}. Clearly,
r(C) = v#(G) and 7*(C) = vx(G). The result now follows from Theorem 2.3. Simi-
larly b*(C) — b(C) = o(n?) by considering the complement of G. a

By Corollary 2.4, in order to prove the lower bound claimed for f3(n) in Theorem
1.1, it suffices to prove the same lower bound for f3(n).

Let F,. be the set of nonisomorphic graphs on r vertices. We note that each
element of F,. corresponds to a red-blue coloring of K, by coloring the edges blue
and the nonedges red. It is easy to verify that F, consists of 11 graphs, each being
one of {K4, K, ,Q,C4, Py, K1 3} or a complement of one of these (the complement
of Py is Py; Q is the graph with four edges that contains a triangle). For a graph
H let b*(H) = b*(C), where C is the red-blue coloring corresponding to H. It is
easy to verify that b*(Ky) = 2, b*(K,) = 2, b*(Q) = 2, b*(Cy) = 2, b*(Py) = 2,
b*(Ki3) = 1.5, 0" (K1,3) = 2, b"(Cy) = 2, 0"(Q) = 1.5, b"(K, ) =1, b*(K4) = 0.

LEMMA 2.5. If C is a red-blue coloring with m = a(g) blue edges and o > 0.5,
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then
2

f2(C) > E(Sa - a2) - o(nz).

Proof. By Corollary 2.4 it suffices to prove the claimed lower bound for f5(C).
In fact, we shall prove a stronger statement:

n2
(2.2) b*(C) > E(Sa —a?) —o(n?).

Fix a Steiner system T = S(2,4,n) on the set X = {1,...,n}. We shall also fix,
for each block B = {i,j, k,¢} of T, a matching M(B) = {{i,5},{k,¢}}. Let m be a
permutation of [n] selected uniformly at random from S,,. The permutation 7 defines
a decomposition of the edges of K, into a set L, of n(n—1)/12 pairwise edge-disjoint
red-blue colored K. Indeed, assume that the set of vertices of K, is V = {v1,...,v,}
and use w to map the blocks of T' to pairwise edge-disjoint red-blue colored K. A
block B = {i,j,k,¢} is mapped to the element of L, which is the subgraph induced
by {m(i),7(j), m(k),7(£)}. As noted earlier, each element of L, corresponds to an
element of F4. Now let
= > b(H) <b(C).

HEL,
We will prove that the expectation of the random variable f, is at least n?(3a —
a?)/12 — o(n?), which implies (2.2).
For H € Fy, let t,(H) denote the number of elements of L, corresponding to H.
Clearly,

3 ta(H) = M

12
HeF,

We may therefore rewrite f, as

(2.3) fr="Y_ te(H)b"(H).
HeF,

We need to estimate the expectation E[t,(H )] for various H.

Our first observation is that Eft,(K4)] < $5 n(n —1)(1 = o(1)). Indeed, consider
a block B of T, and consider its preassigned matching M (B) = {{i,7},{k,¢}}. The
probability that (7 (¢),7(j)) is blue is precisely c. The probability that (7 (k),w(¢))
is blue given that we are told that (w(i),7(j)) is blue (and even told its identity) is
a(l —o(1)). Since there are n(n — 1)/12 blocks we have that E[t,(K,)] < ‘f—;n(n -
1)(1 —o(1)). Similarly, E[t,(K4)] < %n(n —1)(1 — o(1)). However, we can do
much better.

LEMMA 2.6.
E :tW(K4) +2tn(KD) + 5t0(Q) + 21(Ca) + 5a(P2) + 3 (04)
= L= 11 = o(1)
E |t:(Ka) + %t,,(—;) + %tﬁ@) ;tﬂ(@—k %t (Py) + t (04)—
(- a)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



200 RAPHAEL YUSTER

Proof. For each element H € L, let m(H) be the number of blue perfect match-
ings it contains, and let g = >y m(H). Clearly,

Gr = 3tx(Ka) + 2tr (Ky ) + tx(Q) + 22 (C4) + tr(Pa) + 2 (Cl).

Since K4 has precisely three perfect matchings, the expected number of blocks B for
which M (B) is mapped to two blue edges is %E[gﬂ]. On the other hand, the expected

number of blocks B for which M (B) is mapped to two blue edges is ?—;n(n - 1)(1-
0(1)), as noted in the paragraph preceding the lemma. Thus, the first equality in the
statement of the lemma follows. The second equality follows analogously. O

To simplify notation, consider the following eleven variables: x; = E[t.(K4)],
wy = Eltn(Ky )], #3 = Eltx(Q)], 21 = E[tx(Ca)], x5 = Eltz(Py)], ©6 = Eltx(K13)],

a7 = Eltr (K1)}, 25 = Eltx(Cy)], 29 = E[tz(Q)], 210 = Btz (K )], 211 = Btz (K1)
With these variables, placing expectations on both sides of (2.3) we obtain
E[fﬂ] =221 + 229 + 223 4+ 224 + 225 + 1.52¢ + 227 + 228 + 1.529 + 210-

Let y; = x;/n(n—1) for i = 1,...,11. Using Lemma 2.6, a lower bound for E[f,] is
obtained by solving the following linear program:

min 2y; + 2y2 + 2y3 + 2ya + 2y5 + 1.5y6 + 2y7 + 2ys + 1.5y9 + y10

11 1
s.t. Zyz = —,
p 12

TR I LI o (1)

4 2yt 2 2 Cue=2 _,

U1 3y2 3y3 3y4 3y5 3y8 12 )
(1-w)?

- 0(1)7

+2 +1 +2 +1 +1 =
Y11 3y1o 3y9 3y8 3y5 3y4— 1

y; >0 fori=1,... 11

In order to derive an optimal solution for this linear program, we exhibit matching
solutions both for it and for its dual. The dual program is

max 2, + (0‘—2 - 0(1)) ot (M - 0(1)) 2

12 12 12
s.t.
11111111111
(1) 1 3 33 3003000
000+ o002 1 21
<(2222215221510).

(In the argument below and, in fact, throughout Lemma 2.6, we could write all
expressions explicitly, instead of writing o(1) terms. However, this would be somewhat
cumbersome and, moreover, the reader will be able to check that this is not necessary.)
A feasible solution for the dual is z; = 3/2, z2 = 1/2, and z3 = —3/2 (notice that the
constraint set of the dual does not involve o(1) terms). The value this solution attains
is (3a—a?)/12—o0(1). To prove that this is, in fact, an asymptotically optimal solution,
we exhibit a feasible solution for the primal problem whose value is also (3a—a?)/12—
o(1). Indeed, consider the solution y; = a?/12 — o(1), y11 = (1 — @)?/12 — o(1), and
Y6 = (a—a?)/6+0(1) and all the other eight variables are zero, so that all constraints
are satisfied. Indeed this solution attains the value (3ac — a?)/12 — o(1), as required.
It follows that E[f.] > n?(3a — a?)/12 — o(n?), as required. O
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2.3. Combining the results. Given Lemmas 2.2 and 2.5, we see that if « > 0.5
is close to 0.5 then the bound in Lemma 2.2 is larger than the bound in Lemma 2.5.
On the other hand, when « approaches 1, the bound in Lemma 2.5 approaches the
optimal packing of size n?/6 — o(n?). By equating 1 + 3a(1 — /&) with 3a — a? we
get that the point of equilibrium is the square of the smallest root of 2% — 323 4 1. If
[ =0.7648 ... denotes this root we clearly have

2 4
falm) > 2 o)

proving the lower bound in Theorem 1.1. O

3. An upper bound for f,.(n). We start this section with a construction of
a red-blue coloring of K, that cannot avoid a monochromatic red triangle and a
monochromatic blue triangle in any large triangle packing.

Let 0 < a < 1 be a parameter and let A be a set of an vertices and B a set of
n(1 — «) vertices. The vertices of A induce a monochromatic red clique, and all other
edges are colored blue. Suppose there is a K3-packing of size x with no monochromatic
red K3. Then, each element of this packing either contains two edges from the cut
(A, B) or has all its three vertices from B. Thus,

1- 1—a)?

a(l-a) , (1-a)
2 6

Suppose there is a packing of size y with no monochromatic blue K3. Then we cannot

use edges with both endpoints in B at all. Thus,

2/2 1-—
< WTR + o(n?).

Now, let z = max{z,y}. By equating (3.1) and (3.2) we get that for a = (v/5 —1)/2
we have

(3.1) T < n? + o(n?).

(3.2)

3vV5—-5 ,
S T

In particular, this proves the upper bound in Theorem 1.1.

The construction for r > 2 generalizes the construction above. Suppose the set
of vertices V' of K, is partitioned into vertex classes Vi,...,V,. The edges with
both endpoints in V; are colored with color i, and an edge between V; and V; for
i < j is colored with color j. The idea is to choose the sizes of the vertex classes
so that a sufficiently large K3-packing must contain an i-monochromatic K3 for each
color i. Fix 0 < a < 1, and assume that |V;| = a(1 —a)"tnfori=1,...,r — 1
and |V;| = (1 — a)""'n (we ignore floors and ceilings as these have no effect on the
asymptotic result).

Suppose there is a Ks-packing L; of size x; with no i-monochromatic K3. An
upper bound for z; is identical to the upper bound for x in (3.1):

al—a) 5,  (1—a)?
< n
2 + 6
Fori=2,...,7r—1, we notice that no two edges inside V; appear together in a non—i-
monochromatic K3. Since the third vertex of a non—i-monochromatic K3 having two
vertices in V; must belong to some V; with j > ¢, we have
1, o?(1-a)*?, al-a)'1-a),

4 ;< —n® — 2).
(3.4) i < gn 5 n® + 5 n* + o(n*)

+ 0(n?) = 0.1424n%*(1 4 o(1)).

(3.3)

n? + o(n?).
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For i = r, L, cannot cover edges with both endpoints in V,. at all. Thus, similarly to
(3.2) we get

(3.5) T, < (- —a)1)?/2+4 (13_ o) (-1~ Oé)r_l)n2 +