

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 1–18

GROWTH OF EDGE-HOMOGENEOUS TESSELLATIONS∗

STEPHEN GRAVES† , TOMAŽ PISANSKI‡ , AND MARK E. WATKINS†

Abstract. A tessellation is understood to be a 1-ended, locally finite, 3-connected planar map.
The edge-symbol 〈p, q; k, �〉 of an edge of a tessellation T is a 4-tuple listing the valences p and q
of its two incident vertices and the covalences k and � of its two incident faces. To say that T is
edge-homogeneous means that all edges of T have the same edge-symbol. By a result of Grünbaum
and Shephard, each edge-transitive tessellation may be identified with its edge-symbol. It is shown
that the growth rate of T is given by a function g(t) = 1

2
(t − 2 +

√
t2 − 4t) of the single variable

t = (p+q
2
− 2)(k+�

2
− 2), except that the growth rate equals g(t − 1) when the edge-symbol of T or

its planar dual has the form 〈3, q; 4, 4〉, where q ≥ 6. Thus, for each integer t ≥ 4, there are only
finitely many edge-homogeneous tessellations whose growth rate equals g(t), allowing a complete list
of such tessellations to be compiled in terms of increasing growth rate. The maximum value of the
quantity 1

p
+ 1

q
+ 1

k
+ 1

�
for tessellations with given value t is shown to decrease monotonically as

t increases, while the minimum value decreases only asymptotically. Methods are demonstrated for
concrete enumeration of the sets of faces and vertices at any given facial distance from a fixed face,
edge, or vertex.

Key words. tessellation, edge-homogeneous, Bilinski diagram, exponential growth, generating
function, transition matrix, eigenvalue

AMS subject classifications. 05B45, 05C12, 52C20, 15A18

DOI. 10.1137/070707026

1. Introduction. In the present work, the term “tessellation” denotes an in-
finite, locally finite, 3-connected planar map that is one-ended, i.e., the deletion of
no finite subgraph leaves more than a single infinite component. It is well known
that any automorphism of the underlying graph of such a map is extendable to a
homeomorphism of the plane [10]. If a tessellation is almost-transitive, then it is also
dually locally finite; i.e., all facial walks are finite circuits (cf. [3, Theorem 2.3]). A
tessellation is edge-homogeneous when there exists a 4-tuple 〈p, q; k, �〉 of integers ≥ 3,
called the edge-symbol of the tessellation, such that for each edge, p and q are the
valences of its two incident vertices, and k and � are the covalences of its two incident
faces. Grünbaum and Shephard [8] proved that edge-homogeneous tessellations are
determined up to isomorphism by their edge-symbol and are, in fact, edge-transitive.

We determine the “growth rate” of edge-homogeneous tessellations outward from
a central vertex, edge, or face, called its root. When Fn denotes the set of faces in the
nth corona of a Bilinski diagram of a tesselation T , the growth rate is defined as

γ(T) = lim
n→∞

n+1∑
j=0

|Fj |
/ n∑

j=0

|Fj |,

if the limit exists; it is independent of the chosen root.

∗Received by the editors October 29, 2007; accepted for publication (in revised form) May 3,
2008; published electronically October 24, 2008.

http://www.siam.org/journals/sidma/23-1/70702.html
†Department of Mathematics, Syracuse University, Syracuse, NY 13244-1150 (sgraves@syr.edu,

mewatkin@syr.edu).
‡Department of Mathematics, IMFM, University of Ljubljana and University of Primorska, Jad-

ranska 19, 1000 Ljubljana, Slovenia (Tomaz.Pisanski@fmf.uni-lj.si). Partially funded by ARRS grants
M1-0160, M1-0176, M5-0164, L1-7230, and P1-0294.

1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2 STEPHEN GRAVES, TOMAZ̆ PISANSKI, AND MARK E. WATKINS

For a rooted tessellation T with edge-symbol 〈p, q; k, �〉, the faces are of vari-
ous “types” depending upon their covalence and their orientation with respect to
the root. We obtain a system of recurrences which enable us to compute the num-
bers of faces of T of each type at regional distance n + 1 (from the root) in terms
of the number of each type at regional distance n (n ∈ N). These recurrences
yield a transition matrix A whose entries are multinomials in p, q, k, and �. Us-
ing packages for symbolic computation, we can determine the spectrum of A ex-
plicitly for any edge-homogeneous tessellation. The ordinary generating function∑

n∈N
|Fn|zn of the sequence {|Fn| : n ∈ N} is expressed in terms of A. Then we

prove that the growth rate γ(T) equals the eigenvalue of A of largest modulus (abso-
lute value).

To an edge-homogeneous tessellation with edge-symbol 〈p, q; k, �〉 we associate a
parameter t, which is a linear function of the product of the average valence (p+ q)/2
and the average covalence (k + �)/2. The set of values assumed by t is exactly the
set of integers ≥ 4. For each t ≥ 4, let T (t) denote the set of edge-homogeneous
tessellations associated with t. The sets T (t) are finite. Our main result is that γ(T)
for T ∈ T (t) is determined also by the single parameter t. Specifically, for each t ≥ 4,
if T ∈ T (t), then γ(T) = g(t) = 1

2

(
t− 2 +

√
t2 − 4t

)
with the following exception:

When the edge-symbol of T or its planar dual is of the form 〈3, q; 4, 4〉 for q ≥ 6, then
γ(T) = g(t− 1).

It is a folklore theorem that an edge-homogeneous tessellation T is finite, has
quadratic growth, or has exponential growth (with respect to regional distance from
a root) when the quantity μ(T) = 1

p + 1
q + 1

k + 1
� is > 1, = 1, or < 1, respectively.

Denote by m(t) and M(t) the least and greatest values, respectively, of μ(T) for
T ∈ T (t). We prove that M(t) is strictly decreasing in t. The Lagrange multiplier
method shows that m(t) is asymptotic to 4/

(
2 +
√
t
)
, although it is not monotonic.

Finally we demonstrate how to crunch some numbers to obtain exact values for
the numbers of vertices, edges, and faces at any given facial distance from a central
vertex, edge, or face.

This article considerably extends the work of Moran; in [11] she computed the
growth rates of tessellations, in our notation, of the form 〈p, p; k, k〉 and determined
when the limit limn→∞

∑n+1
j=0 |Fj |

/∑n
j=0 |Fj | exists for face-homogeneous triangula-

tions of the hyperbolic plane.

2. Preliminaries. In order to give a precise definition of “growth rate,” we use
what may be called a Bilinski diagram. These diagrams were first used by Bilin-
ski in his dissertation [1, 2] and more recently by Grünbaum and Shephard [9] and
Moran [11].

Definition 2.1. Let M be a map that is rooted at some vertex x. Define a
sequence of sets {Un : n ≥ 0} of vertices and a sequence of sets {Fn : n ≥ 0} of faces
as follows.

• Let U0 = {x}, and let F0 = ∅.
• For n ≥ 1, let Fn denote the set of faces of M not in Fn−1 that are incident

with some vertex in Un−1.
• For n ≥ 1, let Un denote the set of vertices of M not in Un−1 that are incident

with some vertex in Fn.
The stratification of M determined by {Un} and {Fn} is called the Bilinski dia-

gram B of M rooted at v. In a similar way one can define a Bilinski diagram of M
rooted at a face f . In this case U0 = ∅ and F0 = {f}. A Bilinski diagram is concentric
if each subgraph 〈Un〉 induced by Un (n ≥ 1) is a circuit. If a map yields a concentric

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GROWTH OF EDGE-HOMOGENEOUS TESSELLATIONS 3

Bilinski diagram regardless of which vertex or face is designated as its root, then the
map is uniformly concentric.

Remark. In practice one may alter Definition 2.1 by letting the root be any
vertex-induced, finite, simply connected submap.

Intuitively, one can label any planar map as a Bilinski diagram by arbitrarily
selecting a vertex to comprise the singleton set U0 and then calling by Un each set of
vertices on subsequent successive layers with (increasing) radius n. When the diagram
is concentric, the layers induce “concentric” circuits 〈Un〉. The annulus between two
consecutive layers is partitioned by the set Fn of faces, which constitute the nth
corona. Thus the vertices adjacent to a vertex in Un lie in Un−1 ∪Un ∪Un+1, and the
vertices incident with a face in Fn belong to Un−1 ∪ Un.

Let Ma,b denote the set of maps with all valences finite and ≥ a and all covalences
finite ≥ b. Let Ma,b+ denote the set of maps in Ma,b such that no two b-covalent faces
are adjacent. Let Ma+,b denote the set of maps in Ma,b such that no two a-valent
vertices are adjacent.

The following proposition contains results from [12] and [4].
Proposition 2.2. Let the map M be labeled as a Bilinski diagram with respect

to which v ∈ Um and f ∈ Fn, (m,n ≥ 1).
(a) If M ∈M3,6∪M3+,5∪M4,4∪M5,3+ ∪M6,3, then M is uniformly concentric.
(b) If M ∈M3,6 ∪M3+,5, then v is adjacent to at most one vertex in Um−1 and

f is incident with at most two edges of 〈Un−1〉.
(c) If M ∈ M4,4, then v is adjacent to at most one vertex in Um−1 and f is

incident with at most one edge of 〈Un−1〉.
(d) If M ∈M5,3+ ∪M6,3, then v is adjacent to at most two vertices in Um−1 and

f is incident with at most one edge of 〈Un−1〉.
The next proposition from [5] gives necessary conditions for uniform concentricity

in terms of forbidden local configurations.
Proposition 2.3. If a map admits any of the following configurations, then it

is not uniformly concentric:
(a) a 3-valent vertex incident with a 3-covalent face;
(b) a 4-valent vertex incident with two nonadjacent 3-covalent faces;
(c) an edge incident with two 3-valent vertices and two 4-covalent faces;
(d) a 4-covalent face incident with two nonadjacent 3-valent vertices;
(e) an edge incident with two 4-valent vertices and two 3-covalent faces.
Note that these conditions are closed with respect to duality. Uniformly con-

centric tessellations form, in a sense, the general case. The nonconcentric Bilinski
diagrams evidence some “closing up” at all but the first few levels, yielding a slower
growth rate, but also requiring special computational considerations, as we will see in
section 4.

Definition 2.4. Let the tessellation T be labeled as a Bilinski diagram. The
growth rate of T is defined as

γ(T) = lim
n→∞

n+1∑
j=0

|Fj |
/ n∑

j=0

|Fj |

when this limit exists and is finite.
It is not hard to show that the growth rate γ just defined is equal to the growth

rate defined in terms of the standard distance metric d(−,−), provided that the
covalences of the map are not arbitrarily large. Consider a Bilinski diagram of a map
M with maximum covalence k, and let the root be a vertex x. Let y be an arbitrary

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

4 STEPHEN GRAVES, TOMAZ̆ PISANSKI, AND MARK E. WATKINS

vertex in Un+1 of the Bilinski diagram. Since 1 ≤ d(y, Un) ≤
k/2�, one easily obtains
by induction that

n ≤ d(x, y) ≤ n
k/2� .
Hence every n-ball with respect to d(−,−) centered at x is contained in the union
of the first n layers of vertices of the Bilinski diagram, while Un is contained in the
(n
k/2�)-ball centered at x of the underlying graph.

To place the notion of homogeneity in a more general context, let us make the
following definitions (cf. [14]):

Definition 2.5. Let T be a tessellation, and let f be a k-covalent face of T . A
valence sequence at f is a cyclic k-tuple (p1, p2, . . . , pk) of integers ≥ 3 that lists in
cyclic order the valences of the vertices incident with f as one proceeds around f in
either the clockwise or counterclockwise direction. If a given cyclic k-tuple is a valence
sequence of every face of T , then we say that T is face-homogeneous.

If in this definition we swap the words “vertex” and “face” and the words “valence”
and “covalence,” then we will have defined a vertex-homogeneous map.

Suppose that T is edge-homogeneous with edge-symbol 〈p, q; k, �〉. If p = q,
then T is vertex-homogeneous with covalence sequence (k, �, k, �, . . . , k, �). Dually, if
k = �, then T is face-homogeneous with valence sequence (p, q, p, q, . . . , p, q). Clearly
a map that is both p-valent and k-covalent is vertex-, face-, and edge-homogeneous.
While each permissible edge-symbol determines a unique edge-transitive map (by
Proposition 2.8 below), a covalence sequence may be realized by infinitely or finitely
many vertex-homogeneous maps or by no map at all, and any map so determined
may or may not be vertex-transitive. (This question is the subject of [14].)

Proposition 2.6 (Moran [11], Theorems 7.1 and 9.1). Let T be a vertex-
homogeneous tessellation whose planar dual is T ∗.

(a) If γ(T) exists, then so does γ(T ∗), and γ(T ∗) = γ(T).
(b) The recurrences that determine γ(T) are independent of the root of the Bilin-

ski diagram used to compute them.
The following result will be used for a special case in section 4.
Proposition 2.7 (Moran [11], pp. 159, 163). Let T be a p-valent, k-covalent

tessellation, where 1/p+ 1/k ≤ 1/2.
(a) If k ≥ 4, then its growth rate is given by

(2.1) γ(T) =
(kp− 2p− 2k + 2) +

√
(kp− 2p− 2k + 2)2 − 4
2

.

(b) If k = 3 and p ≥ 7, then its growth rate is given by

(2.2) γ(T) =
p− 4 +

√
(p− 4)2 − 4
2

.

(c) If 1/p+ 1/k < 1/2, then γ(T) is an irrational number > 1.
Note that if the parameters for any of the three regular Euclidean tessellations

(where 1/p + 1/k = 1/2) are substituted into (2.1), then we obtain γ = 1. In this
same work [11, Theorem 6.1], Moran also determined the growth rates of all 3-covalent
face-homogeneous maps and found limn→∞

∑n+1
j=0 |Fj |/

∑j=n
j=0 |Fj | to exist in all cases

except when the valence sequence has the form (2j1, 2j2, 4), where j1 �= j2.
For an edge-homogeneous tessellation T with edge-symbol 〈p, q; k, �〉, we define

μ(T) =
1
p

+
1
q

+
1
k

+
1
�
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GROWTH OF EDGE-HOMOGENEOUS TESSELLATIONS 5

It is well known that if μ(T) > 1, then T is finite—if it is realizable at all—and if
so, then it has a “normal” realization on the sphere, in the sense that faces of equal
covalence are congruent regular polygons. If μ(T) = 1 and if T is realizable, then
T has a normal realization in the Euclidean plane,

∑n
j=0 |Fj | grows quadratically in

n, and γ(T) = 1. However, if μ(T) < 1, then T has a normal realization in the
hyperbolic plane,

∑n
j=0 |Fj | grows exponentially in n, and γ(T) > 1.

For the tessellations considered in this article, the following strong result was
obtained in [8].

Proposition 2.8 (Grünbaum and Shephard [8]). Let p, q, k, � be integers ≥
3. There exists an edge-homogeneous, 3-connected, finite or 1-ended map with edge-
symbol 〈p, q; k, �〉 if and only if exactly one of the following holds:

(a) all of p, q, k, and � are even;
(b) k = � is even and at least one of p, q is odd;
(c) p = q is even and at least one of k, � is odd;
(d) p = q, k = �, and all are odd.

Such a map is edge-transitive and is uniquely determined (up to isomorphism) by
its edge-symbol. If p = q, then it is vertex-transitive. If k = �, then it is face-
transitive. Finally, the parameters p, q, k, � determine the map up to homeomorphism
of the plane.

We remark that, for some edge-symbols, there exist more than one multi-ended
map with that edge-symbol. A detailed classification of all edge-transitive planar
maps is found in [7].

3. The generating function. Let a tessellation T with edge-symbol 〈p, q; k, �〉
be labeled in accordance with a Bilinski diagram. If the root is a face, then |F0| = 1.
Otherwise F0 = ∅. If the root is a vertex x, then U0 = {x} and |F1| equals the valence
of x. If the root is an edge, we let U0 consist of its two incident vertices, while F1

consists of all faces incident with one or both of these two vertices.
Suppose that the set Fn is partitioned into m types of faces; the type of a face

f ∈ Fn is determined by its covalence, the number of vertices incident with f of each
valence that lie in Un−1, and the number of vertices incident with f of each valence
that lie in Un. Let the column vector vn = [v1, . . . , vm]t list the number of faces in
Fn of each type. Suppose further that for all n ≥ 1 and each i, j ∈ {1, . . . ,m}, there
exists a constant ai,j denoting the number of faces in Fn+1 of the ith type whose
existence is due to each face in Fn of the jth type. The existence of such constants
ai,j for edge-homogeneous tessellations will be demonstrated by direct computation
in section 4.

The m×m matrix A = [ai,j], called the transition matrix, satisfies the recurrence

vn+1 = Avn, n ≥ 1.

Each entry of A and of vn is a multinomial in some or all of p, q, k, and �. Let the
row vector j = [1, 1, . . . , 1] be regarded as an (m× 1)-matrix. Then |Fn+1| = jAvn =
jAnv0, by induction for any n ≥ 0 once the initial condition v0 is given. In practice,
however, the vector v0 is fictitious, because the types of faces that need to be counted
in v0 generally never occur in the nth corona when n ≥ 1. For example, in the proof
of Lemma 4.3 below, if the root is a 3-valent vertex together with its three incident
faces, then F0 consists of three faces of a type that cannot exist elsewhere in the
Bilinski diagram and hence does not appear in the list of face-types. Our mechanism
for dealing with such situations is to replace Anv0 by An−1v1 for n ≥ 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

6 STEPHEN GRAVES, TOMAZ̆ PISANSKI, AND MARK E. WATKINS

We thus compute the ordinary generating function ϕ(z) of the sequence {|Fn| :
n ≥ 0}:

ϕ(z) =
∞∑

n=0

|Fn|zn

= |F0|+
∞∑

n=1

(
jAn−1v1

)
zn

= |F0|+ zj

[∞∑
n=0

(zA)n

]
v1

from which the next theorem follows.
Theorem 3.1. The ordinary generating function for the number |Fn| of faces in

the nth corona of a concentric Bilinski diagram of an edge-homogeneous tessellation
with transition matrix A is

ϕ(z) = |F0|+ zj(I − zA)−1v1,

where A is the transition matrix, j is the row vector of 1s, and v1 is a column vector
listing the distribution of face-types in the first corona F1.

The following result is from [13, p. 159].
Proposition 3.2. Assume that a rational generating function u(z)/v(z) =∑
anz

n, with u(z) and v(z) relatively prime and v(0) �= 0, has a unique pole 1/β
of smallest modulus, and let its multiplicity be m. Then

an = Cβnnm−1 + o(βnnm−1), where C = m
(−β)mf(1/β)
v(m)(1/β)

.

Lemma 3.3. Let u(z)/v(z) be a rational generating function for
∑
anz

n such
that v(z) has a unique root of smallest modulus 1/λ and v(0) �= 0. Then

lim
n→∞

an+1

an
= λ.

Proof. Letting m be the multiplicity of the root of v(z) at 1/λ, we have from
Sedgewick and Flajolet’s proof of Proposition 3.2 that

an ∼ c0
(m− 1)!

nm−1λn

for some nonzero constant c0. This immediately gives

lim
n→∞

an+1

an
= λ.

For a matrix B, let cof(B) denote the matrix whose (i, j)-entry is the cofactor of
the (i, j)-entry of B, and let χ(B) denote its characteristic polynomial.

Theorem 3.4. If the m×m transition matrix A of a tessellation T has a unique
eigenvalue λ > 1 of largest modulus, then the growth rate of T is λ.

Proof. By Theorem 3.1,

ϕ(z) =
∞∑

n=0

|Fn|zn = |F0|+ z
[
j(I − zA)−1v1

]
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GROWTH OF EDGE-HOMOGENEOUS TESSELLATIONS 7

If ϕ(z) is written as a rational function u(z)/v(z), then v(z) is determined by
(I − zA)−1. Specifically,

(I − zA)−1 =
1

det(I − zA)
cof(I − zA)

=
1

(−z)m det(A− 1
z I)

cof(I − zA)

=
1

(−z)mχ(1
z)

cof(I − zA).

Since elements of cof(I − zA) are polynomials in z, the denominator of ϕ(z) is of the
form v(z) = (−z)mf(1/z); χ(1/z) is a polynomial of degree m in 1/z. Hence v(z) has
nonzero constant term. This in turn gives that the roots of v(z) occur precisely at
the reciprocals of nonzero eigenvalues of A, and so the root of minimum modulus of
v(z) is 1/λ.

Let ψ(z) be the generating function of the sequence {∑n
j=0 |Fj | : n ≥ 0}. Then

ψ(z) =
∑∞

n=0(
∑n

j=0 |Fm|)zn =
∑∞

n=0 |Fn|zn/(1−z) = ϕ(z)/(1−z). The denominator
of ψ(z) is (1− z)v(z), which has no additional root of modulus less than 1/λ. Hence
by Lemma 3.3,

γ(T) = lim
n→∞

n+1∑
j=0

|Fj |
/ n∑

j=0

|Fj |.

4. The growth formula. Our first main result is the following.
Theorem 4.1. Let the function g : {t ∈ Z : t ≥ 4} → [1,∞) be given by

(4.1) g(t) =
1
2

(
t− 2 +

√
t2 − 4t

)
.

Let T be an edge-homogeneous tessellation with edge-symbol 〈p, q; k, �〉, and let

(4.2) t =
(
p+ q

2
− 2

)(
k + �

2
− 2

)
.

Then exactly one of the following holds:
(a) the growth rate of T is g(t); or
(b) the edge-symbol of T or its planar dual is 〈3, q; 4, 4〉 for some q ≥ 6, and the

growth rate of T is g(t− 1).
The proof of the theorem is embodied in four lemmas which partition the pos-

sibilities for the edge-symbol. Case (a) is realized by each of the first three of these
lemmas, and all of the associated Bilinski diagrams are uniformly concentric. The
fourth lemma realizes Case (b), where the associated Bilinski diagram is not concen-
tric. Some of the eigenvalues in the proofs of these lemmas were obtained using Maple.

To fix notation for all four lemmas, we assume that T is an edge-homogeneous
tessellation with edge-symbol 〈p, q; k, �〉, that g is given by (4.1), and that t is given by
(4.2). The average valence is r = (p+q)/2, and the average covalence is s = (k+ �)/2.
Hence by (4.2), t = (r − 2)(s− 2).

Remark. Observe that
• g(t) = t

2 (1− 2
t +

√
1− 4

t), and so limt→∞
g(t)

t = 1;

• 1
g(t) = 1

2 (t− 2−√t2 − 4t).
The most general case is treated in the first lemma.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

8 STEPHEN GRAVES, TOMAZ̆ PISANSKI, AND MARK E. WATKINS

Un−1

Un

•
p

�������	

q

�������	

q
•
p
�������	

q
�������	

q
•
p

�

f4

. . .

•
p

�������	

q
•
p
�������	

q
•
p
�������	

q

�

f5

. . .
������������

������������ �������	

q

•
p
�������	

q
•
p

�������	

q
•
p

�

f6

. . .
������������

������������

Un−1

Un

•
p

�������	

q

�������	

q
•
p
�������	

q
�������	

q
•
p

k

f1

. . .

•
p

�������	

q
•
p
�������	

q
•
p
�������	

q

k

f2

. . .
������������

������������ �������	

q

•
p
�������	

q
•
p

�������	

q
•
p

k

f3

. . .
������������

������������

Fig. 1. Face types for Lemma 4.2, Case 1.

Lemma 4.2. If p, q, k, and � are all at least 4, then γ(T) = g(t).
Proof. By assumption, T ∈ M4,4. Hence by Proposition 2.2(a), T is uniformly

concentric. The proof of this lemma is broken into four cases corresponding to the
four cases listed in Proposition 2.8.

Case 1: all of p, q, k, and � are even.
Remark. This is the most complicated case. By explaining our procedure in

considerable detail in this case, we hope to omit much of the detail in the subsequent,
simpler cases and in the other lemmas of this section.

We assume the sets of vertices and faces of T to be labeled with respect to a
concentric Bilinski diagram. By Proposition 2.2(c), there can be up to six types of
faces. For each n ≥ 2, the faces in the nth corona Fn have the following descriptions,
respectively, and are illustrated in Figure 1:

Type f1 is a k-covalent face incident with one edge in Un−1;
Type f2 is a k-covalent face incident with exactly one p-valent vertex in Un−1;
Type f3 is a k-covalent face incident with exactly one q-valent vertex in Un−1;
Type f4 is an �-covalent face incident with one edge in Un−1;
Type f5 is an �-covalent face incident with exactly one p-valent vertex in Un−1;
Type f6 is an �-covalent face incident with exactly one q-valent vertex in Un−1.
Suppose that vn denotes the column vector that lists the number of faces in Fn

of each of these six types. The transition matrix A = [ai,j] is then a (6 × 6)-matrix
that satisfies

(4.3) vn+1 = Avn, n ≥ 1.

The way that the entries of ai,j are obtained is indicated by Figure 2. We understand
that if f1 and f2 are adjacent faces in Fn and g ∈ Fn+1 is adjacent to neither f1 nor
f2 but shares an incident vertex with both of them, then each of f1 and f2 is given
half-credit for the existence of g.

Let us, by way of an example, compute a2,1, the number of Type f2 faces in Fn+1

produced by each Type f1 face f ∈ Fn. The face f is incident with 1
2 (k − 2) p-valent

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GROWTH OF EDGE-HOMOGENEOUS TESSELLATIONS 9

�������	q

•p

•
p

�������	q

�������	q

•p

�������	
q

Un−1 Un

f1 k

�

�

�

������� ������� 1
2

[
p−4
2 f2 + p−4

2 f5

]
�������
�������

(k − 3)f4

�������
������� k−4

2

[
q−2
2 f3 + q−4

2 f6
]

������� ������� k−4
2

[
p−2
2 f2 + p−4

2 f5
]

�������
������� 1

2

[
q−4
2 f3 + q−4

2 f6
]

.

.

.

•p

�������	
q

•p

�������	q

•p

�������	
q

Un−1 Un

f2 k

�

�

�

�������
������� 1

2

[
q−4
2 f3 + q−4

2 f6
]

������� �������

(k − 2)f4

�������
������� k−4

2

[
q−2
2 f3 + q−4

2 f6
]

������� ������� k−2
2

[
p−2
2 f2 + p−4

2 f5
]

�������
������� 1

2

[
q−4
2 f3 + q−4

2 f6
]

.

.

.

��
��

��
��

��
��

������������

�������	q

•
p

�������	q

•p

�������	q

•
p

f3 k

�

�

�

�������
������� 1

2

[
p−4
2 f3 + p−4

2 f6
]

�������
�������

(k − 2)f4

�������
������� k−4

2

[
p−2
2 f3 + p−4

2 f6
]

�������
������� k−2

2

[
q−2
2 f2 + q−4

2 f5
]

������� ������� 1
2

[
p−4
2 f3 + p−4

2 f6
]

.

.

.

��
��

��
��

��
��

������������

�������	q

•p

•
p

�������	q

�������	q

•p

�������	
q

f4 �

k

k

k

�������
������� 1

2

[
p−4
2 f2 + p−4

2 f5
]

�������
�������

(� − 3)f1

�������
������� �−4

2

[
q−4
2 f3 + q−2

2 f6
]

�������
������� �−4

2

[
p−4
2 f2 + p−2

2 f5
]

�������
������� 1

2

[
q−4
2 f3 + q−4

2 f6
]

.

.

.

•p

�������	
q

•p

�������	q

•p

�������	
q

f5 �

k

k

k

�������
������� 1

2

[
q−4
2 f3 + q−4

2 f6
]

������� �������

(� − 2)f1

�������
������� �−4

2

[
q−4
2 f3 + q−2

2 f6
]

�������
������� �−2

2

[
p−4
2 f2 + p−2

2 f5
]

�������
������� 1

2

[
q−4
2 f3 + q−4

2 f6
]

.

.

.

��
��

��
��

��
��

������������ �������	q

•
p

�������	q

•p

�������	q

•
p

f6 �

k

k

k

������� ������� 1
2

[
p−4
2 f3 + p−4

2 f6
]

�������
�������

(� − 2)f1

������� ������� �−4
2

[
p−4
2 f3 + p−2

2 f6
]

�������
������� �−2

2

[
q−4
2 f2 + q−2

2 f5
]

������� ������� 1
2

[
p−4
2 f3 + p−4

2 f6
]

.

.

.

��
��

��
��

��
��

������������

Fig. 2. “Offspring” of various face types for Lemma 4.2, Case 1.

vertices in Un. Each of exactly 1
2 (k− 4) of these p-valent vertices is adjacent to p− 3

vertices in Un+2 and is therefore incident with 1
2 (p−2) Type f2 faces in Fn+1. (Recall

that every edge is incident with one k-covalent face and one �-covalent face.) The one
remaining p-valent vertex is incident with 1

2 (p− 4) Type f2 faces in Fn+1. Since this
vertex is also incident with another face in Fn, we count only half of its contribution.
As a total, we get

a2,1 =
k − 4

2
· p− 2

2
+

1
2
· p− 4

2
=

1
4
(pk − 3p− 2k + 4).

In this manner, one obtains all 36 entries of the following transition matrix:

A =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 �− 3 �− 2 �− 2
kp−3p−2k+4

4
(k−2)(p−2)

4
kp−2p−2k

4
(�−3)(p−4)

4
(�−2)(p−4)

4
�p−2p−4�+8

4
kq−3q−2k+4

4
kq−2q−2k

4
(k−2)(q−2)

4
(�−3)(q−4)

4
�q−2q−4�+8

4
(�−2)(q−4)

4
k − 3 k − 2 k − 2 0 0 0

(k−3)(p−4)
4

(k−2)(p−4)
4

kp−2p−4k+8
4

�p−3p−2�+4
4

(�−2)(p−2)
4

�p−2p−2�
4

(k−3)(q−4)
4

kq−2q−4k+8
4

(k−2)(q−4)
4

�q−3q−2�+4
4

�q−2q−2�
4

(�−2)(q−2)
4

⎞
⎟⎟⎟⎟⎟⎠ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

10 STEPHEN GRAVES, TOMAZ̆ PISANSKI, AND MARK E. WATKINS

Un−1 Un

�������	q

•p

•
p

�������	q

�������	q

•p
�������	
q

f1 k

k

k

k

�������
������� p−4

2 f2

�������
�������

(k − 3)f1

�������
������� k−4

2 (q − 3)f3

�������
������� k−4

2 (p− 3)f2

�������
������� q−4

2 f3

...

Un−1 Un

•p

�������	

q

•p

�������	q

•p
�������	

q

f2 k

k

k

k

�������
������� q−4

2 f3

�������
�������

(k − 2)f1

�������
������� k−4

2 (q − 3)f3

�������
������� k−2

2 (p− 3)f2

�������
������� q−4

2 f3

...

��
��

��
��

��
�

�����������

Un−1 Un

�������	q

•
p

�������	q

•p
�������	q

•p

f3 k

k

k

k

�������
������� p−4

2 f2

�������
�������

(k − 2)f1

�������
������� k−4

2 (p− 3)f2

�������
������� k−2

2 (q − 3)f3

�������
������� p−4

2 f2

...

��
��

��
��

��
�

�����������

Fig. 3. “Offspring” for face types for Lemma 4.2, Case 2.

The eigenvalue of A with maximum modulus is

1
8

(pk + p�+ qk + q�− 4p− 4q − 4k − 4�+ 8)

+
1
8

√
(p+ q − 4) (k + �− 4) (pk + p�+ qk + q�− 4p− 4q − 4k − 4�)

=
1
8

[(p+ q) (k + �)− 4(p+ q + k + l) + 8]

+
1
8

√
(p+ q − 4) (k + �− 4) [(p+ q) (k + �)− 4(p+ q + k + �)]

=
1
2

[
rs− 2(r + s) + 2 +

√
(r − 2)(s− 2) [rs − 2(r + s)]

]
=

1
2

[
(r − 2)(s− 2)− 2 +

√
(r − 2)(s− 2) [(r − 2)(s− 2)− 4]

]
=

1
2

(
t− 2 +

√
t2 − 4t

)
= g(t).

By Theorem 3.4, γ(T) = g(t) as claimed.
Case 2: k = � and at least one of p, q is odd.
This case may be considered as a special case of Case 1, where T has edge-symbol

〈p, q; k, k〉. We do not actually use that p or q is odd, but for the matrix entries to
make sense, k must be even. Here the face Types f1 and f4 of the previous case are
identified, as are Types f2 and f5, as well as Types f3 and f6, and their “offspring”
are as seen in Figure 3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GROWTH OF EDGE-HOMOGENEOUS TESSELLATIONS 11

The transition matrix is thus the following (3 × 3)-matrix:

A =

⎡
⎢⎣

k − 3 k − 2 k − 2
1
2 (kp− 3k − 3p+ 8) 1

2 (k − 2)(p− 3) 1
2 (kp− 3k − 2p+ 4)

1
2 (kq − 3k − 3q + 8) 1

2 (kq − 3k − 2q + 4) 1
2 (k − 2)(q − 3)

⎤
⎥⎦ .

Again letting r = p+q
2 , s = k+�

2 , and t = (r−2)(s−2), we compute the eigenvalue
of A with maximum modulus.

1
4

[
(p+ q)k − 2(p+ q)− 4k + 4

√
(p+ q − 4)(k − 2)((p+ q)k − 2(p+ q)− 4k)

]
=

1
2

[
(r − 2)(s− 2)− 2 +

√
(r − 2)(s− 2) [(r − 2)(s− 2)− 4]

]
=

1
2

(
t− 2 +

√
t2 − 4t

)
= g(t).

Case 3: p = q is even, and at least one of k, � is odd.
In this case the tessellation is the planar dual of a tessellation described by Case

2. By Proposition 2.6(a), the growth rate is the same as that of its dual.
Case 4: p = q, k = �, and all are odd.
By Proposition 2.7(a), the growth rate of T is given by (2.1):

γ(T) =
1
2

[
pk − 2p− 2k + 2 +

√
(pk − 2p− 2k − 2)2 − 4

]
=

1
2

[
(p− 2)(k − 2)− 2 +

√
[(p− 2)(k − 2)− 2]2 − 4

]
.

Trivially, p is the average valence, and k is the average covalence. With t = (p −
2)(k − 2), we obtain

γ(T) =
1
2

(
t− 2 +

√
t2 − 4t

)
= g(t).

The remaining three lemmas exhaust the special cases when T is not in M4,4.
For the first of these, the edge-symbol of T is 〈3, q; k, k〉. The average valence is
r = 1

2 (3 + q) and the average covalence is s = k, and so t = 1
2 (q − 1)(k − 2).

Lemma 4.3. If T has edge-symbol 〈3, q; k, k〉, where q ≥ 4 and k ≥ 6, then
γ(T) = g(t).

Proof. By Proposition 2.8, k must be even. Since T ∈ M3,6, T is uniformly
concentric by Proposition 2.2(a), and we assume that the sets of vertices and faces
of T have been labeled consistently with a Bilinski diagram. By Proposition 2.2(b),
except perhaps in F0 or F1, T admits only three types of faces; for n ≥ 2, a face
f ∈ Fn is of the following type:

Type f1 if f is incident with exactly one edge in the subgraph induced by Un−1;
Type f2 if f is incident with exactly two adjacent edges in the subgraph induced

by Un−1;
Type f3 if f is incident with exactly one q-valent vertex in Un−1.
In the instance of a Type f2 face, the “two adjacent edges” are incident with a

common 3-valent vertex. Figure 4 shows the “offspring” of these three face types.
The transition matrix A for this lemma is the following (3× 3)-matrix:

A =

⎡
⎣ k − 4 k − 6 k − 4

1/2 1 1
1
2 (kq − 3k − 3q + 8) 1

2 (k − 4)(q − 3) 1
2 (k − 2)(q − 3)

⎤
⎦ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

12 STEPHEN GRAVES, TOMAZ̆ PISANSKI, AND MARK E. WATKINS

Un−1 Un

•3

�������	q

�������	

q

•3

•3

�������	q

• 3

�������	q

f1 ...

�������
�������

�������
�������

�������

1
2
f2

k−4
2

(q − 3)f3

(k − 4)f1

q−4
2

f3

Un−1 Un

�������	q

•
3

�������	q

�������	q

• 3

�������	q

•3

�������	q

• 3

�������	q

f2 ...

�������

�������
�������

�������
�������

�������

1
2
f2

k−4
2

(q − 3)f3

(k − 6)f1

1
2
f2

Un−1 Un

�������	q

�������	q

• 3

�������	q

•3

�������	q

• 3

�������	q

f3 ...

��
��

��
��

��
�

�����������

�������

�������
�������

�������
�������

�������

1
2
f2

k−2
2

(q − 3)f3

(k − 4)f1

1
2
f2

Fig. 4. “Offspring” for face types for Lemma 4.3.

The eigenvalue of A of maximum modulus is

1
4

[
qk − 2q − k − 2 +

√
(q − 1)(k − 2)(qk − 2q − k − 6)

]

=
1
2

[
1
2
(q − 1)(k − 2)− 2 +

√
1
2
(q − 1)(k − 2)

[
1
2
(q − 1)(k − 2)− 4

]]

=
1
2

(
t− 2 +

√
t2 − 4t

)
= g(t).

Lemma 4.4. If T or its planar dual has edge-symbol 〈3, 3; k, k〉, where k ≥ 6,
then γ(T) = g(t).

Proof. Clearly t = k − 2. By Proposition 2.7(b), we use (2.2) to obtain

γ(T) =
1
2

(
k − 4 +

√
(k − 4)2 − 4

)
=

1
2

(
t− 2 +

√
t2 − 4t

)
= g(t).

The one remaining class of edge-symbols to be considered is that of the form
〈3, q; 4, 4〉, where q ≥ 6. The average valence is r = 1

2 (3+q), and the average covalence
is trivially s = 4. Thus t = (r− 2)(s− 2) = q− 1. As previously remarked, this is the
one situation where no Bilinski diagram of T or of its planar dual is concentric (cf.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GROWTH OF EDGE-HOMOGENEOUS TESSELLATIONS 13

�������	

�������	 • �������	 •
3
�������	

q
•

�������	 �������	

• �������	
•
•

��� ��
�

Un−1

Un

u1 u2 u3

Fig. 5. Vertex types for Lemma 4.5.

Proposition 2.3(d)). The concurrence of small values in the edge-symbol causes some
“closing up” and hence a slightly slower growth rate than for the other tessellations
with the same t-value. It is notable that the class of edge-homogeneous planar maps
with edge-symbol of the form 〈3, q; 4, 4〉 and their planar duals is exactly the class of
edge-transitive planar maps with the property that no Petrie walk is a double ray.
Rather, all Petrie walks are circuits of length 2q (see [7], Theorem 6.3).

Lemma 4.5. If T has edge-symbol 〈3, q; 4, 4〉, where q ≥ 6, then γ(T) = g(t− 1).
Proof. By Proposition 2.6(a), recurrences using vertices instead of faces yield the

same growth rate. Except perhaps in the U0 or U1, T admits only the following three
types of vertices (see Figure 5). For n ≥ 2, a vertex u ∈ Un is of the following type:

Type u1 if u is 3-valent and has exactly one neighbor in Un−1;
Type u2 if u is q-valent, has no neighbor in Un−1 and two neighbors in Un;
Type u3 if u is one of a pair of adjacent vertices of which the q-valent vertex has

no neighbor in Un−1 and three neighbors in Un, while the 3-valent member of the pair
has two neighbors in Un−1.

The two Type u3 vertices are treated as a single item in the recurrence computa-
tion, and therefore one must remember to double the number of Type u3 vertices when
enumerating the sets Un. The transition matrix A for this lemma is the (3×3)-matrix:

A =

⎡
⎣0 q − 4 q − 5

0 q − 5 q − 6
0 1 1

⎤
⎦ .

The eigenvalue of A with the largest modulus is

1
2

(
q − 4 +

√
(q − 4)2 − 4

)
=

1
2

(
t− 3 +

√
(t− 3)2 − 4

)
= g(t− 1).

Note that when q = 6, we have the familiar Euclidean tessellation with rhombi
(designated by Coxeter [6, p. 61] as [2{6, 3}]{6, 3}), and the characteristic polynomial
of A factors as (x+1)2(x− 1)2. Setting q = 7 gives the “first” hyperbolic map of this
kind; the roots are −1 and 1

2 (3±√5).

5. Some comparisons. A lot of numerical data can be generated from the
formulas of the preceding section. It is useful to have an idea of their orders of
magnitude. In Table 1, we list the tessellations T , identified by their edge-symbol,
having a t-value of t ≤ 9, sorted first by increasing growth γ(T), then by increasing
t-value, and thirdly by decreasing value of μ(T). We also include the number of the
lemma in the preceding section that gives the first two values. In the case of Lemma
4.2, the integer in parentheses indicates the appropriate case within the proof. To
reduce redundant information, for tessellations that are not self-dual we have not
listed both the tessellation and its dual. In particular, for a pair of dual tessellations
covered by Cases 2 and 3 of Lemma 4.2, we list only one of the two tessellations.

Remark. We see from Table 1 that the edge-homogeneous tessellations with the
slowest exponential growth rate have growth rate 1

2 (3 +
√

5) ≈ 2.618. There exist

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

14 STEPHEN GRAVES, TOMAZ̆ PISANSKI, AND MARK E. WATKINS

Table 1

Edge-homogeneous tessellations with 4 ≤ t ≤ 9.

γ(T) t μ(T) Edge-symbol Lemma

1 4 1 〈3, 3; 6, 6〉 3.4
1 4 1 〈4, 4; 4, 4〉 3.2(1)
1 5 1 〈3, 6; 4, 4〉 3.5

2.618 5 0.9524 〈3, 3; 7, 7〉 3.4
2.618 5 0.95 〈4, 5; 4, 4〉 3.2(2)
2.618 6 0.9762 〈3, 7; 4, 4〉 3.5
3.7321 6 0.9167 〈3, 3; 8, 8〉 3.4
3.7321 6 0.9167 〈3, 4; 6, 6〉 3.3
3.7321 6 0.9167 〈4, 6; 4, 4〉 3.2(1)
3.7321 6 0.9 〈4, 5; 4, 4〉 3.2(2)
3.7321 7 0.9583 〈3, 8; 4, 4〉 3.5
4.7913 7 0.8929 〈4, 7; 4, 4〉 3.2(2)
4.7913 7 0.8889 〈3, 3; 9, 9〉 3.4
4.7913 7 0.8667 〈4, 4; 5, 6〉 3.2(3)
4.7913 8 0.9444 〈3, 9; 4, 4〉 3.5
5.8284 8 0.875 〈4, 8; 4, 4〉 3.2(1)
5.8284 8 0.8667 〈3, 5; 6, 6〉 3.3
5.8284 8 0.8667 〈3, 3; 10, 10〉 3.4
5.8284 8 0.8429 〈5, 7; 4, 4〉 3.2(2)
5.8284 8 0.8333 〈4, 4; 6, 6〉 3.2(1)
5.8284 9 0.9333 〈3, 10; 4, 4〉 3.5
6.8541 9 0.8611 〈4, 9; 4, 4〉 3.2(2)
6.8541 9 0.8485 〈3, 3; 11, 11〉 3.4
6.8541 9 0.8333 〈4, 6; 4, 6〉 3.2(1)
6.8541 9 0.8333 〈3, 4; 8, 8〉 3.3
6.8541 9 0.8250 〈4, 4; 5, 8〉 3.2(3)
6.8541 9 0.8095 〈4, 4; 6, 7〉 3.2(3)
6.8541 9 0.8000 〈5, 5; 5, 5〉 3.2(4)

many non–edge-homogeneous tessellations with exponential growth that are vertex-
homogeneous or face-homogeneous and that grow more slowly. For example, the
method of Lemma 6.2 in [11] can be applied to the unique 3-valent, face-homogeneous
tessellation with vertex-sequence (6, 6, 7); its growth rate is 1

4

(
1+
√

13+
√

2
√

13− 2
) ≈

1.722. (Uniqueness follows from [14], p. 613.)
Notation. Thanks to Proposition 2.8, we are entitled to the notational convenience

of writing μ(p, q, k, �), when we mean μ(T), where T is the (unique) tessellation with
edge-symbol 〈p, q; k, �〉. For t ≥ 4, let T (t) denote the set of tessellations T for which
t =

(
p+q
2 − 2

) (
k+�
2 − 2

)
. Let M(t) and m(t) denote the greatest and the least value,

respectively, of μ(T) for T ∈ T (t).
The data suggest some sort of inverse correlation between t-value (and hence

growth rate) and the value of μ. We formulate this in terms of the following nonlinear
integer optimization problem.

Problem 5.1. For fixed t ≥ 4, assume that the tessellation T ∈ T (t) has edge-
symbol 〈p, q; k, �〉.

Maximize and minimize : μ(p, q, k, �) subject to
p, q, k, � ≥ 3

and(
p+ q

2
− 2

)(
k + �

2
− 2

)
= t.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GROWTH OF EDGE-HOMOGENEOUS TESSELLATIONS 15

The following theorem shows that M(t) is strictly decreasing.
Theorem 5.2. For each t ≥ 6,

M(t) = μ(3, t+ 1, 4, 4) =
5
6

+
1

t+ 1
,

and the second largest value of μ on T (t) is

μ(4, t, 4, 4) =
3
4

+
1
t
.

Proof. Assume that t ≥ 6. Let M1 = M , and let M2(t) denote the second largest
value of μ on T (t). Clearly T (t) contains tessellations with edge-symbol 〈3, t+1; 4, 4〉
and with edge-symbol 〈4, t; 4, 4〉, and these tessellations yield the values of μ given in
the statement of this theorem.

Without loss of generality, we may assume that p ≤ q, k ≤ �, and, by duality,
p ≤ k. If p, q, k, � ≥ 5, then μ(p, q, k, �) < 5

6 < μ(3, t+1, 4, 4) ≤M1(t). If p, q, k, � ≥ 6,
then μ(p, q, k, �) < 3

4 < μ(4, t, 4, 4) ≤ M2(t). Hence we need to consider only those
edge-symbols with p equal to 3, 4, or 5.

Suppose that p = 3. By Proposition 2.8, T has edge-symbol 〈3, q; k, k〉, where
either q = 3 and k is odd or q is arbitrary and k is even. In the former instance, we
must have k = t + 2 and μ(T) = 2

3 + 2
t+2 . The assumption that μ(T) > μ(4, t, 4, 4)

leads to the quadratic inequality 0 > t2− 10t+ 24, whose only real integer solution is
t = 5, contrary to assumption.

Now suppose that k is even. Then t = 1
2 (q − 1)(k − 2). If k = 4, then q = t+ 1,

and μ(T) = M1(t) as claimed. If k = 6, we obtain exactly the same contradiction
as in the previous paragraph. If k = 8, then q = 1

3 (t + 3), and the assumption that
μ(3, q, 8, 8) > 3

4 + 1
t leads to the inequality 0 > t2 − 9t+ 18, which implies that t = 6

and hence q = 3, in which case 〈3, 3; 8, 8〉 ties for second place in T (6) (see Table
1). Finally, if k ≥ 10, then μ(3, q, k, k) ≤ 8

15 + 1
q . If this quantity is greater than

3
4 + 1

t , then we must have q = 4, which leads to the same quadratic inequality as in
the subcase of k = 8 but, in this instance, to a contradiction.

Suppose that p = 4. We may assume that q ≥ 5 or k ≥ 5. First suppose that q is
odd. Then k = � ≥ 6 and is even. If T has edge-symbol 〈4, 5; 6, 6〉, then T ∈ T (10)
and μ(4, 5, 6, 6) = 0.783 < 0.85 = μ(4, 10, 4, 4). If q ≥ 7 or k ≥ 8, then one easily
checks that μ(p, q, k, �) < 3/4.

Now suppose that q = 4. First consider the tessellation T with edge-symbol
〈4, 4; 6, �〉. Then T ∈ T (�+ 2) and μ(T) = 2

3 + 1
� . But if μ(4, �+ 2; 4, 4) ≤ μ(T), then

0 ≥ �2 + 2�− 24, contrary to the assumption that � ≥ 6. Hence 7 ≤ k ≤ �. If T has
edge-symbol 〈4, 4; 7, 7〉, then μ(T) ≈ 0.7857, but μ(4, 10; 4, 4〉 = 0.85, as noted in the
previous paragraph. Hence 8 ≤ k ≤ �, and so μ(4, 4; k, �) ≤ 3

4 .
Hence q ≥ 6. If k ≥ 6, then μ(4, q; k, �) ≤ 3

4 , and so we need consider only
the tessellation T with edge-symbol 〈4, 6; 4, 6〉, which belongs to T (9). But then
μ(T) = 0.83, while μ(4, 9, 4, 4) = 0.861.

Finally suppose that p = 5. Since 5 is odd, we have the same two possibilities as
in the case of p = 3. If T has edge-symbol 〈5, 5; k, k〉, then by our initial assumptions,
k ≥ 5. If k = 5, then T ∈ T (9) and μ(T) = 0.8 < 3

4 + 1
9 = μ(4, 9, 4, 4). If k ≥ 6,

then clearly μ(T) < 3
4 . Hence suppose that T has edge-symbol 〈5, q; k, k〉, where

q ≥ 6. This forces k to be even, and so k ≥ 6. But then μ(T) ≤ 0.7, completing the
proof.

A glance at Table 1 shows that the theorem holds for M1(5) but fails for M2(5).
But what about the least values m(t)? Treating p, q, k, and � as continuous variables

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

16 STEPHEN GRAVES, TOMAZ̆ PISANSKI, AND MARK E. WATKINS

and applying the method of Lagrange multipliers (see any standard advanced calculus
text), we find that, for fixed t ≥ 4, a minimum of μ(p, q, k, �) = 4/(2 +

√
t) occurs

when all four parameters equal 2+
√
t. Thus when t is a perfect square, a tessellation

of minimum μ-value m(t) is found in T (t) by this formula. It turns out, however,
that m(t) does not decrease monotonically. As a counterexample, m(12) = 0.733 is
realized by 〈5, 5; 6, 6〉. But m(13) = 0.7361 is realized by 〈4, 4; 8, 9〉.

6. Initial conditions and enumeration. In this final section we demonstrate
how the transition matrices constructed in section 4, in conjunction with elementary
enumeration methods, can be used to obtain the ordinary generating function for the
number of faces (or vertices or edges) in each corona for any Bilinski diagram of any
edge-homogeneous tessellation with any given root. Although, for any given value of
t, the individual parameters in an edge-symbol have no effect asymptotically as one
computes the growth rate, these parameters do determine the initial conditions of the
recurrence system and hence determine the concrete numbers that we are about to
compute.

As mentioned earlier, the vector v1 is determined by the choice of the root of the
Bilinski diagram. Suppose, for example, that the tessellation in question belongs to
M4,4 and all valences and covalences are even (as in Case 1 of Lemma 4.2). If the
root is a p-valent vertex, then

v1 = [0, p/2, p/2, 0, 0, 0]t;

if the root is an edge, then

v1 =
[
1,
p− 2

2
,
q − 2

2
, 1,

p− 2
2

,
q − 2

2

]t

;

if the root is a k-covalent face, then

(6.1) v1 =
[
0,
k(p− 2)

4
,
k(q − 2)

4
, k,

k(p− 4)
4

,
k(q − 4)

4

]t

.

Determination of the initial vector v1 in the other cases of the edge-symbol is a
straightforward exercise.

We now demonstrate how to count the vertices in Un for n ≥ 2. This, of course, in
a concentric Bilinski diagram equals the number of edges in the circuit 〈Un〉 induced
by Un. Let us define the weighted row vector w = [w1, . . . , wm], where wi denotes
the number of edges in 〈Un〉 incident with a face in Fn of the ith face-type. Thus we
have the dot product

(6.2) |Un| = w · vt
n, (n ≥ 2).

For example, if the edge-homogeneous tessellation with edge-symbol 〈p, q; k, �〉 belongs
to M4,4 and all parameters are even, then

(6.3) w = [k − 3, k − 2, k − 2, �− 3, �− 2, �− 2].

We conclude this article by applying the foregoing computations to an example.
Example. Consider the tessellation T with edge-symbol 〈4, 6; 4, 6〉. As we are in

Case 1 of Lemma 4.2, we have t = 9 and γ(T) = g(9) = 1
2

(
7 + 3

√
5
) ≈ 6.854. The

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GROWTH OF EDGE-HOMOGENEOUS TESSELLATIONS 17

transition matrix for T is

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 3 4 4
0 1 0 0 0 0

1/2 1 2 3/2 2 2
1 2 2 0 0 0
0 0 0 1 2 1

1/2 1 1 5/2 3 4

⎤
⎥⎥⎥⎥⎥⎥⎦
.

We choose the root of our Bilinski diagram of T to be a 4-covalent face. By (6.1),

v1 = [0, 2, 4, 4, 0, 2]t.

From Theorem 3.1, the closed form of the ordinary generating function ϕ for the
sequence {|Fn| : n ≥ 0} is

ϕ(x) = 1 +
12x

x2 − 7x+ 1
.

The two roots of the denominator are λ1 = 1
2

(
7 + 3

√
5
)

= γ(T) and λ2 = 1/λ1 =
1
2

(
7− 3

√
5
)
. Elementary algebra leads to

ϕ(x) = 1 +
4
15

∞∑
n=0

[
(2λ1 − 7)λn

1 + (2λ2 − 7)λn
2

]
xn.

Thus

|Fn| =
{

1 if n = 0,
4
15

[
(2λ1 − 7)λn

1 + (2λ2 − 7)λn
2

]
if n ≥ 1.

The sequence {|Fn| : n ≥ 0} begins with 1, 12, 84, 576,
Equation (6.3) yields the weighted vector w = [1, 2, 2, 3, 4, 4], from which we

compute by (6.2) the sequence {|Un| : n ≥ 0}, which begins with 4, 32, 220, 1512,
. . . .

REFERENCES

[1] S. Bilinski, Homogene mreže ravnine, Rad Jugoslav. Akad. Znan. Umjet., 271 (1948), pp. 145–
255.

[2] S. Bilinski, Homogene Netze der Ebene, Bull. Internat. Acad. Yougoslave. Cl. Sci. Math. Phys.
Tech. (N.S.), 2 (1949), pp. 63–111.

[3] C.P. Bonnington, W. Imrich, and M.E. Watkins, Separating rays in locally finite, planar
graphs, Discrete Math., 145 (1995), pp. 61–72.

[4] J.A. Bruce, Bilinski Diagrams and Geodesics in 1-Ended Planar Maps, Doctoral dissertation,
Syracuse University, Syracuse, NY, 2002.

[5] J.A. Bruce and M.E. Watkins, Concentric Bilinski diagrams, Australas. J. Combin., 30
(2004), pp. 161–174.

[6] H.S.M. Coxeter, Regular Polytopes, 2nd ed., Macmillan, New York, 1963.
[7] J.E. Graver and M.E. Watkins, Locally Finite, Planar, Edge-transitive Graphs, Mem. Amer.

Math. Soc. 126, American Mathematical Society, Providence, RI, 1997.
[8] B. Grünbaum and G.C. Shephard, Edge-transitive planar graphs, J. Graph Theory, 11 (1987),

pp. 141–155.
[9] B. Grünbaum and G.C. Shephard, Tilings and Patterns, W.H. Freeman and Company, New

York, 1987.
[10] W. Imrich, On Whitney’s theorem on the unique embeddability of 3-connected planar graphs,

in Recent Advances in Graph Theory, M. Fiedler, ed., Academia Praha, Prague, 1975,
pp. 303–306.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

18 STEPHEN GRAVES, TOMAZ̆ PISANSKI, AND MARK E. WATKINS

[11] J.F. Moran, The growth rate and balance of homogeneous tilings in the hyperbolic plane,
Discrete Math., 173 (1997), pp. 151–186.

[12] P. Niemeyer and M.E. Watkins, Geodetic rays and fibers in one-ended planar graphs, J.
Combin. Theory Ser. B, 69 (1997), pp. 142–163.

[13] R. Sedgewick and P. Flajolet, An Inroduction to the Analysis of Algorithms, Addison-
Wesley, Reading, MA, 1996.

[14] J. Šiagiová and M.E. Watkins, Covalence sequences of planar vertex-homogeneous maps,
Discrete Math., 307 (2007), pp. 599–614.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 19–53

AVERAGE SPECTRA AND MINIMUM DISTANCES OF
LOW-DENSITY PARITY-CHECK CODES OVER ABELIAN GROUPS∗

GIACOMO COMO† AND FABIO FAGNANI‡

Abstract. Ensembles of regular low-density parity-check codes over any finite Abelian group
G are studied. The nonzero entries of the parity matrix are randomly chosen, independently and
uniformly, from an arbitrary label group of automorphisms of G. Precise combinatorial results are
established for the exponential growth rate of their average type-enumerating functions with respect
to the code-length N . Minimum Bhattacharyya-distance properties are analyzed when such codes are
employed over a memoryless G-symmetric transmission channel. In particular, minimum distances
are shown to grow linearly in N with probability one, and lower bounds are provided for the typical
asymptotic normalized minimum distance. Finally, some numerical results are presented, indicating
that the choice of the label group strongly affects the value of the typical minimum distance.

Key words. low-density parity-check codes, group codes, minimum distance, type-spectrum,
Ramanujan sums

AMS subject classifications. 94B12, 94B65, 11T24

DOI. 10.1137/070686615

1. Introduction. Low-density parity-check (LDPC) codes have received a huge
amount of attention in the last years. It is indeed the family of high-performance
codes for which the deepest theoretical insight has been achieved. Their definition
is quite simple: they are those binary-linear codes which can be described as kernels
of matrices over the binary field Z2 with a “small” number of nonzero elements.
Since the pioneering work [19], two streams of research are easily recognizable in the
literature on LDPC codes. On the one hand, structural properties of such codes have
been investigated: distance-spectra, minimum distances, and also capacity estimations
under maximum-likelihood (ML) decoding [28, 29, 25, 37, 25, 26, 9, 15, 33]. On the
other hand, they have been studied coupled with the well-known iterative decoding
schemes [34, 35, 42, 31, 43, 24, 36, 14].

The need to use transmission channels with higher spectral efficiency naturally
leads one to consider nonbinary codes and nonbinary LDPC codes. A typical example
is provided by the m-PSK Gaussian channel. This is a channel accepting as possible
input any element in the set m-PSK := {e 2π

m li | 1 ≤ l ≤ m}, while the received
output is obtained by adding a homogeneous, zero-mean, two-dimensional Gaussian
variable. When m is an integer power of 2—a case which is particularly relevant in
practice—in principle binary codes can be used for transmission over this channel.
Using any fixed bijection λ : Zr

2 → 2r-PSK, binary-linear codes can be mapped into
codes on the alphabet 2r-PSK. The problem with this type of code is that, if r > 2,
for any possible choice of λ they will not possess many of the symmetry properties
that binary-linear codes enjoy on binary symmetric channels: Voronoi regions will not
be congruent, Euclidean distance profiles will depend on the reference codeword, and

∗Received by the editors March 28, 2007; accepted for publication (in revised form) June 6, 2008;
published electronically October 24, 2008.

http://www.siam.org/journals/sidma/23-1/68661.html
†Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino,

Italy. Current address: Laboratory for Information and Decision Systems, Massachusetts Institute
of Technology, 77 Mass. Ave., Cambridge, MA 02139 (giacomo@mit.edu).

‡Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino,
Italy (fabio.fagnani@polito.it).

19

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

20 GIACOMO COMO AND FABIO FAGNANI

the uniform error property will not hold. As a consequence the theoretical analysis
becomes quite hard and design-criteria optimization exceedingly complicated; in [22,
4, 5] an average-coset approach has been adopted in order to overcome this problem.
Actually, for such an input set, a much better candidate group structure is provided by
the cyclic group Zm. Indeed, if we consider the natural map λ : Zm → m-PSK (with
λ(l) = e

2πil
m), any subgroup C ⊆ ZN

m yields, through the embedding λ, a code over
m-PSK possessing congruent Voronoi regions and invariant distance profiles [18, 27].
These codes (as well as the subgroups they come from) are called Zm-codes. All
of this construction can be generalized to a broader family of transmission channels
exhibiting symmetry with respect to the action of a finite group G, which will be
called G-symmetric channels, and to a family of codes with group structure which
will be called G-codes.

Zm-codes have been widely studied in the past (see, for instance, [3]). A remark-
able fact is that, since Zm is a commutative ring, they can be represented, as in the
binary case, as images or kernels of matrices with coefficients in Zm. In this paper we
are particularly interested in kernel representations: given a matrix Φ in ZL×N

m ,

C := {x ∈ ZN
m | Φx = 0}

is obviously a Zm-code. Regular LDPC Zm-codes can easily be constructed by consid-
ering syndrome matrices with a fixed amount of nonzero elements both on each row
and on each column and, as in the binary case, randomly selecting nonzero positions
through a random-permutation approach. An interesting difference with respect to
the binary case is the way to choose the nonzero elements of Φ. In this paper we will
consider many different possibilities. Among them, we consider the so-called unla-
belled ensemble, where nonzero elements are all equal to 1, and the uniformly labelled
ensemble, where nonzero elements are instead, each one independently, chosen to be
any possible invertible element in the ring Zm with uniform probability. We will see
that the latter ensemble will outperform the former. Of course our results could be
extended to irregular LDPC ensembles, where the fraction of rows and columns with
different amounts of nonzero entries (degree profile) is fixed, although this extension
will not be considered here. Nonbinary LDPC codes have been considered for binary-
input channels as well (see [32], for instance). In this case, they allow us to introduce
a new design parameter, the choice of the nonzero entries in the parity matrix, to be
optimized jointly with the degree profile.

LDPC codes over nonbinary alphabets were already introduced and studied in
Gallager’s seminal work [19]. Precisely, Gallager considered regular ensembles of
LDPC Zm-codes with all nonzero entries equal to 1 (unlabelled ensembles in our ter-
minology); he studied their Hamming distance-spectra and provided bounds for their
error probabilities under ML and suboptimal iterative decoding over some highly sym-
metric channels. More recently, after the rediscovery of Gallager codes in the 1990s,
LDPC codes over nonbinary fields, both for binary and nonbinary channels, have re-
ceived a considerable amount of attention by researchers. In [13], the authors show
empirical evidence that, appropriately choosing the values of the nonzero entries in the
parity-check matrix, LDPC codes over the Galois field F2r perform better than the
corresponding binary LDPC codes when used over binary-input output-symmetric
channels. LDPC codes over F2r for binary-input output-symmetric channels have
also been studied in [32] following a density-evolution approach. The works [4, 5, 17]
contain quite a complete theoretical analysis of LDPC codes over finite fields for
nonbinary channels considering both ML and belief-propagation decoding. Average

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 21

type-spectra of regular LDPC ensembles over Zp in the special case when p is prime,
and more in general over Fpr , have been studied in [17, 4]. In this case the structural
theory of binary LDPC codes generalizes in an almost straightforward way. In par-
ticular it has been shown, using expurgation techniques and results from [39], that
average type-spectra provide lower bounds to the typical error exponent of these en-
sembles and that this exponent can be made arbitrarily close to the random-coding
one by allowing the density of the parity matrix to grow while keeping the rate con-
stant. Finally the recent works [8, 30, 38] investigate the possibility of using hybrid
nonbinary LDPC codes over multiple groups.

However, in the case of algebraic structures which are not fields (e.g., Zm with
nonprime m), the available theoretical results are very few. In [4], average type-
spectra of unlabelled ensembles of LDPC Zm-codes have also been studied in the case
when m is not prime, but there are no results on minimum Euclidean distances. In
the papers [40, 1, 44] the case when m is not prime has been considered but mainly
from an iterative-decoding perspective. Computer simulations have been reported
in [40, 44] showing that, when mapped over the m-PSK constellation, LDPC Zm-
codes guarantee better performance than their binary counterparts.

When m is not prime, the lack of field structure implies that the theory of Zm-
codes itself (with no restriction on the density of their kernel representation) is not
as simple as in the linear case. This issue has been addressed in [10, 11], where
the capacity achievable by Zm-codes (and more in general by Abelian group codes)
over symmetric channels—called Zm-capacity—has been characterized in terms of the
capacities of the channels obtained by restricting the input to all nontrivial subgroups
of Zm (see (2.5) in section 2.3). For the m-PSK constellation (when m is an integer
power of a prime) it has been proved that Zm-codes achieve capacity, while this is
no longer the case for other possible geometrically uniform constellations. Type-
spectra and minimum distances of ensembles of Zm-codes have been studied in [12],
where it has been shown that the typical Z8-code asymptotically achieves the Gilbert–
Varshamov bound of the 8-PSK AWGN channel. The study of the properties of
group-code ensembles gives insight into the theory of LDPC codes over groups, since
it allows one to distinguish between the possible loss in performance due to the group
structure and the one due to the sparseness of the syndrome representation.

In this paper we will study in detail average type-spectra and minimum Bhatta-
charyya-distances of regular LDPC ensembles over any finite Abelian group G, in
which the nonzero entries of the parity-check operator are randomly sampled, inde-
pendently and uniformly, from an arbitrary group F of automorphisms of G (briefly
F -labelled ensembles), generalizing all of the results in [19, 13, 17, 4]. This extension
passes through the use of mathematical tools which do not show up in the binary
case: group characters, arithmetic concepts (Möbius inversion formula, Ramanujan
sums), combinatorial techniques (Cayley graphs), and convex-analytical techniques.

As a first result, we will find exact expressions in terms of combinatorial formulas
for the average type-spectra of regular F -labelled ensembles of LDPC codes overG; see
Theorem 3.5. For the unlabelled ensemble of LDPC codes over Zm, we will show that
our results for average type-spectra coincide with those obtained in [19, 4], while for
LDPC codes over finite fields the results of [13, 17, 4] will be recovered. Theorem 3.5
is instead completely original, to the best of our knowledge, for the uniformly labelled
ensemble of LDPC codes over Zm, for which the average type-spectrum has an elegant
expression in terms of Ramanujan sums. Coupling this analysis with an ad hoc
analysis for the low-weight average type-enumerating functions, we will finally propose
upper bounds to the probability distribution of the minimum Bhattacharyya distance

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

22 GIACOMO COMO AND FABIO FAGNANI

[6]. This will allow us to show that minimum distances grow linearly in N with
probability one (see Theorems 5.1 and 5.2): in the coding terminology this means
that such codes are asymptotically good with probability one. More precisely, we
obtain almost sure lower bounds on the asymptotic normalized minimum distance of
the LDPC ensembles. These bounds are defined as the solution of (|G|−1)-dimensional
optimization problems. Proving the tightness of these bounds would require second-
moment estimations for the type-enumerating functions and is a problem left for
future research. However, concentration results available in the literature for the
Hamming distance-spectra of regular ensembles of binary LDPC codes (see [33]) make
us optimistic about the tightness of our bounds for regular ensembles of LDPC G-
codes as well. Finally, we will present some numerical results for the average distance-
spectra showing how strongly the choice of the label group F affects the value of the
typical minimum distance. In particular, we will show that, for the 8-PSK AWGN
channel, the distance properties of the uniformly labelled ensemble of LDPC Z8-codes
are significantly better than those of the unlabelled ensemble. This is confirmed by
Monte Carlo simulations of these codes which we have run, and it agrees with some
of the simulation results reported in [4].

The remainder of this paper is organized as follows. Section 2 is devoted to a
formal introduction of all of the fundamental concepts: G-symmetric channels and
the associated Bhattacharyya distance, Abelian group codes and their capacity, and
LDPC code ensembles over Abelian groups. In section 3 we study the average type-
enumerating functions of these ensembles, and we determine their exact growth rate,
namely the so-called average type-spectrum: the main result is Theorem 3.5. Section 4
is a technical one devoted to a detailed probabilistic analysis of low-weight codewords:
the main result is Theorem 4.6. Using the results of sections 3 and 4 we are able to
prove, in section 5, a probabilistic lower bound on the growth of minimum Euclidean
distances for the LDPC ensembles when the block-length N goes to infinity; see Theo-
rems 5.1 and 5.2. Finally, in section 6 we report some numerical simulations showing
that the uniformly labelled ensemble of LDPC Z8-codes definitely outperforms the
unlabelled one on the 8-PSK AWGN channel, and we draw some final conclusions.
An appendix completes the paper, containing some of the most technical proofs and
a technical lemma on semicontinuous functions.

2. The coding setting.

2.1. Notation. Throughout the paper N, Z, R, C will denote the usual number
sets. With R+ (Z+) we will indicate the set of nonnegative reals (integers). If z
is in C, then z∗ is its conjugate. The functions log and exp are to be considered
with respect to a fixed base a > 1. Conventionally, inf(∅) = +∞, sup(∅) = −∞.
For any subset B ⊆ A, B := A \ B will denote the complement of B in A, while
�B : A → {0, 1} will denote the indicator function of B, defined by �B(a) = 1 if
a belongs to B and �B(a) = 0 otherwise. For a finite set A, L2(A) will denote
the vector space of all C-valued functions on A, equipped with the Hermitian form
〈f , g〉 =

∑
a∈A f(a)g(a)∗. For a function f in L2(A) we shall indicate by supp(f) :={

a ∈ A∣∣ f(a)
= 0
}

the support of f . Given f , g ∈ L2(A), f · g ∈ L2(A) will denote
their pointwise product, while we define fg :=

∏
a∈supp(f) f(a)g(a). We consider the

simplex P(A) of probability measures on A, P(A) := {θ : A→ R+|
∑

a θ(a) = 1}.
Given a subset B ⊆ A, we shall use the notation θ(B) :=

∑
b∈B θ(b). For a in A,

δa in P(A) will be the probability measure concentrated on a. The entropy function
H : P(A) :→ R and the Kullback–Leiber distance D (·||·) : P(A) × P(A) → [0,+∞]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 23

are defined, respectively, by

H(θ) := −
∑

a∈supp(θ)

θ(a) log θ(a), D (θ||θ′) :=
∑

a∈supp(θ)

θ(a) log
θ(a)
θ′(a)

.

Given x ∈ AN , its A-type (or empirical frequency) is the probability measure
θA(x) ∈ P(A) given by [θA(x)] (a) = 1

N |{1 ≤ i ≤ N : xi = a}|. Define the set of
types of all N -tuples by PN(A) := θA(AN), and let PN(A) :=

⋃
N PN (A) be the set

of all A-types. The number of A-types |PN (A)| = (N+|A|−1
|A|−1

)
is a quantity growing

polynomially fast in N . Instead, the set of N -tuples of a given type θ, denoted by

AN
θ :=

{
x ∈ AN such that (s.t.) θA(x) = θ

}
,

has cardinality growing exponentially fast with N . More precisely, for θ ∈ PN(A),
consider the set Nθ := {N : Nθ(a) ∈ N ∀a ∈ A} which is infinite since |A|N ⊆ Nθ.
Then, for every N ∈ Nθ, we have

∣∣AN
θ

∣∣ =
(

N
Nθ

)
:= N !

/∏
a(Nθ(a))!, and Stirling’s

formula implies that

(2.1)
∣∣AN

θ

∣∣ ≤ exp(N H(θ)), lim
N∈Nθ

1
N

log
∣∣AN

θ

∣∣ = H(θ).

2.2. Symmetric channels. A memoryless channel (MC) is described by a finite
input set X , an output set consisting of a σ-finite measure space Y = (Y,B, ν), and a
family of transition probability densities P (·|x) on Y indexed by the possible inputs
x in X . Such a channel will be denoted by (X ,Y, P). In the applications there are
essentially two possibilities: either Y is finite and ν is simply the counting measure
(and in this case P (·|x) are simply probabilities on Y), or Y is an n-dimensional
Euclidean space and ν is the corresponding Lebesgue measure. Keeping this more
abstract formalism will allow us to cover both cases at once.

We now recall the concept of a group action. Given a finite group G with identity
1G and a (finite) set A, we say that G acts on A if, for every g in G, it is defined
as a map from A to A denoted by a �→ ga, such that 1Ga = a for all a in A and
h(ga) = (hg)a for all h, g in G and a in A. The action of G over A is said to be
(simply) transitive if for every a, b ∈ A there exists one (and only one) element g of G
such that ga = b. If the action is simply transitive, G and A are clearly in bijection:
g �→ ga0, where a0 is some fixed reference element in A.

Given a σ-finite measure space Y = (Y,B, ν), we say that the group G acts
isometrically on Y if it is defined as an action of G on Y consisting of measurable
bijections such that

(2.2) ν(gA) = ν(A) ∀A ∈ B, ∀g ∈ G.

Notice that in the case, when Y is a finite set, (2.2) is trivially always verified so that
in this case all actions are isometric. Instead, in the case when Y = Rn, (2.2) is a real
restriction and is verified if the maps y �→ gy are isometries of Rn.

Definition 2.1. An MC (X ,Y, P) is said to be G-symmetric if the following
hold:

(a) there exists a simply transitive action of G on X ;
(b) there exists an isometric action of G on Y;
(c) P (y|x) = P (gy|gx) for every g ∈ G, every x ∈ X , and ν-almost every y ∈ Y.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

24 GIACOMO COMO AND FABIO FAGNANI

It follows from (a) that the input X of a G-symmetric MC and the group G are in
bijection: we will often tend to identify them. In this paper we will exclusively consider
the case when G is a finite Abelian group. We present a few fundamental examples.

Example 1 (binary-input output-symmetric channels). Consider the case when
G Z2. Z2-symmetric channels are known in the coding literature as binary-input
output-symmetric (BIOS) channels. Typical examples are the binary symmetric chan-
nel (BSC) and the binary erasure channel (BEC). By considering r consecutive uses of
a BIOS channel (X ,Y, P), one obtains a Zr

2-symmetric MC with input set X r, output
space Yr, and product transition probabilities P (y|x) :=

∏
1≤k≤r P (yk|xk).

Example 2 (m-ary symmetric channel). Consider a finite set X of cardinality
m ≥ 2 and some ε ∈ [0, 1]. The m-ary symmetric channel is described by the triple
(X ,X , P), where P (y|x) = 1 − ε if y = x and P (y|x) = ε/(m − 1) otherwise. This
channel returns the transmitted input symbol x as output with probability 1−ε, while
with probability ε a wrong symbol is received, uniformly distributed over the set X \
{x}. The special case m = 2 corresponds to the BSC. The m-ary symmetric channel
was considered by Gallager [19, sect. 5] to evaluate the performance of nonbinary
LDPC codes. It exhibits the highest possible level of symmetry. Indeed, it is G-
symmetric for every group G of order |G| = m. To see this, it is sufficient to observe
that every group acts simply and transitively on itself. Notice that whenever m = pr

for some prime p and positive integer r, the group G can be chosen to be Zr
p, which

is compatible with the structure of the Galois field Fpr .
Example 3 (geometrically uniform AWGN channels). An n-dimensional constel-

lation is a finite subset S ⊂ Rn spanning Rn. We denote with Iso(S) its symmetry
group, i.e., the group of those isometries of Rn mapping S into S itself. A constella-
tion S is said to be geometrically uniform (GU) if there exists a subgroup G of Iso(S)
whose action on S is simply transitive. Such a G is called a generating group for S:
for every s ∈ S the mapping λs : G→ S defined by λs : g ∈ G �→ gs ∈ S is a bijection
called isometric labeling.

Given a GU constellation S ⊂ Rn with generating group G, define the S-AWGN
channel as the n-dimensional unquantized AWGN channel with input set S, output Rn

with the usual Borel–Lebesgue measure structure, and transition probability densities
given by P (y|x) = N(y − x), where N(x) = (2πσ2)−n/2e−||x||2/2σ2

is the density of
an n-dimensional diagonal Gaussian random variable. Now let S′ be another GU
constellation such that S ⊆ S′ and G is isomorphic to a subgroup of Iso(S′). Let
us introduce the quantization map over the Voronoi regions of S′ q : Rn → S′,
q(x) = argmins∈S′ ||x−s|| (resolving nonuniqueness cases by assigning to q(x) a value
arbitrarily chosen from the set of minima). We define the (S, S′)-AWGN channel as
the MC obtained by applying q to the output of the S-AWGN channel. Note that the
special case S = S′ coincides with the so-called hard decoding rule. It is easy to see
that both the S-AWGN channel and the (S, S′)-AWGN channel are G-symmetric.

The simplest example of a GU constellation is the so-called one-dimensional an-
tipodal constellation {−1, 1}, admitting Z2 as a generating group. Another example
is given by m orthogonal equal-energy signals: in this case the symmetry group co-
incides with the permutation group Sm, and any group of order m is a generating
group. A two-dimensional example is the m-PSK constellation already introduced in
section 1. Notice that the symmetry group of the m-PSK is isomorphic to Dm, the
dihedral group with 2m elements. m-PSK always admits cyclic generating group Zm.
When m is even, the m-PSK also admits a generating group isomorphic to Dm/2,
which is non-Abelian for all m ≥ 6. Notice that the only cases when m-PSK has
a generating group admitting Galois field structure are when m is prime or m = 4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 25

In fact, when m = 2r with r ≥ 3 or m = pr with p ≥ 3 prime and r ≥ 2, Zr
p is

not isomorphic to any subgroup of Dm and thus cannot be a generating group for
m-PSK.

Consider an MC (X ,Y, P) and two input elements x, x′ in X . The Schwarz
inequality gives

0 ≤
∫
Y

√
P (y|x)P (y|x′)dν(y) ≤

∫
Y
P (y|x)dν(y)

∫
Y
P (y|x′)dν(y) = 1.

Moreover, the first of the previous inequalities holds as an equality iff P (· |x)P (· |x′) =
0 ν-almost everywhere. Instead, the second inequality is equality iff P (·|x) = P (·|x′) ν-
almost everywhere, which means that actually x and x′ have indistinguishable outputs.
Throughout this paper we will assume that 0 <

∫
Y
√
P (y|x)P (y|x′)dν(y) < 1 for

every x
= x′. While there is no loss of generality in the latter part of this assumption,
the former excludes from our analysis the class of channels whose 0-error capacity is
strictly positive. To any MC we can associate a function

Δ : X × X → R+ , Δ(x, x′) := − log
∫
Y

√
P (y|x)P (y|x′)dν(y).

This function is usually called the Bhattacharyya distance (or simply Δ-distance) of
the channel. Δ is symmetric: Δ(x, x′) = Δ(x′, x); moreover, Δ(x, x′) = 0 iff x = x′.
The Bhattacharyya distance can be extended to direct products in a natural way.
Given x,x′ in XN , we put Δ(x,x′) =

∑N
i=1Δ(xi, x

′
i). The minimum Δ-distance of

a code C ⊆ XN is defined as

dmin(C) := min{Δ(x,x′)
∣∣ x,x′ ∈ C, x
= x′}.

If the MC (X ,Y, P) is G-symmetric, it is easy to verify that Δ(gx, gx′) = Δ(x, x′)
for all x, x′ in X and g in G. Identifying X with G as usual, we can introduce the
so-called Bhattacharyya weight:

δ : G→ R+, δ(x) := Δ(x, 1G), x ∈ G.
In this way we have Δ(x, x′) = δ(x−1x′).

In the case of a BIOS channel, we have that

Δ(x,x′) =
∑

1≤i≤N

δ(xi − x′i) = δ(1) |{1 ≤ i ≤ N : xi
= x′i}| ∀x,x′ ∈ XN ;

i.e., the Δ-distance is proportional to the Hamming distance (the number of different
entries of two strings).

For the m-ary symmetric channel of Example 2 we obtain

Δ(x,x′) = − log
(
εm−2

m−1 +
√

(1−ε)ε
m−1

)
|{1 ≤ i ≤ N : xi
= x′i}| ∀x,x′ ∈ XN ,

so that, once again, the Δ-distance is proportional to the Hamming distance.
Finally, for the S-AWGN channel of Example 3, by considering any isometric

labeling λs : G→ S, we obtain

Δ(x,x′) =
N∑

k=1

− log
∫

Rn

e−(||y−λs(xk)||2+||y−λs(x′
k)||2)/4σ2

(2πσ2)n/2
dy

=
log e
8σ2

N∑
k=1

||λs(xk)− λs(x′k)||2 ;

i.e., the Bhattacharyya distance is proportional to the squared Euclidean distance.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

26 GIACOMO COMO AND FABIO FAGNANI

2.3. Group codes and type-enumerating functions. When transmitting
over an MC which is symmetric according to Definition 2.1, a natural class of codes
to be considered is that of group codes. A G-code of length N is any subgroup of the
direct group product GN . Group codes are generalizations of binary-linear codes (the
latter correspond to the case G Z2). In fact, G-codes enjoy many of the properties
of binary-linear codes. For instance, when a G-code C is employed on a G-symmetric
MC, ML decision regions (Voronoi regions in the Gaussian case) are congruent, and
then the error probability does not depend on the transmitted codeword: this is called
the uniform error property [18].

For every G-code C of length N we now introduce some combinatorial quanti-
ties characterizing its performance. The type-enumerating function of a G-code C is
defined as

WC : P(G)→ Z+, WC(θ) :=
∑

x∈GN
θ

�C(x) ∀θ ∈ P(G),

where GN
θ is the set of N -tuples of type θ. Notice that since C is a subgroup of GN ,

1GN is always a codeword so that WC(δ1G) = 1.
Assume we have fixed a G-symmetric MC (X ,Y, P), and let δ be its associated

Bhattacharyya weight. The minimum Δ-distance of a G-code C of length N is a
function of its type-enumerating function:
(2.3)
dmin(C) = min{δ(x) | x ∈ C \ {0}} = N inf

{〈δ,θ〉∣∣θ ∈ P(G) \ {δ0} : WC(θ) > 0
}
.

Type-enumerating functions and minimum Bhattacharyya distances play an impor-
tant role in the estimation of the ML decoding error probability of G-codes over
G-symmetric MCs. For instance, the so-called union-Bhattacharyya bound, for the
error probability of a G-code C of length N , can be written in the form

(2.4) pe(C) ≤
∑

θ∈P(G)

WC(θ) exp (−N〈δ,θ〉) .

Bounds tighter than (2.4) can be obtained for the error probability of G-codes over
G-symmetric channels based on variations of the Gallager bound [20, 39].

Observe that both (2.3) and (2.4) do not generally hold when a G-code is em-
ployed on an MC which is not G-symmetric. While this is not an issue for the highly
symmetric channels considered in Example 2, it does matter for the symmetric chan-
nels introduced in Example 3. As a concrete example, one may think of the 8-PSK
Gaussian channel: in this case, while both (2.3) and (2.4) are true for Z8-codes, for
a Z3

2-code C, and a fortiori for a F8-linear code, neither (2.3) nor (2.4) holds. In
fact, the type-enumerating function of a Z3

2-code is not sufficient for characterizing its
performance on the 8-PSK Gaussian channel. In order to overcome this problem, an
average coset ensemble approach needs to be used [22, 4, 5].

It is a well-known result in information theory [20] that binary-linear codes
allow one to achieve the capacity of any BIOS channels. More in general, lin-
ear codes over the Galois field Fpr are known to achieve the capacity of any Zr

p-
symmetric channel [16]. A similar result was conjectured in [27] for G-codes on
G-symmetric MCs. In [11], the capacity CG achievable by G-codes on G-symmetric
MCs has been characterized for any finite Abelian group G. When G is cyclic of order

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 27

m = p
rm
1

1 p
rm
2

2 . . . p
rm

s
s , for distinct primes p1, . . . , ps, it has been shown that

(2.5) CZm = max
α∈P({1,...,s})

min
l|m,l>1

Cps∑
1≤j≤s

α(j)
rl
j

rm
j

≤ C,

where Cl denotes the Shannon capacity of the Zl-symmetric channel obtained by
restricting the input of the original channel to the subgroup m

l Zm. It has been shown
in [11] that for a wide class of G-symmetric channels, including the pr-PSK Gaussian
channel (for prime p) both with quantized and unquantized output, G-capacity CG

and Shannon capacity C do coincide, while this is no longer the case for other G-
symmetric channels.

2.4. LDPC codes over Abelian groups. For any finite Abelian group G,
we now describe the ensembles of LDPC G-codes which will be considered in this
paper. For every given degree pair (c, d) in N2, we consider the set of admissible
block-lengths N(c,d) := {N ∈ N s.t. d | Nc}, and for every N in N(c,d) we define
L = Nc/d. Consider the c-repetition operator

(2.6) RepN
c : GN → GNc, (RepN

c x)i = x�i/c�,

where �x� denotes the lowest integer not below x, and the d-check summation operator

(2.7) SumN
d : GNc → GL, (SumN

d x)i =
id∑

k=i(d−1)+1

xk.

Consider the group of permutations on Nc elements, SNc, and let Π′
N be a random

variable uniformly distributed over SNc. Moreover, consider a subgroup F of Aut(G),
the automorphism group of G, and let (Λj)1≤j≤Nc be a family of independent ran-
dom variables identically distributed uniformly on F , independent of Π′

N . Define the
random diagonal automorphism Π′′

N ∈ Aut(GNc) by (Π′′
Nx)j := Λjxj for 1 ≤ j ≤ Nc.

Finally, for every N ∈ N(c,d) define the random syndrome homomorphism

(2.8) ΦN : GN → GL, ΦN := SumN
d Π′

NΠ′′
N RepN

c

and the associated random G-code CN := kerΦN . This is called the (c, d)-regular
F -labelled ensemble. F will be called the label group. The two extreme cases F = {1}
and F = Aut(G) will be referred to, respectively, as the unlabelled and the uniformly
labelled (c, d)-regular ensembles.

The reason for considering only automorphisms as possible labels, avoiding the
use of noninvertible labels, is clarified by the following proposition. For any group H ,
we denote the set of endomorphisms of H by End(H).

Proposition 2.2. Assume that, for all N ∈ N(c,d), ΦN : GN → GL is de-
fined as in (2.8) with Π′

N uniformly distributed over SNc and Π′′
N ∈ End(GNc) is

defined by (Π′′
Nx)j := Λjxj for 1 ≤ j ≤ Nc, where (Λj) are independently and identi-

cally distributed according to some probability distribution μ ∈ P(End(G)) such that
supp(μ) � Aut(G). Then, for all k ∈ G\{0} such that Λk = 0 for some Λ ∈ supp(μ)

P(dmin(kerΦN) ≤ δ(k)) ≥ 1− (1− μ(Λ)c)N N→∞−→ 1.

Proof. Consider Λ ∈ supp(μ) \ Aut(G), and k ∈ kerΛ \ {0}. For 1 ≤ s ≤ N , let
ek

s ∈ GN be the N -tuple with all-zero entries but the sth one, which is equal to k. If

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

28 GIACOMO COMO AND FABIO FAGNANI

Λj = Λ for all (s − 1)c+ 1 ≤ j ≤ sc, then Π′′
N RepN

c ek
s = 0, so that ΦNe

k
s = 0, and

dmin(kerΦN) ≤ δ(k). Since the events

EN
s :=

⋂
(s−1)c+1≤j≤sc

{Λj = Λ}

are independent for 1 ≤ s ≤ N and all have probability 1− μ(Λ)c, it follows that

P(dmin(kerΦN) ≤ δ(k)) ≥ P

⎛
⎝ ⋃

1≤s≤N

EN
s

⎞
⎠ = 1−(1− P

(
EN

s

))N
= (1− μ(Λ)c)N

.

We wish to underline the fact that the proof of Proposition 2.2 strongly relied
on the independence assumption we made for the labels Λj . Indeed, by introducing
proper dependence structures for the random labels which allow us to avoid certain
configurations, it is possible to consider ensembles of LDPC G-codes with noninvert-
ible labels as well. This possibility will not be considered in the present paper but
will be explored in a future work.

As LDPC G-codes are special G-codes admitting sparse kernel representation,
they suffer from all of the limitations in performance of G-codes. In particular, the ca-
pacity they can achieve on aG-symmetric channel is upper bounded by the G-capacity
of that channel. This explains why the authors of [4] had to restrict themselves to
prime values of m while studying LDPC Zm-codes, albeit the average type-spectra
they obtained for the unlabelled ensemble did not need such an assumption. In fact,
they noticed that for nonprime m “expurgation is impossible” and LDPC Zm-codes
result “bounded away from the random-coding spectrum.” The same restriction to
prime values of m (or more in general to groups G admitting Galois field structure)
was required both in [4] and [17] in order to study the uniformly labelled ensemble.

In this paper regular ensembles of F -labelled LDPC G-codes will be studied for
any finite Abelian group G. In particular we will find estimations for their average
type-enumerating functions WCN (θ) and explicit combinatorial formulas for their av-
erage type-spectra defined as the limit ofN−1 logWCN (θ). Coupling this analysis with
an ad hoc analysis of the type-enumerator functions for small weight codewords, we
will finally propose upper bounds to the repartition function of the minimum normal-
ized distance 1

N dmin(CN). This will allow us to show that, if c > 2, minimum distances
grow linearly in N with high probability. We will also show that the typical minimum
distance (more precisely the lower bound on it—conjectured to be tight—provided
by the average type-spectra) of the uniformly labelled LDPC ensemble is significantly
larger than the typical minimum distance of the corresponding unlabelled ensemble.

In [10] it was claimed that, for any m, the (c, d)-regular ensemble allows one to
achieve a nonzero capacity over any Zm-symmetric channel, and that this capacity can
be made arbitrarily close to the Zm-capacity of the channel, if the parameters (c, d)
are allowed to grow. In fact, the same is true for the uniformly labelled ensembles
as well; see section 6.2. This implies that LDPC Zm-codes allow one to achieve the
Shannon capacity of a Zm-symmetric channel whenever Zm-codes do. While explicit
proofs of these facts will not be given here due to the lack of space, they can be
obtained from the combinatorial results of sections 3 and 4 using standard upper-
bounding techniques for the average error probability of group codes [20, 39]. Similar
reasonings can be made for minimum distances and error exponents of LDPC codes. In
particular, minimum Bhattacharyya distances of Zm-codes have been studied in [12].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 29

3. Average type-spectra of LDPC G-codes. In this section we first present
some considerations on semidirect-product group actions. Then in section 3.2 we
introduce LDPC codes in a slightly more general setting, and we show how regular
F -labelled ensembles of LDPC G-codes introduced in section 2.4 can be cast in this
framework. In section 3.3 we prove the main result, Theorem 3.5, characterizing
the average type-spectra of regular F -labelled ensembles. Finally, in section 3.4 we
show how previous results in the literature can be recovered as particular cases of
Theorem 3.5, and we provide an explicit formula for the average type-spectrum of the
uniformly labelled ensemble over the cyclic group, which is instead an original result.

3.1. Group actions. We recall here some basic facts about semidirect group ac-
tions; the reader is referred to the standard textbook [23] for further details. Assume
that a group F acts on a set A. A subset B ⊆ A is said to be F -invariant if fb ∈ B for
every b ∈ B and f ∈ F . Clearly, if B is F -invariant, F acts on B as well. For every
a in A, the relative orbit Fa := {b ∈ A s.t. b = fa for some f ∈ F} is F -invariant
and its action on it is transitive. The set of orbits is denoted by A/F and called the
quotient of A by the action of F . There is a canonical surjection πF : A → A/F
which associates an element a with the orbit it belongs to. Given a ∈ A, we define
its stabilizer as StabF (a) := {f ∈ F s.t. fa = a}. The well-known class formula gives
|F | = |Fa| · |StabF (a)|.

If A and B are sets and the group F acts on A, a map φ : A → B is said to be
F -invariant if φ(fa) = φ(a) for every a ∈ A and f ∈ F . As an example, the canonical
surjection πF : A→ A/F is an F -invariant map. Suppose we have an F -invariant map
φ : A → B; then it is immediate to see that we can define a map φ̃ : A/F → B such
that φ = φ̃ ◦ πF . Notice that if it happens that φ is onto and moreover φ(a) = φ(a′)
iff Fa = Fa′, then the map φ̃ is a bijection, and thus A/F and B are in one-to-one
correspondence. We will often use this fact in order to characterize quotient spaces.

We now introduce an example which will play a fundamental role in our future
derivations. Given any set A, the permutation group SN acts naturally on AN : given
a ∈ AN and σ in SN , we define σa ∈ AN by (σa)j = aσ−1(j). Orbits can easily be
described using types. Given a, b ∈ AN , it is immediate to see that

∃ σ ∈ SN : σa = b ⇔ θA(a) = θA(b).

This says that the subsets AN
θ of type-θ N -tuples are exactly the orbits for the action

of the permutation group SN on AN , and we have a natural bijection AN/SN
PN (A) (obtained through the mapping a �→ θA(a)).

Now suppose we are given an action of a group F on the set A. This extends
to a componentwise action of FN on AN with the orbit set AN/FN (A/F)N . We
would like to combine this action with the action of the permutation group on AN ,
and the way to do this is as follows: we consider the semidirect product

SN � FN , (σ1, g1)(σ2, g2) = (σ1σ2, (σ−1
2 g1)g2)

and the action on AN given by (σ, g)a = σ(ga).
We now want to characterize the set of orbits of this semidirect action. Notice

that the map πF : A → A/F induces a natural map π�
F : P(A) → P(A/F), where

[π�
F θ](Fa) =

∑
b∈Fa θ(b). It is easy to see that the following diagram commutes:

(3.1)
AN πF N

→ (A/F)N

↓ θA ↓ θA/F

PN (A) π�
F→ PN (A/F)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

30 GIACOMO COMO AND FABIO FAGNANI

(i.e., θA/F ◦ πF N = π�
F ◦ θA).

In what follows we will use the notation υA,F = θA/F ◦πF N and call υA,F (a) the
(A,F)-type of a. The (A,F)-type is exactly what is needed to describe orbits with
respect to the action of the semidirect group SN �FN . Indeed, it is immediate to check
that PN (A/F) is in bijection with the quotient AN/(SN �FN): given a, b ∈ AN , we
have that

∃(σ, g) ∈ SN � FN s.t. (σ, g)a = b ⇔ υA,F (a) = υA,F (b).

If υ ∈ PN (A/F), we will use the notation AN
υ := {a ∈ AN | υA,F (a) = υ}. Using the

fact that υA,F = θA/F ◦ πF N we obtain that

(3.2) |AN
υ | =

(
N

Nυ

) ∏
α∈A/F

|π−1
F (α)|Nυ(α).

Now define ON
υ := {θ ∈ PN (A) s.t. π�

F (θ) = υ}. For every given υ ∈ P(A/F), and
N in N, we have

(3.3) AN
υ =

⋃
θ∈ON

υ

AN
θ ,

the union being disjoint. Notice that we also have
∣∣ON

υ

∣∣ =
∏

α∈A/F |π−1
F (α)|Nυ(α).

3.2. A general framework for LDPC ensembles over Abelian groups.
Fix an infinite subset N ⊆ N, a group U , two sequences of finite Abelian groups Z(N)

and Y (N) (with N ∈ N), and two sequences of homomorphisms

ΞN
o : UN → Z(N), ΞN

i : Z(N) → Y (N).

Consider, moreover, a sequence IN of subgroups of Aut(Z(N)), and assume that the
actions of IN on Z(N) satisfy the following property: there exists a fixed finite set A
and a sequence of invariant maps ΘN : Z(N) → P(A) such that x, y ∈ Z(N) are in
the same orbit iff ΘN (x) = ΘN(y). In this way the quotient space Z(N)/IN can be
naturally identified with the image of ΘN inside P(A).

Now let ΠN be a sequence of random variables uniformly distributed over IN .
For every N ∈ N define

(3.4) ΦN := ΞN
i ΠNΞN

o .

The triple (ΞN
o ,Ξ

N
i , IN) is called an interconnected ensemble, while (kerΦN) will

be the random code sequence associated with the ensemble. The set A will be called
the interconnection type alphabet of the ensemble.

Now consider the type-enumerating function WN (θ) for the ensemble. By taking
the expectation with respect to our probability space, we get

(3.5) WN (θ) = E

[∑
x∈UN

θ

�{0}(ΦNx)
]

=
∑

x∈UN
θ

P(ΦNx = 0).

Put Z(N)
υ := Θ−1

N (υ), and define the following sets: for every υ ∈ P(A), θ ∈ P(U)
(3.6)
Zi,N

υ :=
{
w∈Z(N)

υ | ΞN
i w =0

}
, Uo,N

θ,υ := {x∈UN | θU (x) = θ, ΘN(ΞN
o x)=υ}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 31

We have the following simple result.
Proposition 3.1. For every θ in PN (U)

(3.7) WN (θ) =
∑

υ∈P(A)

|Uo,N
θ,υ ||Zi,N

υ |
|Z(N)

υ |
.

Proof. If x ∈ Uo,N
θ,υ , using the fact that IN acts transitively on Z(N)

υ and the class
formula, we obtain

P(ΦNx = 0) = P(ΠNΞN
o x ∈ Zi,N

υ) =
|Zi,N

υ ||StabIN (ΞN
o (x))|

|IN | =
|Zi,N

υ |
|Z(N)

υ |
.

Now using (3.5), (3.7) follows immediately.
We now frame the LDPC ensembles introduced in section 2 into this more general

setting. We use the notation introduced in section 2.4. Given (c, d) ∈ N2 and N ∈
N(c,d), consider L = Nc/d. Take U = G, Z(N) = GNc, Y (N) = GL. Also, take
ΞN

o = RepN
c , ΞN

i = SumN
d , IN = SNc�FNc. The ensemble (RepN

c , SumN
d , SNc�FNc)

is the (c, d)-regular F -labelled ensemble. The type alphabet in this case is simply
A = G/F .

Irregular ensembles can be framed into this setting by simply modifying the rep-
etition and the sum operators. Also other interesting cases can be obtained by con-
sidering the interconnections among the inner and outer encoder done through some
vector structured channels and allowing only independent permutations on the various
channels. Finally, hybrid nonbinary LDPC codes can be considered in this framework
by replacing the product group UN with the product of copies of different Abelian
groups UN

1 × · · · × UN
k .

However, we will now focus on the evaluation of the type-spectra of the regular
F -labelled LDPC G-code ensembles. This will be done in the following subsection by
explicitly calculating the three terms entering in the formula (3.7).

3.3. The average type-spectrum of the (c, d)-regular F -labelled ensem-
ble. In order to prove the main result of this section we will use some generating
function techniques. For a finite set A, consider the ring of complex-coefficient multi-
variable polynomials (briefly multinomials) C[A]. Given p ∈ C[A] and k ∈ ZA

+, we de-
note by �p(z)�k the coefficient of the term zk in p(z), i.e., p(z) =

∑
k∈ZA

+
�p(z)�k zk.

In particular, we will consider type-enumerating multinomials, i.e., homogeneous-
degree multinomials of the form p(z) =

∑
θ∈PN (A) �p(z)�Nθ zNθ , where each co-

efficient �p(z)�Nθ equals the number of N -tuples a ∈ AN of A-type θ, satisfying
certain properties. The easiest case is provided by the multinomial (

∑
a∈A za)N =∑

θ∈PN(A)

(
N
Nθ

)
zNθ, simply enumerating the N -tuples of different A-types. The fol-

lowing result, proved in [9], characterizes the asymptotic growth rate of the coefficients
of powers of enumerating multinomials.

Theorem 3.2. Let A be a finite set and p(z) ∈ R+[A] be a homogeneous-degree,
nonnegative, real-coefficient multinomial. For all θ ∈ PN(A) and z ∈ P(A) such that
supp(z) = supp(θ), we have

(3.8)
⌊
p(z)N

⌋
Nθ
≤ p(z)N

zNθ
, lim

N∈Nθ

1
N

log
⌊
p(z)N

⌋
Nθ

= inf
z∈P(A):

supp(z)=supp(θ)

log
p(z)
zθ

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

32 GIACOMO COMO AND FABIO FAGNANI

Moreover, the left-hand side of (3.8) is a concave (and thus upper semicontinuous)
[−∞,+∞)-valued function on P(A).

Observe that, by considering p(z) =
∑

a za, (2.1) can be deduced from Theo-
rem 3.2.

The first type-enumerating multinomial which we will need in our derivations is
the one enumerating the 0-sum d-tuples over a finite Abelian group G:

βd(z) ∈ C[zg, g ∈ G], βd(z) :=
∑

g1,...,gd

�{0}

(
d∑

k=1

gk

) ∏
1≤k≤d

zgk
.

By introducing the group Ĝ of characters of G, i.e., homomorphisms of G in the
multiplicative group C∗ of nonzero complex numbers, it is possible to find an explicit
expression for βd(z) as stated in the following lemma.

Lemma 3.3. For every finite Abelian group G and d ∈ N

βd(z) =
1
|G|

∑
χ∈Ĝ

(∑
g∈G

zgχ(g)

)d

.

Proof. The inversion formula for the discrete Fourier transform (see [41, p. 168])
f(g) = 1

|G|
∑

χ〈f, χ〉χ(g), applied to f = δ0 ∈ L2(G), gives 1
G

∑
χ χ(g) = �{0}(g).

Then

βd(z) =
∑

g1,...,gd

�{0}

(∑
1≤k≤d

gk

) ∏
1≤k≤d

zgk

=
∑

g1,...,gd

1
|G|
∑

χ

χ

(∑
1≤k≤d

gk

) ∏
1≤k≤d

zgk

= 1
|G|
∑

χ

∑
g1,...,gd

∏
1≤k≤d

χ (gk) zgk

= 1
|G|
∑

χ

(∑
g

zgχ(g)
)d

.

Recall that, given any subgroup F of Aut(G) and a degree pair (c, d) in N2,
the (c, d)-regular F -labelled ensemble of LDPC G-codes is described by the triple(
RepN

c , SumN
d , SNc � FNc

)
. Let πF : G → G/F be the canonical projection on the

quotient and π�
F : P(G) → P(G/F) be the associated action on probabilities. Also,

define

(3.9) ϕ : G/F → N, ϕ(q) =
∣∣π−1

F (q)
∣∣

to be the map giving the cardinalities of the orbits of G under the action of F .
Consider some admissible block-length N in N(c,d). Formula (3.2) shows that

|Z(N)
υ | =

(
Nc

Ncυ

)
ϕNcυ for every υ ∈ PNc(G/F). Moreover, in this case |Uo,N

θ,υ | =(
N
Nθ

)
�{π�

F θ}(υ). Substituting into (3.7), and defining υ := π�
F θ, we obtain

(3.10) WN (θ) =
(
N

Nθ

)(
Nc

Ncυ

)−1

ϕ−Ncυ|Zi,N
υ |.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 33

It remains to evaluate the enumerating weights |Zi,N
υ | relative to the check summation

operator. In order to do that, we introduce the multinomial

(3.11) αF,d(t) ∈ C[tq, q ∈ G/F], αF,d(t) :=
1
|G|

∑
χ∈Ĝ

⎛
⎝ ∑

q∈G/F

1
ϕ(q)

∑
g∈q

χ(g)tq

⎞
⎠

d

and present the following result, stating that the Lth power of αF,d(t) is the type-
enumerating multinomial of the normalized weights |Zi,N

υ |/ϕNcυ.
Lemma 3.4. For every N ∈ N(c,d)

(3.12)
∑

υ∈PNc(G/F)

|Zi,N
υ |

ϕNcυ
tNcυ = (αF,d(t))

L
.

Proof. First, consider the type-enumerating multinomial B(z) ∈ C[zg, g ∈ G] for
the kernel of the inner homomorphism ΞN

i = SumN
d . Since any x in GNc belongs to

ker SumN
d iff it is the concatenation of L 0-sum d-tuples, from Lemma 3.3 we have

B(z) = (βd(z))L. Now consider the map

Ψ : C[zg, g ∈ G]→ C[tq, q ∈ G/F], Ψ : p(z) �→ p(tπF (g), g ∈ G).

It follows from (3.3) that, for all υ in P(G/F), we have
(3.13)

|Zi,N
υ |

ϕNcυ
=
∑

θ∈ONc
υ

�B(z)�Ncθ

ϕNcυ
=

∑
υ∈PNc(G/F)

�ΨB (t)�Ncυ

ϕNcυ
=

∑
υ∈PNc(G/F)

⌊
ΨB

(
t

ϕ

)⌋
Ncυ

.

Thus, the claim follows by observing that ΨB (t/ϕ) = (Ψβd (t/ϕ))L = αF,d(t)L.
We are now ready to prove the main result of this section, stating that the average

type-spectrum of the (c, d)-regular F -labelled ensemble of LDPC G-codes is given by

(3.14) Γ(F,c,d)(θ) := H(θ) +
c

d
inf

t∈P(G/F):

supp(t)=supp(π�
F θ)

{
logαF,d(t) + dD

(
π�

F θ||t)} .

From Theorem 3.2 it follows that the spectrum Γ(F,c,d)(θ) is an upper semicontinuous
function on the probability simplex P(G). Notice that, by choosing t = π�

F θ, we
immediately obtain the estimate

Γ(F,c,d)(θ) ≤ c

d
logαF,d

(
π�

F θ
)

+ H(θ).

Theorem 3.5. For the (c, d)-regular F -labelled ensemble of LDPC G-codes

lim
N∈Nθ∩N(c,d)

1
N

logWN (θ) = Γ(F,c,d)(θ).

Proof. From (3.10), by recalling that Nc = Ld and υ = π�
F θ, we get

1
N

logWN (θ) =
1
N

log
(
N

Nθ

)
+
c

d

1
L

log
|Zi,N

υ |(
Ld

Ldυ

)
ϕLdυ

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

34 GIACOMO COMO AND FABIO FAGNANI

From (2.1) we have lim 1
N log

(
N

Nθ

)
= H(θ). Then we can first apply Lemma 3.4 and

then Theorem 3.2 (notice that (3.12) with L = 1 implies that αF,d(t) has nonnegative
real coefficients and homogeneous degree), obtaining

lim
N

1
L

log
|Zi,N

υ |(
Ld

Ldυ

)
ϕLdυ

= lim
N

1
L

log

⌊
αF,d(t)L

⌋
Ldυ(

Ld
Ldυ

)
ϕLdυ

= inf
t∈P(G/F):

supp(t)=supp(υ)

{
log

αF,d (t)
tdυ

− dH (υ)
}
.

3.4. Special cases of Theorem 3.5. Now we particularize Theorem 3.5 to
some important special cases, showing that all previously known results can be reob-
tained, while new interesting cases can be studied as well.

3.4.1. LDPC codes over Galois fields. Suppose G Zr
p for some prime

number p and positive integer r. First, let F coincide with the whole automorphism
group Aut(Zr

p), which is isomorphic to the general linear group of r × r invertible
matrices on Zp. In this case the probability that an N -tuple x in GN belongs to
the random LDPC code CN = ker

(
SumN

d ΠN RepN
c

)
depends only on the Hamming

weight (i.e., number of nonzero entries) of x. Indeed, it is easily seen that the action
of Aut(Zr

p) on Zr
p has only two orbits: one containing the zero element only and one

containing all of the nonzero elements of Zr
p. Thus, the quotient space is G/F =

{q0, q1}, with ϕ(q0) = 1, ϕ(q1) = pr − 1. Moreover, since all nontrivial characters are
orthogonal to the trivial one χ0 ≡ 1, it follows that

∑
g∈q1

χ(g) = −χ(0) = −1 for all
χ ∈ Ĝ \ {χ0}. Then the average type-spectra of the (c, d)-regular Aut(Zr

p)-labelled
ensemble of LDPC Zr

p-codes are given by
(3.15)

Γ(Aut(Zr
p),c,d)(θ) = H(θ) + c

d inf
t∈(0,1)

{
log
(

1
pr + pr−1

pr

(
1− pr

pr−1 t
)d
)

+ dD(λ||t)
}
,

where λ := 1− θ(0) and D(λ||t) := λ log λ
t + (1− λ) log 1−λ

1−t .
Now consider the case G Zr

p again, but now with label group F F∗
pr , the

multiplicative group of nonzero elements of the Galois field Fpr . Observe that F∗
pr

can always be identified with a subgroup (proper if r > 1) of Aut(Zr
p). Nevertheless,

the action of F∗
pr on Zr

p has the same two orbits as the action of the whole Aut(Zpr)
on Zr

p. This shows that the (c, d)-regular F ∗
pr -labelled ensemble has the same average

type-spectrum of the Aut(Zr
p)-labelled ensemble, i.e.,

(3.16) Γ(F∗
pr ,c,d)(θ) = Γ(Aut(Zr

p),c,d)(θ) ∀θ ∈ P(Zr
p).

The expression (3.15) coincides with the spectrum of the F∗
pr -labelled ensemble

obtained in [4, 17]. We observe that in [32] it was numerically observed that the
density-evolution dynamical system [34] exhibits the same threshold value for the
F∗

pr -labelled and the Aut(Zr
p)-labelled ensembles over the BEC. Formula (3.16) shows

that these ensembles have identical average type-spectra.

3.4.2. Unlabelled LDPC ensembles over cyclic groups. We now consider
the case when G Zm and F = {1}. In this case, the characters of Zm are given
by χk(h) := e

2π
m hki for h, k ∈ Zm, while, trivially, the quotient space Zm/F coincides

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 35

with Zm itself and ϕ ≡ 1 (see (3.9)). It follows that

α{1},d(t) = βd(t) = 1
m

∑
1≤k≤m

⎛
⎝ ∑

1≤h≤m

e
2π
m hkizh

⎞
⎠

d

.

Then the average type-spectrum takes the following form:
(3.17)

Γ({1},c,d)(θ) = H(θ) +
c

d
inf

z∈P(Zm)
supp(z)=supp(θ)

{
log
(

1
m

∑
k

(∑
h

e
2π
m hkizh

)d)
+ dD

(
θ||z)}.

The above spectrum coincides with the one obtained in [4] (see also [19, p. 49]).

3.4.3. Uniformly labelled ensembles over cyclic groups. Finally, consider
the case when G Zm again, but this time with F isomorphic to Z∗

m, the multiplica-
tive group of units of Zm. Notice that Z∗

m acts by multiplication on the ring Zm.
It is immediate to see that two a, b ∈ Zm are in the same orbit with respect to this
group action iff (m, a) = (m, b), where (k, h) denotes the greatest common divisor of
two naturals k and h. The quotient space Zm/Z∗

m can be identified with the set of
divisors of m, Dm := {l ∈ N s.t. l | m}. We have |Z∗

m| = ϕ(m), where ϕ : N → N,
ϕ(n) =

∣∣{m ∈ N s.t. m ≤ n, (n,m) = 1
}∣∣, is the Euler ϕ-function. The projection

map is

πZ∗
m

: Zm → Dm, πZ∗
m

(a) =
m

(m, a)
.

Notice that, for every l ∈ Dm, the orbit π−1
Z∗

m
(l) coincides with m

l Z∗
m and it is in

bijection with Z∗
l through the map h �→ m

l h. Then ϕ(l) = |π−1
Z∗

m
(l)| = |Z∗

l | = ϕ(l).

In order to evaluate the average-type spectra of the (c, d)-regular Z∗
m-labelled

ensemble of LDPC Zm-codes, it is convenient to introduce the so-called Ramanujan
sums

rl(k) :=
∑
j∈Z

∗
l

e
2π
l jki, l, k ∈ N.

The Ramanujan sums are well known in number theory and can be explicitly evaluated
in terms of both the Euler ϕ-function and Möbius function:

μ : N→ Z, μ(n) =

⎧⎨
⎩

1 if n = 1,
0 if p2 | n for some prime p,
(−1)k if m = p1p2 . . . pk for distinct primes pi.

For every l, k ∈ N it holds [21, p. 237] that

(3.18) rl(k) = μ

(
l

(l, k)

)
ϕ(l)

ϕ
(

l
(l,k)

) .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

36 GIACOMO COMO AND FABIO FAGNANI

We can now explicitly evaluate the multinomial αZ∗
m,d(t), obtaining

αZ∗
m,d(t) = 1

m

∑
1≤k≤m

⎛
⎝∑

l|m

1
ϕ(l)

∑
j∈Z∗

l

e
2π
l jkitl

⎞
⎠

d

= 1
m

∑
1≤k≤m

⎛
⎝∑

l|m

1
ϕ(l)rl(k)tl

⎞
⎠

d

= 1
m

∑
k|m

ϕ
(

m
k

)⎛⎝∑
l|m

μ(l
(l,k))

ϕ(l
(l,k))

tl

⎞
⎠

d

.

It follows that the average type-spectrum of the (c, d)-regular Z∗
m-labelled LDPC

ensemble of Zm-codes is given by
(3.19)

Γ(Z∗
m,c,d)(θ) = H(θ) +

c

d
inf
t

{
log
(

1
m

∑
k|m

ϕ
(m
k

)(∑
l|m

μ(l
(l,k))

ϕ(l
(l,k))

tl

)d)
+ dD

(
πZ∗

m
θ||z)},

where the above infimum has to be considered with respect to all t in P(Dm) such
that supp(t) = supp(πZ∗

m
θ). Of course, when m is prime, formula (3.19) reduces to

(3.15). In particular, when m = 2, (3.15), (3.17), and (3.19) coincide. For nonprime
m instead, (3.19) is novel, to the best of our knowledge.

4. On low-weight type-spectra. In this section we will deal with estimations
of the average type-spectra of the regular F -labelled LDPC G-code ensembles for G-
types very close to the all-zero type δ0. We will consider the variational distance on
P(G), ||θ − θ′|| := supB⊆G{θ(B)− θ′(B)}.

Recall that, since we are dealing with LDPC G-codes, the all-zero N -tuple is
always a codeword. Then WN (δ0) = 1 deterministically, i.e., for any realization of
ΠN in the interconnection group SNc � FNc. Hence clearly Γ(F,c,d)(δ0) = 0. The
main result of this section is that there exists a punctured neighborhood of δ0 in
P(G), over which the spectra Γ(F,c,d)(θ) are strictly negative. Actually, much more
precise results will be derived, characterizing the exact rate of decay (asymptotically
in N) of the sum of the average enumerating coefficients over all G-types θ such that
0 < ||θ − δ0|| < 2

d .
Throughout this section we will often use the following notation: for a, t in N we

define the discrete intervals Ia
t := [(t − 1)a + 1, ta] ∩ N. Notice that, given a degree

pair (c, d), for every admissible block-length N in N(c,d) we have
{
1, 2, . . . , Nc

}
=⋃

1≤t≤L I
d
t =

⋃
1≤s≤N Ic

s .

4.1. An upper bound to low-weight spectra. We start by deriving an upper
bound to low-weight type-enumerating coefficients for the inner encoder |Zi,N

θ | :=∣∣GNc
θ ∩ ker SumN

d

∣∣.
Lemma 4.1. Let (c, d) be a degree pair, and let N ∈ N(c,d). For every θ in

PNc(G) such that

(4.1) ||θ − δ0|| ≤ 2
d
,

we have

(4.2)
∣∣∣Zi,N

θ

∣∣∣ ≤ (L

�w/2�
)(�w/2� d

w

)(
w

ω

)
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 37

where ω ∈ NG\{0} is defined by ω(k) := Nc θ(k), and w :=
∑m−1

k=1 ω(k) is the number
of nonzero entries in an Nc-tuple of type θ.

Proof. Let y in GNc
θ be any Nc-tuple of type θ. A necessary condition for y to

be in ker SumN
d is that each of the first L intervals Id

t contains either none or at least
two nonzero entries of y. It follows from (4.2) that

∣∣{t ≤ L :
∣∣supp(y) ∩ Id

t

∣∣ ≥ 2
}∣∣ ≤

�w/2�, while, for any choice of a dissection 1 ≤ t1 < · · · < tw/2� ≤ L (notice that
(4.1) implies w/2 ≤ L), we have |{y ∈ GNc

θ : supp(y) ⊆ ⋃w/2�
j=1 Id

tj
}| ≤ (dw/2�

w

)(
w
ω

)
.

It follows that

|Zi,N
θ | ≤

∣∣∣∣∣∣
⋃

1≤t≤L

{
y ∈ GNc

θ :
∣∣supp(y) ∩ Id

t

∣∣
= 1
}∣∣∣∣∣∣

≤
∣∣∣∣∣∣

⋃
1≤t1<···<t�w/2�≤L

⎧⎨
⎩y ∈ GNc

θ : supp(y) ⊆
w/2�⋃
j=1

Itj

⎫⎬
⎭
∣∣∣∣∣∣

≤
(

L

�w/2�
)(

d �w/2�
w

)(
w

ω

)
.

We now obtain an estimation for the average low-weight type-enumerators.
Lemma 4.2. Let (c, d) be a degree pair, F ≤ Aut(G), and N ∈ N(c,d). For every

θ ∈ PN (G) satisfying (4.1) the average type-enumerator function of the (c, d)-regular
F -labelled ensemble satisfies

(4.3) WN (θ) ≤
(
N

Nθ

)(
L

�w/2�
)(w

2L

)w

,

where w := Nc(1− θ(0)).
Proof. Consider the projection map πF : G → G/F and the associated map for

types π�
F : G → G/F . Define υ := π�

F θ, and u ∈ ZG/F\{0}
+ by u(k) = Ncυ(k).

Also, for every θ′ in P(G), define ω′ in ZG\{0}
+ by ω′(k) := Nc θ′(k). Notice that∑

θ′∈ONc
υ

(
w
ω′
)

=
(

w
Nc u

)
ϕNc υ . From (3.10), (3.13), and (4.2) we get

WN (θ) =
(
N

Nθ

)(
Nc

Ncυ

)−1

ϕ−Nc υ
∑

θ′∈ONc
υ

|Zi,N
θ′ |

≤
(
N

Nθ

)(
Nc

w

)−1 (
L

�w/2�
)(�w/2� d

w

)(
w

Ncu

)−1

ϕ−Nc υ
∑

θ′∈ONc
υ

(
w

ω′

)

=
(
N

Nθ

)(
L

�w/2�
)(

Nc

w

)−1(�w/2� d
w

)

=
(
N

Nθ

)(
L

�w/2�
)�w/2�d(�w/2�d− 1) . . . (�w/2�d− w + 1)

Ld(Ld− 1) . . . (Ld− w + 1)

≤
(
N

Nθ

)(
L

�w/2�
)(w

2L

)w

.

A first consequence of Lemma 4.2 is the following upper bound on the average
type-spectra of the F -labelled LDPC ensembles.

Proposition 4.3. For every degree pair (c, d) such that c ≥ 3 we have

Γ(F,c,d)(θ) ≤ fc,d (x) ∀θ : ||θ − δ0|| ≤ 2
d
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

38 GIACOMO COMO AND FABIO FAGNANI

where x := 1− θ(0), and

fc,d(x) := H(x) + x log(|G| − 1) + c
d H

(
d
2x
)

+ cx log
(

d
2x
)
,

with H(x) := −x log x− (1− x) log(1 − x) denoting the binary entropy.
Proof. From (4.3) it follows that, for every ||θ − δ0|| < 2

d , for the F -labelled
(c, d)-regular ensemble we have

1
N

logWN (θ) ≤ 1
N

log
(
N

Nθ

)
+

1
N

log
(

L⌊
xN c

2

⌋)+
1
N

log
(
cNx

2L

)cNx

N∈N(c,d)−→ H(θ) +
c

d
H
(
d

2
x

)
+ +cx log

(
d

2
x

)

≤ H(x) + x log(|G| − 1) + cx log
(
d

2
x

)
.

It is easy to see that, whenever c > 2, d
dxfc,d

∣∣
x=0

= −∞. Therefore, Proposi-
tion 4.3 implies that the spectra Γ(F,c,d)(θ) are strictly negative in a sufficiently small
punctured neighborhood of δ0 in P(G). In section 5 this fact will be used in order
to show that the minimum Δ-distance grows linearly with N with high probability.
Here we derive more precise estimations for the average type-enumerating functions.

Proposition 4.4. Let F be any subgroup of Aut(G), (c, d) a degree pair, and
N ∈ N(c,d). There exists a positive constant K such that the type-enumerator function
of the (c, d)-regular F -labelled ensemble satisfies∑

2
N ≤||δ0−θ||≤ 2

d

WN (θ) ≤ KN2−c.

Proof. For every N in N(c,d) we define the quantities

gw(N) :=
∑

||δ0−θ||= w
N

WN (θ), w ∈ N.

For θ in PN (G) define ω as in Lemma 4.1. For all w = 2, . . . ,
⌊

2
dN
⌋
, (4.3) implies

gw(N) ≤
∑

θ(0)= N−w
N

(
N

Nθ

)(
L⌊
cw

2

⌋)(wc
2L

)wc

=
(

L⌊
cw

2

⌋)(wc
2L

)wc
(
N

w

)
(|G|−1)w =: g′w(N).

We have, for every 2 ≤ w ≤ �2dN�,

g′w+2(N)
g′w(N)

≤ (|G|−1)2
(
N − w
w

)2
(
L− ⌊cw

2

⌋⌊
cw

2

⌋
2L

)c(
1 +

2
w

)(w+2)c

≤ (|G|−1)2(3e)2cN2−c.

It follows that if c ≥ 3, then there exists N0 in N such that, for all N in N(c,d) such

that N ≥ N0,
g′

w+2(N)

g′
w(N) ≤ 1

2 for all 1 ≤ w ≤ ⌊ 2
dN
⌋
. Then we have

∑
2
N ≤||δ0−θ||≤ 2

d

WN (θ) ≤ g′2(N)
� 2

d N�∑
w=2

2−w+g′3(N)
� 2

d N�∑
w=2

2−w ≤ 2g′2(N)+2g′3(N) ≤ KN2−c

for some positive constants K ′,K ′′,K, all independent of N .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 39

4.2. On weight-one codewords. We now derive a more precise estimation of
the average enumerating functions for G-types of N -tuples with all but one entry
equal to zero. Fixed any N in N, k in G we define the G-type

τk :=
(

1− 1
N

)
δ0 +

1
N
δk ∈ PN (G),

and we look for upper bounds on the average spectra WN (τk) for the (c, d)-regular F -
labelled LDPC ensembles. We will show how these estimations depend on the choice
of F among the subgroups of the automorphism group Aut(G).

We start with a few elementary considerations about closed walks and cycles in
directed graphs. A closed walk of length n in a directed graph G = (V,E) (where V
is a finite set and E ⊆ V 2) is a Zn-labelled string of vertices v ∈ V Zn such that any
two consecutive vertices are adjacent, i.e., (vk, vk+1) ∈ E for all k ∈ Zn. A cycle of
length n is a closed walk v ∈ V Zn such that vk
= vj for all k
= j ∈ Zn. A self-loop
is a cycle of length 1. Every closed walk v of length n is the concatenation of k
cycles v1, . . . ,vk such that the sum of the lengths of v1, . . . ,vk equals n. Observe
that in general k ≤ n, while k ≤ �n/2�, provided that the directed graph G contains
no self-loops.

Given a finite Abelian group G and a subset S of G, we denote by G(G,S)
the directed Cayley graph with vertex set G and edge set {(g, g + s)| g ∈ G, s ∈ S}.
It is straightforward that closed walks v of length n in an Abelian Cayley graph
G(G,S) starting in any fixed vertex g ∈ G (i.e., such that v0 = g) are in one-to-one
correspondence with 0-sum n-tuples x in Sn.

For a subset S ⊆ G and a positive integer n, consider a closed walk v of length n
in G. By the previous considerations, v is the concatenation of k(v) cycles. We put
b(S, n) equal to the maximum of k(v) over all possible closed walks v of length n in
G(G,S), with the agreement that b(S, n) = 0 whenever no closed walk in G(G,S) has
length n. The reason for this notation becomes evident with the following result.

Lemma 4.5. Let F be any subgroup of Aut(G), (c, d) a degree pair, and N ∈
N(c,d). Then, for all k in G, the type-enumerator function of the (c, d)-regular F -
labelled ensemble satisfies

(4.4) WN (τk) ≤ N
(

L

b(Fk, c)

)[
b(Fk, c)

L

]c

.

Proof. Define υ := π�
F τk ∈ P(G/F). Let y be any element of GNc

υ . Then for
SumN

d y = 0 in GL it is necessary that
∑

1≤j≤Nc yj = 0 in G. Since y ∈ GNc
υ has

exactly c nonzero entries all belonging to Fk, it follows that
∣∣Zi,N

υ

∣∣ = 0 iff there are
no closed walks of length c in the Cayley graph G(G,Fk). Then (4.4) immediately
follows in the case b(Fk, c) = 0.

Now assume that there exist closed walks of length c in G(G,Fk). By the previous
considerations, each such walk decomposes in at most b(Fk, c) cycles. If we consider
the intervals Id

t , for 1 ≤ t ≤ L, and put supp(y) ∩ Id
t := {jt

1, j
t
2, . . . , j

t
nt
}, we have

(
SumN

d y
)
t
=
∑
j∈Id

t

yj =
∑

1≤i≤nt

yjt
i

∀ 1 ≤ t ≤ L.

Therefore, if SumN
d y = 0, then it is necessary that v ∈ GZnt , vl :=

∑
1≤i≤l yjt

i
is a

closed walk in G(G,Fk) for all t such that supp(y) ∩ Id
t is nonempty. It follows that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

40 GIACOMO COMO AND FABIO FAGNANI

supp(y) ∩ Id
t is nonempty for at most b(Fk, c) values of t. Therefore, by taking into

account the
(

L
b(Fk,c)

)
possible choices of b(Fk, c) intervals out of L possible ones, the(

b(Fk,c)
c

)
choices of c positions out of b(Fk, c)d available ones, and the ϕ(Fk)c choices

of an ordered c-tuple with entries from the orbit Fk, we get

∣∣Zi,N
υ

∣∣ = ∣∣ker SumN
d ∩GNc

υ

∣∣ ≤ (L

b(Fk, c)

)(
b(Fk, c)d

c

)
ϕ(Fk)c.

Then from (3.10) it follows that

WN (τk) =
N
∣∣Zi,N

υ

∣∣(
Nc
c

)
ϕ(Fk)c

≤ N(
Nc
c

)(L

b(Fk, c)

)(
b(Fk, c)d

c

)

≤ N
(

L

b(Fk, c)

)[
b(Fk, c)

L

]c

.

4.3. Main result. Building on the results of sections 4.1 and 4.2, we are now
ready to present the main result of this section. For a subgroup F of Aut(G) and a
positive integer c we define

(4.5) a(F, c) := 1− c+ max ({1} ∪ {b(Fk, c)| k ∈ G \ {0}}) ,

where we recall that b(S, c) was defined in section 4.2 as the minimum number of
cycles in G(G,S) of total length c, with the agreement that b(S, c) = 0 when no closed
walk in G(G,S) has length c.

Before stating the main result, we need a simple property of a(F, c). For every
k
= 0, Fk does not contain 0, so that there are no self-loops in G(G,Fk), and then
b(Fk, c) ≤ �c/2�. It immediately follows that

(4.6) 2− c ≤ a(F, c) ≤ 1− �c/2�.

Theorem 4.6. For every degree pair (c, d) such that c ≥ 3, and every subgroup F
of Aut(G), there exists a positive constant K such that for the (c, d)-regular F -labelled
ensemble it holds that ∑

0<||δ0−θ||≤ 2
d

WN (θ) ≤ KNa(F,c), N ∈ N(c,d).

Proof. First, we consider weight-one types. From (4.4) we have

∑
θ(0)= N−1

N

WN (θ) ≤
∑

k∈G\{0}
N

(
L

b(Fk, c)

)
b(Fk, c)c

Lc
≤ K ′ ∑

k∈G\{0}
N1+b(Fk,c)−c ≤ K ′|G|Na(F,c)

for some positive constant K ′. The claim then follows by combining Proposition 4.4
with the previous estimation and observing that a(F, c) ≤ 2− c ≤ −1.

Now we explicitly evaluate a(F, c) for the three examples studied in the previous
section.

Example 4. Consider the case when G Zr
p and either F Aut(Zr

p) or F F∗
pr .

In both cases Fk = Zr
p \ {0} for all k ∈ Zr

p \ {0}. Then G(Zr
p, Fk) = G(Zr

p,Z
r
p \ {0})

is the complete graph with pr vertices. It follows that G(Zr
p,Z

r
p \ {0}) contains closed

walks of any length n ≥ 2 whenever pr
= 2, while G(Z2, {1}) contains closed walks

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 41

of even length only. Therefore, for G Zr
p with pr
= 2, a(F, c) = 1 − �c/2� for all c,

while for G Z2, a(F, c) = 1− c/2 for even c and 2− c for odd c.
Example 5. Consider the unlabelled ensemble over the cyclic group, i.e., G Zm

with F = {1}. If (m, c) = 1, then m|ck iff m|k. Then, for all k ∈ Zm \{0}, the Cayley
graph G(Zm, Fk) = G(Zm, {k}) has no closed walks of length c. In this case clearly
a({1}, c) = 2− c.

Then consider the case when (m, c) > 1, and let lpcf(c,m) be the smallest prime
common factor between c and m. Consider any k in Zm \ {0} such that G(Zm, {k})
has a closed walk of length c, i.e., such that m | ck. The length of the shortest such
walk is given by m

(m,k) = (m,ck)
(m,k) = (m

(m,k) , c). Thus, m
(m,k) | c, while clearly m

(m,k) | m.
But (m, k) < m, so that necessarily the shortest cycle in G(Zm, {k}) m

(m,k) is not less
than lpcf(m, c), with equality iff k ∈ m

lpcf(m,c)Zm \ {0}. Thus, b({k}, c) = c
lpcf(m,c)

for k ∈ m
lpcf(m,c)Zm \ {0}, and b({k}, c) < c

lpcf(m,c) for k ∈ Zm \ m
lpcf(m,c)Zm. It

immediately follows that, whenever (m, c) > 1, a({1}, c) = 1− c+ c
lpcf(m,c) .

Example 6. Consider the uniformly labelled ensemble over the cyclic group,
i.e., G Zm with F Z∗

m. First, we claim, for n ≥ 2, the following:
• if n is even, then all closed walks in G(Zn,Z∗

n) have even length and there
exists a 2-cycle;
• if n is odd, then there exist both a 2-cycle and a 3-cycle.

To see this, first, since 1,−1 ∈ Z∗
n, (0, 1) is a 2-cycle in G(Zn,Z∗

n), both for even and
odd n. Then consider the case when n is even: clearly all k ∈ Z∗

n are odd, so that the
modulo-n sum of an odd number of elements of Z∗

n cannot be equal to 0 modulo n.
Thus every closed walk in G(Zn,Z∗

n) must be of even length. On the other hand, if n
is odd, then 2 ∈ Z∗

n, so that (0, 2, 1) is a 3-cycle in G(Zn,Z∗
n).

Let us now consider some k ∈ Zm \ {0}. Then, by applying the previous observa-
tion with n = m

(m,k) , one gets that, if c is odd and m
(m,k) is even, there are no closed

walks of length c in G(Zm,Z∗
mk) so that b(Z∗

mk, c) = 0, while otherwise, if c is even
or m

(m,k) is odd, b(Z∗
mk, c) = �c/2�. It thus follows that a(Z∗

m, c) = 1− �c/2� unless c
is odd and m is an integer power of 2; in the latter case a(Z∗

m, c) = 2− c.
4.4. Lower bounds on low-weight type-enumerators. In this section we

present some results, of independent interest, which show that the estimations given
by Theorem 4.6 are tight. All of the proofs are deferred to the appendix.

First, we deal with weight-one type-enumerators.
Proposition 4.7. Let (c, d) be a degree pair such that c ≥ 3, and let F be any

subgroup of Aut(G). Then there exists a constant K > 0 such that for all k in G\{0}
such that a(F, c) = 1− c+ b(Fk, c) the type-enumerator function of the (c, d)-regular
F -labelled LDPC ensemble satisfies

(4.7) P (WN (τk) ≥ 1) ≥ KNa(F,c), N ∈ N(c,d).

Finally, we propose a lower bound on weight-two type-enumerators. For every k
in G define

τ̂k :=
1
N
δk +

1
N
δ−k +

N − 2
N

δ0 ∈ P(G).

Proposition 4.8. For every degree pair (c, d) there exists a constant K > 0 such
that for every k in G\{0} the type-enumerator function of the (c, d)-regular F -labelled
LDPC ensemble satisfies

(4.8) P (WN (τ̂k) ≥ 1) ≥ KN2−c ∀N ∈ N(c,d).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

42 GIACOMO COMO AND FABIO FAGNANI

5. Asymptotic lower bounds on the typical minimum distance. Through-
out this section we will assume we have fixed a G-symmetric MC (X ,Y, P) with as-
sociated Bhattacharyya distance Δ and weight δ, and we study the asymptotics of
the minimum Δ-distance of regular LDPC G-code ensembles.

Given a degree pair (c, d), a natural candidate for the typical normalized minimum
Δ-distance of the (c, d)-regular F -labelled ensemble is the quantity

(5.1) γ(F,c,d) := inf
{〈δ,θ〉∣∣ θ ∈ P(G) \ {δ0} s.t. Γ(F,c,d)(θ) ≥ 0

}
.

It turns out that γ(F,c,d) actually is a lower bound on the asymptotic normalized mini-
mum distance for the (c, d)-regular F -labelled ensemble. This does not follow directly
from Theorem 3.5 since limθ→δ0 Γ(F,c,d)(θ) = 0. However, using both Theorems 3.5
and 4.6 the following result can be proved.

Theorem 5.1. Let (c, d) be a degree pair such that a(F, c) < −1. Then for the
(c, d)-regular F -labelled LDPC ensemble the following holds:

P

(
lim inf

N∈N(c,d)

1
N dmin (kerΦN) ≥ γ(F,c,d)

)
= 1.

Proof. By (2.3) we have that

1
N

dmin (kerΦN) = inf
{
〈δ,θ〉 ∣∣ θ ∈ P(G) \ {δ0} s.t. WN (θ) ≥ 1

}
= min

{
κ′N , κ

′′
N

}
,

where for every N in N(c,d) we define

κ′N := inf
{〈δ,θ〉∣∣ 0 < ||θ − δ0|| < 2

d : WN (θ) ≥ 1
}
,

κ′′N := inf
{〈δ,θ〉∣∣ ||θ − δ0|| ≥ 2

d : WN (θ) ≥ 1
}
.

Clearly, lim infN
1
N dmin (kerΦN) = min {ρ′, ρ′′}, where we put ρ′ := lim infN κ′N and

ρ′′ := lim infN κ′′N .
We start by establishing a lower bound on ρ′′. Define Ω :=

{
θ : ||θ − δ0|| ≥ 2

d

}
and, for each x in R, the set

(5.2) Ωx :=
{
θ ∈ Ω ∩ PN(G) s.t. Γ(F,c,d)(θ) < x

}
.

Now consider the quantity η(x) := inf
{〈δ,θ〉∣∣ θ ∈ Ω \ Ωx

}
. Since Γ(F,c,d)(θ) is an

upper semicontinuous function of θ and Ω is a closed subset of P(G), standard ana-
lytical arguments (see Lemma 8.1 in the appendix) allow us to conclude that η is a
nondecreasing and lower semicontinuous function.

Let us now fix some arbitrary ε > 0. By successively applying a union bound
estimation, the Markov inequality, Theorem 3.5, and (5.2), we get

P

⎛
⎝ ⋃

θ∈Ω−ε

{WN (θ) ≥ 1}
⎞
⎠≤ ∑

θ∈Ω−ε

P (WN (θ) ≥ 1) ≤
∑

θ∈Ω−ε

WN (θ) ≤ exp(−N(ε− f(N))),

with limN f(N) = 0. It follows that
∑

N P
(⋃

θ∈Ω−ε
{WN (θ) ≥ 1}) < +∞, and

thus the Borel–Cantelli lemma implies that with probability one the event
⋃

θ∈Ω−ε

{WN (θ) ≥ 1} occurs only for finitely many N in N(c,d). Hence,

P (ρ′′ < η(−ε)) ≤ P

⎛
⎝
⎧⎨
⎩

⋃
θ∈Ω−ε

{WN (θ) > 0}
⎫⎬
⎭ i. o. N ∈ N(c,d)

⎞
⎠ = 0 ∀ ε > 0,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 43

where i. o. stands for infinitely often. Notice that γ(F,c,d) = η(0). Hence, monotonicity
and lower semicontinuity of the function η allow us to conclude that
(5.3)

P
(
ρ′′ < γ(F,c,d)

)
= P (ρ′′ < η(0)) ≤ P

(
ρ′′ < lim

k
η
(− 1

k

))
= lim

k
P
(
ρ′′ < η

(− 1
k

))
= 0.

Now let us consider the term ρ′. By sequentially applying a union bound estima-
tion, the Markov inequality, and Theorem 4.6, we get for every N in N(c,d)

(5.4) P

⎛
⎝ ⋃

0<||θ−δ0||< 2
d

{WN (θ) ≥ 1}
⎞
⎠ ≤ ∑

0<||θ−δ0||< 2
d

WN (θ) ≤ KNa(F,c),

where K is a positive constant independent of N . Since a(F, c) < −1, we get

∑
N

P

⎛
⎝ ⋃

0<||θ−δ0||< 2
d

{
WN (θ) ≥ 1

}⎞⎠ ≤ K∑
N

Na(F,c) < +∞.

By the Borel–Cantelli lemma we get that the event
⋃

0<||θ−δ0||< 2
d
{WN (θ) ≥ 1} occurs

only for finitely many N in N(c,d) with probability one. This yields P (ρ′ = +∞) = 1,
which, together with (5.3), implies the claim.

We have proved the previous theorem under the assumption a(F, c) < −1. In
fact, for c = 2 it is known, since Gallager’s work [19], that deterministically the
minimum distance cannot grow faster than logarithmically with the block-length N .
From (4.6) it follows that if c ≥ 5, then a(F, c) < −1 for any F , and if c = 3,
then a(F, c) = −1 for any F , while, when c = 4, a(F, c) < −1 for some choices
of F . However, one can weaken the assumption a(F, c) < −1 requiring only that
a(F, c) < 0 (thus including the cases c = 3 and c = 4 for some F). In these cases,
γ(F,c,d) still gives an asymptotic lower bound for the normalized minimum distances
1
N dmin (kerΦN) in a weaker probabilistic sense. In fact, a more detailed analysis
enlightens a nonconcentration phenomenon. In order to describe it, first, for every
degree pair (c, d) and every subgroup F of Aut(G), we define the following quantity:
(5.5)

ζ(F,c) :=

{
min{δ(k)| k ∈ G \ {0} : a(F, c) = 1− c+ b(Fk, c)} if a(F, c)
= 2− c,
min{(2− b(Fk, c))δ(k)| k ∈ G \ {0}} if a(F, c) = 2− c.

We have the following result.
Theorem 5.2. Let (c, d) be a degree pair such that a(F, c) = −1. Then

lim
N∈N(c,d)

P

(
1
N

dmin (kerΦN) ≥ γ(F,c,d)

)
= 1.

Moreover, if the random variables ΠN defining the (c, d)-regular unlabelled LDPC
ensemble are mutually independent, we have

P

(
lim inf

N∈N(c,d)

dmin (kerΦN) = ζ(F,c)

)
= 1.

Theorem 5.2 is proved in the appendix. The probabilistic interpretation is as
follows. In the case a(F, c) = −1, with probability one, the sequence of the unnormal-
ized minimum distances (dmin (kerΦN)) contains a subsequence converging to ζ(F,c).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

44 GIACOMO COMO AND FABIO FAGNANI

Thus, while with increasing probability the minimum Δ-distance is growing linearly
with the block-length N , almost surely a subsequence with constant minimum dis-
tance shows up. We observe that, for irregular binary LDPC ensembles, even more
evident nonconcentration phenomena are known to arise; see [15, 31].

6. Numerical results. In this section we present some numerical results for the
minimum distances of the LDPC ensembles which have been studied in this paper.
We focus on a particular channel, the Z8-symmetric 8-PSK AWGN channel, and we
compare the average distance-spectra of the regular unlabelled and uniformly labelled
LDPC Z8-code ensembles. Our results indicate a strong superiority of the uniformly
labelled (i.e., the one with label group F Z∗

8) ensemble with respect to the unlabelled
one (i.e., F = {1}). Then we compare these results with some contradicting analysis of
the average error probability of these ensembles and discuss how this seeming paradox
can be explained by invoking so-called expurgation arguments.

6.1. Numerical results for the average distance-spectra. Let us start with
some general considerations. Suppose we are given any ensemble of G-codes with av-
erage type-spectrum Γ(θ). Let γ := inf {〈θ, δ〉|θ ∈ P(G) \ {δ0} s.t. Γ(θ) ≥ 0} be its
designated typical normalized minimum distance which we are interested in comput-
ing. Notice that Γ is a map defined over the (|G| − 1)-dimensional simplex P (G)
and therefore in general of difficult visualization whenever |G| > 2. It is then con-
venient and natural to introduce the average distance-spectrum as a one-dimensional
projection of Γ:
(6.1)
Υ : [0,max{δ(x)|x∈G}]→ [−∞,+∞), Υ(t) := sup

{
Γ(θ)

∣∣ θ∈P(G) : 〈δ,θ〉= t
}
.

It is immediate to verify that γ = inf {t ∈ [0,max{δ(x)|x ∈ G}] : Υ(t) ≥ 0}. Notice
also that, for |G| = 2 and |G| = 3, all Bhattacharyya distances are proportional to the
Hamming distance, so that the average distance spectrum Υ is independent (up to a
rescaling factor) of the chosen G-symmetric channel. For |G| ≥ 4 instead, Υ really
depends on the choice of the Bhattacharyya distance Δ.

In Figure 6.1 the average distance-spectra of two regular LDPC Z8-code ensembles
are reported. We considered the Bhattacharyya distance Δ of the 8-PSK AWGN
channel and normalized it in such a way that max{δ(x)|x ∈ Z8} = Δ(0, 4) = 1. In
each picture a degree pair (c, d) is fixed. The dash-dotted curve is the graph of the
distance-spectrum Υ({1},c,d)(t) of the (c, d)-regular unlabelled LDPC ensemble, while
the solid curve is the graph of the distance-spectrum Υ(Z∗

8,c,d)(t) of the (c, d)-regular
uniformly labelled LDPC ensemble.

As a reference two dotted curves are also plotted in each picture. The one taking
the value 0 for t = 0 is the distance spectrum of the binary (c, d)-regular LDPC
ensemble Υ2

(c,d)(t). It is straightforward to check that it is a lower bound for the
distance spectrum of any Z8-LDPC ensemble: it suffices to restrict the optimization
in (6.1) to Z8-types θ supported on the binary subgroup 4Z8.

The second dotted curve instead, taking value 1
2 log 1

2 for t = 0, corresponds to
the distance-spectra of the Z8-code ensemble (with no sparsity constraints) of the
same rate R = 1

2 log 8. This ensemble is defined as a sequence of kernels of random
homomorphisms (kerΦN), each ΦN being uniformly distributed over Hom(ZN

8 ,Z
N/2
8),

the group of all homomorphisms from ZN
8 to ZN/2

8 , with no sparsity constraint. Z8-
code ensembles of codes are a natural generalization of the traditional linear-coding
ensembles over finite fields [20, 2] and have been considered in [10] and [11] in order to
characterize the capacity achievable by Abelian group codes over symmetric channels.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 45

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 m=8
c=3 d=6

0 0.02 0.04 0.06 0.08 0.1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

 m=8
c=4 d=8

0 0.02 0.04 0.06 0.08 0.1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

 m=8
c=6 d=12

0 0.02 0.04 0.06 0.08 0.1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

 m=8
c=8 d=16

0 0.02 0.04 0.06 0.08 0.1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

 m=8
c=12 d=24

0 0.02 0.04 0.06 0.08 0.1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

 m=8
c=16 d=32

Fig. 6.1. Bhattacharyya distance spectra of (c, d)-regular LDPC ensembles over Z8 for the
8-PSK AWGN channel: the solid curve corresponds to the uniformly labelled ensemble, the dash-
dotted one corresponds to the unlabelled ensemble, and the two dotted curves correspond, respectively,
to the Z8-linear ensemble and to the binary LDPC ensemble.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

46 GIACOMO COMO AND FABIO FAGNANI

In [12] their average type-spectra have been characterized; for the Z8-code ensemble
of rate 1

2 log 8 this is given by

ΓZ8(θ) := H(θ)− 1
2

log l8(θ), l8(θ) :=
8

gcd (supp (θ))
.

Notice that ΓZ8(θ) is an upper semicontinuous function over the simplex P(Z8), and
its discontinuities correspond to types supported on the subgroups 2Z8 and 4Z8. In
fact a salient point is easily recognizable in the graphs reported around the abscissa
t = 0.05, corresponding to the intersection between the average spectrum of the bi-
nary subchannel and that of the Z8-subchannel. This salient point occurs before the
curve crosses the t-axis, which is coherent with the fact, proved in [12], that the typ-
ical normalized minimum distance of the Z8-code ensemble equals the corresponding
Gilbert–Varshamov bound. In other words, while for low values of t the distance spec-
trum of the Z8-code ensemble is dominated by the term corresponding to the smallest
nontrivial subgroup (a phenomenon generally observable for Abelian group code en-
sembles), the value of the typical minimum distance is determined by types which are
not supported in any proper subgroup of Z8 (this is instead related to the particular
constellation chosen, although it is conjectured to be true for many constellations of
interest).

Analogous considerations can be made about the LDPC distance-spectra based on
the simulations reported. In particular, for distances close to 0, the average distance-
spectra of both the unlabelled and the uniformly labelled Z8-LDPC ensembles are
dominated by the binary-subgroup supported types. However, these components do
affect the value of the typical normalized minimum distances (γ({1},c,d) and γ(Z∗

8,c,d),
respectively) only for low values of the degrees (c = 3, 4). For all of the other values of
the parameters, the typical minimum distance is instead determined by types which
are not supported in any proper subgroup of Z8. Another observation which can
be made is that, not surprisingly, as the values of the degrees (c, d) are increased
while keeping their ratio constant, the distance-spectra of both the unlabelled and
the uniformly labelled ensembles approach the one of the Z8-linear ensemble.

However, the most important conclusion which can be drawn from the graphics
reported concerns the different behaviors of the unlabelled and the uniformly labelled
ensembles. Indeed, it appears evident that the latter drastically outperforms the for-
mer at the distance level. In particular, already for relatively low values of the degrees
(c = 8, d = 16) the uniformly labelled ensemble typical minimum distance γ(Z∗

8,c,d)

is very close (practically equal) to the Gilbert–Varshamov bound. For the same val-
ues of the degrees instead, the unlabelled ensemble suffers from a remarkable gap;
this gap seems to be slowly filled up as the values of the degrees are increased, but
it still remains significant for relatively high values of c and d. This indicates that
structural properties of these two ensembles are remarkably different. Some prudence
is nevertheless justified by the fact that ours are only lower bounds on the typical
asymptotic normalized minimum distance, while, as already mentioned in the intro-
duction, a concentration result for the type-spectra is needed in order to prove their
tightness. However, while this phenomenon appears here only at the distance level,
computer simulations of the performance of these codes reveal that a drastic superi-
ority of the labelled ensemble with respect to the unlabelled one is evident also under
belief-propagation decoding. We observe that this is coherent with Monte Carlo simu-
lations reported in [4], where the labelled ensemble was shown to be closer to capacity
than the unlabelled ensemble.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 47

6.2. The average word error probability of the LDPC codes ensembles.
In our analysis of the minimum distance properties of LDPC G-code ensembles, the
quantities ζ(F,c) show up as an almost sure lim inf for the unnormalized minimum dis-
tance only when a(F, c) = −1. However, these quantities characterize the asymptotic
ML average performance of these ensembles for all values of a(F, c).

For instance, let us consider in some detail the case G Zpr for some prime p
and some positive integer r. Let us fix an admissible degree pair (c, d), and denote

by pe(CN)
(F,c,d)

the average ML error probability of the (c, d)-regular F -labelled en-
semble of LDPC Zpr -codes over an arbitrary Zpr -symmetric MC. Then it is possible
to show that there exists a threshold (1− c

d) log pr < C(F,c,d) < log pr such that, for
every Zpr -symmetric channel whose Zpr -capacity (2.5) exceeds C(F,c,d), the average

error probability pe(CN)
(F,c,d)

goes to zero in the limits of large N . Moreover, if one
considers an increasing sequence of degree pairs (cn, dn) with a given designed rate
(1 − cn

dn
) log pr converging to R, then the corresponding LDPC thresholds C(cn,dn,F)

converge to R.
More precisely, it is possible to show that over any Zpr -symmetric channel whose

Zpr -capacity exceeds C(F,c,d) we have

(6.2) K1N
a(F,c) ≤ pe(CN)

(F,c,d) ≤ K2N
a(F,c)

for some positive constantsK1,K2 both independent of N . Moreover, it can be proved
that

(6.3) lim sup
N∈N(c,d)

pe(CN)
(F,c,d)

Na(F,c)
≤ K3 exp(ζ(F,c))

for some positive constants K3 independent of the channel (and thus from Δ). The
results (6.2) are known in the binary case (see [29]); (6.2) was presented in [10] for
the unlabelled LDPC ensemble. Proofs of (6.2), (6.3) in their full generality can be
gathered coupling the estimations of section 4 with the standard bounding techniques
used in [28, 39, 29, 4] and will be given elsewhere.

Observe that if F ≤ F ′ ≤ Aut(G), then

(6.4) a(F, c) ≤ a(F ′, c), ζ(F,c) ≥ ζ(F ′,c).

Thus, from the point of view of the average performance, the smaller the label group,
the better the parameters. This stands in contrast with the numerical results pre-
sented in the previous paragraph, indicating that at the distance level the uniformly
labelled ensembles perform much better than their unlabelled counterparts. An ex-
planation for this seeming paradox can be obtained by invoking so-called expurgation
arguments. Indeed, it can be proved that, while the average error probability of the
LDPC ensembles is affected by a vanishingly small fraction of codes with low min-
imum distance and decays to zero only as a negative power of N , almost surely a
sequence of codes sampled from the same ensemble has error probability decreasing
to zero exponentially fast with N . It is this typical exponential behavior that has to
be considered representative of the ensemble, rather than the one of the average error
probability. It is also worth mentioning that the typical error exponent can be esti-
mated in terms of the average type-spectra, using techniques presented in [39]. This
phenomenon is well known in the LDPC code literature [19, 29]; proofs for LDPC
codes over Galois fields can be found in [17, 4].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

48 GIACOMO COMO AND FABIO FAGNANI

7. Conclusions. The following issues are left for future research:
• proving concentration results for the spectra of the LDPC ensembles for in-

stance using a second-order method (see [33]);
• giving an analytical explanation of the different behavior of the labelled and

unlabelled ensembles;
• generalizing the analysis to irregular ensembles following the approach of [15,

31];
• considering generalizations of the so-called stopping sets and pseudoweight

distributions which in the binary case characterize the iterative decoding per-
formance of LDPC codes (see [31, 43, 24]); while the distribution of stopping
sets has been studied for binary LDPC ensembles, the distribution of pseu-
docodewords is unknown even in the binary case.

8. Appendix.

8.1. A semicontinuity lemma. Let E be a compact metric space. It is a
standard fact that any lower semicontinuous function f : E → (−∞,+∞] achieves its
minimum on every closed nonempty subset C of E, i.e.,

(8.1) ∃ x ∈ C s.t. f(x) ≤ f(x) ∀ x ∈ C.
In the proof of Theorem 5.1 we used the following fact.

Lemma 8.1. Let g, h : E → (0,+∞] both be lower semicontinuous. Then

f : R→ (−∞,+∞], f(y) := inf
{
g(x)

∣∣x ∈ E s.t. h(x) ≤ y}
is nonincreasing and lower semicontinuous.

Proof. That f is nonincreasing immediately follows from its definition. In order
to prove semicontinuity, assume we are given a sequence (yn) ⊂ (−∞,+∞] converging
to some y ∈ [−∞,+∞]. We want to show that

(8.2) lim infn f(yn) ≥ f(y).

Observe that with no loss of generality we can restrict ourselves to the case when
yn ≥ min {h(x) |x ∈ E}, since otherwise the set {x ∈ E s.t. h(x) ≤ yn} is empty
and f(yn) = +∞. Since h is lower semicontinuous we have that the sets
{x ∈ E s.t. h(x) ≤ yn} are closed in E. Therefore, since the function g is lower
semicontinuous as well, from (8.1) we have that there exists xn in E such that
f(yn) = g(xn) and h(xn) ≤ yn. Since the space E is compact, from the sequence
(xn) we can extract a subsequence (xnk

) converging to some x in E. From the lower
semicontinuity of h we get

h(x) ≤ lim infk h (xnk
) ≤ lim infk ynk

= y.

It immediately follows that g(x) ≥ f(y). Finally, from the lower semicontinuity of g
we get

lim infn f(yn) = lim infk g (xnk
) ≥ g(x),

which, together with the previous inequality, implies (8.2).

8.2. Proofs for section 4.4. Recall that the interconnection group for the F -
labelled ensemble is SNc � FNc. We will write the random variable ΠN = (Π′

N ,Λ),
where Π′

N is uniformly distributed over SNc and Λ is uniformly distributed over FNc.
For all s = 1, . . . , N , and k ∈ G, let ek

s in GN be the vector whose components are all
zero but for the sth, which is equal to k.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 49

8.2.1. Proof of Proposition 4.7. Let k in G \ {0} be such that a(F, c) =
1 − c + b(Fk, c), and define the event EN

s := {ek
s ∈ kerΦN}. We have WN (τk) =∑N

s=1 �kerΦN (ek
s) =

∑N
s=1 �EN

s
.

For 1 ≤ t ≤ L, define the random variable Nt := |Π′
N (Ic

s) ∩ Id
t |. Define the event

ẼN
s :=

⋂
1≤t≤L

{Nt = 0} ∪ {Nt > 0 and ∃ closed walk of length Nt in G(G,Fk)}.

It is not hard to check that ẼN
s ⊇ EN

s . Moreover, P(EN
s |ẼN

s) ≥ |F |−c, since, given
ẼN

s , there exists at least one realization of the c entries Λ(s−1)c+1, . . . ,Λsc in F such
that ΦNe

k
s = 0.

Observe that ΠN (Ic
s) is uniformly distributed over the class of all subsets of

{1, . . . , Nc} of cardinality c and that there exist at least
(

L
b(Fk,c)

)
possible realizations

of ΠN (Ic
s) such that, for all 1 ≤ t ≤ L, Nt is either 0 or equals the length of a closed

walk in G(G,Fk). It follows that

(8.3) P(EN
s) ≥ 1

|F |c P
(
ẼN

s

)
≥ 1
|F |c

(
Nc

c

)−1(
L

b(Fk, c)

)
≥ K ′N b(Fk,c)−c

for some K ′ > 0 independent of N .
We now estimate the probability of the intersections EN

s ∩EN
r for 1 ≤ r
= s ≤ N .

We have that, given that EN
r occurred, Π′

N (Ic
s) is uniformly distributed over the class

of subsets of of cardinality c of {1, . . . , Nc} \Π′
N (Ic

r). It follows that
(8.4)

P(EN
s |EN

r) ≤ P(ẼN
s |EN

r) ≤
(

(N − 1)c
c

)−1(
L

b(Fk, c)

)(
b(Fk, c)d

c

)
≤ K ′′N b(Fk,c)−c

for some K ′′ > 0 independent of N . By applying a union-intersection bound, and
using (8.3) and (8.4), we get

P (WN (τk) ≥ 1) ≥
∑

s

P
(
EN

s

)−∑
r �=s

P
(
EN

s ∩ EN
r

)
≥ K ′Na(F,c) −K ′′N2a(F,c) ≥ KNa(Fk,c),

the last equality holding true for some constant K > 0 and N large enough, since
a(F, c) < 0.

8.2.2. Proof of Proposition 4.8. For 1 ≤ s
= r ≤ N and 1 ≤ t ≤ L, define
the event

EN
r,s :=

L⋂
t=1

{∣∣ΠN (Ic
r) ∩ Id

t

∣∣ =
∣∣ΠN (Ic

s) ∩ Id
t

∣∣} .
In the unlabelled (c, d)-regular ensembleEN

r,s is sufficient for theN -tuple ek
r−ek

s (whose
G-type is τ̂k) to be in kerΦN . Indeed, in this case each check ends up summing an
equal amount of entries equal to k and −k. For the F -labelled ensemble it is easy
to see that P

(
ek

r − ek
s ∈ kerΦN

∣∣EN
r,s

) ≥ |F |−2c, since, given that EN
r,s occurred, for

ΦN (ek
r − ek

s) to be 0 it is sufficient that the 2c corresponding labels equal the identity
automorphism. Thus,

P (WN (τ̂k) ≥ 1) ≥ P

(∑
s>r

�kerΦN (ek
r − ek

s) ≥ 1

)
≥ |F |−2cP

(
N⋃

s>r

EN
r,s

)
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

50 GIACOMO COMO AND FABIO FAGNANI

Now we introduce the events FN
r :=

⋃L
t=1

{∣∣ΠN (Ic
r) ∩ Id

t

∣∣ > d
2

}
. We have

P
(
FN

r

) ≤ L c∑
a=d/2�+1

(
c

a

)(
d

a

)(
dL

a

)−1

≤ AN−d/2�

for some positive A independent of N and r. Clearly, we have that FN
r implies EN

r,s,

so that P
(
EN

r,s

∣∣FN
r

)
= 0. Instead, we have P(EN

r,s

∣∣FN
r) ≥ ((N−1)c

c

)−1 ≥ (cN)−c.
Thus, there exist some positive N0 and K ′ such that, for every N ≥ N0,

P
(
EN

r,s

) ≥ P
(
EN

r,s

∣∣FN
r

)
P
(
FN

r

)
≥ (cN)−c

(
1−AN−d/2�

)
≥ K ′N−c.

For every unordered triple {q, r, s} ⊆ {1, . . . , N} we consider the event

EN
q,r,s :=

L⋂
t=1

{ ∣∣ΠN (Ic
q) ∩ Id

t

∣∣ =
∣∣ΠN (Ic

r) ∩ Id
t

∣∣ = ∣∣ΠN (Ic
s) ∩ Id

t

∣∣ }.
We have that

P
(
EN

q,r,s

) ≤ (d− 1)cc!
(
(N−1)c

c

)−1
(d− 2)cc!

(
(N−2)c

c

)−1 ≤ K ′′N−2c

for some positive K ′′ independent of N . For every unordered 4-tuple {p, q, r, s} define

EN
p,q,r,s :=

L⋂
t=1

{ ∣∣ΠN (Ic
p) ∩ Id

t

∣∣ = ∣∣ΠN (Ic
q) ∩ Id

t

∣∣ =
∣∣ΠN (Ic

r) ∩ Id
t

∣∣ =
∣∣ΠN (Ic

s) ∩ Id
t

∣∣ }.
We have that

P
(
EN

p,q,r,s

) ≤ (d−1)cc!
(
(N−1)c

c

)−1
(d−2)cc!

(
(N−2)c

c

)−1
(d−3)cc!

(
(N−3)c

c

)−1 ≤ K ′′′N−3c

for some positive K ′′ independent of N . It follows that

P (WN (τ̂k) ≥ 1) ≥ |F |−2cP

(⋃
s>r

EN
r,s

)

≥
∑
r<s

P
(
EN

r,s

)− ∑
q<r<s

P
(
EN

q,r,s

)− ∑
p<q<r<s

P
(
EN

p,q,r,s

)
≥ (

N
2

)
K ′N−c − (N3)K ′′N−2c − (N4)K ′′′N−3c

≥ KN2−c

for some positive K independent of N and N ∈ N(c,d) large enough.

8.3. Proof of Theorem 5.2. In order to show the first part of the claim, one
follows the steps of the proof of Theorem 5.1 until obtaining (5.3) and (5.4). Then
(5.3) implies that limN P

(
κ′′N < γ(F,c,d)

)
= 0, while from (5.4), since a(F, c) ≤ −1,

one gets limN P
(
κ′N < γ(F,c,d)

) ≤ KNa(F,c) = 0.
For the second part of the claim, we first show that

(8.5) P
(
lim inf

N
dmin (kerΦN) ≤ ζ(F,c)

)
= 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 51

Indeed, let us first consider the case a(F, c) = −1 > 2 − c. From Proposition 4.7 it
follows that, for every k ∈ G \ {0} such that b(Fk, c) = a(F, c)− 1 + c = c− 2,∑

N∈N(c,d)

P(WN (τk) ≥ 1) ≥
∑

N∈N(c,d)

KNa(F,c) = K
∑

N∈N(c,d)

N−1 = +∞.

We now recall that by assumption (ΠN) is a sequence of independent random vari-
ables, so that the events {WN (τ̂k) ≥ 1}, for N in N(c,d), are independent. We can
thus apply the converse part of the Borel–Cantelli lemma [7] to conclude that with
probability one the event {WN (τ̂k) ≥ 1} occurs for infinitely many N ∈ N(c,d). It
follows that, for all K ∈ G \ {0} such that b(Fk, c) = c− 2,

(8.6) P
(
lim infN dmin(kerΦN) ≤ δ(k)

) ≥ P
({WN (τ̂k) ≥ 1} i. o. N ∈ N(c,d)

)
= 1,

so that (8.5) follows. The case when c = 3 can be treated similarly using Proposi-
tions 4.7 and 4.8 and the converse part of the Borel–Cantelli lemma.

It remains to prove that lim infN dmin (kerΦN) ≥ ζ(F,c) with probability one.
First, consider the case c = 3. For every k such that b(Fk, c) = 0 we haveWN (τk) = 0
for every realization of ΠN in the interconnection group SNc � FNc. It follows that
deterministically

dmin(kerΦN) ≥ min
{
(2− �{1}(b(Fk, c)))δ(k)

∣∣k ∈ G \ {0}} = ζ(F,c).

When c ≥ 4, for every k in G \ {0} such that b(Fk, c) < 2 − c, Lemma 4.5 and
the Borel–Cantelli lemma imply that with probability one {WN (τk) = 0} occurs
only finitely often. Then using an argument similar to that in the proof of Propo-
sition 4.4 it is possible to show that

∑
1
N <||θ−δ0||< 2

d
WN (θ) ≤ KN−2, and then∑

1
N <||θ−δ0||< 2

d
WN (θ) = 0 for all but a finitely many N . This implies (8.5).

Acknowledgments. Part of the work was done while the first author was visit-
ing Yale University. We thank the Electrical Engineering Department and Professor
Sekhar Tatikonda for their hospitality.

REFERENCES

[1] M. A. Armand, Decoding LDPC codes over integer residue rings, IEEE Trans. Inform. Theory,
52 (2006), pp. 4680–4686.

[2] A. Barg and G. D. Forney, Jr., Random codes: Minimum distances and error exponents,
IEEE Trans. Inform. Theory, 48 (2002), pp. 2568–2573.

[3] S. Benedetto, R. Garello, M. Mondin, and G. Montorsi, Geometrically uniform TCM
codes over groups based on L × MPSK constellations, IEEE Trans. Inform. Theory, 40
(1994), pp. 137–152.

[4] A. Bennatan and D. Burshtein, On the application of LDPC codes to arbitrary discrete
memoryless channels, IEEE Trans. Inform. Theory, 50 (2004), pp. 417–438.

[5] A. Bennatan and D. Burshtein, Design and analysis of nonbinary LDPC codes for arbitrary
discrete memoryless channels, IEEE Trans. Inform. Theory, 52 (2006), pp. 549–583.

[6] R. Blahut, Composition bounds for channel block codes, IEEE Trans. Inform. Theory, 23
(1977), pp. 656–674.

[7] V. S. Borkar, Probability Theory: An Advanced Course, Springer, New York, 1995.
[8] J. J. Boutros, A. Ghaith, and Y.-W. Yi, Non-binary adaptive LDPC codes for frequency

selective channels: Code construction and iterative decoding, in Proceedings of the IEEE
Information Theory Workshop, Chengdu, China, 2006, pp. 184–188.

[9] D. Burshetein and U. Miller, Asymptotic enumeration methods for analyzing LDPC codes,
IEEE Trans. Inform. Theory, 50 (2004), pp. 1115–1131.

[10] G. Como and F. Fagnani, Ensembles of codes over Abelian groups, in Proceedings of the IEEE
International Symposium on Information Theory, Adelaide, Australia, 2005, pp. 1788–1792.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

52 GIACOMO COMO AND FABIO FAGNANI

[11] G. Como and F. Fagnani, The capacity of finite Abelian group codes over memoryless sym-
metric channels, IEEE Trans. Inform. Theory, submitted.

[12] G. Como and F. Fagnani, On the Gilbert-Varshamov distance of Abelian group codes, in
Proceedings of the IEEE International Symposium on Information Theory, Nice, France,
2007, pp. 2651–2655.

[13] M. C. Davey and D. J. C. MacKay, Low density parity check codes over GF(q), IEEE Comm.
Lett., 2 (1998), pp. 159–166.

[14] A. Dembo and A. Montanari, Finite size scaling for the core of large random hypergraphs,
Ann. Appl. Probab., to appear.

[15] C. Di, T. J. Richardson, and R. Urbanke, Weight distribution of low-density parity-check
codes, IEEE Trans. Inform. Theory, 52 (2006), pp. 4839–4855.

[16] R. L. Dobrushin, Asymptotic optimality of group and systematic codes for some channels,
Theor. Probab. Appl., 8 (1963), pp. 47–59.

[17] U. Erez and G. Miller, The ML decoding performance of LDPC ensembles over Zq, IEEE
Trans. Inform. Theory, 51 (2005), pp. 1871–1879.

[18] G. D. Forney, Jr., Geometrically uniform codes, IEEE Trans. Inform. Theory, 37 (1991),
pp. 1241–1260.

[19] R. G. Gallager, Low Density Parity Check Codes, MIT Press, Cambridge MA, 1963.
[20] R. G. Gallager, Information Theory and Reliable Communication, Wiley, New York, 1968.
[21] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford

University Press, New York, 1979.
[22] J. Hou, P. H. Siegel, L. B. Milstein, and H. D. Pfister, Capacity-approaching bandwidth-

efficient coded modulation schemes based on low-density parity-check codes, IEEE Trans.
Inform. Theory, 49 (2003), pp. 2141–2155.

[23] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1974.
[24] R. Koetter, W.-C. W. Li, P. O. Vontobel, and J. L. Walker, Characterizations of pseudo-

codewords of (low-density) parity-check codes, Adv. Math., 213 (2007), pp. 205–229.
[25] S.-L. Litsyn and V. Shevelev, On ensembles of low-density parity-check codes: Asymptotic

distance distributions, IEEE Trans. Inform. Theory, 48 (2002), pp. 887–908.
[26] S.-L. Litsyn and V. Shevelev, Distance distributions in ensembles of irregular low-density

parity-check codes, IEEE Trans. Inform. Theory, 49 (2003), pp. 3140–3159.
[27] H.-A. Loeliger, Signal sets matched to groups, IEEE Trans. Inform. Theory, 37 (1991),

pp. 1675–1679.
[28] D. J. C. MacKay, Good error correcting codes based on very sparse matrices, IEEE Trans. In-

form. Theory, 45 (1999), pp. 399–431.
[29] G. Miller and D. Burshetein, Bounds on the maximum likelihood decoding error probability

of low-density parity-check codes, IEEE Trans. Inform. Theory, 47 (2001), pp. 2696–2710.
[30] K. S. Ng and M. A. Armand, LDPC codes over mixed alphabets, Electron. Lett., 42 (2006),

pp. 1290–1291.
[31] A. Orlitsky, K. Viswanathan, and J. Zhang, Stopping set distribution of LDPC code en-

sembles, IEEE Trans. Inform. Theory, 51 (2005), pp. 929–953.
[32] V. Rathi and R. Urbanke, Density evolution, thresholds and the stability condition for non-

binary LDPC codes, IEE Proc. Commun., 152 (2005), pp. 1069–1074.
[33] V. Rathi, On the asymptotic weight and stopping set distribution of regular LDPC ensembles,

IEEE Trans. Inform. Theory, 52 (2006), pp. 4212–4218.
[34] T. J. Richardson and R. Urbanke, The capacity of low-density parity-check codes under

message-passing decoding, IEEE Trans. Inform. Theory, 47 (2001), pp. 599–618.
[35] T. J. Richardson, M. A. Shokrollahi, and R. Urbanke, Design of capacity-approaching

irregular low-density parity-check codes, IEEE Trans. Inform. Theory, 47 (2001), pp. 619–
637.

[36] T. J. Richardson and R. Urbanke, Modern Coding Theory, Cambridge University Press,
Cambridge, UK, 2007.

[37] I. Sason and R. Urbanke, Parity-check density versus performance of binary linear block codes
over memoryless symmetric channels, IEEE Trans. Inform. Theory, 49 (2003), pp. 1611–
1635.

[38] L. Sassatelli and D. Declercq, Non-binary hybrid LDPC codes: Structure, decoding and
optimization, in Proceedings of the IEEE Information Theory Workshop, Chengdu, China,
2006, pp. 71–75.

[39] N. Shulman and M. Feder, Random coding techniques for nonrandom codes, IEEE Trans. In-
form. Theory, 45 (1999), pp. 2001–2004.

[40] D. Sridhara and T. E. Fuja, LDPC codes over rings for PSK modulation, IEEE Trans. In-
form. Theory, 51 (2005), pp. 3209–3220.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE SPECTRA AND MINIMUM DISTANCES OF LDPC 53

[41] A. Terras, Fourier Analysis on Finite Groups and Applications, Cambridge University Press,
Cambridge, UK, 1999.

[42] Various Authors, Special issue on iterative decoding, IEEE Trans. Inform. Theory, 47 (2001).
[43] P. O. Vontobel and R. Koetter, Graph-cover decoding and finite-length analysis of message-

passing iterative decoding of LDPC codes, IEEE Trans. Inform. Theory, to appear.
[44] C. C. Wang, S. R. Kulkarni, and H. V. Poor, Finite-dimensional bounds on Zm and binary

LDPC codes with belief propagation decoders, IEEE Trans. Inform. Theory, 53 (2007),
pp. 56–81.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 54–58

THE LINEAR ARBORICITY OF GRAPHS ON SURFACES OF
NEGATIVE EULER CHARACTERISTIC∗

JIAN-LIANG WU†

Abstract. The linear arboricity of a graph G is the minimum number of linear forests which
partition the edges of G. In the present, it is proved that if a graph G can be embedded in a surface

of Euler characteristic ε < 0 and Δ(G) ≥ √46− 54ε + 19, then its linear arboricity is �Δ(G)
2
�. Some

related results on the girth and maximum average degree are also obtained.

Key words. graph, surface, Euler characteristic, linear arboricity

AMS subject classification. 05C05

DOI. 10.1137/S0895480101394690

1. Introduction. In this paper, all graphs are finite, simple, and undirected.
Any undefined notation follows that of Bondy and Murty [6]. For a real number
x, �x� is the smallest integer not smaller than x, and �x� is the largest integer not
larger than x. Given a graph G = (V,E), let N(v) = {u | uv ∈ E(G)} and Nk(v) =
{u | u ∈ N(v) and d(u) = k}, where d(v) = |N(v)| is the degree of the vertex v.
We use Δ(G) and δ(G) to denote the maximum (vertex) degree and the minimum
(vertex) degree, respectively. A k-vertex is a vertex of degree k. If W ⊆ V (G), then
let N(W) =

⋃
v∈W N(v). The girth of a graph G is the length of a shortest cycle in

G. The maximum average degree, denoted by mad(G), of a graph G is the maximum
value of 2|E(H)|/|V (H)| taken over all subgraphs H of G.

A linear forest is a graph in which each component is a path. A map ϕ from
E(G) to {1, 2, . . . , t} is called a t-linear coloring if (V (G), ϕ−1(α)) is a linear forest
for 1 ≤ α ≤ t. The linear arboricity la(G) of a graph G defined by Harary [10] is
the minimum number t for which G has a t-linear coloring. Given a t-linear coloring
ϕ and a vertex v of G, let Ci

ϕ(v) = {j | the color j appears i times at v}, where
i = 0, 1, 2. Then |C0

ϕ(v)|+ |C1
ϕ(v)|+ |C2

ϕ(v)| = t.
Akiyama, Exoo, and Harary [2] conjectured that la(G) = �(Δ(G) + 1)/2� for

any regular graph G. It is obvious that la(G) ≥ �Δ(G)/2� for any graph G and
la(G) ≥ �(Δ(G) + 1)/2� for every regular graph G. So the conjecture is equivalent to
the following conjecture.

Conjecture A. For any graph G, �Δ(G)
2 � ≤ la(G) ≤ �Δ(G)+1

2 �.
The linear arboricity has been determined for complete bipartite graphs [2], Halin

graphs [12], series-parallel graphs [14], complete regular multipartite graphs [15], and
regular graphs with Δ = 3, 4 [2] and [3], 5, 6, 8 [8], and 10 [9]. Péroche [11] proved
that the determination of la(G) of a graphG is a NP-hard problem, even when Δ = 4.
Alon, Teague, and Wormald [5] proved that there is an absolute constant c > 0 such
that for every d-regular graph G, la(G) ≤ d

2 +cd2/3(log d)1/3. A slightly weaker result
has been proved in [4, p. 64]. Aı̈t-djafer [1] obtained some results for graphs with
multiple edges. For planar graphs, Conjecture A has already been proved to be true;

∗Received by the editors September 1, 2001; accepted for publication (in revised form) June 13,
2008; published electronically October 24, 2008. This work was partially supported by National
Natural Science Foundation of China (10631070, 60673059).

http://www.siam.org/journals/sidma/23-1/39469.html
†School of Mathematics, Shandong University, Jinan, 250100, People’s Republic of China (jlwu@

sdu.edu.cn).

54

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LINEAR ARBORICITY OF GRAPHS ON SURFACES 55

see [13] and [17]. Wu also proved in [13] that if a planar graph G has Δ ≥ 13, then
la(G) = �Δ/2�, and some related results on the girth are obtained, too. It is noted
in [16] that these results can be extended to graphs embeddable in a surface of Euler
characteristic ε ≥ 0.

In the present paper, we prove that if a graph G is embeddable in a surface of
Euler characteristic ε < 0 and Δ(G) ≥ √46− 54ε + 19, then la(G) = �Δ/2�. We
also consider the relationship between linear arboricity and mad(G). Here surfaces
are all compact, connected 2-manifolds with boundary and any embedding of graphs
are 2-cell embedding.

2. Main results and their proofs. First, let us describe a result proved by
Borodin, Kostochka, and Woodall [7]. Let G be a graph, and let f : E(G) → N be a
function into the positive integers. A proper edge coloring of G is a coloring of E(G)
such that no two adjacent edges receive the same color. A graph G is said to be edge
f -choosable if, whenever we give lists of f(e) colors to each edge e of G, there exists
a proper edge coloring of G where each edge is colored with a color from its own list.

Lemma 2.1 (see [7]). A bipartite graph G is edge f -choosable where f(e) =
max{d(u), d(v)} for e = uv ∈ E(G).

If ϕ is a t-linear coloring of a graph G, a vertex v ∈ V (G), and i ∈ {0, 1, 2}, then
let Ci

ϕ(v) = {j | the color j appears i times at v}. Then |C0
ϕ(v)|+|C1

ϕ(v)|+|C2
ϕ(v)| = t

and |C1
ϕ(v)|+ 2|C2

ϕ(v)| = d(v), so that

(1) 2|C0
ϕ(v)|+ |C1

ϕ(v)| = 2t− d(v).

We now state and prove our main result.
Theorem 2.2. Let d ≥ √46− 54ε + 19, and let G be a graph with maxi-

mum degree Δ(G) ≤ d, embedded in a surface of Euler characteristic ε < 0. Then
la(G) ≤ �d

2�. In particular, if Δ(G) = d, then la(G) = �Δ(G)
2 �.

Proof. Let G be a minimum counterexample to the theorem. First, we prove
some claims for G.

Claim 1. For any uv ∈ E(G), dG(u) + dG(v) ≥ d+ 2.
Proof of Claim 1. Suppose that G has an edge uv with dG(u) + dG(v) ≤ d + 1.

Then G′ = G − uv has a �d
2�-linear coloring ϕ by the minimality of G. Let S =

C2
ϕ(u) ∪ C2

ϕ(v) ∪ (C1
ϕ(u) ∩ C1

ϕ(v)). Since dG′(u) + dG′(v) = d(u) + d(v) − 2 ≤ d − 1,
|S| < �d

2�. Let ϕ(uv) ∈ {1, 2, . . . , �d
2�}\S. Thus ϕ is extended to a �d

2�-linear coloring
of G, a contradiction. Hence Claim 1 holds.

By Claim 1, we have δ(G) ≥ 2 and any two 2-vertices are not adjacent.
Claim 2. G has no even cycle v0v1 · · · v2n−1v0 such that d(v1) = d(v3) = · · · =

d(v2n−1) = 2 and max0≤i<n |N2(v2i)| ≥ 3.
Proof of Claim 2. Suppose G does contain such an even cycle. Without loss

of generality, let N2(v0) ≥ 3, which implies that v0 is adjacent to at least three
2-vertices. Let u ∈ N2(v0)\{v2n−1, v1} and v ∈ N(u)\v0. By the induction hypothesis,
G∗ = G−{v1, . . . , v2n−1}−uv0 has a �d

2�-linear coloring ϕ. Now we construct directly
a �d

2�-linear coloring σ of G as follows.
First of all, if C0

ϕ(v0) �= ∅, let σ(uv0) = σ(v0v1) ∈ C0
ϕ(v0). Otherwise, |C1

ϕ(v0)| ≥
3, let σ(uv0) ∈ C1

ϕ(v0)\ϕ(uv) and σ(v1v0) ∈ C1
ϕ(v0)\σ(uv0). After that, let σ(v0v2n−1)

∈ (C1
ϕ(v0) ∪C0

ϕ(v0))\{σ(uv0), σ(v0v1)}. So σ(v0v1) �= σ(v0v2n−1). Furthermore, for i
= 1, 2, . . . , n − 1, if σ(v0v2n−1) ∈ C1

ϕ(v2i), let σ(v2i−1v2i) = σ(v0v2n−1). Ot-
herwise, let σ(v2i−1v2i) ∈ (C1

ϕ(v2i)\σ(v2i−2v2i−1)) ∪ C0
ϕ(v2i). And σ(v2iv2i+1) ∈

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

56 JIAN-LIANG WU

(C1
ϕ(v2i)\σ(v2i−1v2i)) ∪ C0

ϕ(v2i). Finally, the uncolored edges of G are colored the
same colors as in ϕ of G∗. This contradiction proves Claim 2.

Let G2 be the subgraph induced by edges incident with 2-vertices. Since G does
not contain two adjacent 2-vertices, G2 does not contain any odd cycle. So it follows
from Claim 2 that any component of G2 is either an even cycle or a tree. So it
is easy to find a matching M in G saturating all 2-vertices (M contains alternate
edges of every even cycle of G2, and if some component of G2 is a tree T , then we
repeatedly add to M a pendant edge e of T and delete the endvertices of e from T).
If uv ∈ M and d(u) = 2, then v is called a 2-master of u. Note that every 2-vertex
has a 2-master, which is necessarily a vertex of maximum degree, and each vertex of
the maximum degree can be the 2-master of at most one 2-vertex.

For an integer t (3 ≤ t ≤ �d
2�), let Xt ⊆ {v | 2 ≤ dG(v) ≤ t} and Yt = N(Xt).

It follows from Claim 1 that Xt is an independent set of G. Let K be the induced
bipartite subgraph of G with partite sets Xt and Yt. Then dK(u) = dG(u) for u ∈ Xt.
If dK(v) ≥ dG(v) + 2(t− �d

2�) for each v ∈ Yt, then K is called t-alternating.
Claim 3. G contains no t-alternating subgraph for any t (3 ≤ t ≤ �d

2�).
Proof of Claim 3. Suppose that for some t (3 ≤ t ≤ �d

2�), G contains a t-
alternating subgraph H with partite sets X and Y such that 2 ≤ dH(x) = dG(x) ≤ t
for x ∈ X and dH(y) ≥ 2t+ dG(y)− 2�d

2� for each v ∈ Y . Then there is a �d
2�-linear

coloring σ to color all edges of G−X by the minimality of G.
Let F = (X,Y ′) be the bipartite graph obtained from H by splitting equitably

each vertex v ∈ Y into two vertices v1 and v2, that is, such that v1, v2 ∈ Y ′ and
�dH(v)

2 � = dF (v1) ≤ dF (v2) = �dH(v)
2 �. Similarly, split equitably the set C1

σ(v) into two

subsets C′ and C′′, that is, C1
σ(v) = C′

v1
∪C′

v2
and �C1

σ(v)
2 � = |C′

v1
| ≤ |C′

v2
| = �C1

σ(v)
2 �.

Thus for each vertex v ∈ Y and its splitting vertices v1, v2 ∈ Y ′, let Cv1 = C0
σ(v)∪C′

and Cv2 = C0
σ(v) ∪ C′′. It follows that for any xy ∈ E(F) with x ∈ X and y ∈ Y ′,

|Cy| ≥ max{t, dF (y)} ≥ max{dF (x), dF (y)} since |C0
σ(v)| + |C1

σ(v)| + |C2
σ(v)| = �d

2�
and 2|C2

σ(v)| + |C1
σ(v)| = dG(v) − dH(v). Now define the list Axy of xy as Cy. By

Lemma 2.1, any edge xy of F can be colored from its list Axy. If we use the same
coloring to return to color all edges of H , then we extend σ to a �d

2�-linear coloring
of G, a contradiction with G being a counterexample. So this contradiction proves
Claim 3.

Claim 4. If Xt �= ∅, then there exists a bipartite subgraph Mt of Kt such that
dMt(x) = 1 for each x ∈ Xt, and 0 ≤ dMt(y) ≤ 2t− 1 for each y ∈ Yt.

Proof of Claim 4. Let Ht = (X ′
t, Yt), where X ′

t ⊆ Xt, be a maximum bipartite
subgraph of Kt such that dHt(x) = 1 for x ∈ X ′

t and dHt(y) ≤ 2t − 1 for y ∈ Yt.
Clearly,Ht is not empty sinceG has at least one edge fromXt to Yt. SupposeX ′

t �= Xt.
Let v ∈ Xt\X ′

t. An alternating path, Pv, in Kt is a path whose origin is v and edges
are alternating between E(Kt) \ E(Ht) and E(Ht). If Kt has an alternating path
Pv = vv1v2 · · · v2m+1 such that its terminus v2m+1 is in Yt and dHt(v2m+1) ≤ 2t− 2,
then H ′

t = (Ht − {v1v2, v3v4, . . . , v2m−1v2m}) + {vv1, v2v3, . . . , v2mv2m+1} is another
bipartite subgraph satisfying the claim, but |E(H ′

t)| > |E(Ht)|, a contradiction to
the maximality of Ht. So for every alternating path Pv whose terminus is a vertex
v′ ∈ Yt, we have dHt(v′) = 2t− 1. Let Zt denote the set of all vertices connected to v
by alternating paths. Set X ′′

t = Zt∩Xt and Y ′′
t = Zt∩Yt. Then X ′′

t = {v}∪(Zt∩X ′
t),

Y ′′
t = N(X ′′

t), and dHt(y) = 2t− 1 for any y ∈ Y ′′
t . Let Ft be the bipartite subgraph

induced by edges between X ′′
t and Y ′′

t . Then dFt(y) ≥ dHt(y)+1 = 2t ≥ 2t+dG(y)−
2�d

2� for any y ∈ Y ′′
t . By the definition of Xt, dG(x) = dFt(x) ≤ t for any x ∈ X ′′

t . So
Ft is a t-alternating subgraph of G, a contradiction to Claim 3. Hence Xt = X ′

t and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LINEAR ARBORICITY OF GRAPHS ON SURFACES 57

Claim 4 is true.
Here we call y the t-master of x in G for xy ∈ Mt. In particular, it follows from

the claim that for each i and j (2 ≤ i ≤ j ≤ 5), every i-vertex has a j-master. We
shall use the important idea to redistribute charge below.

By Euler’s formula |V | − |E|+ |F | ≥ ε, and by the fact that 2|E| ≥ 3|F |, we have

∑
x∈V

(d(x)− 6) = 2|E| − 6|V | ≤ 6|F | − 4|E| − 6ε ≤ −6ε.

Define a charge ω on vertices of G by letting ω(v) = d(v) − 6 for v ∈ V (G). Now we
construct a new charge ω∗ from ω by the following rule.

For each i and j (2 ≤ i ≤ j ≤ 5), each i-vertex receives charge 1 from its j-
masters. Clearly,

∑
v∈V (G) ω(v) =

∑
v∈V (G) ω

∗(v) ≤ −6ε. We will get a contradiction
by proving that

∑
v∈V (G) ω

∗(v) > −6ε.
Claim 5. For each vertex v ∈ V , ω∗(v) ≥ 0; moreover, ω∗(v) ≥ �d

3� − 8 if
d(v) ≥ �d

3�.
Proof of Claim 5. If 2 ≤ d(v) ≤ 5, then ω∗(v) = 0 since v receives 6 − d(v) in

total from its j-masters where j = d(v), d(v) + 1, . . . , 5. If d(v) = 6, then ω∗(v) = 0.
If 7 ≤ d(v) ≤ d − 4, then v receives and sends nothing in the redistribution since
dG(u) ≥ 6 for each u ∈ N(v) by Claim 1; so ω∗(v) = ω(v) = d(v) − 6 > 0, and,
moreover, d(v)− 6 ≥ �d

3� − 8 if d(v) ≥ �d
3�. If d(v) = d− 3, then neighbors of v have

a degree of at least 5. This implies that v may be a 5-master of at most 9 vertices
in G by Claim 4. So ω∗(v) ≥ ω(v) − 9 = ((d − 3) − 9) − 6 = (d − 12) − 6. If
d(v) = d − 2, then dG(u) ≥ 4 for u ∈ N(v), and it may be a 5-master of at most
9 vertices and a 4-master of at most 7 vertices. So ω∗(v) ≥ ω(v)−9−7 = (d−18)−6.
Similarly, we have ω∗(v) ≥ ω(v) − 9 − 7 − 5 = (d − 22) − 6 if d(v) = d − 1 and
ω∗(v) ≥ ω(v)− 9− 7 − 5 − 1 = (d− 22)− 6 if d(v) = d. Hence ω∗(v) ≥ (d− 20)− 8
if dG(v) ≥ d − 3. Since d ≥ √46− 54ε + 19, d − 20 ≥ �d

3�. So ω∗(v) ≥ �d
3� − 8 if

d(v) ≥ �d
3�. Hence we prove Claim 5.

Let U = {u | dG(u) ≤ �d
3�} and W = N(U). Then U is an independent set of G

by Claim 1. Let F be the induced bipartite subgraph of G with partite sets U and
W . If |V (G)\U | ≤ �d

3�+1, then for any vertex w ∈W , dF (w) = dG(w)−dG−U (w) ≥
dG(w)− �d

3� ≥ dG(w)− 2�d
2�+ 2�d

3�, that is, F is a (�d
3�)-alternating subgraph of G,

a contradiction to Claim 3. So |V (G)\U | ≥ �d
3�+ 2. Thus we have

∑
v∈V (G) ω(v) =∑

v∈V (G) ω
∗(v) ≥ (�d

3�+ 2)(�d
3� − 8) ≥ (�

√
46−54ε+19

3 �+ 2)(�
√

46−54ε+19
3 � − 8) > −6ε,

a contradiction. This completes the proof.
If the girth of a graph G embedded in a surface of Euler characteristic ε < 0 is

at least 4, then |E(G)| ≤ 2(|V (G)| − ε), that is,
∑

x∈V (d(v) − 4) ≤ −4ε. By using a
similar argument we can prove the following theorem.

Theorem 2.3. Let G be a graph embedded in a surface of Euler characteristic
ε < 0. If G has girth at least 4 and Δ(G) ≥ √45− 36ε+ 7, then la(G) = �Δ(G)

2 �.
We close the paper with a result on the maximum average degree.
Theorem 2.4. Let G be a graph with mad(G) ≤ t for some integer t ≥ 2. If

Δ(G) ≥ (t+ 1)(t− 2) + 1, then la(G) = �Δ(G)
2 �.

Proof. Let G be a minimal counterexample. Since t ≥ 2 and Δ(G) ≥ (t+1)(t−2)+
1, t ≤ �Δ(G)

2 �. Thus it follows from the proof of Theorem 2.2 that δ(G) ≥ 2, G has
no k-alternating subgraph for any 2 ≤ k ≤ t, G has no even cycle v0v1 · · · v2n−1v0
such that d(v1) = d(v3) = · · · = d(v2n−1) = 2 and max0≤i<n |N2(v2i)| ≥ 3, and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

58 JIAN-LIANG WU

dG(u) + dG(v) ≥ Δ(G) + 2 if uv ∈ E(G). So every i-vertex has a j-master for
2 ≤ i ≤ t− 1 and j = i, i+ 1, . . . , t− 1.

Since mad(G) ≤ t,
∑

x∈V (d(x) − t) ≤ 0. Define a charge ω on vertices of G by
letting ω(v) = d(v) − t for v ∈ V (G). Now we construct a new charge ω∗: Each
i-vertex receives 1 from all its j-masters where 2 ≤ i < t and j = i, i+ 1, . . . , t− 1.

It is obvious that ω∗(v) = 0 if d(v) = 2, 3, . . . , t and ω∗(v) = ω(v) > 0 if t <
d(v) ≤ Δ(G) − t + 2. If d(v) = Δ(G) − k where 2 ≤ k ≤ t − 3, then ω∗(v) ≥
ω(v) − (2t − 3) − (2t − 5) − · · · − (2k − 1) > 0. If d(v) = Δ(G) − 1, then ω∗(v) ≥
ω(v)− (2t−3)− (2t−5)−· · ·−5 > 0. If d(v) = Δ(G), then ω∗(v) ≥ ω(v)− (2t−3)−
(2t − 5) − · · · − 5 − 1 = Δ(G) − (t + 1)(t − 2) > 0. Therefore,

∑
v∈V (G) ω(v) =∑

v∈V (G) ω
∗(v) > 0, a contradiction. This completes the proof.

REFERENCES

[1] H. Aı̈t-djafer, Linear arboricity for graphs with multiple edges, J. Graph Theory, 11 (1987),
pp. 135–140.

[2] J. Akiyama, G. Exoo, and F. Harary, Covering and packing in graphs III: Cyclic and acyclic
invariants, Math. Slovaca, 30 (1980), pp. 405–417.

[3] J. Akiyama, G. Exoo, and F. Harary, Covering and packing in graphs IV: Linear arboricity,
Networks, 11 (1981), pp. 69–72.

[4] N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley & Sons, New York, 1992.
[5] N. Alon, V. J. Teague, and N. C. Wormald, Linear arboricity and linear k-arboricity of

regular graphs, Graphs Combin., 17 (2001), pp. 11–16.
[6] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier, New

York, 1976.
[7] O. V. Borodin, A. V. Kostochka, and D. R. Woodall, List edge and list total colourings

of multigraphs, J. Combin. Theory Ser. B, 71 (1997), pp. 184–204.
[8] H. Enomoto and B. Peroche, The linear arboricity of some regular graphs, J. Graph Theory,

8 (1984), pp. 309–324.
[9] F. Guldan, The linear arboricity of 10 regular graphs, Math. Slovaca, 36 (1986), pp. 225–228.

[10] F. Harary, Covering and packing in graphs I, Ann. New York Acad. Sci., 175 (1970), pp.
198–205.

[11] B. Peroche, Complexity of the linear arboricity of a graph, RAIRO Rech. Opér., 16 (1982),
pp. 125–129 (in French).

[12] J. L. Wu, Some path decompositions of Halin graphs, Shandong Kuangye Xueyuan Xuebao,
17 (1998), pp. 92–96 (in Chinese).

[13] J. L. Wu, On the linear arboricity of planar graphs, J. Graph Theory, 31 (1999), pp. 129–134.
[14] J. L. Wu, The linear arboricity of series-parallel graphs, Graphs Combin., 16 (2000), pp.

367–372.
[15] J. L. Wu, G. Z. Liu, and Y. L. Wu, The linear arboricity of composition graphs, J. Syst. Sci.

Complex., 15 (2002), pp. 372–375.
[16] J. L. Wu and L. Y. Miao, The linear arboricity of graphs, Adv. Math., 27 (1998), pp. 561–562.
[17] J. L. Wu and Y. W. Wu, The linear arboricity of planar graphs of maximum degree seven are

four, J. Graph Theory, 58 (2008), pp. 210–220.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 59–78

ON COSETS OF WEIGHT 4 OF BCH(2m, 8), m EVEN, AND
EXPONENTIAL SUMS∗

PASCALE CHARPIN† , TOR HELLESETH‡ , AND VICTOR ZINOVIEV§

Abstract. We give exact expressions for the number of coset leaders in the cosets of weight
4 of binary primitive narrow sense Bose–Chaudury–Hocquenghem (BCH) codes of length n = 2m

(m even) with minimum distance 8 in terms of several exponential sums, including cubic sums and
Kloosterman sums. This allows us to bound the number of coset leaders in these cosets.

Key words. binary primitive narrow sense BCH code, coset, coset weight distribution, expo-
nential sum, cubic sum, Kloosterman sum, partial sum, inverse cubic sum

AMS subject classifications. 11T71, 11T23

DOI. 10.1137/070692649

1. Introduction. This paper is a natural continuation of our previous papers [3],
[4], [5], and [6]. In these papers, we studied the coset weight distributions of binary ex-
tended triple-error-correcting primitive narrow sense Bose–Chaudury–Hocquenghem
(BCH) codes. Such a code is of length 2m and minimum distance 8, which we will
denote by BCH(2m, 8), and is the extension of the binary cyclic code of length 2m−1
and designed distance 7, i.e., the cyclic code with zeros set {α, α3, α5} (where α is
a primitive root of the finite field of order 2m).

In [3] and [4] we described coset weight distributions of BCH(2m, 8) for odd m
for the cosets of any weight j = 1, 2, 3, 4, 5, 6. For the cosets of weight 4, using an
approach developed in [11], we have found [4] the exact expressions for the number
of words of weight 4 in terms of the exponential sums of four different types, in
particular, of the Kloosterman sums over GF (2m). Using these results we obtained
new properties of Kloosterman sums, mainly their divisibility modulo 24 (see [5]).

The purpose of this paper is to obtain similar results in the case where m is
even. Here we extend these results for even m, obtaining explicit expressions for
the number of words of weight 4 of cosets of weight 4 of BCH(2m, 8). For the codes
BCH(2m, 8) the case of even m is much harder, since the exact expressions depend on
five different exponential sums. Analyzing these sums we reduce the final expressions
to the exponential sums of four different types, including cubic sums and Kloosterman
sums. Known bounds for values of these sums permit us to bound the number of words
of weight 4 in the cosets of weight 4.

This paper is organized as follows. In section 2, following [3] and [10] we give
some preliminary results concerning the codes BCH(2m, 8) and exponential sums
over GF (2m), in particular, the cubic sums and Kloosterman sums. In section 3 we
consider a nonlinear system of equations, which defines the number of words of weight

∗Received by the editors May 22, 2007; accepted for publication (in revised form) June 16, 2008;
published electronically October 24, 2008. This work was supported by INRIA-Rocquencourt, by the
Norwegian Research Council under grant 171094/V30, and also by the Russian Fund of Fundamental
Researches (project 06-01-00226).

http://www.siam.org/journals/sidma/23-1/69264.html
†INRIA, Domaine de Voluceau-Rocquencourt, BP 105-78153, Le Chesnay, France (pascale.

charpin@inria.fr).
‡Department of Informatics, University of Bergen, N-5020 Bergen, Norway (torh@ii.uib.no).
§Institute for Problems of Information Transmission, Russian Academy of Sciences, Bol’shoi

Karetnyi per. 19, GSP-4, Moscow, 101447, Russia (zinov@iitp.ru).

59

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

60 PASCALE CHARPIN, TOR HELLESETH, AND VICTOR ZINOVIEV

4 in a coset of weight 4 of a code BCH(2m, 8). In section 4 we solve the nonlinear
system of equations, which gives the number of words of weight 4 for any such coset.
We express the number of solutions to this system in terms of the exponential sums
of four different types: the two cubic sums, the Kloosterman sums, and the so-called
inverse cubic sum. Here we use the same approach as in [10], [11], [12]. Using known
results on exponential sums, we lower and upper bound the number of words of weight
4 in any coset of weight 4. In section 5 we compute all of the possible values of the
number of words for the first nontrivial values m = 6 and m = 8.

2. Definitions and preliminary results. The Hamming weight of any vector
(or word) x is denoted by wt(x). Generally, we denote by F2k the finite field of order
2k. However, we simply denote by F the field F2m . For any set E containing 0 we
denote: E∗ = E \ {0}. Also, #E denotes the cardinality of any set E.

Let us denote by BCH(2m, 8) a binary primitive (in narrow sense) extended BCH
code of length n = 2m, where m ≥ 5, and the minimal distance is 8. This is the code
over GF (2) with the parity check matrix given by

HB =

⎡
⎢⎢⎣

1 1 1 1 · · · 1
0 1 α α2 · · · αn−2

0 1 α3 α6 · · · α(n−2)3

0 1 α5 α10 · · · α(n−2)5

⎤
⎥⎥⎦ ,

where α is a primitive root of F (see [16, ch. 7, section 6]). We use the elements
of F as locators for the code BCH(2m, 8), where the first position of BCH(2m, 8)
corresponds to the zero element of F.

Let D = x + BCH(2m, 8) be a coset of BCH(2m, 8). The weight of the coset
D is the minimum weight of the words of D. A leader of D is a codeword of D of
minimum weight. To this coset D we associate a syndrome, which is a vector, say S,
over F with four coordinates:

S = (S1, S2, S3, S4) = xHt
B ,

where x is any vector from D and Ht
B is the transpose of the matrix HB. In this

paper we consider only cosets D of weight four. Since the first component S1 of
the syndrome S shows the parity of the vector x, in the rest of this paper, under a
syndrome of a coset D, we use the vector (S2, S3, S4), i.e., without the first (zero)
coordinate. Recall that the covering radius of BCH(2m, 8) is 6 [9]. Therefore, the
weight i of D is in the set {0, . . . , 6}.

Let Tr(x) denote the absolute trace of x ∈ F and, for even m, denote by x �→
Trm

2 (x) the trace function from F to its subfield F4.
Lemma 1 (see [11]). Let a, b be two arbitrary elements of F∗, a �= b. Then

Tr

(
a b

(a+ b)2

)
= 0.

Lemma 2 (see [15]). The quadratic equation x2 + ax+ b = 0, a ∈ F∗, b ∈ F, has
two different roots in F if Tr(b/a2) = 0 and no roots in F if Tr(b/a2) = 1.

Lemma 3 (see [1]). The cubic equation x3 + ax + b = 0, where a ∈ F and
b ∈ F∗ = F \ {0}, has a unique solution in F if and only if Tr(a3/b2) �= Tr(1).
Furthermore, if it has three distinct roots in F, then Tr(a3/b2) = Tr(1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COSETS OF BCH(2m, 8) AND EXPONENTIAL SUMS 61

Denote fb(x) = x3 + x+ b, where b ∈ F∗. Let

Mi = #{ b : fb(x) has precisely i zeros in F }.
Lemma 4 (see [13]). Let n = 2m where m is even. Then clearly M2 = 0 and

M0 = (n− 1)/3,
M1 = n/2,
M3 = (n− 4)/6.

Denote

e(a) = (−1)Tr(a) .

The function e(x) is an additive character of F. For any mapping f : F �→ F, the
expression of the type ∑

x∈F

e(f(x))

is called an exponential (or a character) sum over F.
Lemma 5 (see [4]). Let σ be any mapping from F to F, and let λ ∈ F∗. Denote

by H the kernel of the linear function x �→ Tr(λx). Then∑
x∈F

e(σ(x)) +
∑
x∈F

e(σ(x) + λx) = 2
∑
x∈H

e(σ(x)).

The exponential sums of polynomials of degree three over F are known; they
are known also from coding theory (see [16, chapter 15]). In particular, we need the
following result due to Carlitz [2]. For arbitrary elements a ∈ F∗ and b ∈ F, denote

C(a, b) =
∑
x∈F

e(a x3 + b x), C(a) = C(a, 0).

Lemma 6 (see [2]). Let a ∈ F∗. For any even m = 2s we have that

C(a) =
{

(−1)s+12s+1 if a is a cube in F,
(−1)s2s otherwise.

If a = β3, β ∈ F, then

C(a, b) =
{

(−1)s+12s+1e(x3
0) if Trm

2 (bβ−1) = 0,
0 otherwise,

where x0 denotes any solution of x4 + x = β−2b2.
If a �= β3, β ∈ F, then

C(a, b) = (−1)s2s e(a x3
1),

where x1 is the unique solution of a2x4 + a x = b2, given by

(
a(22s−1)/3 + 1

)
x1 =

s−1∑
j=0

(
a−1b2

)22j

a(22j−1)/3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

62 PASCALE CHARPIN, TOR HELLESETH, AND VICTOR ZINOVIEV

We also need the exponential sums of such type for the case when the argument
x runs over F with the fixed trace of the element 1/x. It is convenient for us to define
this partial sum multiplied by 2:

(2.1) P (a, b) = 2
∑

x∈F: Tr(1/x)=0

e(a x3 + b x).

Recall that the classical binary Kloosterman sum, say K ′(a), is defined for each
a in F∗ by

K ′(a) =
∑

x∈F∗
e

(
a x +

1
x

)
.

The exponential sums, which we consider here, are generally defined on F∗, the mul-
tiplicative group of F. In this paper we extend all of the sums to 0, assuming that
e(x−1) = e(x−3) = 1 for x = 0. Indeed, Tr(x−1) = Tr(x2m−1−1) so that we can define
Tr(x−1) = 0 for the case x = 0. Therefore, we define here the classical Kloosterman
sum K(a), a ∈ F∗, as

(2.2) K(a) =
∑
x∈F

e

(
a x +

1
x

)
= K ′(a) + 1.

We extend the sum K ′(a) to a = 0, setting K(0) = 0.
Note that we have (where x = ya and z2 = y)

(2.3)
∑
x∈F

e
(a
x

+ ax
)

=
∑
y∈F

e

(
1
y

+ a2y

)
=
∑
z∈F

e

(
1
z

+ az

)
= K(a).

And obviously K(a) = K(a2).
Using deep results on the number of rational points on certain elliptic curves,

Lachaud and Wolfmann [14] proved the following result.
Lemma 7. The set K(a), a ∈ F is the set of all the integers s ≡ 0 (mod 4) with

value s in the range [−2(m/2)+1 + 1, 2(m/2)+1 + 1].
Note that we deduce immediately that for m even and for any a ∈ F, we have

(2.4) −2(m/2)+1 + 4 ≤ K(a) ≤ 2(m/2)+1.

Considering the coset weight distribution of Z4-linear Goethals codes, we obtained
the following result.

Lemma 8 (see [10]). For any m ≥ 3,

K(a) ≡
{

4 mod 8 if T r(a) = 1,
0 mod 8 if T r(a) = 0.

We also need the following observation, partly given in [4].
Lemma 9. For any a ∈ F∗ and for any m,

K(a) = 2
∑

x∈F: Tr(1/x)=0

e(ax) = − 2
∑

x∈F: Tr(1/x)=1

e(ax).

Proof. We first have

K(a) =
∑

x, Tr(1/x)=0

e(ax)−
∑

x, Tr(1/x)=1

e(ax).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COSETS OF BCH(2m, 8) AND EXPONENTIAL SUMS 63

Since ∑
x∈F

e(ax) = 0 =
∑

x, Tr(1/x)=0

e(ax) +
∑

x, Tr(1/x)=1

e(ax),

we obtain the equality of the lemma using∑
x, Tr(1/x)=0

e(ax) = −
∑

x, Tr(1/x)=1

e(ax).

We also need the following sum G′(a, b), which we introduced in [4], and which
we call an inverse cubic:

G′(a, b) =
∑

x∈F∗
e

(
a x3 +

b

x

)
, a ∈ F∗, b ∈ F.

Here we also extend this sum to x = 0, setting bx−1 = 0 at the point x = 0. Thus

G(a, b) =
∑
x∈F

e

(
a x3 +

b

x

)
= G′(a, b) + 1.

It is easy to check that G(a, a) = G(a2, a2). This follows immediately from the
equality G′(a, a) = G′(a2, a2), which was given in [4]. We also have to bound these
sums.

Lemma 10. Let m be even. For any a, b ∈ F, where (a, b) �= (0, 0), we have

(2.5) |G(a, b)| ≤ 2m/2+2.

Proof. We gave an upper bound on |G′(a, b)| in [4, Lemma 14] for odd m, but it
is easy to check that our proof in [4] holds for even m too. This upper bound is as
follows:

|G′(a, b)| ≤ 4
√

2m.

Since G(a, b) is a multiple of 4 for any a, b ∈ F and G(a, b) = G′(a, b) + 1, the proof
is completed.

Now, by the two next lemmas, we introduce some important relations linking
partial sums with other sums considered here. To see the difference between even and
odd cases, we formulate these results for both m, even and odd, and prove only the
even cases. The odd cases are, respectively, Lemmas 10 and 12 in [4]. We mention
that the partial sum P (a, b), defined in [4], is not doubled (as here).

Lemma 11. Let a be any element of F∗, where F has the order 2m. Then

P (a, a) =
{
K(a) + 2C(a, a) if m is even,
K(a) if m is odd.

Proof. Let m be even. We first have∑
x∈F

e(a(x3 + x)) =
∑

x∈F, Tr(1/x)=0

e(a(x3 + x)) +
∑

x∈F, Tr(1/x)=1

e(a(x3 + x))

which means

(2.6) C(a, a) =
1
2
P (a, a) +

∑
x∈F, Tr(1/x)=1

e(a(x3 + x)).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

64 PASCALE CHARPIN, TOR HELLESETH, AND VICTOR ZINOVIEV

Moreover, in the case where m is even,

(2.7) { x3 + x | x ∈ F, T r(1/x) = 1 } = { y ∈ F | Tr(1/y) = 1 }.
This is because

Tr

(
1

x3 + x

)
= Tr

(
1
x

+
1

x+ 1
+

1
x2 + 1

)
,

and the equation x3 + x+ c = 0 has a unique solution if and only if Tr(1/c) = 1. We
know that there are M1 = 2m−1 such c and then 2m−1 elements x3 + x (in the set
above on the right) since for every such c

T r

(
1
c

)
= Tr

(
1

x3 + x

)
= Tr

(
1
x

)
= 1

(see Lemmas 3 and 4). So, both sets in (2.7) have the same cardinality M1. We
deduce ∑

x∈F, Tr(1/x)=1

e(a(x3 + x)) =
∑

y∈F, Tr(1/y)=1

e(ay).

Using (2.6) and Lemma 9, we get

P (a, a) = 2C(a, a) − 2
∑

y∈F, Tr(1/y)=1

e(ay) = 2C(a, a) + K(a).

Lemma 12. For any a ∈ F∗,

P (a, 0) =
{
G(a, a) + C(a) if m is even,
G(a, a) if m is odd.

Proof. Recall that we denote C(a) = C(a, 0). Also

P (a, 0) = 2
∑

x, Tr(1/x)=0

e(ax3).

We have, using Lemma 5,∑
x∈F

e(ax−3) +
∑
x∈F

e(ax−3 + x) = 2
∑

x, Tr(x)=0

e(ax−3) = P (a, 0),

with ∑
x∈F

e(ax−3) =
∑
x∈F

e(ax3) = C(a)

and, moreover,

G(a, 1) =
∑
x∈F

e(ax3 + x−1) =
∑
y∈F

e(a4y3 + y−1)

=
∑
z∈F

e(az3 + az−1) = G(a, a),

with y = x4 and z = ay.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COSETS OF BCH(2m, 8) AND EXPONENTIAL SUMS 65

3. Cosets of weight four in terms of nonlinear systems of equations.
Let D be a coset of BCH(2m, 8) with syndrome S = (a, b, c). To find the number of
coset leaders in D, one needs to solve the following system of equations over F:

(3.1)
x + y + z + u = a,

x3 + y3 + z3 + u3 = b,
x5 + y5 + z5 + u5 = c.

Here x, y, z, and u are pairwise distinct elements of F. Here we are interested in
cosets of weight 4 which are not contained in the Reed–Muller code of order m − 2.
That is, {x, y, z, u} is not a 2-dimensional flat or, equivalently, a �= 0 in (3.1). For the
case of odd m, cosets which are contained in the Reed–Muller code of order m − 2
have been described in [3]. The approach, which we used in [3] for odd m, can be
used, of course, for the case of even m.

Denote by μ(a, b, c) the number of different solutions to the system (3.1), i.e., the
number of unordered 4-sets of different elements x, y, z, u of F, which satisfy (3.1).
So, for fixed elements a, b, c ∈ F, this number defines exactly the number of leaders
of D.

We now recall some general properties of our system (3.1). They can be checked
easily and have been considered for oddm in more detail but with another terminology
in [3, Lemma 4.4].

Proposition 1. A 4-tuple {x, y, z, u} is a solution to (3.1) for given (a, b, c) if
and only if a 4-tuple {g x, g y, g z, g u} is a solution to (3.1) for given (a′, b′, c′), where

a′ = g a, b′ = g3b, c′ = g5c, g ∈ F∗.

Proposition 2. A 4-tuple {x, y, z, u} is a solution to (3.1) for given (a, b, c) if
and only if a 4-tuple {x+h, y+h, z+h, u+h}, h ∈ F, is a solution to (3.1) for given
(a′, b′, c′), where

a′ = a, b′ = b+ ha(h+ a), c′ = c+ ha(h3 + a3).

Proposition 3. A 4-tuple {x, y, z, u} is a solution to (3.1) for given (a, b, c) if
and only if a 4-tuple {x2, y2, z2, u2} is a solution to (3.1) for given (a′, b′, c′), where

a′ = a2, b′ = b2, c′ = c2.

For fixed a, b, and c, denote by V (a, b, c) the set of all 4-sets {x, y, z, u} which are
solutions to (3.1), i.e., in our notation #V (a, b, c) = μ(a, b, c). Denote by V all of the
sets of 4-sets, which are solutions to (3.1) for some a, b, c,

V =
⋃

a∈F∗, b,c∈F

V (a, b, c).

This set V can be partitioned into different orbits, which are induced by applying
Propositions 1–3.

Definition 1. For given elements a, b, c ∈ F we define the orbit O(a, b, c) as the
set of V (a′, b′, c′), which can be obtained from V (a, b, c) by all possible transformations
given in Propositions 1–3.

According to Propositions 1–3, all sets V (a′, b′, c′) from the orbit O(a, b, c) have
the same cardinality μ(a, b, c). For arbitrary element η ∈ F, we denote by �η,m the size

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

66 PASCALE CHARPIN, TOR HELLESETH, AND VICTOR ZINOVIEV

of the cyclotomic coset Cη = {η, η2, η22
, . . .} of η induced by the action of Frobenius

automorphisms of F = GF (2m), i.e.,

�η,m = #Cη = min{s | s > 0, η2s

= η}.
Now we are going to prove that all orbits O(a, b, c) have a cardinality which depends
on the value of �η,m only, for some η which is defined by the next lemma.

Lemma 13. Let a, b, c be arbitrary elements of F, where a �= 0. Let μ(a, b, c) be
the number of solutions to the system (3.1).

(i) If Tr(b/a3) = 0, then

μ(a, b, c) = μ(1, 0, η),

where

(3.2) η =
c

a5
+
b2

a6
+

b

a3
.

(ii) If Tr(b/a3) = 1, then

μ(a, b, c) = μ(1, δ, η),

where δ is an arbitrary element of F∗ with Tr(δ) = 1 and where

η =
c

a5
+
b2

a6
+

b

a3
+ δ2 + δ.

Proof. Consider an arbitrary set V (a, b, c), where a, b, c are arbitrary elements of
F and a �= 0. Using Proposition 1 with g = 1/a, we obtain the set V (1, b/a3, c/a5),
which has the same cardinality as V (a, b, c). Now we apply Proposition 2 to this set.
We obtain for any h,

V (1, b/a3 + h(h+ 1), c/a5 + h(h3 + 1)).

First, assume that Tr(b/a3) = 0. Consider the following quadratic equation on h:

(3.3) h2 + h+
b

a3
= 0.

Since Tr(b/a3) = 0, this equation has two distinct roots h1 and h2 in the field F,
and we choose any one of these roots as h. In such a way we obtain the set V (1, 0, η)
where

(3.4) η =
c

a5
+ h4 + h.

Summing expression (3.3) and the expression obtained by squaring of (3.3), we arrive
at the following formula for h4 + h:

h4 + h =
b

a3
+

b2

a6
,

which does not depend on the choice of the roots h1 and h2. Using this equality in
(3.4), we obtain the formula (3.2) for η, given in Lemma 13 for the case (i).

Now consider the case (ii), when Tr(b/a3) = 1. In this case (3.3) has no solutions
in F. Hence we cannot eliminate the element b/a3, or even reduce it to 1. In this

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COSETS OF BCH(2m, 8) AND EXPONENTIAL SUMS 67

case we cannot do anything better than choose δ ∈ F ∗ such that Tr(δ) = 1, with h
satisfying

h2 + h+
b

a3
+ δ = 0.

For any such element δ the equation above has two solutions, say h1 and h2. Hence,
for a given b/a3, we can take any element δ with Tr(δ) = 1. Then we get the set
V (1, δ, η), which has the same cardinality as V (a, b, c). The expression for η is obtained
in the same way as for η above.

Note that for any i the set V (1, 0, η2i

) belongs to the orbit O(1, 0, η), by definition
of the orbits. Also, we have

V (1, δ2
i

, η2i

) ∈ O(1, δ, η).

Thus, according to Lemma 13, the set V is partitioned into the orbits of two types:
O(1, 0, η) and O(1, δ, η). We are going to compute the cardinality of these orbits. Our
next proposition, together with Lemma 13, gives the length of any orbit O(a, b, c).

Proposition 4. The parameters η and δ are defined by Lemma 13. The length
of the orbit O(1, 0, η) and the length of the orbit O(1, δ, η) only depend on the size
�η,m of the cyclotomic coset Cη of η. More precisely,

#O(1, 0, η) = #O(1, δ, η) = (2m − 1)2m−1�η,m.

Proof. First, note that by Lemma 13 we proved that for any (a, b, c), the set
V (a, b, c) is either in O(1, 0, η) or O(1, δ, η), for some δ such that Tr(δ) = 1, where η
is uniquely defined.

Let η be any element of F. According to Definition 1, we have to count the
number of distinct sets V (a, b, c) which belong to O(1, 0, η). We can choose in 2m−1

ways an element β ∈ F and, further, the element a ∈ F∗ in 2m− 1 ways. To be clear,
we proceed as follows:

(1, 0, η) −→ (1, β = h2 + h, η + h4 + h) −→ (a, βa3, (η + β + β2)a5)

and obtain (2m − 1)2m−1 different triples

(a, b, c), b = βa3, and c = (η + β + β2)a5.

Moreover, for each such triple, the sets V (a, b, ci) with ci = (η2i

+ β + β2)a5 also
belong to O(1, 0, η), which allow us to get at all (2m − 1)2m−1�η,m elements.

We proceed in the same way to count the number of distinct sets V (a, b, c) which
belong to O(1, δ, η) (where Tr(δ) = 1). We have, as before

(1, δ, η) → (1, β = δ + h2 + h, η + h4 + h) → (a, βa3, (η + β + δ + (β + δ)2)a5)

and then (2m − 1)2m−1 different triples

(a, b, c), b = βa3, and c = (η + β + δ + (β + δ)2)a5.

Note that the image of the map h �→ h+h2 + δ is the set of all β such that Tr(β) = 1.
This image does not depend on δ. We have to take into account that V (1, δ2

i

, η2i

) be-
longs to O(1, δ, η) for any i. Due to our previous remark, we have to consider only the
length of Cη, providing that the cardinality ofO(1, δ, η) equals (2m−1)2m−1�η,m.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

68 PASCALE CHARPIN, TOR HELLESETH, AND VICTOR ZINOVIEV

Remark 1. In this section, we assume that a �= 0 for the study of μ(a, b, c). When
a = 0 then the corresponding coset, say D, is contained in the Reed–Muller code of
order m− 2. According to Proposition 3, it is clear that if {x, y, z, u} is a solution to
(3.1) for given (0, b, c), then any 4-tuple {x+h, y+h, z+h, u+h} is a solution too, for
any h ∈ F. In this case the coset D is such that each coordinate position is covered
by at least one leader of D. Since the weight of D is 4, the supports of two leaders
cannot intersect, proving that the number of leaders is 2m−2. Since any leader of D
is a minimum codeword of the Reed–Muller code of order m − 2, its support is an
affine subspace of dimension 2. As there are (2m − 1)(2m − 2)/6 linear subspaces of
dimension 2, there are also the same number of cosets of B of weight 4 corresponding
to triples of the form (0, b, c).

4. On the number of solutions to the system of equations and exponen-
tial sums. The main result of this paper is the following explicit expression for the
number of solutions to the system (3.1) in terms of four different types of exponential
sums. We repeat the corresponding result from [4] for odd m and a new result for
even m as one theorem (for completeness and to see the difference between these two
cases).

Theorem 1. Let μ(a, b, c) be the number of different 4-sets {x, y, z, u}, where
x, y, z, u are pairwise distinct elements of F, which are solutions to the system (3.1),
where a, b, and c are arbitrary elements of a field F of cardinality 2m (m ≥ 4) and
a �= 0. Let

(4.1) ε = Tr

(
b

a3

)
and λ =

b

a3

(
b

a3
+ 1
)

+
c

a5
+ 1.

If λ �= 0, then

(4.2) μ(a, b, c) = μ(ε, λ) =
1
3
M(ε, λ)

where M(ε, λ) is even and equal to: for even m

8M(ε, λ) = 2m − 8 + 3G(λ, λ) + C(λ)
+ (−1)ε (2K(λ) + 4C(λ, λ) − 8) ,(4.3)

and for odd m

8M(ε, λ) = 2m − 8 + 3G(λ, λ)
+ (−1)ε+1 (2K(λ) + 2C(λ, λ) − 8) .(4.4)

If λ = 0, then

μ(ε, 0) = 0.

We want to solve the system (3.1) for the general case Tr(b/a3) = ε. Thus, we do
not use the reduced form O(1, 0, η) or O(1, δ, η) of the orbits of solutions O(a, b, c),
obtained in the previous section. For our purposes we consider the system (3.1) in
the following form:

x + y + z + u = 1,

x3 + y3 + z3 + u3 = b′,(4.5)

x5 + y5 + z5 + u5 = c′,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COSETS OF BCH(2m, 8) AND EXPONENTIAL SUMS 69

where x, y, z, and u are pairwise distinct elements of F and where b′ = b/a3 and
c′ = c/a5 are arbitrary elements of F. From now on, we use the following notation:

F∗∗ = F \ {0, 1}.

Before we begin to prove the theorem we give one simple lemma and several
statements, which reduce some exponential sums to the sums, which we introduced
in section 2.

Lemma 14. Let {x, y, z, u} be a solution to (4.5). Then a 4-set {x+ 1, y+ 1, z+
1, u+ 1} is a solution to (4.5).

Proof. The proof follows by direct checking.
Define three following functions gi(v) from F∗∗ to F∗∗:

g1(v) = λ

(
v + 1
v3

)
,

g2(v) = λ

(
v

(v + 1)3

)
,

g3(v) = λ

(
1
v

+
1

v + 1

)
.

Denote by S(g) the following exponential sum:

S(g) =
∑

v∈F∗∗
e(g(v)).

Proposition 5. Let λ �= 0. Then

S(g1) = S(g2) = C(λ, λ) − 2.

Proof. Since g1(v) = g2(v + 1), we have that S(g1) = S(g2). Consider S(g1):

S(g1) =
∑

v∈F∗∗
e

(
λ
v + 1
v3

)

=
∑

v∈F∗∗
e

(
λ

v2
+

λ

v3

)

=
∑

ξ∈F∗∗
e(λ(ξ3 + ξ2))

=
∑

ζ∈F∗∗
e(λ(ζ3 + ζ))

= C(λ, λ) − 2,

where we twice changed the variable v = 1/ξ and ξ = ζ + 1.
Proposition 6. Let λ �= 0. Then

S(g3) = K(λ) − 2.

Proof. This result is an instance of [7, Theorem 1]. We briefly give the proof for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

70 PASCALE CHARPIN, TOR HELLESETH, AND VICTOR ZINOVIEV

clarity and completeness:

S(g3) =
∑

v∈F∗∗
e

(
λ

v
+

λ

v + 1

)

=
∑

h∈F∗∗
e

(
λh2

h+ 1

)

=
∑

h∈F∗∗
e

(
λ (h+ 1) +

λ

h+ 1

)

= K(λ) − 2,

where h = 1/v and using (2.3).
Proposition 7. Let λ �= 0. Then

S(g1 + g2 + g3) = P (λ, λ) − 2
= 2C(λ, λ) + K(λ) − 2.

Proof. The partial sum P is defined by (2.1). First, we reduce S(g1 + g2 + g3) to
the simplified form as follows:

g1 + g2 + g3 = λ

(
v + 1
v3

+
v

(v + 1)3
+

1
v

+
1

v + 1

)

= λ

(
1

(v2 + v)3
+

1
v2 + v

)
.

Changing the variable v2 + v = ξ with Tr(ξ) = 0, we obtain

S(g1 + g2 + g3) =
∑

v∈F∗∗
e

(
λ

(
1

(v2 + v)3
+

1
v2 + v

))

= 2
∑

ξ∈F∗: Tr(ξ)=0

e

(
λ

(
1
ξ3

+
1
ξ

))

= 2
∑

ζ∈F∗: Tr(1/ζ)=0

e (λ(ζ3 + ζ))

= P (λ, λ) − 2.

Here we have to explain why we return to summing over F∗, but not F∗∗ as we started.
Indeed, Tr(1) = 0, hence the equation v2 + v = 1 always has a solution in F, the field
of order 2m, for even m. Therefore, when we change v2 + v (v ∈ F∗∗) to ξ we have
to extend F∗∗ into F∗. Now using Lemma 11 we obtain the final expression.

Proposition 8. Let λ �= 0. Then

S(g1 + g2) = P (λ, 0) − 2
= C(λ) + G(λ, λ) − 2.

Proof. We have

g1 + g2 = λ

(
v + 1
v3

+
v

(v + 1)3

)

= λ

(
1

(v2 + v)3

)

=
λ

ξ3
= λ ζ3,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COSETS OF BCH(2m, 8) AND EXPONENTIAL SUMS 71

where we change variables v2 + v = ξ and then 1/ξ = ζ. Taking into account that
Tr(v2 + v) = Tr(ξ) = Tr(1/ζ) = 0, we rewrite S(g1 + g2) as follows:

S(g1 + g2) = 2
∑

ζ∈F∗: Tr(1/ζ)=0

e (λζ3)

= P (λ, 0) − 2.

Then we obtain the final expression using Lemma 12.
Proposition 9. Let λ �= 0. Then

S(g1 + g3) = S(g2 + g3) = G(λ, λ) − 2.

Proof. Since g1(v) = g2(v + 1) and g3(v) = g3(v + 1) we deduce that S(g1 +
g3) = S(g2 + g3). So it is enough to compute S(g1 + g3). First, we rewrite g1 + g3
as follows:

g1 + g3 = λ

(
v + 1
v3

+
1
v

+
1

v + 1

)

= λ

(
1 +

v2 + v + 1
v3

+ 1 +
1

v + 1

)

= λ

(
(v + 1)3

v3
+

v

v + 1

)
.

Obviously, the mapping v �→ (v + 1)/v is a 1-to-1 mapping from F∗∗ onto F∗∗.
Therefore, changing ξ = (v + 1)/v, we obtain for S(g1 + g3):

S(g1 + g3) =
∑

ξ∈F∗∗
e

(
λ

(
ξ3 +

1
ξ

))

= G(λ, λ) − 2.

The proof of Theorem 1. Solving the system (4.5), we will, for short, use b and c
during the proof instead of b′ and c′.

We introduce two new variables

x + y = v, xy = w.

As x, y, z, and u are all different, the element v belongs to the set F∗∗. Using these
new variables we can express x3 + y3 as follows:

(4.6) x3 + y3 = v3 + wv.

As z + u = v + 1 and z3 + u3 = (v + 1)3 + z u(v + 1) we can obtain from the
second line of (4.5) that

(4.7) w v + zu(v + 1) = v2 + v + b + 1.

Now we want, using the third line of (4.5), to obtain an expression similar to (4.7),
which includes only new variables v and w and also the product z u. We have from
(4.6) and the second line of (4.5)

(x+ y)5 = x5 + y5 + xy(x3 + y3)
= x5 + y5 + w(v3 + w v) = v5

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

72 PASCALE CHARPIN, TOR HELLESETH, AND VICTOR ZINOVIEV

and

(z + u)5 = z5 + u5 + zu(z3 + u3)
= z5 + u5 + zu(x3 + y3 + b)
= z5 + u5 + zu(v3 + wv + b) = (v + 1)5.

Using these two expressions above and the third line of (4.5), we obtain

(4.8) w2 v + w v3 + zu (v3 + wv + b) = v4 + v + c + 1.

We multiply (4.8) by v+ 1 and replace z u by its value in (4.7), Thus, we get the
following quadratic equation for w:

w2v + w (v2 + v) + (v + 1)(v4 + v + c+ 1) + (v2 + v + b + 1)(v3 + b) = 0,

which gives, with λ = c+ 1 + b(b+ 1),

(4.9) w2 + w (v + 1) + (v2 + v)(b+ 1) + b+ c +
λ

v
= 0.

As we know from Lemma 2, this equation has two different roots in F if and only if

(4.10) Tr

(
(v2 + v)(b+ 1) + b+ c + λ/v

(v + 1)2

)
= 0.

Denote by w1 = w1(v) and w2 = w2(v) two distinct roots of (4.9). Now we return to
the beginning of our proof. Two equalities x + y = v and x y = wi, i ∈ {1, 2}, as
well as two equalities z + u = v + 1 and z u = (wi v + v2 + v + b + 1)/(v + 1) imply
the two following trace conditions (Lemma 1):

(4.11) Tr
(wi

v2

)
= 0

and

(4.12) Tr

(
wi v + v(v + 1) + b+ 1

(v + 1)3

)
= Tr

(
wi v + b+ 1

(v + 1)3

)
= 0.

As w1 +w2 = v + 1, it is easy to see that the validity of both conditions of (4.11) for
one of wi implies the validity of these conditions for the other.

Recall Lemma 14. Assume that (x, y, z, u) is a solution to (4.5) corresponding to
w1 = w1(v). Then it is easy to see that a 4-tuple (x+1, y+1, z+1, u+1) is a solution
to (4.5) corresponding to w2 = w2(v).

Now we want to rewrite the conditions (4.11) and (4.12) in a more acceptable
form. More exactly, using the fact that w1 and w2 are the roots of the quadratic
equation (4.9), we want to eliminate wi from the conditions (4.11) and (4.12). We

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COSETS OF BCH(2m, 8) AND EXPONENTIAL SUMS 73

start from the first condition (let wi = w):

Tr
(w
v2

)
= Tr

(
w + wv + wv

v2

)
= Tr

(
w(v + 1)

v2
+

w

v

)

= Tr

(
w(v + 1) + w2

v2

)

= Tr

(
(v2 + v)(b + 1) + b+ c + λ/v

v2

)

= Tr

(
b +

b+ 1
v

+
b+ c

v2
+

λ

v3

)

= Tr

(
b +

(c+ 1) + b(b+ 1)
v2

+
λ

v3

)

= Tr

(
b + λ

(
v + 1
v3

))
,

where we used the condition (4.9), that Tr(x) = Tr(x2) and Tr(1) = 0, since m is
even. Thus (4.11) can be written as follows:

(4.13) Tr

(
λ

(
v + 1
v3

)
+ b

)
= 0.

Now we have for the condition (4.12):

Tr

(
wv + b+ 1
(v + 1)3

)
= Tr

(
wv + b+ 1 + w + w

(v + 1)3

)

= Tr

(
w + b+ 1
(v + 1)3

+
w

(v + 1)2

)

= Tr

(
w2 + w(v + 1) + (v + 1)(b+ 1)

(v + 1)4

)

= Tr

(
(v + 1)(b + 1) + (v2 + v)(b + 1) + b+ c+ λ/v

(v + 1)4

)

= Tr

(
λ

v(v4 + 1)
+

(b+ 1)(v2 + 1) + b+ c

v4 + 1

)

= Tr

(
λ

v(v4 + 1)
+

b + 1
v2 + 1

+
b+ c

v4 + 1

)

= Tr

(
λ

v(v4 + 1)
+

λ

v4 + 1

)
= Tr

(
λ

v(v + 1)3

)
.

But

1
v(v + 1)3

=
1
v

+
1

v + 1
+

1
(v + 1)2

+
1

(v + 1)3
.

Hence we can rewrite the condition (4.12) as follows:

(4.14) Tr

(
λ

(
v

(v + 1)3
+

1
v

+
1

v + 1

))
= 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

74 PASCALE CHARPIN, TOR HELLESETH, AND VICTOR ZINOVIEV

Now we rewrite the condition (4.10). We have

Tr

(
(v2 + v)(b + 1) + b + c + λ/v

(v + 1)2

)

= Tr

(
b+

b+ 1
v + 1

+
b+ c

(v + 1)2
+

λ

v(v + 1)2

)

= Tr

(
b+

λ

(v + 1)2
+

λ

v(v + 1)2

)
,

using v2 + v = v2 + 1 + v + 1 and properties of the trace function.
Thus the condition (4.10) is equivalent to the following condition:

(4.15) Tr

(
b + λ

(
1
v

+
1

v + 1

))
= 0.

We continue the proof of the theorem. So, in order to find the number μ(1, b, c) =
μ(ε, λ) we have to find the following number, which we denote by M(ε, λ): how many
times all three conditions (4.13), (4.14), and (4.15) are simultaneously satisfied when
v runs over F∗∗. It is easy to write the expression for the number M(ε, λ) in terms
of exponential sums. Denote that (recall that λ = η + 1 = b(b+ 1) + c+ 1)

f1 = λ

(
v + 1
v3

)
+ b,

f2 = λ

(
v

(v + 1)3
+

1
v

+
1

v + 1

)
,

f3 = λ

(
1
v

+
1

v + 1

)
+ b.

By the definition we have

M(ε, λ) =
1
8

∑
v∈F∗∗

(
1 + (−1)Tr(f1)

) (
1 + (−1)Tr(f2)

)(
1 + (−1)Tr(f3)

)
.

Multiplying into the parentheses and using our notation e(a) = (−1)Tr(a) and ε =
Tr(b), we obtain

8M(ε, λ) =
∑

v∈F∗∗
1 +

∑
v∈F∗∗

e(f1) +
∑

v∈F∗∗
e(f2)

+
∑

v∈F∗∗
e(f3) +

∑
v∈F∗∗

e(f1 + f2) +
∑

v∈F∗∗
e(f1 + f3)

+
∑

v∈F∗∗
e(f2 + f3) +

∑
v∈F∗∗

e(f1 + f2 + f3).

Recall that S(g) denotes the following exponential sum of g:

S(g) =
∑

v∈F∗∗
e(g(v)).

Introducing the following notation:

Si = S(fi), i = 1, 2, 3,
Si,j = S(fi + fj), i �= j, i, j ∈ {1, 2, 3},

S1,2,3 = S(f1 + f2 + f3),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COSETS OF BCH(2m, 8) AND EXPONENTIAL SUMS 75

we obtain for the number M(ε, η),

8M(ε, λ) = 2m − 2 + S1 + S2 + S3

+ S1,2 + S1,3 + S2,3 + S1,2,3.

Using the three functions gi(v), i = 1, 2, 3, introduced previously, and the fact
that g2(v) = g1(v + 1), our separate sums can be written as follows:

S1 = S(g1(v) + b),
S2 = S(g2(v) + g3(v)),
S3 = S(g3(v) + b),
S1,2 = S(g1(v) + g2(v) + g3(v) + b),
S1,3 = S(g1(v) + g3(v)),
S2,3 = S(g2(v) + b),
S1,2,3 = S(g1(v) + g2(v)).

Since S(g + b) = −S(g) for the case ε = Tr(b) = 1 and S(g + b) = S(g) for the
case ε = Tr(b) = 0, we arrive at the following expression for the number M(ε, λ):

8M(ε, λ) = 2m − 2 + S(g1 + g2) + S(g1 + g3) + S(g2 + g3)
+ (−1)ε (S(g1) + S(g2) + S(g3) + S(g1 + g2 + g3)) .(4.16)

Using Propositions 5–9 for all of the sums in (4.16), and recalling our initial
notation

λ = b′(b′ + 1) + c′ + 1 =
b

a3

(
b

a3
+ 1
)

+
c

a5
+ 1 = η + 1,

we obtain the expression for M(ε, λ) in the theorem for the case of even m. It remains
to prove (4.2). When we introduce the new variables v = x+ y and w = xy, we could
choose x and y in 6 different ways from the four variables x, y, z, u. But it is easy to
see that two “opposite” choices of the new variables: v = x+y, w = xy, and v = z+u,
w = zu result in the same quadratic equation (4.9) for w. Of course it is possible to
say the same about choices v = x + z, w = x z and v = y + u, w = y u (respectively,
v = x+ u, w = xu, and v = y + z, w = y z).

This means that for each proper value of v ∈ F∗∗ (when all three trace conditions
(4.10), (4.13), and (4.14) are satisfied), we obtain a solution {x, y, z, u} as well as
a solution {z, u, x, y} (note that here any solution {x, y, z, u} we consider is up to
permutations between x and y and between z and u). Therefore, when v runs over
F∗∗ each solution {x, y, z, u} occurs exactly three times. In other words, three distinct
proper values of v result in the same solutions, namely {x, y, z, u}, {x, z, y, u}, and
{x, u, y, z}. This means that

μ(ε, λ) =
1
3
M(ε, λ),

i.e., we obtain the equality (4.2). The integer M(ε, λ) is even according to Lemma 14.
Now consider the case where λ = 0 or c + 1 = b2 + b (we again use the short

notation b and c instead of b′ and c′). For this case the trace conditions (4.13), (4.14),
and (4.15) reduce, respectively, to

Tr(b) = 0, T r(0) = 0, and Tr(b) = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

76 PASCALE CHARPIN, TOR HELLESETH, AND VICTOR ZINOVIEV

Table 1

m = 6; p(x) = x6 + x + 1.

λ Tr(λ) C C0 K G μ(0, λ) μ(1, λ)
1 0 0 16 − 8 0 2 4
α 0 8 − 8 0 − 8 2 0

α3 0 0 16 − 8 0 2 4

α5 1 8 − 8 12 0 4 0

α7 0 8 − 8 0 8 4 2

α9 0 16 16 8 0 6 0

α11 1 − 8 − 8 − 4 16 2 6

α13 0 − 8 − 8 8 − 8 0 2

α15 1 0 16 4 − 8 2 2

α21 1 − 16 16 12 8 2 6

α23 1 8 − 8 − 12 0 2 2

α27 0 0 16 16 16 6 4

α31 1 − 8 − 8 − 4 0 0 4

Therefore, for the case ε = Tr(b) = 1 our system (4.5) has no solutions, i.e., μ(1, 0) =
0. We proceed now with the case ε = Tr(b) = 0. According to Lemma 13 (with
a = 1), we have

μ(1, b, c) = μ(1, 0, c+ b2 + b) = μ(1, 0, 1),

since b2 + b = c+1. Now consider the system (4.5) with b = 0 and c = 1. It is easy to
check that {β, β2, 0, 0}, where β ∈ F4 is of order 3, is a solution of (4.5). We deduce
that the coset of syndrome (a, b, c) = (1, 0, 1) has minimum weight 2 and then cannot
contain any codeword of weight 4, i.e., there is no solution of (4.5) composed of 4
pairwise distinct elements of F. This completes the proof of Theorem 1.

As a direct corollary of Theorem 1, we obtain the following lower and upper
bounds for the number μ(a, b, c), i.e., the number of coset leaders in any coset D of
weight 4 with syndrome (a, b, c) with a �= 0. We use the bounds for the exponential
sums K(λ), G(λ, λ) and C(λ), C(λ, λ), involved in the number of solutions μ(a, b, c)
(see Lemma 6, (2.4), and (2.5)).

Theorem 2. Let a, b, c (a �= 0) be any elements of F where F is the finite field
of order 2m, with m even and m ≥ 10. Let λ be defined as in (4.1). If λ is a cube,
then

2m − 8− 26
√

2m ≤ 24μ(a, b, c) ≤ 2m + 26
√

2m.

If further Tm
2 ((λ)2/3) �= 0, then

2m − 8− 18
√

2m ≤ 24μ(a, b, c) ≤ 2m + 18
√

2m.

If λ is not a cube, then

2m − 8− 21
√

2m ≤ 24μ(a, b, c) ≤ 2m + 21
√

2m.

We note that the second bound is better than the corresponding bounds for odd
m, obtained in [4] and [8].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COSETS OF BCH(2m, 8) AND EXPONENTIAL SUMS 77

Table 2

m = 8; p(x) = x8 + x7 + x6 + x + 1.

λ Tr(λ) C C0 K G μ(0, λ) μ(1, λ)
1 0 − 32 − 32 32 32 10 16
α 0 16 16 − 16 − 16 10 8

α3 0 0 − 32 − 8 32 12 14

α5 1 16 16 20 8 16 8

α7 0 16 16 8 − 16 12 6

α9 1 0 − 32 28 − 8 10 6

α11 1 16 16 − 28 8 12 12

α13 0 − 16 16 0 0 8 14

α15 1 0 − 32 4 − 24 6 6

α17 0 16 16 32 − 16 14 4

α19 0 16 16 8 16 16 10

α21 1 − 32 − 32 − 4 8 4 16

α23 0 − 16 16 − 24 16 8 18

α25 0 16 16 − 16 16 14 12

α27 0 0 − 32 16 − 16 8 6

α29 1 16 16 − 4 − 8 12 8

α31 0 − 16 16 0 0 8 14

α37 0 − 16 16 24 0 10 12

α39 1 32 − 32 − 12 − 8 12 4

α43 1 16 16 20 − 8 14 6

α45 0 0 − 32 16 16 12 10

α47 1 − 16 16 12 8 10 14

α51 0 32 − 32 24 16 18 4

α53 1 16 16 − 4 24 16 12

α55 1 16 16 − 4 8 14 10

α59 0 − 16 16 − 24 0 6 16

α61 1 − 16 16 − 12 − 40 2 10

α63 1 0 − 32 4 8 10 10

α85 0 16 16 − 16 48 18 16

α87 1 0 − 32 − 20 − 8 6 10

α91 1 − 16 16 − 12 8 8 16

α95 1 − 16 16 12 − 8 8 12

α111 0 0 − 32 − 8 0 8 10

α119 0 16 16 8 32 18 12

α127 0 − 16 16 24 − 16 8 10

5. Numerical results. We present in Tables 1 and 2 the values of all exponential
sums involved in the expression of μ(a, b, c) for m = 6 and m = 8. In Tables 1 and 2,
the results are given for a set of representatives of the cyclotomic cosets only (since
it is the same for all elements from such coset). We distinguish for a given λ two
cases: ε = 0 or ε = 1 (with notation of Theorem 1). So for each value λ we give two
numbers μ(1, λ) and μ(0, λ). For short, we use the following notation: K = K(λ),
C = C(λ, λ), C0 = C(λ, 0), and G = G(λ, λ). We denote by p(x) the primitive

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

78 PASCALE CHARPIN, TOR HELLESETH, AND VICTOR ZINOVIEV

polynomial generating F.

6. Conclusion. In this paper, we extended to the even case our work [4] on
the coset leaders of cosets of weight 4 of the codes BCH(2m, 8). By Theorem 1 we
summarized our results for both cases, m even and m odd. Recall that we gave in [6]
the coset distribution of all codes BCH(2m, 8).

Now, the main open problem remains the computation of the weight distribution
of all cosets. It has be shown for odd m that all is known as soon as the numbers
μ(ε, λ), and the number of times they occur, are known [3]. We conjecture that this
property holds for even m. We introduced lower and upper bounds for the number
of coset leaders of cosets of weight 4. We conjectured in [3] that this number takes
all values between its bounds, up to some divisibility property. This conjecture was
disproved in [8]. So the first question is: Which values are suitable?

New properties of exponential sums K, G, and C arise from formula (4.3) and
(4.4) and from elements of their proofs. We developed this aspect in the odd case
[5]. In the even case, the relations between K and C are more interesting since the
spectrum of C is more complicated. We will study this fact in a forthcoming paper.

REFERENCES

[1] E. R. Berlekamp, H. Rumsey, and G. Solomon, On the solution of algebraic equations over
finite fields, Information and Control, 12 (1967) pp. 553–564.

[2] L. Carlitz, Explicit evaluation of certain exponential sums, Math. Scand., 44 (1979), pp. 5–16.
[3] P. Charpin and V. A. Zinoviev, On coset weight distributions of the 3-error-correcting BCH-

codes, SIAM J. Discrete Math., 10 (1997), pp. 128–145.
[4] P. Charpin, T. Helleseth, and V. A. Zinoviev, On the cosets of weight 4 of binary BCH

codes with minimum distance 8 and exponential sums, Probl. Inf. Transm., 41 (2005), pp.
331–348.

[5] P. Charpin, T. Helleseth, and V. A. Zinoviev, The divisibility modulo 24 of Kloosterman
sums on GF (2m), m odd, J. Combin. Theory Ser. A, 114 (2007), pp. 322–338.

[6] P. Charpin, T. Helleseth, and V. A. Zinoviev, The coset distribution of triple-error-
correcting binary primitive BCH codes, IEEE Trans. Inform. Theory, 52 (2006), pp. 1727–
1732.

[7] P. Charpin, T. Helleseth, and V. A. Zinoviev, Propagation characteristics of x �→ x−1 and
Kloosterman sums, Finite Fields Appl., 13 (2007), pp. 366–381.

[8] G. van der Geer and M. van der Vlugt, The coset weight distributions of certain BCH
codes and a family of curves, Enseign. Math., 48 (2002), pp. 3–21.

[9] T. Helleseth, All binary 3-error-correcting BCH codes of length 2m − 1 have covering radius
5, IEEE Trans. Inform. Theory, 24 (1978), pp. 257–258.

[10] T. Helleseth and V. A. Zinoviev, On Z4-linear Goethals codes and Kloosterman sums, Des.
Codes Cryptogr., 17 (1999), pp. 269–288.

[11] T. Helleseth and V. A. Zinoviev, On coset weight distributions of the Z4-linear Goethals
codes, IEEE Trans. Inform. Theory, 47 (2001), pp. 1758–1772,

[12] T. Helleseth and V. A. Zinoviev, On a new identity for Kloosterman sums and nonlinear
system of equations over finite fields of characteristic 2, Discrete Math., 274 (2004), pp.
109–124.

[13] P. V. Kumar, T. Helleseth, R. A. Calderbank, and R. A. Hammons, Large families of
quaternary sequences with low correlation, IEEE Trans. Inform. Theory, 42 (1996), pp.
579–592.

[14] G. Lachaud and J. Wolfmann, The weights of the orthogonals of the extended quadratic
binary Goppa codes, IEEE Trans. Inform. Theory, 36 (1990), pp. 686–692.

[15] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl. 20, Addison-Wesley,
Reading, MA, 1983.

[16] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, North-
Holland, Amsterdam, 1986.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 79–95

ON THE DISTRIBUTION OF BOOLEAN
FUNCTION NONLINEARITY∗

SIMON LITSYN† AND ALEXANDER SHPUNT‡

Abstract. Nonlinearity is the number of bits which must change in the truth table of a Boolean
function to reach the closest affine function. It may be expressed through the maximum of the
absolute value of a component in the function’s Walsh–Hadamard transform. Concentration of
nonlinearity is proved. The derived bounds on the concentration point and tails of the distribution
are tighter than the earlier known ones.

Key words. Boolean functions, concentration of nonlinearity, Walsh–Hadamard transform,
binomial sums, tails of binomial distribution, second moment method

AMS subject classifications. Primary, 94C10; Secondary, 11T71, 94A60, 06E30

DOI. 10.1137/060665361

1. Introduction and definitions. Nonlinearity is the number of bits which
must change in the truth table of a Boolean function to reach the closest affine func-
tion. The notion has multiple applications in coding theory and cryptography. For
example, nonlinearity can be used as a measure of strength of cryptosystems. It
is particularly useful to quantify the strength of invertible substitution tables when
predefined tables are a part of a cipher definition; see, e.g., [3]. Nonlinearity plays
an important role in relation to the covering radius of the first-order Reed–Muller
codes; see [5] and the references therein. Namely, the most nonlinear (bent) functions
correspond to the farthest-off, from the code, vectors in the ambient space. One of
the widely addressed problems in this context is enumeration of Boolean functions ac-
cording to their nonlinearity. This has been successfully accomplished by Berlekamp
and Welch [2] in the case of up to five variables and by Maiorana [9] for six vari-
ables. However, exact enumeration for a greater number of variables seems to be
intractable. Therefore, estimates on the distribution of nonlinearity become relevant.
This was attempted by Carlet [3, 4], Olejár and Stanek [10], Rodier [11, 12], and
Wu [16]. Especially interesting was a recent result of Rodier [13] where by using a
method from harmonic analysis due to Halász [6] he proved a concentration of the
nonlinearity. In this paper we further develop this theme by proving tighter results
for the concentration point and the tails of the distribution. Moreover, though quite
technical, the developed approach is basically the second moment method (see, e.g.,
[1]) and is conceptually much simpler than the Halász approach.

Let f = f(x1, x2, . . . , xm) and h = h(x1, x2, . . . , xm), xi ∈ {0, 1}, i = 1, 2, . . . ,m,
be Boolean functions taking on values from {0, 1}. The (Hamming) distance between
two functions, d(f, h), is the number of strings x1, . . . , xm, for which f �= h. Nonlin-
earity of f , nl(f) is

nl(f) = min
h
d(f, h),

∗Received by the editors July 18, 2006; accepted for publication (in revised form) June 17, 2008;
published electronically October 24, 2008.

http://www.siam.org/journals/sidma/23-1/66536.html
†Department of Electrical Engineering-Systems, Tel Aviv University, Ramat Aviv, 69978, Israel

(litsyn@eng.tau.ac.il). This author was supported in part by ISF grant 533-06.
‡Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA

02139 (ashpunt@mit.edu).

79

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

80 SIMON LITSYN AND ALEXANDER SHPUNT

where the minimum is taken over all affine functions h,

h = a0 + a1x1 + · · ·+ amxm, ai ∈ {0, 1}, i = 0, 1, . . . ,m.

The spectral amplitude of f , S(f) is

S(f) = max
v∈{0,1}m

∣∣∣∣∣∣
∑

u∈{0,1}m

(−1)f(u)+v·u

∣∣∣∣∣∣ ,
where v · u is the usual dot product. In other words, the spectral amplitude of f is
just the maximum absolute value of a component in the Walsh–Hadamard transform
of f . Indeed, let n = 2m, M be the n × n Walsh–Hadamard matrix, its rows being
Mi, and entriesMi,j , i, j = 0, . . . , n− 1. We have

Mi,j = (−1)i0j0+i1j1+···+im−1jm−1 ,

where (i0, i1, . . . , im−1)2 and (j0, j1, . . . , jm−1)2 are the binary expansions of i and
j correspondingly (indeed, Mi,j is the ith character evaluated at point j). Then,
denoting

f∗
j = (−1)f(j0,...,jm−1)

for the binary expansion (j0, . . . , jm−1)2 of j, and

M∗
i (f) =

n∑
j=1

f∗
j ·Mi,j ,

we conclude that

(1.1) S(f) = max
i=0,...,n−1

|M∗
i (f)|.

Notice thatMi is the evaluation of the linear function

Li(x1, . . . , xm) = i0x1 + i1x2 + · · ·+ im−1xm−1,

namely,

Mi,j = (−1)Li(j0,...,jm−1).

Moreover, all possible linear functions are presented as rows ofM. Therefore, since

M∗
i (f) = n− 2d(f, Li),

there is a simple relation between the spectral amplitude and nonlinearity,

nl(f) = 2m−1 − 1
2
S(f).

It is a simple corollary of the Parseval identity,

n−1∑
i=0

(M∗
i (f))2 = n2,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BOOLEAN FUNCTION NONLINEARITY 81

that

max
i
|M∗

i (f)| ≥ √n = 2
m
2 .

Therefore, for any Boolean function in m variables,

nl(f) ≤ 2m−1 − 2
m
2 −1,

and this bound is achieved only when m is even.
The introduced notions can be straightforwardly extended to general Hadamard

matrices; see, e.g., [7, 15]. Indeed, the Hadamard n × n matrices H consist of ±1’s
and satisfy

HHT = I,
and the Walsh–Hadamard matrices, described earlier, constitute a subclass of Hada-
mard matrices for n = 2m. A well-known conjecture states that such matrices exist
for n = 2 and all natural n divisible by 4. Similar to the Walsh–Hadamard case, for
a ±1-vector w of length n define its spectral amplitude and nonlinearity as

S(v) = max
i=0,1,...,n−1

|(HvT)i|,

and

nl(v) =
n

2
− 1

2
S(v),

correspondingly. To simplify, in what follows we restrict our claims to Boolean func-
tions; however, we keep in mind that a more general situation is under consideration,
and thus n can take on arbitrary positive integer values for which Hadamard matrices
of size n exist.

Now we are in a position to restate the result of Rodier in a more rigorous form
than it appears in [13]. We will use a probabilistic terminology. Namely, we will be
considering probabilities of events in the ensemble of 2n = 22m

equiprobable Boolean
functions in m variables. The same can be undertaken in the general Hadamard case,
if one deals with the ensemble of 2n equiprobable vectors of length n.

Theorem 1.1 (Rodier–Halász).

Pr
(
|S(f)| >

√
2n(lnn+ 5.4 ln lnn(1 + o(1)))

)
= O

(
1

ln4 n

)
,

Pr
(
|S(f)| <

√
2n(lnn− 7 ln lnn(1 + o(1)))

)
= O

(
1

ln4 n

)
.

A comment is in order here. Indeed the theorem claims concentration of the spec-
tral amplitude around

√
2n lnn. Notice that the summand const · ln lnn is inevitable

in the Halász approach and cannot be removed or decreased to some slower growing
in n function.

Before we state the results of the present paper, let us briefly examine the problem
from a geometrical point of view. Note that the functions f with nl(f) ≤ ρ are those
for which there exists an i such that either d(f, Li) ≤ ρ or d(f, Li) ≤ ρ, where Li

is the 1’s complement of Li. Therefore, the problem of computing the number of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

82 SIMON LITSYN AND ALEXANDER SHPUNT

functions with nonlinearity ≤ ρ reduces to computing the volume V(ρ) of the union of
2n Hamming spheres, each of radius ρ, centered at ±Mi, i = 1, 2, . . . , n. The center
of each sphere is at the Hamming distance n from one other sphere and at distance
n/2 from the remaining 2n − 2 spheres. The volume of intersection of any two of
the above nonantipodal spheres can easily be shown to be (see, e.g., [5, section 2.4,
“Hamming spheres”])

ρ∑
i,j=0

(n
2

i+j
2 − n

4

)(n
2

i−j
2 + n

4

)
≤ n2 ·

(n
2
n
4

)(n
2

ρ− n
4

)

for ρ ≥ n/4 and zero for ρ < n/4. The number of intersecting sphere pairs is < 2n2,
and consequently, the total volume of intersections is

V∩ < 2n4 ·
(n

2
n
4

)(n
2

ρ− n
4

)
.

The volume of one such sphere is of course >
(
n
ρ

)
, and consequently, the volume of

2n spheres is

VΣ > 2n
(
n

ρ

)
.

By the inclusion-exclusion principle,

VΣ − V∩ ≤ V(ρ) ≤ VΣ.

For all n, such that ρ0 = n/2 − �√2n lnn� > n/4, it can be seen that 2n · (n
ρ0

)
is much greater than 2n4 · (n/2

n/4

)(n/2
ρ0−n/4

)
, in fact, asymptotically so (for growing n).

It should be noted here that for n < 164, we have ρ0 < n/4, and the spheres with
0 ≤ ρ ≤ ρ0 have empty intersection. For the sake of simplicity, we henceforth restrict
our treatment to n ≥ 164.

Observe that
(
n
ρ

)
/
(n/2
ρ−n/4

)
decreases with growing ρ for n/4 ≤ ρ < n/2 − 1/2;

therefore, we conclude that for 0 ≤ ρ ≤ ρ0, V(ρ) is asymptotically given by the union
bound VΣ (volume of one Hamming sphere times the number of spheres, n). However,
one of the conclusions of this paper is that the union bound, in fact, is asymptotically
tight for

n

2
− n

4
≤ ρ < n

2
−
√

2n(lnn− 0.5 ln lnn)
2

,

which together with the previous statement provides the asymptotical exactness of the
union bound on the whole upper tail of the Boolean spectral amplitude distribution,
i.e.,

0 ≤ ρ < n

2
−
√

2n(lnn− 0.5 ln lnn)
2

.

To achieve this we use the second moment method. Namely, we estimate the
probability of each |M∗

i | in (1.1) to exceed some threshold. Next, for arbitrary i
and j, we bound the probability that |M∗

i | and |M∗
j | are simultaneously above the

threshold. This is followed by application of the Chebyshev inequality. Surprisingly

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BOOLEAN FUNCTION NONLINEARITY 83

enough this allows one to tighten the bounds on concentration of the nonlinearity.
We prove that the spectral amplitude is concentrated around

√
2n
(
lnn− 1

2 ln lnn
)
.

Moreover, we are able to derive explicit bounds on the tails of the distribution. A
particular case of our main result is the following theorem.

Theorem 1.2. Let n ≥ 164. Then the following holds true. For −0.5 ln lnn +
0.125 < δ(n) < − lnn+ n/8,

Pr
(
|S(f)| ≥

√
2n(lnn+ δ(n))

)
≤
(
π(lnn+ δ(n))

)− 1
2 · e−δ(n) · (1 + o(1)).

Moreover, for −0.5 ln lnn+ 0.125 < δ(n) < o(
√
n),

Pr
(
|S(f)| ≥

√
2n(lnn+ δ(n))

)
=
(
π(lnn+ δ(n))

)− 1
2 · e−δ(n) · (1 + o(1)).

Finally, for the lower tail, − lnn+ 0.5 ln lnn < δ(n) < −0.5 ln lnn,

Pr
(
|S(f)| ≥

√
2n(lnn+ δ(n))

)
≤
(
π(lnn+ δ(n))

) 1
2 · e−δ(n) · (1 + o(1)).

Comparing this bound with the one of Rodier, we notice that even in the case of
δ(n) being of order ln lnn our bounds are tighter.

This paper is organized as follows. Section 2 gives tight bounds for sums of
binomial coefficients, appearing in all estimates of the binomial distribution tails. To
the best of our knowledge, these are tighter than has been known before and can be
useful in other research. In section 3, the tails of joint probability of two (dependent)
events are estimated. In section 4 the exact asymptotics for the upper tail of the
distribution of Boolean function nonlinearity is given, whereas section 5 provides a
tight upper bound on the lower tail of this distribution. We also elaborate on the fact
that the concentration point of the above distribution is localized more exactly than
known before.

The following notations are used throughout. The Gaussian (normal) distribution
with mean μ and standard deviation σ is denoted by N(μ, σ). The standard normal
cumulative distribution function (CDF) is denoted by FG(x), and its complementary
(tails) function by PG(x). Explicitly,

PG(x) ≡ 1− FG(x) =
1√
2π

∫ ∞

x

e−t2/2dt =
1√
π

∫ ∞

x/
√

2

e−t2dt.

2. Bounds on binomial distribution tails. We start with auxiliary results
concerning binomial coefficients. The numerical factors in front of the subleading
terms are not optimal but were rather chosen to make simple expressions.

Lemma 2.1. For 0 < ε1 <
√

3/32 and all n, such that n · (1
2 − ε1

)
is an integer,

(2.1) 2−n ·
(

n

n · (1
2 − ε1)

)
≤ (1 + ς1) ·

√
2
πn
· e−2nε21 , ς1 < 3ε21.

Moreover, for 0 < ε1 < (2n)−1/4 and n ≥ 164, such that n ·(1
2 − ε1

)
is an integer,

(2.2) 2−n ·
(

n

n · (1
2 − ε1)

)
≥ (1− ς2) ·

√
2
πn
· e−2nε21 , ς2 <

3
2
nε41 +

1
2n
.

Proof. See section A.1 of the appendix.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

84 SIMON LITSYN AND ALEXANDER SHPUNT

Let us derive explicit error bounds for the approximation of sums of binomial
coefficients by a Gaussian CDF.

Lemma 2.2. Let

S(n, d) =

n
2∑

k= d
2

(
n

n · (1
2 − k

n

)).
Then, for n ≥ 164 and

√
n ln lnn < d < n/2, the following inequalities hold:

(2.3) 2−n · S(n, d) ≤ (1 + ς3) · PG

(
d√
n

)
, ς3 <

7d
n
,

and for
√
n ln lnn < d < (2n)3/4,

(2.4) 2−n · S(n, d) ≥ (1− ς4) · PG

(
d√
n

)
− e−

√
n/32, ς4 <

1
2n

+
5d4

n3
.

Proof. See section A.2 of the appendix.
Corollary 2.3. Under the appropriate conditions of Lemma 2.2, for

d =
√

2n(lnn+ δ(n)),

2−n · S(n, d) ≤ 1
n
· e−δ(n)√

2πd2/n
· (1 + ς3) .(2.5)

Moreover,

(2.6) 2−n · S(n, d) ≥ 1
n
· e−δ(n)√

2πd2/n
· (1− ς4) · (1− ς5)− e−

√
n/32, ς5 ≤ n

d2
.

Proof. The proof follows trivially from Lemma 2.2.

3. The probability of intersection. Let us define the events

Ai(d) = {|M∗
i | > d}, i = 1, . . . , n,

and estimate the probability of Ai1(d) ∧Ai2 (d), i1 �= i2. Note that by construction,

P (M∗
i = a) = 2−n ·

(
n

n · (1
2 − a

2n)

)
.

Likewise,

P (M∗
i ≥ a) = 2−n · S(n, a),

and we can use the results of section 2 to bound the probabilities of events Ai(d) and
their intersections.

Lemma 3.1. For i1 �= i2, under the conditions of Lemma 2.2,

(3.1) P (Ai1(d) ∧Ai2(d)) ≤ 4 · (1 + ς6) ·
(
PG

(
d√
n

))2

,

where ς6 = o(n−1/4). (We omit the cumbersome explicit expression which can be
easily developed.)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BOOLEAN FUNCTION NONLINEARITY 85

Proof. Recall that for some Boolean function f ,

M∗
i1(f) =

n∑
j=1

f∗
j · Mi1,j , M∗

i2(f) =
n∑

j=1

f∗
j · Mi2,j.

Clearly, for i1 �= i2,

(3.2) P (Ai1(d) ∧Ai2 (d)) = 4P
(M∗

i1 > d ∧M∗
i2 > d

)
.

Note thatMi1 ,Mi2 are two rows of some Walsh–Hadamard matrix; consequently,
they are orthogonal {−1,+1}n vectors, and

(3.3) E{M∗
i1 ·M∗

i2} = 〈Mi1 ,Mi2〉 = 0.

Hence, their vector half-sum, Σi1i2 ≡ Mi1+Mi2
2 has n

2 zeros and n
2 nonzero posi-

tions, where Mi1 and Mi2 are different or equal accordingly. Similarly, their vector
half-difference Δi1i2 ≡ Mi1−Mi2

2 has complementary n
2 zeros and n

2 nonzero posi-
tions, where Mi1 and Mi2 are equal or different accordingly. Consequently, events
{Σi1i2 = a} and {Δi1i2 = b} are independent for any a, b since they depend on mutu-
ally disjoint sets of independent random variables.

In order to establish the relation (3.5), we use the following trick. Assume for
the sake of discussion that f∗

j are independently and identically distributed (i.i.d.)
Gaussian random variables (rvs) and f∗

j ∼ N(0, 1), j = 1, 2, . . . , n. It follows from
(3.3) thatM∗

i1(f) andM∗
i2(f) are then also i.i.d. Gaussian rvs (for Gaussian rvs, zero

cross-correlation implies independence), withM∗
i1

(f),M∗
i2

(f) ∼ N(0,
√
n).

Consequently,

(3.4) P
(M∗

i1 > d ∧M∗
i2 > d

)
= P

(M∗
i1 > d

) · P (M∗
i2 > d

)
= P 2

G(d/
√
n).

On the other hand, since Σi1i2 ,Δi1i2 are i.i.d. ∼ N(0,
√

n
2),

P
(M∗

i1 > d ∧M∗
i2 > d

)
=
∫ ∞

d

P (Σi1i2 = x) dx
∫ x−d

−(x−d)

P (Δi1i2 = t) dt

=
1
π

∫ ∞

d√
n

e−x2
dx

∫ x−d√
n

− x−d√
n

e−t2dt.

Consequently, we have established that

(3.5)
1
π

∫ ∞

d√
n

e−x2
dx

∫ x−d√
n

− x−d√
n

e−t2dt = P 2
G(d/

√
n).

Armed with (3.5), let us now consider our case where f∗
j are binary random

variables. Since Σi1i2 and Δi1i2 are i.i.d. (but not Gaussian in this case), we can
write

P (d) ≡ P (M∗
i1 > d ∧M∗

i2 > d
)

=

n
4∑

a= d
2

P (Σi1i2 = 2a) ·
a−d

2∑
b=−(a−d

2)
P (Δi1i2 = 2b) .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

86 SIMON LITSYN AND ALEXANDER SHPUNT

Since Σi1i2 and Δi1i2 are disjoint (independent) sums of n
2 (binary, {+1,−1})

independent random variables, P (Σi1i2 = 2a) is the probability that the excess of
+1’s in Σi1i2 will be a; same for Δi1i2 and b. Hence

P (Σi1i2 = 2a) = 2−n/2 ·
(n

2
n
2

(
1
2 − 2a

n

)) ≡ P1(a),

P (Δi1i2 = 2b) = 2−n/2 ·
(n

2
n
2

(
1
2 − 2b

n

)) ≡ P2(b).

For a ≤ a0 = n3/4

4
√

ln ln n
, by (A.4), and using

√
1 + x < 1 +

√
x for x > 0,

(3.6) P1(a) ≤ 2√
πn
·
(

1 +
1

(n1/2 ln lnn− 1)1/2

)
· e−4a2/n.

For |a| > a0,

(3.7)

P1(a) ≤ P1(a0) ≤ 2√
πn
·
(

1 +
1

(n1/2 ln lnn− 1)1/2

)
· e−

√
n

4 ln ln n <

√
2
n
· e−

√
n

4 ln ln n .

Consequently,

P (d) =

n
4∑

a= d
2

P1(a) ·
a− d

2∑
b=−(a− d

2)
P2(b) ≤

a0∑
a= d

2

P1(a) ·
a−d

2∑
b=−(a−d

2)
P2(b) + e−

√
n

20 ln ln n

≤
(
1 + o(n−1/4)

)
· 4
πn
·

n
4∑

a= d
2

e−4a2/n ·
a− d

2∑
b=−(a− d

2)

e−4b2/n + e−
√

n
20 ln ln n .

From here (shown in detail in subsection A.3), we see that

(3.8) P (d) ≤
(
1 + o(n−1/4)

)
· 1
π

∫ ∞

d√
n

e−x2
dx

∫ 2x−d√
n

− 2x−d√
n

e−z2
dz.

Finally, by using (3.5) we have obtained

(3.9) P (d) ≤
(
1 + o(n−1/4)

)
·
(
PG

(
d√
n

))2

.

4. The upper tail. The results of the previous sections enable us to derive
an asymptotically exact result for the upper tail of the distribution of the spectral
amplitude S(f) of Boolean functions, as defined by (1.1).

Theorem 4.1. For n ≥ 164, let

d =
√

2n(lnn+ δ(n)).

Then, for
√

2n(lnn− 0.5 ln lnn+ 0.125) < d < n/2,

(4.1) Pr
(

max
i=1,...,n

|M∗
i | > d

)
≤ e−δ(n)√

πd2/(2n)
·
(

1 +
7d
n

)
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BOOLEAN FUNCTION NONLINEARITY 87

Moreover, for
√

2n(lnn− 0.5 ln lnn+ 0.125) < d < o
(
n3/4

)
,

(4.2) Pr
(

max
i=1,...,n

|M∗
i | > d

)
≥ e−δ(n)√

πd2/(2n)
· (1− o(1)) .

Proof. Using the definition of Ai(d) from section 3,

Pr
(

max
i=1,...,n

|M∗
i | > d

)
= 2 · Pr

(
max

i=1,...,n
M∗

i > d

)
= Pr

(
n⋃

i=1

Ai(d)

)
.

To prove (4.1), use

Pr

(
n⋃

i=1

Ai

)
≤
∑

i

Pr(Ai)

and Corollary 2.3.
For (4.2) use the inclusion-exclusion principle,

Pr

(
n⋃

i=1

Ai(d)

)
≥
∑

i

Pr(Ai(d))−
∑
i1, i2

i1 > i2

Pr(Ai1 (d) ∧Ai2(d)).

From Corollary 2.3, for d = o(n3/4) and i = 1, . . . , n,

(4.3) Pr(Ai(d)) = 2Pr(M∗
i > d) ≥ 1

n
· e−δ(n)√

π(lnn+ δ(n))
(1− o(1)) .

From Lemma 3.1,

Pr(Ai1 (d) ∧Ai2(d)) = 4P
(M∗

i > d ∧M∗
j > d

) ≤ 4 · (1 + o(1)) ·
(
PG

(
d√
n

))2

≤ 2
n2
· e−2δ(n)

πd2/(2n)
· (1 + o(1)) ,

where we once again used PG(x) ≤ e−x2/2/(
√

2πx). From here, it follows immediately
that

Pr

(
n⋃

i=1

Ai(d)

)
≥ e−δ(n)√

πd2/(2n)
·
(

1− e−δ(n)√
πd2/(2n)

)
· (1− o(1)) .

Note that the condition

e−δ(n)√
πd2/(2n)

<
1
2

gives us the lower bound for the value of d >
√

2n(lnn− 0.5(ln lnn− ln(4/π))), for
which the theorem holds.

Remark 4.2. From Theorem 4.1 we see that for δ(n) growing with n, the sum of
probabilities of all pairwise intersections

Ai1

(√
2n(lnn+ δ(n))

)
∧Ai2

(√
2n(lnn+ δ(n))

)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

88 SIMON LITSYN AND ALEXANDER SHPUNT

is asymptotically smaller than the union bound

e−δ(n)√
π(lnn+ δ(n))

.

From Theorem 4.1 we see that the distribution is indeed concentrated around a
point to the left of

√
2n(lnn− 0.5 ln lnn). Let us state this in the following corollary.

Corollary 4.3. For 0 < β < (
√

n/ ln lnn)−ln n
ln ln n + 0.5,

(4.4)

Pr
(

max
i=1,...,n

|M∗
i | >

√
2n(lnn− 0.5 ln lnn+ β ln lnn+ 0.125)

)
= O

(
1

lnβ n

)
.

Proof. Take

(4.5) δ(n) = (β − 0.5) ln lnn.

Substitute (4.5) into (4.1) and (4.2) to get

Pr
(

max
i=1,...,n

|M∗
i | >

√
2n(lnn− 0.5 ln lnn+ β ln lnn+ 0.125)

)

=
(lnn)−β

√
π

(1 + o(1)).

From Corollary 4.3, we have, for example,

Pr
(

max
i=1,...,n

|M∗
i | >

√
2n(lnn+ 3.5 ln lnn+ 0.125)

)
= O

(
1

ln4 n

)
.

5. The lower tail. Results obtained in the previous sections enable us to tightly
bound the lower tail of S(f), using a variation of the second moment method.

Theorem 5.1. For n ≥ 164 and

d =
√

2n(lnn− δ(n)),
√
n ln lnn < d <

√
2n(lnn− 0.5 ln lnn),

Pr
(

max
i=1,...,n

|M∗
i | ≤ d

)
≤
√
πd2/(2n) · e−δ(n) · (1 + o(1)).(5.1)

Proof. For the events Ai(d) ≡ {|M∗
i | > d}, and their indicators

IAi(d)(ω) = [ω ∈ Ai(d)], i = 1, 2, . . . , n,

let

A =
n∑

i=1

IAi(d).

Then,

Pr
(

max
i=1,...,n

|M∗
i | ≤ d

)
= Pr(A = 0).

By linearity of the expectation,

E{A} = 2 · n · Pr (M∗
i > d) .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BOOLEAN FUNCTION NONLINEARITY 89

By Lemma 2.2,

(5.2) Pr (M∗
i > d) ≥ PG

(
d√
n

)
(1− ς4)− e−

√
n/32.

Furthermore,

E{A2} =
n∑

i1=1,i2=1

E{IAi1 (d) · IAi2 (d)} =
n∑

i1=1,i2=1

Pr (Ai1 (d) ∧Ai2(d)) .

By Lemma 3.1,

E{A2} ≤ n(n− 1)P (Ai1 (d) ∧Ai2(d)) + E{A} ≤ n2P (Ai1(d) ∧Ai2(d)) +E{A}

≤ 4n2 ·
(
1 + o(n−1/4)

)
·
(
PG

(
d√
n

))2

+ E{A}.

Therefore

Var (A) = E{A2} − (E{A})2 ≤ 4 · n2 · o(n−1/4)
(
PG

(
d√
n

))2

+ E{A}.

Using the Chebyshev inequality,

P (A = 0) ≤ P (|A− E{A}| ≥ E{A}) ≤ Var{A}
E2{A} ≤

1
E{A}

(
1 + o(n−1/4) ·E{A}

)
.

Note, finally, that applying Corollary 2.3 to the expression for E{A} obtained
above, we have

E{A} ≥ eδ(n)√
π(lnn− δ(n))

(1− o(1)) .

From Theorems 4.1 and 5.1 we see that the distribution is indeed concentrated
around

√
2n(lnn− 0.5 ln lnn). Also, we see that away from the concentration point,

the distribution decays faster than established previously.
Corollary 5.2.

(5.3) Pr
(

max
i=1,...,n

|M∗
i | >

√
2n(lnn− 0.5 ln lnn− α ln lnn)

)
= O

(
1

lnα n

)
.

From Corollary 5.2, we have, for example,

Pr
(

max
i=1,...,n

|M∗
i | >

√
2n(lnn− 4.5 ln lnn)

)
= O

(
1

ln4 n

)
.

6. Conclusions. Using only basic combinatorics, we provided the asymptoti-
cally exact upper tail and an upper bound on the lower tail for the distribution of
nonlinearity of Boolean functions. These bounds yield a concentration of nonlinearity
and are tighter than the earlier known ones. An open problem is estimating how
tight our bound is on the lower tail. Notice that Spencer [14] provides a noncon-
structive method guaranteeing an exponential number of functions with nonlinearity
in the range of the lower tail. However, the bounds we were able to derive using this
approach are very weak.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

90 SIMON LITSYN AND ALEXANDER SHPUNT

Appendix.

A.1. Proof of Lemma 2.1. Let us first show the upper bound. For 0 < ε1 <
1/2 and any n > 0, we have

n!(
n · (1

2 − ε1
))

!
(
n · (1

2 + ε1
))

!
≤ 1√

2πn
(

1
4 − ε21

) · 1(
1
2 + ε1

)(1
2+ε1)n (1

2 − ε1
)(1

2−ε1)n
,

where we have used (see, e.g., [8])

(A.1)
√

2π · nn+1/2 · e−n+ 1
12n− 1

360n3 < n! <
√

2π · nn+1/2 · e−n+ 1
12n .

Therefore, for 0 < ε1 <
1
2 and any n > 0,

(A.2)
(

n

n · (1
2 − ε1

)) ≤ 1√
2πn

(
1
4 − ε21

) · enHe(1
2−ε1),

where He(x) ≡ −x lnx− (1− x) ln(1 − x) stands for the natural entropy function.
Using also

(A.3) He

(
1
2
− ε1

)
≤ ln 2− 2ε21 for 0 < ε1 <

1
2
,

and
1√

1− x ≤ 1 +
3
4
x for 0 ≤ x ≤ 3

8
,

we have (ε21 ≤ 3/32)

(A.4)(
n

n · (1
2 − ε1

)) ≤ 1√
2πn

(
1
4 − ε21

) · en ln 2−2nε21 ≤ 2n · (1 + 3ε21
) ·
√

2
πn
· e−2nε21 .

Now to the lower bound. Using (A.1), we have for 0 < ε1 <
1
2 and any n > 0,

n!(
n · (1

2 − ε1
))

!
(
n · (1

2 + ε1
))

!
≥ 1√

2πn
(

1
4 − ε21

) · e
− 1

12(1
2+ε1)n

− 1

12(1
2 −ε1)n

(
1
2 + ε1

)(1
2+ε1)n (1

2 − ε1
)(1

2−ε1)n
.

Therefore, for 0 < ε1 <
1
2 and any n > 0,(

n

n · (1
2 − ε1

)) ≥ 1√
2πn

(
1
4 − ε21

) · en·He(1
2−ε1)−1/(n(3−12ε21)).

For 0 ≤ ε1 ≤ (2n)−1/4 and n ≥ 164,

He

(
1
2
− ε1

)
≥ ln 2− 2ε21 −

3
2
ε41, and

1
n (3− 12ε21)

≤ 1
2n
.

Since e−x ≥ 1− x for x > 0, we have

(A.5)
(

n

n · (1
2 − ε1

)) ≥ 2n ·
√

2
πn
· e−2nε21 ·

(
1− 3

2
nε41 −

1
2n

)
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BOOLEAN FUNCTION NONLINEARITY 91

A.2. Proof of Lemma 2.2. Let us first prove (2.3). Let

k0 =

⌊√
3
32
n

⌋
.

Then,

2−n · S(n, d) =
k0∑

k= d
2

(
n

n · (1
2 − k

n

))+

n
2∑

k=k0+1

(
n

n · (1
2 − k

n

)) = S1(n, d) + S2(n, d).

Taking into account that the terms of S2(n, d) are monotonously decreasing, let us
bound S2(n, d) from above by the product of the first (biggest) term and the number
of terms in the sum, using Lemma 2.1,

(A.6) S2(n, d) <
41
64

√
2
π

(
1−

√
3
8

)
· √n · e− 3n

16 <

√
n

4π
· e−3n/16.

As for S1(n, d), we apply the upper bound of Lemma 2.1 to get

S1(n, d) ≤
√

2
πn
·

∞∑
k= d

2

(
1 +

3k2

n2

)
· e−2k2/n.

Bounding the sum with an integral, noting that for d >
√
n ln lnn the integrands are

monotonously decreasing functions of k, and recalling

PG

(
d√
n

)
=

1√
π

∫ ∞

d√
2n

e−z2
dz,

we have √
2
πn
·

∞∑
k= d

2

e−2k2/n <

√
2
πn
· e− d2

2n + PG

(
d√
n

)
,

√
2
πn
· 3
2n
·

∞∑
k= d

2

2k2

n
e−2k2/n <

3d(2d+ 1)√
32πn5

· e− d2
2n +

3
4n
· PG

(
d√
n

)
.

By assumption, we have

3d(2d+ 1)/
√

32 <
√

2d2, (d/n)2 + 1 <
√
π/2,

and √
2
πn

+
3d(2d+ 1)√

32πn5
<

1√
n
.

Summing up and using (A.6),

(A.7) 2−n · S(n, d) < PG

(
d√
n

)
·
(

1 +
3
4n

)
+
e−

d2
2n√
n

+
√

n

4π
· e−3n/16.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

92 SIMON LITSYN AND ALEXANDER SHPUNT

Noting that

(A.8)
√

n

2πd2
· e− d2

2n ·
(
1− n

d2

)
≤ PG

(
d√
n

)
≤
√

n

2πd2
· e− d2

2n ,

under the imposed conditions,

(A.9)
e−

d2
2n√
n
≤
√

2πd
n
·
(

1 +
n

d2 − n
)
· PG

(
d√
n

)
<

6.5d
n
· PG

(
d√
n

)
.

We finally have

2−n · S(n, d) ≤ PG

(
d√
n

)
·
(

1 +
6.55d
n

+ e−
3n
16 + d2

2n

)
(A.10)

< PG

(
d√
n

)
·
(

1 +
6.6d
n

)
,

where we have bounded 3/4 < d/20, d2/(2n) < n/8, and e−
n
16 < d/(25n).

Now, let us prove (2.4). Starting from the lower bound in Lemma 2.1,

2−n · S(n, d)

≥
(n3/2)

1
4∑

k= d
2

(
1− 3k4

2n3
− 1

2n

)
·
√

2
πn
· e−2k2/n

≥
(

1− 1
2n

)[
PG

(
d√
n

)
− PG

((n
8

) 1
4
)]
−
√

2
πn
·
(n3/2)

1
4∑

k= d
2

3k4

2n3
· e−2k2/n.

To complete the proof, let us provide an upper bound for

S3(n, d) =

√
2
πn
·
(n3/2)

1
4∑

k= d
2

3k4

2n3
· e−2k2/n.

Note that the maximum of k4e−2k2/n is reached for k2 = n. If d > 2
√
n, then the

summands in S3(n, d) are monotonously decreasing and the sum can be bounded from
above by an integral as follows:

√
2
πn
·
(n3/2)

1
4∑

k= d
2

3k4

2n3
· e−2k2/n <

3
8n

√
1
π

∫ ∞

d−1√
2n

x4e−x2
dx.

On the other hand, if
√

ln lnn < d/
√
n ≤ 2 (which can happen only when ln lnn < 2,

i.e., for n < 1619), then the summands increase for d/2 < k ≤ √n and decrease
thereafter. The biggest summand is ≤ 4e−2 ≤ 4e−(d−1)2/2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BOOLEAN FUNCTION NONLINEARITY 93

Clearly, S3(n, d) can be bounded from above in both cases as

√
2
πn
·
(n3/2)

1
4∑

k= d
2

3k4

2n3
· e−2k2/n ≤ 3

8n

√
2
πn
· 4 · e− (d−1)2

2n +
3
8n

√
1
π

∫ ∞

d−1√
2n

x4e−x2
dx

=
3

32n

[
d− 1√

2πn

(
(d− 1)2

n
+ 3 +

32
d− 1

)
e−

(d−1)2

2n

+ 3PG

(
d− 1√
n

)]
.

Analogously to (A.9), we have

(A.11)
e−

(d−1)2

2n√
n

<
8.26(d− 1)

n
· PG

(
d− 1√
n

)
<

8.26d
n
· PG

(
d− 1√
n

)
.

Lumping the contributions

(A.12)
(d− 1)2

n
+ 3 +

32
d− 1

< 4.55
(d− 1)2

n
< 4.55

d2

n
,

we get

√
2
πn
·
(n3/2)

1
4∑

k= d
2

3k4

2n3
· e−2k2/n <

3
8n

√
1
π

[
37.6d4

4
√

2n2
+

3
√
π

4

]
PG

(
d− 1√
n

)

<
45d4

16
√
πn3

PG

(
d− 1√
n

)
<

5d4

n3
PG

(
d√
n

)
,

where in the last inequality we used

PG

(
d− 1√
n

)
≤ e(2d−1)/2n · d− 1

d
· d2/n

d2/n− 1
· PG

(
d√
n

)
< 3.04 · PG

(
d√
n

)
.

Finally, noting that

PG

((n
8

) 1
4
)
≤
√√

8
π
· n−1/4 · e−

√
n/32 < e−

√
n/32,

we have

(A.13) 2−n · S(n, d) ≥
(

1− 1
2n
− 5d4

n3

)
· PG

(
d√
n

)
− e−

√
n/32.

A.3. Probability of intersection. Additional elaboration. First, note that

a− d
2∑

b=−(a− d
2)

e−4b2/n ≤
∫ a− d

2

−(a−d
2)

e−4z2/ndz + e−(2a−d)2/n(A.14)

=
√
n

2
·
∫ 2a−d√

n

− 2a−d√
n

e−x2
dx+ e−4(a−d/2)2/n.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

94 SIMON LITSYN AND ALEXANDER SHPUNT

In (A.14) we used the facts that e−4b2/n is a symmetric convex function, and we are
summing symmetrically around zero.

By now we have (using d < n/4)

P (d) ≤
(
1 + o(n−1/4)

)
· 2
π
√
n
·

n
4∑

a= d
2

e−4a2/n ·
∫ 2a−d√

n

− 2a−d√
n

e−x2
dx

+
(
1 + o(n−1/4)

)
· 4
πn

n
4∑

a= d
2

e−4(a2+(a−d/2)2)/n + e−
√

n
20 ln ln n .

Using

n
4∑

a= d
2

e−4a2/n <
∞∑

a= d
2

e−4a2/n ≤
√
n

2

∫ ∞

d√
n

e−x2
dx+ e−d2/n

and

(A.15)
∫ 2a−d√

n

− 2a−d√
n

e−z2
dz ≤

∫ ∞

−∞
e−z2

dz =
√
π,

we have
(A.16)

n
4∑

a= d
2

e−4a2/n

∫ 2a−d√
n

− 2a−d√
n

e−z2
dz ≤

√
n

2

∫ ∞

d√
n

e−x2
dx

∫ 2x−d√
n

− 2x−d√
n

e−z2
dz +

√
πe−d2/n.

Summing up, we have shown that

P (d) ≤
(
1 + o(n−1/4)

)
· 1
π

∫ ∞

d√
n

e−x2
dx

∫ 2x−d√
n

− 2x−d√
n

e−z2
dz

+
(
1 + o(n−1/4)

)
· 2√

πn
·
⎛
⎝e−d2/n +

2√
πn

n
4∑

a= d
2

e−4(a2+(a−d/2)2)/n

⎞
⎠+ e−

√
n

20 ln ln n

=
(
1 + o(n−1/4)

)
· 1
π

∫ ∞

d√
n

e−x2
dx

∫ 2x−d√
n

− 2x−d√
n

e−z2
dz.

REFERENCES

[1] N. Alon and J. Spencer, The Probabilistic Method, 2nd ed., John Wiley and Sons, New York,
2000.

[2] E. R. Berlekamp and L. R. Welch, Weight distributions of the cosets of the (32, 6) Reed-
Muller code, IEEE Trans. Inform. Theory, 18 (1972), pp. 203–207.

[3] C. Carlet, On cryptographic complexity of Boolean functions, in Proceedings of the Sixth Con-
ference on Finite Fields with Applications to Coding Theory, Cryptography, and Related
Areas, G. L. Mullen, H. Stichtenoth, and H. Tapia-Recillas, eds., Springer-Verlag, Berlin,
2002, pp. 53–69.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BOOLEAN FUNCTION NONLINEARITY 95

[4] C. Carlet, On the degree, nonlinearity, algebraic thickness, and non-normality of Boolean
functions, with developments on symmetric functions, IEEE Trans. Inform. Theory, 50
(2004), pp. 2178–2185.

[5] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes, North–Holland, Ams-
terdam, 1997.

[6] G. Halász, On the result of Salem and Zygmund concerning random polynomials, Studia Sci.
Math. Hungar., 8 (1973), pp. 369–377.

[7] M. Hall, Jr., Combinatorial Theory, 2nd ed., John Wiley and Sons, New York, 1986.
[8] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North–

Holland, Amsterdam, 1977.
[9] J. A. Maiorana, A classification of the cosets of the Reed-Muller code R(1, 6), Math. Comp.,

57 (1991), pp. 403–414.
[10] D. Olejár and M. Stanek, On cryptographic properties of random Boolean functions, J. UCS,

4 (1998), pp. 705–717.
[11] F. Rodier, On the non-linearity of Boolean functions, in Proceedings of the Workshop on

Coding and Cryptography (WCC2003), INRIA, 2003, pp. 397–405.
[12] F. Rodier, Sur la non-linéarité des fonctions booléennes, Acta Arith., 115 (2004), pp. 1–22.
[13] F. Rodier, Asymptotic nonlinearity of Boolean functions, Des. Codes Cryptogr., 40 (2006),

pp. 59–70.
[14] J. Spencer, Six standard deviations suffice, Trans. Amer. Math. Soc., 289 (1985), pp. 679–706.
[15] W. D. Wallis, A. P. Street, and J. Seberry Wallis, Combinatorics: Room squares, sum-free

sets, Hadamard matrics, Lecture Notes in Math. 292, Springer-Verlag, Berlin, 1972.
[16] C.-K. Wu, On distribution of Boolean functions with nonlinearity ≤ 2n−2, Australas. J. Com-

bin., 17 (1998), pp. 51–59.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 96–108

K6-MINORS IN TRIANGULATIONS ON THE KLEIN BOTTLE∗

KEN-ICHI KAWARABAYASHI† , RAIJI MUKAE‡, AND ATSUHIRO NAKAMOTO§

Abstract. In this paper, we shall characterize triangulations on the Klein bottle without K6-
minors. Our characterization implies that every 5-connected triangulation on the Klein bottle has a
K6-minor. The connectivity “5” is best possible in a sense that there is a 4-connected triangulation
on the Klein bottle without K6-minors.

Key words. triangulation, K6-minor, Klein bottle

AMS subject classifications. 05C10, 05C83

DOI. 10.1137/070693540

1. Introduction. Our motivation comes from the following result by Wagner,
and a wide open question concerning a characterization of graphs without K6-minors.

Theorem 1 (see Wagner [16]). A graph G has no K5-minors if and only if G
can be obtained from planar graphs and subgraphs of V8 by means of clique-sums of
order at most three.

To understand this result, we need some notation. A graph H is said to be a
minor of a graph K if H can be obtained from a subgraph of K by contracting edges.
In this case, we say that K has an H-minor.

Let G1 and G2 be graphs with disjoint vertex sets, let k ≥ 1 be an integer, and for
i = 1, 2, let Xi ⊆ V (Gi) be a k-clique in Gi, i.e., a set of k mutually adjacent vertices.
For i = 1, 2, let G′

i be obtained from Gi by deleting a (possibly empty) set of edges
with both ends in Xi. Let G be the graph obtained from G′

1 and G′
2 by identifying

X1 and X2. Then we say that G is a clique-sum of order k, or simply a k-sum of G1

and G2. Let V8 be the graph obtained from the 8-cycle C8 by joining each pair of
diagonally opposite vertices by an edge, which is sometimes called a Möbius ladder.

Theorem 1 implies that the four color theorem is equivalent to the statement that
every graph without K5-minors can be colored with four colors (Wagner’s equivalence
theorem). This result prompted Hadwiger [6] to make his famous conjecture: every
graph without Kk-minor is (k − 1)-colorable. This conjecture is considered by many
as one of the deepest open problems in graph theory. To attack this conjecture, we
would like to know more about the structure of graphs with no Kk-minors.

The obvious choice would be the next case: what kind of graphs do not contain
a K6-minor? We would like to make an attempt on this problem, but unfortunately,
this question is wide open, and even hopeless right now.

Robertson, Seymour, and Thomas [12] proved the following result when dealing
with Hadwiger’s conjecture for K6-minor-free case. Let us recall that a graph G is an
apex graph if it has a vertex v such that G− v is planar.

∗Received by the editors June 2, 2007; accepted for publication (in revised form) June 19, 2008;
published electronically October 24, 2008.

http://www.siam.org/journals/sidma/23-1/69354.html
†National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan

(k keniti@nii.ac.jp).
‡Department of Information Media and Environment Sciences, Graduate School of Environment

and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama
240-8501, Japan (d07tc019@ynu.ac.jp).

§Department of Mathematics, Faculty of Education and Human Sciences, Yokohama National
University, 79-2 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan (nakamoto@edhs.ynu.ac.jp).

96

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

K6-MINORS IN TRIANGULATIONS 97

Theorem 2 (see Robertson, Seymour, and Thomas [12]). Let G be a graph with
no K6-minor such that G is not 5-colorable, and subject to that, the number of vertices
of G is as small as possible. Then G is an apex graph.

This theorem implies that Hadwiger’s conjecture for K6-minor-free case is equiv-
alent to the four color theorem. But, unfortunately, this theorem does not give any
structural characterization for graphs with no K6-minor. In fact, Jørgensen [7] made
the following beautiful conjecture.

Conjecture 3 (see Jørgensen [7]). Every 6-connected graph containing no K6-
minor is an apex graph.

Mader [10] proved that the graph G mentioned in Theorem 2 is 6-connected.
Hence the above conjecture implies Theorem 2. This conjecture is still open, but
recently, DeVos et al. [3] proved the following remarkable result. (However, the proof
is lengthy and complicated since it needs some deep results in graph minor theory.)

Theorem 4 (see DeVos et al. [3]). Jørgensen’s conjecture is true for large graphs.
More precisely, there exists a constant N such that every 6-connected graph with no
K6-minor and with at least N vertices is apex.

One may ask the following: what about 5-connected graphs with no K6-minors?
As far as we know, there are six families of graphs that do not contain K6-minors.
These are planar graphs, apex graphs, double cross graphs, planar graphs plus a tri-
angle, graphs with hamburger structure, and graphs with hose structure. For double
cross graphs and the hose structure, see Figure 1, in which shaded “blobs” represent
planar graphs embedded in a disk with specified vertices on the boundary. For con-
secutive “blobs” in the hose structure, the five vertices are identified, not necessarily
in order as suggested by their closeness in the figure, but the three white vertices
are identified with white and the two black with black in the neighboring “blob.”
Graphs with hamburger structure are obtained from three 5-connected planar graphs
Gi (i = 1, 2, 3), each of which has a specified vertex wi of degree 5. Let vi1, . . . , vi5

be the neighbors of wi in the clockwise order around wi. To get a graph with ham-
burger structure, take G1 − w1, G2 − w2, and G3 − w3 and identify for j = 1, . . . , 5
their vertices v1j , v2j , v3j . These examples give rise to infinitely many 5-connected
graphs without K6-minors and with a different structure. (For apex graphs, double
cross graphs, and planar graphs plus a triangle, we can easily prove that all of them
contain no K6-minors, but for the hamburger structure and hose structure, the proof
for no K6-minor is not so easy.)

At this moment it seems hopeless to characterize 5-connected graphs with no
K6-minor, even for large graphs. This gives us an impression that a complete charac-
terization of graphs without K6-minors is very hard, even hopeless, since we definitely
need to figure out which 5-connected graphs do not contain K6-minors.

(a) (b)
Fig. 1. (a) Double cross and (b) hose structure graphs.

Thus we set a more modest goal in this paper: we restrict ourselves to consider
graphs on a fixed surface. Actually, our main interest in this paper is a triangulation

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

98 K. KAWARABAYASHI, R. MUKAE, AND A. NAKAMOTO

on the Klein bottle, that is, a simple graph embedded in the surface such that each
face is triangular. Let us see our motivation concerning this family of graphs. As we
pointed out, a double cross graph is one of the obstructions for a 5-connected graph
without K6-minors. But it is easy to see that this graph is embeddable in the Klein
bottle, but cannot be embedded into a projective plane nor a torus. So it might
be interesting to consider 5-connected graphs on the Klein bottle. But this needs
a great deal of case analysis, and we are not sure yet whether or not this problem
is feasible, i.e., is it really much easier than the general 5-connected case? In [5],
Fijavź and Mohar proved that every 5-connected graph on a projective plane with
representativity at least 3 has a K6-minor, but the proof still needs a great deal of
case analysis, and some of the deep results in graph minor papers. Their result does
not seem to be enough to give a complete characterization of projective planar graphs
without K6-minors.

So, it seems that even the torus and Klein bottle cases are hard. But if we
restrict our attention to triangulations, then the situation is much different. In fact,
the results in [11] and the result in this paper give a complete characterization of
triangulations on the projective plane or the torus or the Klein bottle that do not
contain K6-minors. Let us see these results.

For the projective plane and the torus, the following have been proved in [11].
A quadrangulation on a surface is a simple graph with each face quadrilateral. An
H-quadrangulation is a quadrangulation isomorphic to H as a graph.

Theorem 5 (see Mukae and Nakamoto [11]). A triangulation G on the projective
plane has a K6-minor if and only if G has no K4-quadrangulation as a subgraph.

Theorem 6 (see Mukae and Nakamoto [11]). A triangulation G on the torus
has a K6-minor if and only if G has no K5-quadrangulation as a subgraph.

Figure 2 shows a K4-quadrangulation on the projective plane in the left-hand
side, and a K5-quadrangulation on the torus in the right-hand side. (In Figure 2, in
order to obtain the projective plane and the torus, we identify any pair of antipodal
points of the hexagon in the left-hand side, and identify the two horizontal segments,
and the two vertical segments, in the right-hand side respectively.)

1

1

2

2 3

3

4

44

3 3

2

23

3

5

Fig. 2. K4- and K5-quadrangulations.

In this paper, we shall characterize triangulations on the Klein bottle without
K6-minors and prove the following theorem corresponding to Theorems 5 and 6.

A Möbius triangulation (G,C) is a triangulation G on the Möbius band with
boundary cycle C. Let Q be a 2-connected graph on the sphere, and let F1, F2 be two
distinct faces of Q, where Ci is the boundary cycle of Fi, for i = 1, 2. Suppose that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

K6-MINORS IN TRIANGULATIONS 99

each face except F1, F2 is bounded by a 3-cycle. Let G be the graph obtained from
Q by removing the interior of F1 and F2. We say that G = (G,C1, C2) is an annulus
triangulation, where each Ci is called the boundary (or boundary cycle of G). A cycle
C of G is said to be essential if C is homotopic to C1 and C2 in the annulus.

Theorem 7. A triangulation G on the Klein bottle has no K6-minor if and only
if G has two 4-cycles C1 and C2 separating G into two Möbius triangulations (Mi, Ci)
for i = 1, 2, and one annulus triangulation (A,C1, C2) such that

(i) the four vertices of Ci induce K4 in (Mi, Ci) for i = 1, 2, and
(ii) (A,C1, C2) satisfies one of the following:

(a) (A,C1, C2) has an essential 3-cycle, or
(b) (A,C1, C2) has m essential 4-cycles D1, . . . , Dm for some m ≥ 2 lying

on the annulus in this order such that C1 = D1, C2 = Dm, and for each
i, V (Di) ∩ V (Di+1) �= ∅.

C1

C1 = D1 C2 = D4

C2

D2 D3

Fig. 3. Structures of triangulations on the Klein bottle with no K6-minor.

Note that in Theorem 7, if G is 4-connected, then (ii)(b) must happen, since the 3-
cycle in (ii)(a) separates G. (See Figure 3 which shows the structure of triangulations
on the Klein bottle with no K6-minor. The top shows a triangulation on the Klein
bottle with an essential separating 3-cycle corresponding to (ii)(a) in Theorem 7, and
the bottom is one with four essential 4-cycles corresponding (ii)(b).)

The following is an immediate consequence from Theorem 7, since each triangu-
lation on the Klein bottle with no K6-minor has a separating 3- or 4-cycle.

Corollary 8. Every 5-connected triangulation on the Klein bottle has a K6-
minor.

The connectivity “5” is best possible, since there is a 4-connected triangulation
on the Klein bottle without K6-minors, as we pointed out above. For the projective
plane and the torus, Theorems 5 and 6 imply the same fact as Corollary 8. In view
of known 5-connected graphs without K6-minors, it is perhaps true that every 5-
connected triangulation on any nonspherical surface has a K6-minor.

2. Irreducible triangulations on the Klein bottle. Let us first consider
a topology of the Klein bottle, which admits three different types of simple closed

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

100 K. KAWARABAYASHI, R. MUKAE, AND A. NAKAMOTO

α

β

γ

α

β γ

Fig. 4. Klein bottle with a meridian α, a longitude β, and an equator γ.

curves. Let Nk denote the nonorientable surface of genus k throughout this paper.
Then N1 and N2 stand for the projective plane and the Klein bottle, respectively. A
simple closed curve l on a nonspherical surface F 2 is said to be essential if l does
not bound a 2-cell on F 2. We say that l is 1-sided if a tabular neighborhood of l is
homeomorphic to a Möbius band, and 2-sided otherwise. See Figure 4, which shows
two developments of N2. (We identify the top and bottom of the rectangle naturally
to get an annulus, and there are two ways to get N2 from the annulus. One is to
identify the two boundary components incoherently as in the left-hand side, and the
other is to identify each pair of antipodal points of each boundary component as in
the right-hand side. In particular, the expression of N2 in Figure 3 corresponds to
the right-hand side of Figure 4.) Let α, β, γ be three essential simple closed curves
on N2 as in Figure 4, where each of α, β, and γ in both figures stands for the same
closed curve on N2. Observe that α is a 2-sided simple closed curve cutting N2 into
an annulus, β is a 1-sided one cutting N2 into a Möbius band, and β is a 2-sided one
separating N2 into two Möbius bands. We say that γ is an equator , and a cycle of a
graph on N2 homotopic to γ is an equator cycle.

Let G be a triangulation, and let e be an edge of G. Contraction of e (or con-
tracting e) in G is to remove e, identify the two ends of e and replace two pairs of
multiple edges by single edges respectively. We say that e is contractible if the graph
obtained from G by contracting e is simple. Moreover, we say that G is contractible to
a triangulation H if G can be transformed into H by a sequence of contracting edges.
For a graph G on a surface and a vertex v, the link of v is the boundary closed walk
of the union of all faces incident to v in G. A cycle C of a graph G on a surface is
said to be essential if C does not bound a 2-cell on the surface. For a graph G and a
subset S of V (G), let [S] denote the subgraph of G induced by S. For a path or cycle
C in a graph G, a chord of C is an edge xy such that x, y ∈ V (C) and xy /∈ E(C).

We say that a triangulation G is irreducible if G has no contractible edge. The
complete lists of irreducible triangulations on the sphere, the projective plane and the
torus have already been determined in [13], [1], and [8], respectively. For the Klein
bottle, Lawrenceko and Negami [9] and Sulanke [14] determined the complete list of
irreducible triangulations, in which 25 triangulations, denoted by Kh1, . . . ,Kh25, are
4-connected and the other four have equator 3-cycles.

Lemma 9. All 4-connected irreducible triangulations on N2 except Kh25 have
K6-minors.

Proof. We have checked that Kh3, Kh5, Kh6, Kh7, Kh9, Kh13, Kh16, Kh17
includeK6 as a subgraph, as shown in Figure 5. On the other hand, each ofKh1,Kh2,
Kh4, Kh8, Kh10, Kh11, Kh12, Kh14, Kh15, Kh18, Kh19, Kh20, Kh21, Kh22,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

K6-MINORS IN TRIANGULATIONS 101

Kh3

1

1

2 1

12

4

45

5

6

3

3
Kh5

1

12

2
4 56

3

3
Kh6

1

12

2
4 56

3

3
Kh7

2 1

12

45

6

3

3

1

1

4

Kh9

2 1

2

4

5

6

3

3

1

4

Kh13

2

1

2
5

6

3

3

1

4

11
Kh16

2

1

2
5 6

3

3

1 4

4 11
Kh17

2 1

2

5

6

3

3

1

4

4

Fig. 5. K6-subgraphs in irreducible triangulations on the Klein bottle.

Kh23, Kh24 has a K6-minor as shown in Figure 6, in which vertices surrounded by
a single polygon corresponds to a single vertex of K6 after the contractions.

The triangulation Kh25 is shown in Figure 7 in which we identify the sides as in
the left of Figure 4. We can see that the following holds for Kh25.

Lemma 10. The irreducible triangulation Kh25 in Figure 7 has two equator 4-
cycles C1 = abcd and C2 = abef such that for i = 1, 2, the four vertices of Ci induce
K4 in the Möbius triangulation cut off from G by Ci.

3. Lemmas. We comprise several lemmas for proving Theorem 7. The first one
is the most famous theorem in graph theory, called “Kuratowski–Wagner’s theorem.”

Lemma 11 (see [15]). A graph G is planar if and only if G contains neither a
K5-minor nor a K3,3-minor.

Let us mention a fundamental result due to Wagner [16].
Lemma 12 (see [16]). Suppose that a graph G is obtained from two graphs H1

and H2 by a k-sum for some k ≤ n− 2. Then G has a Kn-minor if and only if one
of H1 and H2 has a Kn-minor.

The following lemma immediately follows from Theorem 5 and Lemma 12.
Lemma 13. Let G be a triangulation on N2 with an equator 3-cycle C, and let

G1 and G2 be the two triangulations on N1 obtained from G by cutting along C and
capping off by 2-cells. Then G has no K6-minor if and only if both of G1 and G2 have
K4-quadrangulations as subgraphs.

Let D be a plane graph with boundary cycle C and each inner face triangular,
and let x, y be distinct vertices of C. An x − y path P is said to be internal if P
intersects C only at its endvertices x and y.

Lemma 14 (see [2]). Let D be a plane graph with boundary cycle C and each inner
face triangular, and let x, y be distinct vertices of C with xy /∈ E(C). Then D has an
internal x − y path if and only if D has no chord pq for some p, q ∈ V (C) − {x, y}
such that x and y are contained in different components of C − {p, q}.

Let G be a 2-connected plane graph with outer cycle C of length at least 4 such
that each inner face is triangular. Suppose that four distinct vertices v1, v2, v3, v4,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

102 K. KAWARABAYASHI, R. MUKAE, AND A. NAKAMOTO

Kh1

1

1

4

1

1

2

23

3

6

5

Kh2

1

1

4

1

1

2

23

3

6

5

Kh4

1

4

12

2

3

3

6

5

4
Kh8

1

1

4

5

6

2

2

1

1 4

3

3

Kh10

1
5

6 2

2

1 4
3

Kh11

15

6 2

2

1 4
3

Kh12

2

1

2
5

6

4

4

1

3

11

3

Kh14

2 1

2

5
6

3

1

4

11

Kh15

2

2

6

3

1

4

5

1

Kh18

2

1

2

5

6
3

3

14

4 11
Kh19

2

1

2

5

6
3

3

14

4
11

Kh20

2

1

2

5

6
3

3

14

4 11

Kh21

2

1

2

5

6
3

3

14

4 11
Kh22

2

1

2

5

6
3

3

14

4 11
Kh23

2

1

2
5

6

3

3

1

4

11
Kh24

1

1

4

5

3

3

2

2

6

Fig. 6. K6-minors in irreducible triangulations on the Klein bottle.

called nodes, lie on C in this order but vi and vi+1 do not need to be consecutive
in C, for each i. We call G a 4-patch with nodes {v1, v2, v3, v3}. The subpath in C
between vi and vi+1 (not containing vi+2) is denoted by [vi, vi+1]. A vi − vi+2 path
in G avoiding vi+1 and vi+3 is called a diagonal or a vi − vi+2 diagonal. (Note that a
vi − vi+2 diagonal might not be internal vi − vi+2 path in the 4-patch G.)

The following lemma immediately follows from Lemma 14.
Lemma 15. Let G be a 4-patch with nodes {v1v2v3v4}. Then, unless v1v3 ∈ E(G),

G has a v2 − v4 diagonal.
Let G be a 4-patch with nodes {v1, v2, v3, v4}, and let C be the outer cycle of G.

Suppose that v1v2, v3v4 ∈ E(C) and v1v3 /∈ E(G). Let us define a special v2 − v4
diagonal in G. Let R = p1 · · · pm be the path in G consisting of the neighbors of v1,
where p1 = v2, and pm is the first vertex lying on [v1, v4]. Let pa be the last vertex
contained in [v2, v3]. Let P = p1 · · · pa, and let Q be the subpath of [v1, v4] joining

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

K6-MINORS IN TRIANGULATIONS 103

a
b

c

c a
d

f

f e

ee

e

Fig. 7. Kh25.

pm and v4. Since v1v3 /∈ E(G), R ∪Q forms a v2 − v4 diagonal, which is called the
v2 − v4 diagonal closest to v1. We say that P and Q are called the initial and the
terminal segments of the diagonal.

The following is an important lemma.
Lemma 16. Let A = (A,D,D′) be an annulus triangulation such that D and D′

are disjoint 4-cycles. Suppose that A has neither an essential 3-cycle nor an essential
4-cycle except D and D′. Then A has disjoint four paths Pi joining V (D) and V (D′)
for i = 1, 2, 3, 4. Moreover, if we let Ri be the 4-patch bounded by Pi and Pi+1 for
i = 1, 2, 3, 4, then each Ri has a diagonal Di such that for any disjoint i, j ∈ {1, 2, 3, 4},
V (Di) ∩ V (Dj) = ∅.

Proof. Observe that A has at least eight vertices, and that the lemma clearly
holds when A has exactly eight vertices. So we suppose A has at least nine vertices.

Since (A,D,D′) has no essential 3-cycle, (A,D,D′) has disjoint four paths Pi

joining V (D) and V (D′), for i = 1, 2, 3, 4, by Menger’s theorem. Suppose that
D = v1v2v3v4 and D′ = v′1v

′
2v

′
3v

′
4, and that Pi joins vi ∈ V (D) and v′i ∈ V (D′), for i =

1, 2, 3, 4. LetRi be the plane subgraph of (A,D,D′) bounded by Pi, vivi+1, Pi+1, v
′
i+1v

′
i,

for i = 1, 2, 3, 4. Then each Ri is a 4-patch with nodes {vi, vi+1, v
′
i+1, v

′
i}. We shall

prove that R1, R2, R3, R4 have pairwise disjoint diagonals in A if A has no essential
4-cycle except D and D′. Such an essential 4-cycle is said to be bad in this proof.

Suppose the lemma does not hold, and let A be the smallest counterexample of
the lemma. That is, A is an annulus triangulation with the fewest number of vertices
which has no bad 4-cycle, but R1, R2, R3, R4 do not have disjoint diagonals.

Claim 1. viv
′
i+1, v

′
ivi+1 /∈ E(Ri) for i = 1, 2, 3, 4.

Proof. For contradictions, we may suppose that R1 has an edge v1v′2 without loss
of generality. Observe that Ri has no edge v′ivi+1 for i = 2, 3, 4 (otherwise, we would
find a bad 4-cycle through v1v

′
2 and v′ivi+1, a contradiction). Hence each Ri has a

vi − v′i+1 diagonal, by Lemma 15. Let D1 = v1v
′
2. Take a v′3 − v2 diagonal D2 in R2

closest to v′2, and a v4 − v′1 diagonal D4 in R4 closest to v1. Replace P3 and P4 so
that the initial segment of D2, denoted by P ′

3, lies on P3, and the initial segment of
D4, denoted by P ′

4, lies on P4. (See Figure 8.) Since A has no bad 4-cycle, R3 has
no edge joining P ′

3 and P ′
4. Hence, by Lemma 14, R3 has a v3 − v′4 diagonal avoiding

the vertices of P ′
3 and P ′

4. Therefore, D1, D2, D3, and D4 are required disjoint paths,
contrary to the assumption of A.

If each Pi has length one, then each Ri admits both vi−v′i+1 and v′i−vi+1 internal
diagonals, since Ri has no edge viv

′
i+1 and v′ivi+1, by Claim 1 and Lemma 15. Hence

A has desired four disjoint paths, contrary to the assumption of A. Therefore, for
some i, Pi (say i = 1) has length of at least 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

104 K. KAWARABAYASHI, R. MUKAE, AND A. NAKAMOTO

v1 v2

v3v4

v′1 v′2

v′3v′4

Fig. 8. Case when v1v′2 ∈ E(R1).

Let x be the neighbor of v1 in P1, where x �= v′1. Now contract the edge v1x
and let A′ be the resulting annulus triangulation with disjoint boundary cycles. If A′

has no bad 4-cycle, then A′ has desired four paths, by the minimality of A. Clearly,
the preimage of the four paths in A are required four disjoint paths, contrary to the
assumption of A. Hence [v1x] is contained in bad 4-cycles in A′, where [v1x] is the
vertex of A′ obtained from v1x by its contraction in A. Let C′ be the bad 4-cycle
of A′ through [v1x] bounding a fewest number of faces with D′. Let C be the 5-
cycle through v1 and x which is the preimage of C′ in A. Moreover, C intersects Pi

exactly once for i = 2, 3, 4. Hence putting {xi} = V (Pi) ∪ V (C) for i = 2, 3, 4, we let
C = v1x2x3x4x. (It may happen that C = v1xx2x3x4, but in this case we can relabel
to get C = v1x2x3x4x.)

Suppose that C′ does not intersect D′. Then the annulus triangulation A′′ in A′

bounded by C′ and D′ has no bad cycle. (Otherwise, if A′′ had a bad 4-cycle C′′, then
either C′′ would be a bad 4-cycle in A, or the preimage of C′′ in A is a 5-cycle through
v1 and x which is closer to D′ than C. The former contradicts the assumption of A,
and the latter contradicts the assumption of C.) Hence A′′ has required four disjoint
paths, by the minimality of A. This means that A′ contains the required four paths,
and hence their preimages contradict the assumption on A.

Hence C′ intersects D′. So, avoiding a bad 4-cycle and using Claim 1, we shall
classify possible structure of A. We first observe x4 �= v4. (For otherwise, A would
have a bad 4-cycle v1x2x3v4, a contradiction.) We second have x3 �= v3. (For, if
x3 = v3, then we must have x2 = v2, since A has no bad 4-cycle. On the other
hand, in this case, we must have x4 = v′4, since C′ intersects D′. However, we must
have v3v′4 ∈ E(A), contrary to Claim 1.) Moreover, we third have x2 �= v′2, since
v1v

′
2 /∈ E(A) by Claim 1. So, if x2 = v2, then we must have (i), since v2v′3 /∈ E(A)

and C′ ∩D′ �= ∅. On the other hand, if x2 is an inner vertex of P2, then we have (ii),
(iii), and (iv), as in the following (see Figure 9):

(i) x2 = v2, x3 �= v3, v
′
3, and x4 = v′4.

(ii) x2 �= v2, v
′
2, x3 �= v3, v

′
3, and x4 = v′4.

(iii) x2 �= v2, v
′
2, x3 = v′3, and x4 �= v4, v

′
4.

(iii) x2 �= v2, v
′
2, x3 = v′3, and x4 = v′4.

We first consider the case (i). Rechoosing P3 and P2, we may suppose that the
vertices of the subpath, denoted by P ′

3, of P3 joining x3 and v′3 are adjacent to v′4,
and that the vertices of P2 are adjacent to vertices of P ′

3. Similarly, the vertices of
the subpath, denoted by P ′

1, of P1 joining x and v′1 are adjacent to v′4. Then, no edge
joins P ′

1 and P2 (except v′1v
′
2) since A has no bad 4-cycle. Therefore, by Lemma 14,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

K6-MINORS IN TRIANGULATIONS 105

v1 v2

v3v4

v′1 v′2

v′3v′4(i)

x

v1 v2

v3v4

v′1 v′2

v′3v′4(ii)

x

v1 v2

v3v4

v′1 v
′
2

v′3v′4(iii)

x

x3

x4

x3

x2

x2

v1 v2

v3v4

v′1 v
′
2

v′3v′4(iv)

x x2

Fig. 9. 5-cycle C = v1x2x3x4x in A.

the 4-patch with nodes {v1, v2, v′2, v′1} admits an internal v1 − v′2 diagonal, and we
put it as D1. Let D2 be a v2 − v′3 diagonal in the 4-patch with nodes {v2, v′2, v′3, x3},
which actually exists, by Lemma 14, since v′2x3 /∈ E(R2). (If v′2x3 ∈ E(R2), then
A would have a bad 4-cycle v′1v

′
2x3v

′
4.) Let D3 be the path starting at v3, reaching

x3 along P3, and ending at v′4 through the edge v3v′4. Let D′
4 be an x − v4 diagonal

in the 4-patch with nodes {v1, x, v′4, v4}, which actually exists, by Lemma 14, since
v1v

′
4 ∈ E(R4) by Claim 1. Let D4 = D′

4 ∪ P ′
1. Then D1, D2, D3, D4 are required four

disjoint diagonals.
The remaining three cases can be dealt with in almost the same way, but we

have to be careful in (iii) to take a v3 − x4 diagonal D′
3 in the 4-patch with nodes

{v3, v′3, x4, v4} and a v4 − x diagonal D′
4 in the 4-patch with nodes {v4, x4, x, v1} so

that they are disjoint in A. We first observe that two diagonals D′
3 and D′

4 exist since
v′3v4, v1x4 /∈ E(A) by the assumption for bad 4-cycles in A. Take D′

3 to be closest to
v′3, and D′

4 to be closest to v1. If D′
3 and D′

4 shared a vertex, say v, then v would
be a common neighbor of v′3 and v1, and the 4-cycle v1x2v

′
3v would be bad in A, a

contradiction. Hence we can take D′
3 and D′

4 to be disjoint in A. We need the same
consideration in (iv).

4. Proof of Theorem 7. In this section, we shall prove Theorem 7. For a
short notation, the m equator 4-cycles D1, . . . , Dm in Theorem 7(ii)(b) with V (Di)∩
V (Di+1) �= ∅ for each i is called an equator 4-cycle system, or an m-equator 4-cycle
system if m is emphasized.

Proof of sufficiency. We shall prove that if the graph is as described in Theorem
7, then it has no K6-minors. Let G be a triangulation on N2 with two equator 4-cycles
C1 and C2 separating G into two Möbius triangulations (Mi, Ci) such that the four
vertices of Ci induce K4 in Mi, for i = 1, 2, and one annulus triangulation (A,C1, C2).

By Lemma 13, we may suppose that A has no equator 3-cycles. Then A contains
an m-equator 4-cycle system D1, . . . , Dm with C1 = D1 and C2 = Dm for some

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

106 K. KAWARABAYASHI, R. MUKAE, AND A. NAKAMOTO

m ≥ 2. Let C1 = v1v2v3v4. Since C1 separates G into two Möbius triangulations
and since V (C1) induces K4 in G, each of the 4-cycles v1v2v4v3 and v2v3v1v4 bound
a 2-cell on N2. Let H1 be the subgraph of G induced by v1, v2, v3, v4 and the vertices
in the interior of v1v2v4v3. Note that H1 is the graph obtained from the plane graph
with boundary v1v2v4v3 and two edges v1v4 and v2v3, and that H1 has at least five
vertices, since the plane graph with boundary v1v2v4v3 has no edge v1v3 and v2v4, by
the simpleness of G. Hence H1 has no K6-minor, since the graph obtained from H1

by removing one edge v1v3 is planar. Let H ′
1 be the subgraph of G defined similarly

for the 4-cycle v2v3v1v4. Let H2 and H ′
2 be the two subgraphs of G defined similarly

for C2 = u1u2u3u4. Then each of H ′
1, H2, H

′
2 has no K6-minor either, similarly to H1.

Let Ã be the graph obtained from A by adding four edges v1v3, v2v4, u1u3, u2u4.
Then G is obtained from Ã by 4-sums ofH1, H

′
1, H2, H

′
2 applied repeatedly. Therefore,

by Lemma 12, since each of H1, H
′
1, H2, H

′
2 has no K6-minor, we have only to prove

that Ã has no K6-minor. We prove it as follows.
We use induction on the number m of the 4-cycles in an m-equator 4-cycle system

in A. Supposem = 2, and then D1 (= C1) andD2 (= C2). Here it is useful to consider
a planar embedding of A with four edges v1v3, v2v4, v′1v

′
3, v

′
2v

′
4 added, which is a planar

drawing of Ã with two crossings of edges. Since D1 andD2 share a vertex, say v1 = u1,
the removal of v1 (= u1) in Ã eliminates the two crossings of edges. Therefore the
resulting graph is planar and hence has no K5-minor, by Lemma 11. Thus, Ã has no
K6-minor when m = 2 (since Ã is an apex graph).

Suppose m ≥ 3. Cutting A along D2, we get two annulus triangulations (A′, D1,
D2) and (A′′, D2, Dm) with 2- and (m − 1)-equator 4-cycle systems, respectively.
Let Ã′ (resp., Ã′′) be the graph obtained from A′ (resp., A′′) by adding four edges
v1v3, v2v4, w1w3, w2w4 (resp., u1u3, u2u4, w1w3, w2w4), where C2 = w1w2w3w4 in A.
By induction hypothesis, Ã′ and Ã′′ have no K6-minors. Applying a 4-sum, we get
Ã ∪ {w1w3, w2w4}, which has no K6-minor, by Lemma 12. Therefore, since Ã is its
subgraph, Ã has no K6-minor.

Proof of necessity. Suppose that a triangulation G on N2 has no K6-minor.
Applying edge contractions to G, we obtain an irreducible triangulation T . Since G
has no K6-minor, neither does T . Then, by Lemma 9, T is isomorphic to Kh25 or
has an equator 3-cycle. By Lemmas 10 and 13, T has two equator 4-cycles C1 and C2

such that the Möbius triangulation cut off from G by Ci has K4 induced by V (Ci),
for i = 1, 2. We call these two K4s for a short notation.

Claim 2. G has two K4s.
Proof. Suppose that G does not have two K4s. Let G = T0, T1, . . . , Tm = T be a

sequence of triangulations on N2 such that Ti+1 is obtained from Ti by a single edge
contraction, for i = 0, . . . ,m − 1. As mentioned above, since T has two K4s, there
exists k such that Tk+1 has two K4s but Tk does not. Since K4 is 3-regular, we may
suppose that in Tk, one edge of the K4 induced by V (C1) is subdivided, where C1 is
one of the two equator 4-cycles of Tk+1. Let C2 be the equator 4-cycle of Tk+1 other
than C1. Now cutting along C2, replacing the Möbius triangulation with boundary C2

by a 2-cell D, putting a new vertex in D, and joining it to vertices of C2, we obtain a
triangulation T ′ on N1. Since each of the two 4-patches in K4s with nodes V (C1) has
at least one inner vertex, T ′ is a minor of Tk and has no K4-quadrangulation. Hence,
by Theorem 5, T ′ has a K6-minor. Since T ′ is a minor of G, G has a K6-minor, a
contradiction.

By Claim 2, if a triangulation G on N2 has no K6-minor, then G has two K4s
induced by V (C1) and V (C2), where C1 and C2 are two equator 4-cycles of G. Hence

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

K6-MINORS IN TRIANGULATIONS 107

x1

x2x3

x4

x′2

x′1x′4

x′3
Π

x1

x2x3

x4

x′2

x′1x′4

x′3

Π̃

x1

x2x3

x4

[x′1x
′
3]

K6

[x′2x
′
4]

Fig. 10. Π, Π̃, and K6.

we shall determine the structure of the annulus triangulation (A,C1, C2) obtained
from G by removing the Möbius triangulations with boundaries C1 and C2.

By Lemma 13, we may suppose that A has no equator 3-cycle. Therefore we can
take four disjoint paths P1, P2, P3, P4 from V (C1) and V (C2), by Menger’s theorem.
We put C1 = v1v2v3v4, C2 = u1u2u3u4, and suppose that for i = 1, 2, 3, 4, Pi joins
vi and ui. If A does not have a structure described in (ii)(b) of Theorem 7, then A
has two equator 4-cycles D and D′ such that the annulus triangulation (A′, D,D′)
has no equator 3- and 4-cycles except D and D′, where we put D = x1x2x3x4 and
D′ = x′1x

′
2x

′
3x

′
4, and suppose that Pi starts at vi, passes through xi, x

′
i in this order,

and ends at ui, for i = 1, 2, 3, 4. Then A′ satisfies all of the requirements of Lemma 16,
and hence A′ has disjoint xi − x′i+1 paths (or x′i − xi+1 paths) for all i = 1, 2, 3, 4.
Contracting edges on the subpaths of Pi between vi and xi, and x′i and ui, and edges
of A′ suitably, we obtain an antiprism with eight vertices, denoted by Π, which is
obtained from two cycles x1x2x3x4 and x′1x′2x′3x′4 of length 4 and joining xi to x′i and
x′i+1 for each i. (See the left of Figure 10.) Let Π̃ be the graph obtained from Π by
adding four edges x1x3, x2x4, x

′
1x

′
3, x

′
2x

′
4. Then, contracting two edges x′1x

′
3, x

′
2x

′
4, we

can transform Π̃ into K6. Since G contains Π̃ as a minor, G has a K6-minor. Hence
A must have an equator 4-cycle system.

5. Remark. Although Hadwiger’s conjecture forK6-minors is proved by Robert-
son, Seymour, and Thomas [12], the proof is quite lengthy. In this section, we give a
quick proof for the case where a given graph triangulates the Klein bottle. One may
be able to prove our setting with much careful case analysis. But on the other hand,
we do not see yet a very simple way to do it (within a half page proof), so we just
put our argument here, using our main result.

Proposition 17. Let n be a natural number. Every triangulation on the Klein
bottle containing no Kn-minor is (n− 1)-colorable.

For proving Proposition 17, we use the following lemma.
Lemma 18 (see [11]). Let G be a plane graph whose outer cycle C is a 4-cycle

and each of whose inner faces is triangular. A 4-coloring of C using precisely four
colors extends into a 5-coloring of G.

Proof of Proposition 17. It is easy to see that every triangulation on a nonspherical
surface has a Kn-minor for all n with 1 ≤ n ≤ 5. Moreover, every triangulation on N2

is known to be 6-colorable [4], and hence the proposition obviously holds when n ≥ 7.
Therefore, let us prove the case for n = 6.

By Theorem 7, if a triangulation G on N2 has no K6-minor, then G has two
equator 4-cycles C1 = v1v2v3v4 and C2 = u1u2u3u4 such that each Ci cuts off a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

108 K. KAWARABAYASHI, R. MUKAE, AND A. NAKAMOTO

Möbius triangulation (Mi, Ci) with [V (Ci)] = K4. Let A be the remaining annulus
triangulation. We first prove that A has a 5-coloring such that each of C1 and C2 is
colored by exactly four colors.

If C1 and C2 have an intersection in A, then we may suppose u1 = v1. On
the other hand, if C1 and C2 are disjoint, then we may suppose that v1 and u1

are not adjacent. (If such a nonadjacent pair of vertices cannot be chosen, then A
must contain a K4,4 with partite sets V (C1) and V (C2). Since K4,4 is not planar,
this is impossible, a contradiction.) Add edges v2v4 and u2u4 to transform A into a
triangulation, denoted by A′, on the sphere. By four color theorem, A′ has a 4-coloring
such that v2, v3, v4, and u2, u3, u4 have distinct three colors, respectively. Now, since
v1 and u1 are identical or nonadjacent, we can recolor v1 and u1 by a fifth color, and
hence we get a required 5-coloring of A.

Now it suffices to show thatM1 (andM2) is 5-colorable. We first color v1, v2, v3, v4
by four colors. Second, extend the 4-coloring to a 5-coloring of the two plane graphs
with boundary 4-cycles v1v2v4v3 and v2v3v1v4, using Lemma 18.

In each of M1,M2, A, the four vertices of the boundary 4-cycles are colored by
distinct four colors, and hence we can get a 5-coloring of G from these 5-colorings of
M1,M2, A after possibly permuting colors. Therefore, the proposition holds.

REFERENCES

[1] D. Barnette, Generating the triangulations of the projective plane, J. Combin. Theory Ser.
B, 33 (1982), pp. 222–230.

[2] P. C. Bonnington and A. Nakamoto, Geometric realization of a triangulation on the pro-
jective plane with one face removed, Discrete Comp. Geom., 40 (2008), pp. 141–157.

[3] M. DeVos, R. Hedge, K. Kawarabayashi, S. Norine, R. Thomas, and P. Wollan, K6-
Minors in Large 6-Connected Graphs, preprint.

[4] G. A. Dirac, Map-colour theorems, Canad. J. Math., 4 (1952), pp. 480–490.
[5] G. Fijavź and B. Mohar, K6-minors in projective planar graphs, Combinatorica, 23 (2003),

pp. 453–465.
[6] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljschr. Naturforsch. Ges.

Zürich, 88 (1943), pp. 133–142.
[7] L. K. Jørgensen, Contractions to K8, J. Graph Theory, 18 (1994), pp. 431–448.
[8] S. A. Lawrencenko, The irreducible triangulations on the torus, Ukrain. Geom. Sb., 30 (1987),

pp. 52–62.
[9] S. Lawrencenko and S. Negami, Irreducible triangulations of the Klein bottle, J. Combin.

Theory Ser. B, 70 (1997), pp. 265–291.
[10] W. Mader, Homomorphiesätze für graphen, Math. Ann., 178 (1968), pp. 154–168.
[11] R. Mukae and A. Nakamoto, K6-minors in triangulations and complete quadrangulations,

J. Graph Theory, to appear.
[12] N. Robertson, P. D. Seymour, and R. Thomas, Hadwiger’s conjecture for K6-free graphs,

Combinatorica, 13 (1993), pp. 279–361.
[13] E. Steinitz and H. Rademacher, Vorlesungen über die Theorie der Polyeder, Springer, Berlin,

1934.
[14] T. Sulanke, Note on the irreducible triangulations of the Klein bottle, J. Combin. Theory Ser.

B, 96 (2006), pp. 964–972.
[15] C. Thomassen, Planarity and duality of finite and infinite graphs, J. Combin. Theory Ser. B,

29 (1980), pp. 244–271.
[16] K. Wagner, Über eine eigenschaft der ebenen komplexe, Math. Ann., 114 (1937), pp. 570–590.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 109–122

MINIMIZING SONET ADMs IN UNIDIRECTIONAL WDM RINGS
WITH GROOMING RATIO SEVEN∗

CHARLES J. COLBOURN† , HUNG-LIN FU‡ , GENNIAN GE§ , ALAN C. H. LING¶, AND

HUI-CHUAN LU‖

Abstract. In order to reduce the number of add-drop multiplexers (ADMs) in SONET/WDM
networks using wavelength add-drop multiplexing, certain graph decompositions can be used to form
a “grooming” that specifies the assignment of traffic to wavelengths. When traffic among nodes
is all-to-all and uniform, the drop cost of such a decomposition is the sum, over all graphs in the
decomposition, of the number of vertices of nonzero degree in the graph. The number of ADMs
required is this drop cost. The existence of such decompositions with minimum cost, when every
pair of sites employs no more than 1

7
of the wavelength capacity, is determined within an additive

constant. Indeed when the number n of sites satisfies n ≡ 1 (mod 3) and n �= 19, the determination is
exact; when n ≡ 0 (mod 3), n �≡ 18 (mod 24), and n is large enough, the determination is also exact;
and when n ≡ 2 (mod 3) and n is large enough, the gap between the cost of the best construction
and the cost of the lower bound is independent of n and does not exceed 4.

Key words. traffic grooming, combinatorial designs, block designs, group-divisible designs,
optical networks, wavelength-division multiplexing

AMS subject classifications. 68M10, 68R05

DOI. 10.1137/070709141

1. Introduction. Traffic grooming in optical (SONET) rings arises from amal-
gamating C low rate signals onto a higher capacity wavelength [15, 25, 26]; C is the
grooming ratio. Nodes initiate or terminate traffic on a wavelength using an add-drop
multiplexer (ADM). Finding the minimum number of ADMs, A(C, n), required in an
n-node SONET ring with grooming ratio C, is equivalent to the following problem
in graphs [4]: Given a number of nodes n and a grooming ratio C, find a partition
of the edges of Kn into subgraphs B�, � = 1, . . . , s, with |E(B�)| ≤ C such that∑

1≤�≤s |V (B�)| is minimum.
Optimal constructions for given grooming ratio C have been obtained using tools

of graph and design theory [9]. Results are known for grooming ratio C = 3 [1], C = 4
[5, 23], C = 5 [3], C = 6 [2], C ≤ 1

6n(n− 1) [5], and for large values of C [5]. Related
problems have been studied for variable traffic requirements [8, 14, 22, 27, 29], for
fixed traffic requirements [1, 3, 4, 5, 15, 21, 23, 24, 25, 28, 30], and in the case of

∗Received by the editors November 23, 2007; accepted for publication June 20, 2008; published
electronically October 31, 2008.

http://www.siam.org/journals/sidma/23-1/70914.html
†Department of Computer Science and Engineering, Arizona State University, P. O. Box 878809,

Tempe, AZ 85287-8809 (colbourn@asu.edu).
‡Department of Applied Mathematics, National Chaio Tung University, Hsin Chu, Taiwan, Re-

public of China (hlfu@math.nctu.edu.tw). This author’s work has been partially funded by NSC-94-
2115-M009-017.

§Corresponding author. Department of Mathematics, Zhejiang University, Hangzhou 310027,
Zhejiang, People’s Republic of China (gnge@zju.edu.cn). This author’s work has been partially
funded by the National Outstanding Youth Science Foundation of China under grant 10825103, the
National Natural Science Foundation of China under grant 10771193, the Zhejiang Provincial Natural
Science Foundation of China, and the Program for New Century Excellent Talents in University.

¶Department of Computer Science, University of Vermont, Burlington, VT 05405 (aling@cems.
uvm.edu).

‖Center of General Education, National United University, Miaoli, Taiwan, Republic of China
(hht0936@seed.net.tw). This author’s work has been partially funded by NSC-96-2115-M239-002.

109

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

110 C. J. COLBOURN, H.-L. FU, G. GE, A. C. H. LING, AND H.-C. LU

bidirectional rings [10, 13]. The explicit correspondence between grooming and graph
decomposition is developed in detail in [1, 11].

In this paper we consider grooming with grooming ratio 7. In section 2 we employ
linear programming duality to establish a general lower bound on A(7, n). In section 3
we present a complete solution to the existence problem of 4-GDDs of types 24um1

and 84um1, which will be used for recursion in subsequent sections. In section 4 we
determine A(7, n) with the possible exception of n = 19 when n ≡ 1 (mod 3). When
n ≡ 0 (mod 3) (section 5) we determine A(7, n) with finitely many possible exceptions
except when n ≡ 18 (mod 24); in the latter case we establish a construction whose
cost exceeds the lower bound by 1. When n ≡ 2 (mod 3) (section 6) we develop a
set of constructions to establish that, with finitely many possible exceptions, the cost
does not exceed the lower bound by more than 4, independent of n.

It is natural to ask why the case when C = 7 is of independent interest. Unlike
all cases when C ≤ 6, the graph with the lowest ratio of number of vertices to number
of edges does not have C edges; rather it is K4, a 6-edge graph. This necessitates
consideration of decompositions that do not use the minimum number of graphs, and
hence determining the minimum number of wavelengths required is quite different
than determining the minimum drop cost.

2. The lower bounds. We adapt a strategy using linear programming from [12]
that was used in [11] to determine both the cost and the structure of certain optimal
groomings. A grooming with ratio 7 is a decomposition of Kn into subgraphs each
having at most 7 edges. Its drop cost, or just cost, is the sum of the numbers of vertices
of nonzero degree over all graphs in the decomposition. A(7, n) is the minimum drop
cost of a grooming of Kn with grooming ratio 7. Figure 1 displays all of the connected
graphs having at most 7 edges. The naming convention is as follows. For each number
q of edges and p of vertices, suppose that there are γq,p nonisomorphic graphs. These
are named G�,q,p for 1 ≤ � ≤ γq,p.

In a decomposition, let α�,q,p be the number of occurrences of G�,q,p, and let
αq,p =

∑γq,p

�=1 α�,q,p. Then because every edge appears in exactly one of the chosen
subgraphs,

(1)
7∑

q=1

8∑
p=1

γq,p∑
�=1

q · α�,q,p =
(
n

2

)
.

In order to minimize drop cost, we must compute

(2) min
7∑

q=1

8∑
p=1

γq,p∑
�=1

p · α�,q,p.

Figure 1 does not list disconnected graphs, but the cost of a disconnected graph
is the sum of the costs of its components, so all feasible decompositions are accounted
for. For every graph G�,q,p, we find that p

q ≥ 2
3 . Subtract 2

3 × (1) from (2) to restate
the minimum drop cost A(7, n) as

(3)
n(n− 1)

3
+ min

7∑
q=1

8∑
p=1

γq,p∑
�=1

(
p− 2

3
q

)
· α�,q,p.

In (3) the triple summation is always nonnegative; it can be zero only when all
graphs are isomorphic to K4. However, structural restrictions can prohibit such a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GROOMING WITH RATIO 7 111

Fig. 1. The graphs.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

112 C. J. COLBOURN, H.-L. FU, G. GE, A. C. H. LING, AND H.-C. LU

selection. In particular, considering the number
(
n
2

)
of edges modulo 6,

(4)
7∑

q=1

8∑
p=1

γq,p∑
�=1

(q mod 6) · α�,q,p ≡

⎧⎪⎪⎨
⎪⎪⎩

0 (mod 6) if n ≡ 0, 1, 4, 9 (mod 12),
1 (mod 6) if n ≡ 2, 11 (mod 12),
3 (mod 6) if n ≡ 3, 6, 7, 10 (mod 12),
4 (mod 6) if n ≡ 5, 8 (mod 12).

We can relax this congruence to linear inequalities. For example, if n ≡ 3, 6, 7, 10
(mod 12), then

(5)
8∑

p=1

⎡
⎣γ3,p∑

�=1

α�,3,p +
1
3

⎛
⎝ ∑

q∈{1,4,7}

γq,p∑
�=1

α�,q,p

⎞
⎠+

2
3

⎛
⎝ ∑

q∈{2,5}

γq,p∑
�=1

α�,q,p

⎞
⎠
⎤
⎦ ≥ 1,

because if there is no graph on three edges, there must be at least three graphs having
1 (mod 3) edges, or one having 1 (mod 3) edges and one having 2 (mod 3) edges.

Every vertex of Kn has degree congruent to n − 1 mod 3; placing a K4 in the
decomposition does not change this congruence class at any vertex, and hence sub-
graphs other than K4 may be needed to accommodate these vertex degrees. Let ω�,q,p

be the number of vertices whose degree is congruent to 1 modulo 3 in G�,q,p, and let
τ�,q,p be the number of vertices whose degree is congruent to 2 modulo 3. Now if
n ≡ 0 (mod 3), then every vertex has degree 2 modulo 3, and hence at every vertex
there must either be a graph itself having degree 2 modulo 3, or two graphs each
having degree 1 modulo 3 (there may be more). And if n ≡ 2 (mod 3), then every
vertex has degree 1 modulo 3, and hence at every vertex there must either be a graph
itself having degree 1 modulo 3, or two graphs each having degree 2 modulo 3. For
convenience we write φ�,q,p = 1

2ω�,q,p + τ�,q,p and ψ�,q,p = ω�,q,p + 1
2τ�,q,p. These are

tabulated for each graph in Figure 1. We conclude that

7∑
q=1

8∑
p=1

γq,p∑
�=1

φ�,q,p · α�,q,p ≥ n if n ≡ 0 (mod 3),

7∑
q=1

8∑
p=1

γq,p∑
�=1

ψ�,q,p · α�,q,p ≥ n if n ≡ 2 (mod 3).

(6)

Theorem 2.1. The cost of an optimal grooming of Kn with grooming ratio 7,
A(7, n), is at least

2
3

(
n
2

)
if n ≡ 1, 4 (mod 12),

2
3

(
n
2

)
+ 1 if n ≡ 7, 10 (mod 12),

2
3

(
n
2

)
+ � n

12� if n ≡ 0, 3, 6, 15, 18, 21 (mod 24),
2
3

(
n
2

)
+ � n

12�+ 1 if n ≡ 9, 12 (mod 24),

� 23
(
n
2

)
+ 2n

21 � if n ≡ 5, 8, 17 (mod 21)
or n ≡ 2, 23, 32, 53, 56, 77, 62, 83 (mod 84),

� 23
(
n
2

)
+ 2n

21 �+ 1 if n ≡ 14, 35, 20, 41, 44, 65, 74, 11 (mod 84).

Proof. We follow the strategy in [12]. Form a linear program whose variables are

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GROOMING WITH RATIO 7 113

the {α�,q,p}s,

(7)
min

7∑
q=1

8∑
p=1

γq,p∑
�=1

(p− 2
3q) · α�,q,p

subject to (4) suitably relaxed, (6), and nonnegativity of each variable.

If z� is the minimum, then the cost of any grooming must be at least � 23
(
n
2

)
+ z��,

since the cost is integral. By forming the dual of (7), any feasible solution to the dual
gives a lower bound on all primal feasible solutions, and hence a lower bound on z�.

Case 1. n ≡ 1 (mod 3): When n ≡ 1, 4 (mod 12), the linear program is con-
strained only by nonnegativity, and the dual optimum is 0. When n ≡ 7, 10 (mod 12),
(5) holds. Call its dual variable y1. An assignment y�

1 is dual feasible if y�
1 ≤ p − 2

for every graph G�,3,p; y�
1 ≤ 3

2 (p − 2
3q) for every graph G�,q,p with q ∈ {2, 5}; and

y�
1 ≤ 3(p − 2

3q) for every graph G�,q,p with q ∈ {1, 4, 7}. By considering the graphs
in Figure 1 the dual optimum of 1 occurs when y�

1 = 1. This raises the lower bound
by 1.

Case 2. n ≡ 0 (mod 3): Consider the inequality from (6), and let y2 be its dual
variable. Each graph G�,q,p leads to the dual inequality φ�,q,py2 ≤ p − 2

3q. The dual
optimum of n

12 arises when y�
2 = 1

12 ; the only graph whose dual inequality is binding is
G1,7,5 with φ1,7,5 = 4 and 5− 2

37 = 1
3 . We can compute the slackness of each variable;

for α�,q,p, the slackness is p − 2
3q − 1

12φ�,q,p. A unit increase in the variable α�,q,p

increases the dual objective function value by the slackness. The only variables with
slackness at most 1

2 are α2,7,5 with slackness 1
8 , α3,7,5 and α4,7,5 with slackness 1

4 , and
α1,5,4 with slackness 1

2 . Hence any decomposition of cost less than n
12 + 1

2 consists
solely of graphs in {G�,7,5}. To satisfy (6), α7,5 ≥ �n

4 �. If α7,5 ≥ n
4 +δ, then adjoining

this inequality with dual variable y3 yields a dual solution {y2 = 0, y3 = 1
3} of cost

n
12 + δ

3 , increasing the bound when δ ≥ 3. So �n
4 � ≤ α7,5 <

n
4 + 3. Because all of the

graphs in the decomposition have six or seven edges, α7,5 ≡ 0 (mod 3). Thus when
n ≡ 9, 12 (mod 24), α7,5 ≡ 3 (mod 6), violating (4). This increases the bound by 1
when n ≡ 9, 12 (mod 24).

Case 3. n ≡ 2 (mod 3): Again consider the inequality from (6), and let y2 be
its dual variable. Each graph G�,q,p leads to the dual inequality ψ�,q,py2 ≤ p − 2

3q.
The dual optimum of 2n

21 arises when y�
2 = 2

21 ; the only graph whose dual inequality is
binding is G1,7,5 with ψ1,7,5 = 7

2 and 5− 2
37 = 1

3 . We can compute the slackness of each
variable; for α�,q,p, the slackness is p− 2

3q− 2
21ψ�,q,p. The only variables with slackness

at most 4
7 are α2,7,5 and α3,7,5 with slackness 1

7 , α4,7,5 with slackness 2
7 , and α1,5,4

with slackness 4
7 . An increase of 4

7 would result in an increase in the integer ceiling
when n ≡ 2, 11, 14, 20 (mod 21), so in these cases we are restricted to K4s and graphs
in {G�,7,5} to meet the bound. To satisfy (6), α7,5 ≥ � 2n

7 �. If α7,5 ≥ 2n
7 + δ, then

adjoining this inequality with dual variable y3 yields a dual solution {y2 = 0, y3 = 1
3}

of cost 2n
21 + δ

3 , increasing the bound when δ ≥ 3. So � 2n
7 � ≤ α7,5 <

2n
7 + 3. Because

all of the graphs in the decomposition have six or seven edges, α7,5 ≡ 1 (mod 3).
Thus when n = 21s+ x for x ∈ {2, 11, 14, 20}, α7,5 = 6s+ 1, 6s+ 4, 6s + 4, 6s+ 7,
respectively. This violates (4) precisely when n ≡ 44, 65; 11, 74; 14, 35; 20, 41 (mod 84),
increasing the bound by 1 in these cases.

We denote by L(7, n) the lower bound prescribed by Theorem 2.1.

3. Group divisible designs with block size four. A group divisible design
(GDD) is a triple (X,G,B), whereX is a set of points, G is a partition ofX into groups,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

114 C. J. COLBOURN, H.-L. FU, G. GE, A. C. H. LING, AND H.-C. LU

and B is a collection of subsets of X called blocks such that any pair of distinct points
from X occur together either in some group or in exactly one block, but not both. A
K-GDD of type gu1

1 gu2
2 · · · gus

s is a GDD in which every block has size from the set K
and in which there are ui groups of size gi, i = 1, 2, . . . , s.

A group divisible design (X,G,B) is resolvable if its block set B admits a partition
into parallel classes, each parallel class being a partition of the point set X .

A pairwise balanced design (PBD) with parameters (K; v) is a K-GDD of type 1v.
The interested reader may refer to [6, 9] for the undefined terms as well as a

general overview of design theory. The main recursive construction that we use is
Wilson’s fundamental construction (WFC) for GDDs (see, e.g., [9]).

Construction 3.1. Let (X,G,B) be a GDD, and let w : X → Z+ ∪ {0} be a
weight function on X. Suppose that for each block B ∈ B, there exists a K-GDD of
type {w(x) : x ∈ B}. Then there is a K-GDD of type {∑x∈Gw(x) : G ∈ G}.

A double group divisible design (DGDD) is a quadruple (X,H,G,B), where X is
a set of points, H and G are partitions of X (into holes and groups, respectively), and
B is a collection of subsets of X (blocks) such that

(i) for each block B ∈ B and each hole H ∈ H, |B ∩H | ≤ 1, and
(ii) any pair of distinct points from X which are not in the same hole occur either

in some group or in exactly one block, but not both.
A K-DGDD of type (g1, hv

1)
u1(g2, hv

2)
u2 · · · (gs, h

v
s)us is a DGDD in which every block

has size from the set K and in which there are ui groups of size gi, each of which
intersects each of the v holes in hi points. (Thus, gi = hiv for i = 1, 2, . . . , s. Not
every DGDD can be expressed this way, of course, but this is the most general type
that we require.) Thus, for example, a modified group divisible design (MGDD) K-
MGDD of type gu is a K-DGDD of type (g, 1g)u. A k-DGDD of type (g, hv)k is an
incomplete transversal design (ITD) ITD(k, g;hv) and is equivalent to a set of k − 2
holey MOLS of type hv (see, e.g., [9]). A DGDD is resolvable if its block set admits
a partition into parallel classes. We use the following existence result.

Theorem 3.2 (see [20]). There exists a 4-DGDD of type (mt,mt)n if and only
if t, n ≥ 4 and (t− 1)(n− 1)m ≡ 0 (mod 3) except for (m,n, t) = (1, 4, 6) and except
possibly for m = 3 and (n, t) ∈ {(6, 14), (6, 15), (6, 18), (6, 23)}.

We also make use of the following simple construction for 4-GDDs.
Construction 3.3 (see [19]). Suppose that there is a 4-DGDD of type (g1, hv

1)
u1

(g2, hv
2)u2 · · · (gs, h

v
s)us and that for each i = 1, 2, . . . , s there is a 4-GDD of type hv

i a
1

where a is a fixed nonnegative integer. Then there is a 4-GDD of type hva1, where
h =

∑s
i=1 uihi.

The following results on transversal designs (TDs) are known.
Theorem 3.4. A TD(k,m) exists if
1. k = 5 and m ≥ 4 and m /∈ {6, 10},
2. k = 6 and m ≥ 5 and m /∈ {6, 10, 14, 18, 22},
3. k = 7 and m ≥ 7 and m /∈ {10, 14, 15, 18, 20, 22, 26, 30, 34, 38, 46, 60, 62}.

Finally, we employ the following results on 4-GDDs.
Theorem 3.5 (see [9, IV.4, Theorem 4.8]). A 4-GDD of type 3um1 exists if and

only if either u ≡ 0 mod 4 and m ≡ 0 mod 3, 0 ≤ m ≤ (3u − 6)/2; or u ≡ 1 mod 4
and m ≡ 0 mod 6, 0 ≤ m ≤ (3u − 3)/2; or u ≡ 3 mod 4 and m ≡ 3 mod 6,
0 < m ≤ (3u− 3)/2.

Theorem 3.6 (see [17, Theorem 1.7]). There exists a 4-GDD of type g4m1 with
m > 0 if and only if g ≡ m ≡ 0 mod 3 and 0 < m ≤ 3g

2 .
Theorem 3.7 (see [18, Theorem 1.6]). There exists a 4-GDD of type 6um1 for

every u ≥ 4 and m ≡ 0 mod 3 with 0 ≤ m ≤ 3u − 3 except for (u,m) = (4, 0)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GROOMING WITH RATIO 7 115

and except possibly for (u,m) ∈ {(7, 15), (11, 21), (11, 24), (11, 27), (13, 27), (13, 33),
(17, 39), (17, 42), (19, 45), (19, 48), (19, 51), (23, 60), (23, 63)}.

Theorem 3.8 (see [16, Theorem 3.16]). There exists a 4-GDD of type 12um1

for each u ≥ 4 and m ≡ 0 mod 3 with 0 ≤ m ≤ 6(u− 1).
Theorem 3.9 (see [16, Theorem 5.21]). There exists a 4-GDD of type 2um1 for

each u ≥ 6, u ≡ 0 mod 3 and m ≡ 2 mod 3 with 2 ≤ m ≤ u − 1 except for (u,m) =
(6, 5) and except possibly for (u,m) ∈ {(21, 17), (33, 23), (33, 29), (39, 35), (57, 44)}.

3.1. g ∈ {24, 84}.
Lemma 3.10. For each u ≥ 4, u /∈ {7, 11, 13, 17, 19, 23}, there exists a 4-GDD of

type 24um1 with m ≡ 0 mod 3 and 0 ≤ m ≤ 12(u− 1).
Proof. For u = 4, see Theorem 3.6. For each u ≥ 5, u /∈ {7, 11, 13, 17, 19, 23},

take a 4-GDD of type 6uv1 with v ≡ 0 mod 3 and 0 ≤ v ≤ 3(u− 1), and remove the
points on the last group of size v; apply weight 4, using 4-MGDDs of type 44 and
resolvable {3}-MGDDs of type 43, to obtain a {3, 4}-DGDD of type (24, 64)u whose
triples fall into 3v parallel classes. Adjoin 3v infinite points to complete the parallel
classes, and then fill in 4-GDDs of type 6ut1 with t ≡ 0 mod 3 and 0 ≤ t ≤ 3(u− 1)
to obtain a 4-GDD of type 24u(3v + t)1, as desired.

Lemma 3.11. For each u ∈ {7, 11, 13, 17, 19, 23}, there exists a 4-GDD of type
24um1 with m ≡ 0 mod 3 and 3(u− 1) ≤ m ≤ 12(u− 1).

Proof. For each u, start with a TD(5, u) and adjoin an infinite point ∞ to the
groups; then delete a finite point in order to form a {5, u + 1}-GDD of type 4uu1.
Note that each block of size u+1 intersects the group of size u in the infinite point∞
and each block of size 5 intersects the group of size u, but certainly not in ∞. Now,
in the group of size u, we give ∞ weight 0 or 3(u− 1) and give the remaining points
weight 3, 6, or 9. Give all other points in the {5, u+ 1}-GDD weight 6. Replace the
blocks in the {5, u + 1}-GDD by 4-GDDs of types 6u, 6u(3(u − 1))1, 6431, 6461, or
6491 to obtain the 4-GDDs, as desired.

Lemma 3.12. For each u ∈ {7, 11, 13, 17, 19, 23}, there exists a 4-GDD of type
24um1 with m ≡ 0 mod 3 and 0 ≤ m ≤ 3(u− 2).

Proof. Starting from a 4-DGDD of type (24, 64)u coming from Theorem 3.2 and
applying Construction 3.3 with 4-GDDs of type 6um1 to fill in holes, we obtain most
of the designs except for (u,m) ∈ {(7, 15), (11, 21), (11, 24), (11, 27), (13, 27), (13, 33),
(17, 39), (17, 42), (19, 45), (19, 48), (19, 51), (23, 60), (23, 63)}.

For the remaining choices for (u,m), take a 4-GDD of type 6u31 and remove the
points of the last group of size 3; apply weight 4, using 4-MGDDs of type 44 and
resolvable {3}-MGDDs of type 43, to obtain a {3, 4}-DGDD of type (24, 64)u whose
triples fall into 9 parallel classes. Adjoin m−9 infinite points to complete the parallel
classes and then fill in 4-GDDs of type 6u(m− 9)1.

Combining Lemmas 3.10–3.12, we have the following theorem.
Theorem 3.13. There exists a 4-GDD of type 24um1 for each u ≥ 4 and

m ≡ 0 mod 3 with 0 ≤ m ≤ 12(u− 1).
Theorem 3.14. There exists a 4-GDD of type 84um1 for each u ≥ 4 and

m ≡ 0 mod 3 with 0 ≤ m ≤ 42(u− 1).
Proof. The proof is similar to that of Lemma 3.10. For each u, take a 4-GDD

of type 12uv1 with v ≡ 0 mod 3 and 0 ≤ v ≤ 6(u − 1), and remove the points on
the last group of size v; apply weight 7, using 4-MGDDs of type 74 and resolvable
{3}-MGDDs of type 73, to obtain a {3, 4}-DGDD of type (84, 127)u whose triples fall
into 6v parallel classes. Adjoin 6v infinite points to complete the parallel classes, and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

116 C. J. COLBOURN, H.-L. FU, G. GE, A. C. H. LING, AND H.-C. LU

then fill in 4-GDDs of type 12ut1 with t ≡ 0 mod 3 and 0 ≤ t ≤ 6(u− 1) to obtain a
4-GDD of type 84u(6v + t)1, as desired.

4. Constructions: n ≡ 1 (mod 3). We settle the small cases first.
Lemma 4.1. A(7, n) = L(7, n) for n ∈ {4, 7}.
Proof. The lower bound is met for n = 4 by a single K4. The lower bound is

realized when n = 7: Let V = {∞}∪{0, . . . , 5}, and form the three G1,7,5s {{i, i+3},
{i, i+ 1}, {i, i+ 4}, {i+ 1, i+ 3}, {i+ 3, i+ 4}, {∞, i}, {∞, i+ 3}} for i ∈ {0, 1, 2},
arithmetic modulo 6.

Lemma 4.2. A(7, 10) = L(7, 10) + 1 = 32.
Proof. The lower bound of 31 is not met. To see this, the only primal variables

with slackness at most 1
3 are for {G�,7,5}. But 6x+ 7y = 45 and 4x+ 5y = 31 admits

only the solution x = 4 and y = 3, i.e., four K4s and three graphs from {G�,7,5}. There
is a unique way to place four K4s in a K10, and its complement does not partition into
three graphs from {G�,7,5}. To produce a decomposition of cost 32, on the 10 points
{0, . . . , 9} form K4s on {0, 1, 2, 3} and {0, 4, 5, 6}, and form the graphs

G2,7,5 {{2, 4}, {2, 5}, {2, 7}, {2, 9}, {4, 7}, {5, 7}, {4, 9}},
G3,7,5 {{3, 9}, {5, 9}, {6, 9}, {7, 9}, {3, 6}, {3, 7}, {6, 7}},
G4,7,5 {{3, 4}, {3, 5}, {3, 8}, {4, 8}, {5, 8}, {1, 4}, {1, 5}},
G4,7,5 {{0, 7}, {0, 8}, {0, 9}, {7, 8}, {8, 9}, {1, 7}, {1, 9}},
G1,5,4 {{1, 8}, {1, 6}, {2, 8}, {2, 6}, {6, 8}}.

Lemma 4.3. L(7, 19) + 1 ≤ A(7, 19) ≤ L(7, 19) + 2 = 117.
Proof. The lower bound of 115 cannot be met. A maximum packing on 19 points

has 25 K4s [7]. Consider the linear program using (5). Using slackness, the only way
to achieve a dual objective value of 1 in such a way that at least 21 =

(
19
2

)−25 ·6 edges
do not appear in K4s is to use three graphs in {G�,7,5}. There are 249 nonisomorphic
graphs that can be left by a maximum packing of 25 K4s in K19 [2]. G3,7,5 cannot
be used because it contains a K4, and the 25 K4s form a maximum packing. Of the
249 graphs, 79 have degree sequence 314, 122 have degree sequence 61312, and 48 have
degree sequence 62310. In order to use a G1,7,5 there must be at least five vertices of
degree 6 or larger; and for G2,7,5 there must be at least three. Hence both are ruled
out and the only possibility is three G4,7,5s. This case can be eliminated by a simple
computer search. Thus the drop cost cannot be 115. A solution with drop cost 117
follows:

24 K4’s: {0, 1, 2, 4}, {0, 3, 5, 6}, {0, 7, 8, 9}, {0, 10, 11, 12}, {0, 13, 14, 15},
{0, 16, 17, 18}, {1, 3, 7, 10}, {1, 5, 8, 11}, {1, 6, 13, 16}, {1, 9, 14, 17},
{1, 12, 15, 18}, {2, 3, 8, 15}, {2, 5, 9, 18}, {2, 6, 10, 17}, {2, 7, 12, 13},
{2, 11, 14, 16}, {3, 4, 14, 18}, {3, 9, 12, 16}, {4, 5, 12, 17}, {4, 6, 9, 15},
{5, 10, 15, 16}, {6, 7, 11, 18}, {6, 8, 12, 14}, {8, 10, 13, 18}

one G2,7,5: {{3, 11}, {3, 13}, {3, 17}, {11, 15}, {11, 17}, {13, 17}, {15, 17}}
two G4,7,5: {{4, 7}, {4, 8}, {4, 16}, {7, 16}, {7, 17}, {8, 16}, {8, 17}} and

{{4, 10}, {4, 11}, {4, 13}, {9, 10}, {9, 11}, {9, 13}, {11, 13}}
one G7,6,6: {{5, 7}, {5, 13}, {5, 14}, {7, 14}, {7, 15}, {10, 14}}.

Theorem 4.4. When n ≡ 1 (mod 3) and n /∈ {10, 19}, A(7, n) = L(7, n).
Moreover, A(7, 10) = L(7, 10) + 1 and L(7, 19) + 1 ≤ A(7, 19) ≤ L(7, 19) + 2.

Proof. When n ≡ 1, 4 (mod 12), there is a 4-GDD of type 1n with drop cost
L(7, n). When n ≡ 7, 10 (mod 12) and n /∈ {10, 19}, there is a 4-GDD of type
1n−771 [7]; fill the hole with a solution from Lemma 4.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GROOMING WITH RATIO 7 117

5. Constructions: n ≡ 0 (mod 3). The lower bound is met for n = 3 by a
single K3.

Lemma 5.1. A(7, 6) = L(7, 6) + 1 = 12.
Proof. The lower bound of 11 is not met. A decomposition of cost 12 can be

produced as follows:

G2,7,5 {{0, 1}, {0, 2}, {0, 4}, {0, 5}, {1, 4}, {1, 5}, {2, 4}},
G2,7,5 {{1, 2}, {1, 3}, {2, 3}, {2, 5}, {3, 4}, {3, 5}, {4, 5}},
G1,1,2 {{0, 3}}.

Lemma 5.2. A(7, 9) = L(7, 9) + 1 = 27.
Proof. The lower bound of 26 is not met for n = 9 as follows. There can be

at most three K4s on nine points. If there are zero, then at least six graphs are
needed, each having a slackness of at least 1

3 ; because the total increase in the dual
objective function is 2, all of the graphs must be from {G�,7,5} and cannot account
for 36 edges. In the same manner, with one K4, 30 edges must be accounted for by
graphs in {G�,7,5}, each with a slackness of 1

3 and G1,5,4 with a slackness of 2
3 ; again

this is not possible as 25 is not a multiple of 7. There remain cases with two or three
K4s; each can be eliminated by an exhaustive search.

A decomposition of cost 27 using graphs on at most six edges is given in [2]. We
give a different solution here:

G1,7,5 {{0, 7}, {0, 8}, {1, 7}, {1, 8}, {2, 7}, {2, 8}, {7, 8}},
G4,7,5 {{0, 4}, {0, 5}, {0, 6}, {1, 4}, {1, 5}, {1, 6}, {4, 5}},
G4,7,5 {{2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5}, {3, 6}, {4, 6}},
G4,7,5 {{4, 7}, {4, 8}, {5, 6}, {5, 7}, {5, 8}, {6, 7}, {6, 8}},
G1,6,4 {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}},
G1,2,3 {{3, 7}, {3, 8}}.

Lemma 5.3. A(7, 15) = L(7, 15) = 72.
Proof. Start with a Kirkman triple system of order 9 on {0, . . . , 8}, in which the

first parallel class is {B0, B1, B2}. Then adjoin points {x0, x1, x2, y0, y1, y2}. Form
nine K4s by adding yi to each block of the (i + 2)nd parallel class. For i ∈ {0, 1, 2},
form a K4 on {xi+2} ∪Bi and a G1,7,5 in which the degree 4 vertices are xi and xi+1

and the degree 2 vertices are the elements of Bi. Form a K4 on {x2, y0, y1, y2}. What
remains is a G3,6,5.

Lemma 5.4. A(7, 18) ≤ L(7, 18) + 1 = 105.
Proof. Form a 4-GDD of type 35 with groups {Bj : j = 0, 1, 2, 3, 4}. Then adjoin

points {x0, x1, x2}. For i ∈ {0, 1, 2}, form a G1,7,5 by using the edge {xi, xi+1 mod 3},
join these vertices to each vertex in Bi, and form a K4 by adding xi+2 mod 3 to Bi.
For i ∈ {3, 4}, form a G3,6,5 by joining the vertices x0 and x1 to vertices in Bi, and
form a K4 by adding x2 to Bi. This decomposition is of cost 105.

Lemma 5.5. A(7, 24) = L(7, 24) = 186.
Proof. We give the solution on {0, 1, 2, 3, 4, 5, 6, 7} × Z3, writing element (i, j)

as ij .

(00, 01, 10, 42), (00, 11, 50, 61), (00, 20, 31, 32), (00, 21, 51, 52),
(00, 22, 70, 72), (00, 60, 62, 71), (10, 11, 21, 70), (10, 22, 51, 61),
(10, 31, 50, 71), (10, 32, 41, 62), (20, 21, 42, 61), (30, 50, 62, 72),
(40, 41, 52, 72), (30, 40 : 00, 10, 20), (30, 41 : 51, 61, 71).

The latter two orbits are graphs isomorphic to G1,7,5.
Theorem 5.6. A(7, n) = L(7, n) when n ≡ 0 (mod 3), n �≡ 18 (mod 24), and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

118 C. J. COLBOURN, H.-L. FU, G. GE, A. C. H. LING, AND H.-C. LU

1. n ≥ 96 when n ≡ 0, 3, 6, 9, 15 (mod 24);
2. n ≥ 276 when n ≡ 12 (mod 24);
3. n ≥ 309 when n ≡ 21 (mod 24).

L(7, n) ≤ A(7, n) ≤ L(7, n) + 1 when n ≡ 18 (mod 24) and n ≥ 114.
Proof. If m = n mod 24 ∈ {0, 3, 6, 9, 15, 18} and n ≥ 96, form a 4-GDD of type

24(n−m)/24m1 from Theorem 3.13; place optimal groomings from Lemma 5.5 on each
group of size 24 and an optimal grooming of size m on the exceptional group (from
Lemmas 5.1, 5.2, or 5.3 when m = 6, 9, 15, respectively). When m = 18, use the
grooming from Lemma 5.4, missing the lower bound by 1. When m = 6, reduce the
drop cost by 1 by amalgamating the single edge from this grooming with a K4 of the
4-GDD to form a G3,7,5. When m = 9, reduce the drop cost by 1 by amalgamating
both edges of the G1,3,2 of this grooming with K4s of the 4-GDD to form G3,7,5s.

When m = n mod 24 = 12, form a 4-GDD of type 204 and add four infinite points.
On each group, together with the four infinite points, place an optimal grooming from
Lemma 5.5 aligning a K4 on the four infinite points. Suppress the duplicate K4s so
produced. This establishes that L(7, 84) = A(7, 84). Then filling groups in a 4-GDD
of type 24t841 establishes that A(7, 24t+ 84) = L(7, 24t+ 84) when t ≥ 8, i.e., for all
n ≥ 276.

When m = n mod 24 = 21, form a 4-GDD of type 234 and add one infinite
point. On each group, together with the infinite point, place an optimal grooming
from Lemma 5.5. This establishes that L(7, 93) = A(7, 93). Then filling groups in a
4-GDD of type 24t931 establishes that A(7, 24t + 93) = L(7, 24t + 93) when t ≥ 9,
i.e., for all n ≥ 309.

6. Constructions: n ≡ 2 (mod 3).
Lemma 6.1. A(7, n) = L(7, n) for n ∈ {5, 8}.
Proof. For K5, note that G1,7,5 ≡ K5 \K3. Partition K8 is as follows:

G1,7,5 {{0, 1}, {0, 2}, {0, 3}, {0, 4}, {1, 2}, {1, 3}, {1, 4}},
G1,7,5 {{6, 7}, {6, 2}, {6, 3}, {6, 4}, {7, 2}, {7, 3}, {7, 4}},
G3,7,5 {{1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}},
G4,7,5 {{1, 6}, {1, 7}, {0, 5}, {0, 6}, {0, 7}, {5, 6}, {5, 7}}.

Lemma 6.2. A(7, 11) = L(7, 11) = 39.
Proof. Partition K11 on {∞1,∞2} ∪ (Z3 × Z3) as follows. Include the K4

{∞2, 02, 12, 22}. Form three G2,7,5s as {{i0, (i + 1)1}, {i0, (i + 2)1}, {i0, (i + 1)2},
{i0, (i+2)2}, {(i+1)1, (i+2)1}, {(i+1)1, (i+2)2}, {(i+2)1, (i+1)2}} for i ∈ {0, 1, 2}.
Then include three G3,7,5s as {{∞1, i0}, {∞1, i1}, {∞1, i2}, {i0, i1}, {i0, i2}, {i1, i2},
{∞2, i1}} for i ∈ {0, 1, 2}. Include one last G3,7,5: {{∞1,∞2}, {∞2, 00}, {∞2, 10},
{∞2, 20}, {00, 10}, {00, 20}, {10, 20}}.

Lemma 6.3. A(7, 17) ≤ L(7, 17) + 1 = 94.
Proof. Start with an S(2, 4, 16) on Z15 ∪ {∞} with blocks {i, i+ 1, i + 3, i + 7}

for i ∈ Z15 and {∞, i, i+ 5, i+ 10} for i ∈ {0, 1, 2, 3, 4}. We adjoin a new point α and
modify six of the blocks in the first orbit as follows:

Block Remove Add
{5, 6, 8, 12} {8, 12} {α, 5}, {α, 8}
{7, 8, 10, 14} {8, 14} {α, 7}, {α, 10}
{0, 8, 9, 11} {0, 8} {α, 0}, {α, 9}
{3, 11, 12, 14} {12, 14} {α, 3}, {α, 12}
{0, 4, 12, 13} {0, 12} {α, 4}, {α, 13}
{0, 2, 6, 14} {0, 14} {α, 2}, {α, 14}

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GROOMING WITH RATIO 7 119

Now add the K4 on {0, 8, 12, 14}. Then delete the K4 on {∞, 1, 6, 11}; on {α,∞, 1,
6, 11}, place a K3 and a G1,7,5. The result has 14 K4s, one K3, and seven graphs in
{G�,7,5}.

Lemma 6.4. When n ≡ 2 (mod 6) and n ≥ 14, A(7, n) ≤ 2
3

(
n
2

)
+ n

6 =
2
3

(
n
2

)
+ 2n

21 + n
14 .

Proof. Write h = n
2 . When h ≡ 1 (mod 3) and h ≥ 7, a 4-GDD of type 2h

exists by Theorem 3.9. It has h groups and h(h−1)
3 blocks. For each group, choose a

distinct block containing one point of the group (this is an easy exercise using systems
of distinct representatives). Then adjoin the pair of each group to its corresponding
block to obtain a G3,7,5.

Lemma 6.5. When n ≡ 5 (mod 6) and n ≥ 23, A(7, n) ≤ 2
3

(
n
2

)
+ 2n

21 + n+7
14 .

Proof. Write h = n−5
2 . When h ≡ 0 (mod 3) and h ≥ 9, a 4-GDD of type 2h51

exists by Theorem 3.9. For each group of size 2, choose a distinct block containing
one point of the group and adjoin the pair of each group to its corresponding block to
obtain a G3,7,5. Then fill the group of size 5 using a solution from Lemma 6.1.

In order to treat larger cases, we now develop a recursion.
Lemma 6.6. There exists a decomposition of K21 into nine partial parallel classes

of K3s and six G1,7,5s.
Proof. We present a solution on {0, 1, . . . , 20} with rows as partial parallel classes:

0 2 13 1 12 15 9 14 17 3 10 20 4 5 19 7 11 16 6 8 18
0 18 20 1 2 16 11 17 19 3 12 13 4 7 8 6 9 10 5 14 15
0 1 11 13 17 18 3 9 16 4 12 14 7 10 19 2 5 6
0 3 5 1 8 17 4 13 16 7 9 20 6 11 15 2 10 14
0 8 14 1 5 20 2 3 17 4 10 15 6 13 19 11 12 18
0 9 15 1 13 14 3 18 19 4 6 20 2 7 12 5 8 16
0 10 16 1 9 19 12 17 20 3 8 15 2 4 11 5 7 18
0 12 19 1 10 18 15 16 17 6 7 14 2 8 9 11 13 20
5 10 17 3 11 14 4 9 18 7 13 15 6 12 16 8 19 20.

The remaining edges partition into six G1,7,5s: {{7i+j, 7i+j+2}, {7i+j, 7i+4},
{7i+j, 7i+5}, {7i+j, 7i+6}, {7i+j+2, 7i+4}, {7i+j+2, 7i+5}, {7i+j+2, 7i+6}}
for j ∈ {0, 1} and i ∈ {0, 1, 2}.

We denote byX(n) the excess over the lower bound, i.e., X(n) = A(7, n)−L(7, n).
Theorem 6.7. Let (V,G,B) be a resolvable group-divisible design of type 7n, in

which the blocks of B are partitioned into parallel classes P1, . . . ,Ps, and for 1 ≤ i ≤ s
every block of Pi has size ki. Suppose that, for 1 ≤ i ≤ s, a 4-GDD of type 3kiσ1

i

exists, and that
∑s

i=1 σi > 0. Then

A

(
7, 21n+ 8 +

s∑
i=1

σi

)
≤ L

(
7, 21n+ 8 +

s∑
i=1

σi

)
+X

(
8 +

s∑
i=1

σi

)
.

Proof. Suppose, without loss of generality, that σ1 > 0. Give weight three to
each point of the GDD (V,G,B). For 2 ≤ i ≤ s, adjoin σi new infinite points,
and place a 4-GDD of type 3kiσ1

i on the inflation of each block of Pi together with
these infinite points. Then proceed similarly for P1, but adding only σ1 − 1 infinite
points; in the 4-GDD, delete one point in the group of size σ1 to form a {3, 4}-GDD
of type 3k1(σ1 − 1)1 in which the blocks of size three form a (frame) parallel class
on the 3ki points. On each inflation of a group form a copy of the 21-point design
from Lemma 6.6. The nine partial parallel classes of blocks of size 3 formed can be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

120 C. J. COLBOURN, H.-L. FU, G. GE, A. C. H. LING, AND H.-C. LU

completed to nine parallel classes on the 21n points using the triples from the {3, 4}-
GDDs. Finally, add nine further infinite points and extend each of the nine parallel
classes to K4s using these infinite points. The resulting design has a hole on the
8 +

∑s
i=1 σi infinite points added in total, which can be filled with a solution of cost

A(7, 8 +
∑s

i=1 σi).
Corollary 6.8.

1. X(92) ≤ X(29).
2. For n ∈ {11, 14, 17, 20, 23, 26, 29}, X(84 + n) ≤ X(n).
3. For n ∈ {14, 20, 26, 32, 38, 44, 50}, X(105 + n) ≤ X(n).
4. For 29 ≤ n ≤ 71 and n ≡ 2 (mod 3), X(147 + n) ≤ X(n).

Proof. Apply Theorem 6.7 using an RTD(k, 7) with k = 3, 4, 5, 7 as a resolvable
GDD of type 7k with s = 7 and k1 = · · · = k7 = k.

Corollary 6.9.

1. For 29 ≤ n ≤ 80 and n ≡ 2 (mod 3), X(168 + n) ≤ X(n).
2. For 32 ≤ n ≤ 92 and n ≡ 2 (mod 6), X(189 + n) ≤ X(n).
3. For 41 ≤ n ≤ 107 and n ≡ 5 (mod 6), X(231 + n) ≤ X(n).
4. For 44 ≤ n ≤ 134 and n ≡ 2 (mod 6), X(273 + n) ≤ X(n).
5. For 53 ≤ n ≤ 164 and n ≡ 2 (mod 3), X(336 + n) ≤ X(n).

Proof. Apply Theorem 6.7 using an RTD(7, n) with n = 8, 9, 11, 13, 16 as a
resolvable GDD of type 7n with s = n and k1 = · · · = kn−1 = 7 and kn = n.

Theorem 6.10. For x ≥ 4, 0 ≤ m ≤ 42(x − 1), m ≡ 0 (mod 3), and r ∈
{11, 14, 17, 20, 23, 26, 29},

A(7, 84x+m+ r) ≤ L(7, 84x+m+ r) +X(m+ r).

Equivalently, X(84x+m+ r) ≤ X(m+ r).
Proof. Form a 4-GDD of type 84xm1 from Theorem 3.14. Adjoin r infinite points,

and place a solution on each group of size 84 together with the r points, leaving a
hole on the r points (from Corollary 6.8(2.)). On the m + r points, place a solution
with excess X(m+ r).

Theorem 6.11. For m ≡ 2 (mod 3) and 2 ≤ m ≤ 83, L(7, 84x + m) ≤
A(7, 84x+m) ≤ L(7, 84x+m)+X(84x+m), where X(84x+m) is given in Table 1 (us-
ing the final bold entry for X(84x+m) in the row for m when the table does not provide
a value). In particular, A(7, 84x+m) ≤ L(7, 84x+m) + 4 when 84x+m > 1094.

Proof. Apply Lemmas 6.1, 6.2, and 6.3 for x = 0 and m ∈ {5, 8, 11, 17}; then
apply Lemmas 6.4 and 6.5 to provide an upper bound on X(84x + m) in general.
Now apply Corollaries 6.8 and 6.9 to improve these upper bounds. Finally, apply
Theorem 6.10.

7. Conclusions. Grooming with ratio 7 corresponds to the smallest ratio C
for which optimal groomings do not consist primarily of C-edge graphs. Conse-
quently, optimal grooming focuses on packings with K4s in this case. Despite this,
the structures of the edges not appearing in K4s appear to exhibit patterns that re-
peat modulo 12, 24, and 84 when n ≡ 1, 0, 2 (mod 3), respectively. In the latter
case, techniques for constructing optimal groomings in all cases would necessitate
the direct construction of many “small” groomings. Therefore in this paper, we
have instead found near-optimal groomings in which the construction deviates from
the lower bound by a fixed constant independent of n. When n ≡ 0, 1 (mod 3),
much more complete characterizations are given. Our conjecture is that, with few
small exceptions, the lower bound proved here provides the correct cost of an optimal
grooming.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GROOMING WITH RATIO 7 121

Table 1

Least excesses for 84x + m.

x
m 0 1 2 3 4 5 6 7 8 9 10 11 12 13
2 1 6 12 18 2 6 6 6 6 6 6 6 6 2
5 0 6 12 4 4 6 6 6 6 6 4
8 0 2 2 18 24 2
11 0 0 12 4 0
14 0 0 2 18 0
17 1 1 13 5 1
20 0 0 2 2 0
23 2 2 14 6 2
26 1 1 3 3 1
29 2
32 2 8 2 4 2
35 2 0 2 20 0
38 2 8 2 4 2
41 2 0 2 20 0
44 2 8 2 4 2
47 3 1 3 21 1
50 3 9 3 5 3
53 4 2 2 22 4 2
56 4 10 4 6 4
59 4 2 2 22 4 2
62 4 10 4 6 4
65 4 2 2 2 4 2
68 4 10 4 6 4
71 5 3 3 3 5 3
74 4 10 4 0 4 4 4 4 4 4 4 4 0
77 6 12 4 4 6 6 6 6 6 4
80 5 11 5 1 5 5 5 5 5 5 5 5 1
83 6 12 4 4 6 6 6 6 6 4

REFERENCES

[1] J.-C. Bermond and S. Ceroi, Minimizing SONET ADMs in unidirectional WDM ring with
grooming ratio 3, Networks, 41 (2003), pp. 83–86.

[2] J.-C. Bermond, C. J. Colbourn, D. Coudert, G. Ge, A. C. H. Ling, and X. Muñoz,
Traffic grooming in unidirectional wavelength-division multiplexed rings with grooming
ratio C = 6, SIAM J. Discrete Math., 19 (2005), pp. 523–542.

[3] J.-C. Bermond, C. J. Colbourn, A. C. H. Ling, and M.-L. Yu, Grooming in unidirectional
rings: K4 − e designs, Discrete Math., 284 (2004), pp. 57–62.

[4] J.-C. Bermond and D. Coudert, Traffic grooming in unidirectional WDM ring networks using
design theory, in Proceedings of the IEEE ICC, Anchorage, AK, 2003, pp. 1402–1406.

[5] J.-C. Bermond, D. Coudert, and X. Muñoz, Traffic grooming in unidirectional WDM ring
networks: The all-to-all unitary case, in Proceedings of the 7th IFIP Working Conference
on Optical Network Design & Modelling – ONDM’03, 2003, pp. 1135–1153.

[6] T. Beth, D. Jungnickel, and H. Lenz, Design Theory, Bibliographisches Institut, Mannheim,
Zurich, 1985.

[7] A. E. Brouwer, Optimal packings of K4’s into a Kn, J. Combin. Theory Ser. A, 26 (1979),
pp. 278–297.

[8] A. L. Chiu and E. H. Modiano, Traffic grooming algorithms for reducing electronic multiplex-
ing costs in WDM ring networks, IEEE/OSA Journal of Lightwave Technology, 18 (2000),
pp. 2–12.

[9] C. J. Colbourn and J. H. Dinitz, eds., Handbook of Combinatorial Designs, 2nd ed.,
CRC/Chapman and Hall, London, 2007.

[10] C. J. Colbourn and A. C. H. Ling, Wavelength add-drop multiplexing and minimizing
SONET ADMs, Discrete Math., 261 (2003), pp. 141–156.

[11] C. J. Colbourn, G. Quattrocchi, and V. R. Syrotiuk, Grooming for two-period optical
networks, Networks, to appear.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

122 C. J. COLBOURN, H.-L. FU, G. GE, A. C. H. LING, AND H.-C. LU

[12] C. J. Colbourn, G. Quattrocchi, and V. R. Syrotiuk, Lower bounds for graph decomposi-
tions via linear programming duality, Networks, to appear.

[13] C. J. Colbourn and P.-J. Wan, Minimizing drop cost for SONET/WDM networks with 1
8

wavelength requirements, Networks, 37 (2001), pp. 107–116.
[14] R. Dutta and N. Rouskas, On optimal traffic grooming in WDM rings, IEEE J. Sel. Areas

Commun., 20 (2002), pp. 110–121.
[15] R. Dutta and N. Rouskas, Traffic grooming in WDM networks: Past and future, IEEE

Network, 16 (2002), pp. 46–56.
[16] G. Ge and A. C. H. Ling, Group divisible designs with block size four and group type gum1

for small g, Discrete Math., 285 (2004), pp. 97–120.
[17] G. Ge and R. S. Rees, On group-divisible designs with block size four and group-type gum1,

Des. Codes Cryptogr., 27 (2002), pp. 5–24.
[18] G. Ge and R. S. Rees, On group-divisible designs with block size four and group-type 6um1,

Discrete Math., 279 (2004), pp. 247–265.
[19] G. Ge, R. S. Rees, and L. Zhu, Group-divisible designs with block size four and group-type

gum1 with m as large or as small as possible, J. Combin. Theory Ser. A, 98 (2002), pp.
357–376.

[20] G. Ge and R. Wei, HGDDs with block size four, Discrete Math., 279 (2004), pp. 267–276.
[21] O. Gerstel, R. Ramaswani, and G. Sasaki, Cost-effective traffic grooming in WDM rings,

IEEE/ACM Trans. Net., 8 (2000), pp. 618–630.
[22] O. Goldschmidt, D. Hochbaum, A. Levin, and E. Olinick, The SONET edge-partition

problem, Networks, 41 (2003), pp. 13–23.
[23] J. Q. Hu, Optimal traffic grooming for wavelength-division-multiplexing rings with all-to-all

uniform traffic, J. Opt. Netw., 1 (2002), pp. 32–42.
[24] J. Q. Hu, Traffic grooming in WDM ring networks: A linear programming solution, J. Opt.

Netw., 1 (2002), pp. 397–408.
[25] E. Modiano and P. Lin, Traffic grooming in WDM networks, IEEE Commun. Mag., 39 (2001),

pp. 124–129.
[26] A. Somani, Survivable traffic grooming in WDM networks, in Broad Band Optical Fiber Com-

munications Technology—BBOFCT, D. K. Gautam, ed., Jalgaon, India, 2001, pp. 17–45.
[27] P-J. Wan, G. Calinescu, L. Liu, and O. Frieder, Grooming of arbitrary traffic in SONET/

WDM BLSRs, IEEE J. Sel. Areas Commun., 18 (2000), pp. 1995–2003.
[28] J. Wang, W. Cho, V. Vemuri, and B. Mukherjee, Improved approaches for cost-effective

traffic grooming in WDM ring networks: ILP formulations and single-hop and multihop
connections, IEEE/OSA J. Lightwave Tech., 19 (2001), pp. 1645–1653.

[29] X. Yuan and A. Fulay, Wavelength assignment to minimize the number of SONET ADMs
in WDM rings, in Proceedings of the IEEE ICC, New York, 2002.

[30] X. Zhang and C. Qiao, An effective and comprehensive approach for traffic grooming and
wavelength assignment in SONET/WDM rings, IEEE/ACM Trans. Net., 8 (2000), pp.
608–617.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 123–135

THE ERDÖS–FALCONER DISTANCE PROBLEM, EXPONENTIAL
SUMS, AND FOURIER ANALYTIC APPROACH TO INCIDENCE

THEOREMS IN VECTOR SPACES OVER FINITE FIELDS∗

ALEX IOSEVICH† AND DOOWON KOH†

Abstract. We study the Erdös–Falconer distance problem in vector spaces over finite fields with
respect to the cubic metric. Estimates for discrete Airy sums and Adolphson–Sperber estimates for
exponential sums in terms of Newton polyhedra play a crucial role. Similar techniques are used to
study the incidence problem between points and cubic and quadratic curves. As a result we obtain
a nontrivial range of exponents that appear to be difficult to attain using combinatorial methods.

Key words. distance sets, Newton diagrams, Gauss sums, multiplicative characters, exponential
sums, Kloosterman sums

AMS subject classification. 52C10

DOI. 10.1137/060669875

1. Introduction.

1.1. The Erdös distance problem. The Erdös distance conjecture in the Eu-
clidean space says that if E is a finite subset of Rd, d ≥ 2, then

#Δ(E) � (#E)
2
d ,(1.1)

where

Δ(E) = {|x− y| : x, y ∈ E},
with |x− y|2 = (x1 − y1)2 + · · · + (xd − yd)

2, and here, and throughout this paper,
X � Y means that there exists C > 0 such that X ≤ CY and X � Y , with the
controlling parameter N , means that for every ε > 0 there exists Cε > 0 such that
X ≤ CεN

εY .
Taking E = Zd ∩ [0, N

1
d]

d
shows that (1.1) cannot, in general, be improved. The

conjecture has not been solved in any dimension. See, for example, [14], [2], and
the references contained therein for the description of the conjecture, background
material, and a survey of recent results.

In this paper we study the Erdös distance problem in vector spaces over finite
fields. This problem was recently addressed by Tao [19], who relates it to some
interesting questions in combinatorics, and, more recently, by Iosevich and Rudnev
[9]. We shall describe these results later.

Let Fq denote the finite field with q elements, and let Fd
q denote the d-dimensional

vector space over this field. Let E ⊂ Fd
q , d ≥ 2. Then a possible analogue of the

classical Erdös distance problem is to determine the smallest possible cardinality of
the set

Δn(E) = {||x− y||n = (x1 − y1)n + · · ·+ (xd − yd)
n : x, y ∈ E},

∗Received by the editors September 14, 2006; accepted for publication (in revised form) June 28,
2008; published electronically October 31, 2008. This work was supported by the NSF grant DMS04-
56306.

http://www.siam.org/journals/sidma/23-1/66987.html
†Mathematics Department, 202 Mathematical Sciences Building, University of Missouri,

Columbia, MO 65211 (iosevich@math.missouri.edu, koh@math.missouri.edu).

123

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

124 ALEX IOSEVICH AND DOOWON KOH

with n a positive integer ≥ 2, viewed as a subset of Fq.
In the finite field setting, the estimate (1.1) cannot hold without further restric-

tions. To see this, let E = Fd
q . Then #E = qd and #Δ(E) = q. Furthermore,

an interesting feature of the Erdös distance problem in the finite field setting with
n = 2 is the existence of nontrivial spheres of zero radius. These are sets of the form
{x ∈ Fd

q : x2
1 +x2

2 + · · ·+x2
d = 0}, and several assumptions in the statements of results

below are there precisely to deal with issues created by the presence of this object. For
example, suppose −1 is a square in Fq. Using spheres of zero radius one can show, in
even dimensions, that there exists a set of cardinality precisely q

d
2 such that all of the

distances, (x1 − y1)2 + · · ·+ (xd − yd)
2, are zero. What’s more, suppose Fq is a finite

field such that q = p2, where p is a prime. Then E = Fd
p is naturally embedded in Fd

q ,

has cardinality q
d
2 , and determines only

√
q distances. If n > 2, then the situation is

equally fascinating. For example, if n = 3 and d = 2, then the equation x3
1 + x3

2 = 0
always has at least q solutions, since the cube root of −1 is −1. This equation may
have as many as 3q solutions if the primitive cube root of −1 is in the field.

With these examples as our guide, we generalize the conjecture originally stated
in [9] in the case n = 2 as follows.

Conjecture 1.1. Let E ⊂ Fd
q of cardinality ≥ Cq

d
2 , with C sufficiently large.

Then

#Δn(E) � q.

The authors of [9] conjecture that the constant C that appears above may be
taken to be any number bigger than one, at least in the case n = 2. It is interesting
to note that if n > 2, then the situation becomes more complicated. For example, as
we pointed out above, if n = 3 and d = 2, then the number of points on the curve
x3

1 + x3
2 = 0 may be as high as 3q, depending on whether or not the primitive cube

root of −1 is in the field. Thus a corresponding conjecture in the case n > 2 must be
designed with these issues in mind.

2. Previous results. A Euclidean plane argument due to Erdös [6] can be ap-
plied to the finite field set-up under the assumption of Conjecture 1.1 to show that if
d = 2 and #E ≥ Cq, with C sufficiently large, then

#Δn(E) � (#E)
1
2 .(2.1)

This result was improved by Bourgain, Katz, and Tao [3], who showed using
intricate incidence geometry that for every ε > 0, there exists δ > 0 such that if
#E � q2−ε, then

#Δ2(E) � q
1
2+δ.

The relationship between ε and δ in the above argument is difficult to determine.
Moreover, matters are even more subtle in higher dimensions in the context of vector
spaces over finite fields, because the intersection of the analogues of spheres, both
quadratic and cubic, in Fd

q may be quite complicated, and the standard induction on
the dimension argument in Rd (see, e.g., [2]) that allows one to bootstrap the estimate
(2.1) into the estimate

#ΔRd(E) � (#E)
1
d(2.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ERDÖS–FALCONER DISTANCE PROBLEM 125

does not immediately go through. We establish the finite field analogue of the esti-
mate (2.2) below using Fourier analytic methods and number theoretic properties of
Kloosterman sums and its more general analogues.

Another way of thinking of Conjecture 1.1 is in terms of the Falconer distance
conjecture [7] in the Euclidean setting which says that if the Hausdorff dimension
of a set in Rd exceeds d

2 , then the Lebesgue measure of the distance set is positive.
Conjecture 1.1 implies that if the size of the set is greater than q

d
2 , then the distance

set contains a positive proportion of all the possible distances, an analogous statement.
In [9], the authors proved the following result.
Theorem 2.1. Let E ⊂ Fd

q , d ≥ 2, such that #E ≥ Cq
d+1
2 . Then if C is

sufficiently large, then Δ2(E) contains every element of Fq.

3. Main results of this paper.

3.1. Distances determined by a single set. Our first result is the version of
Theorem 2.1 for cubic metrics.

Theorem 3.1. Suppose that q is a prime number congruent to 1 modulo 3. Let
E ⊂ Fd

q such that #E ≥ Cq d+1
2 . Then if C is sufficiently large, then Δ3(E) contains

every element of Fq.
Suppose that d = 2, and n ≥ 2. Then if #E ≥ Cq 3

2 for C sufficiently large, then
Δn(E) contains every element of Fq.

Corollary 3.2. Suppose that q is a prime number congruent to 1 modulo 3. Let
E ⊂ Fd

q, d ≥ 2, such that #E = Cq
d+1
2 . Then if C is sufficiently large, then

#Δ3(E) ≈ (#E)
2

d+1 .

In two dimensions, the same conclusion, with d = 2, holds for any n ≥ 2.
Note that in the case d = 2, the exponent 2

3 obtained via the corollary, for the
given range of parameters, is a much better exponent than the one obtained by the
incidence argument due to Erdös described in (2.1). Also, we point out once more that
Erdös’ argument does not generalize to higher dimensions, at least not very easily,
due to the possibly complicated intersection properties of cubic varieties.

3.2. Szemerédi–Trotter-type incidence theorems and distances between
pairs of sets. As in the case n = 2, the proof of Theorem 3.1 can be modified to
yield a good upper bound on the number of incidences between points and cubic sur-
faces in vector spaces over finite fields. It is an analogue, and a higher dimensional
generalization, of the following classical result due to Szemerédi and Trotter.

Theorem 3.3. The number of incidences between N points and M lines (or
circles of the same radius) in the plane is

� N +M + (NM)
2
3 .

Our incident estimate is the following theorem.
Theorem 3.4. Suppose that q is a prime number congruent to 1 modulo 3. Let

E,F ⊂ Fd
q, d ≥ 2. Then if j 	= 0, then

#{(x, y) ∈ E × F : (x1 − y1)3 + · · ·+ (xd − yd)
3 = j}

� #E ·#F · q−1 + q
d−1
2 · (#E)

1
2 · (#F)

1
2 .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

126 ALEX IOSEVICH AND DOOWON KOH

Similarly, if q is a prime number and j 	= 0, then

#{(x, y) ∈ E × F : (x1 − y1)2 + · · ·+ (xd − yd)
2 = j}

� #E ·#F · q−1 + q
d−1
2 · (#E)

1
2 · (#F)

1
2 .

In two dimensions, the same result holds, with d = 2, with Δ3 replaced by Δn for
any n ≥ 2.

Remark 3.5. In particular, if #E ≈ #F ≈ q
d+1
2 , then the number of incidences

between points in E and “spheres,” quadratic or cubic, centered at the elements of F
is � qd.

To make the numerology more transparent, Theorem 3.4 says that if N ≈ q
d+1
2 ,

then the number of incidences between ≈ N points and ≈ N spheres, cubic or
quadratic, in Fd

q is � qd = N
2d

d+1 . In two dimensions this says that the number
of incidences between N points and N circles is � N

4
3 , provided that N ≈ q

d+1
2 ,

matching in this setting the exponent in the celebrated result due to Szemerédi and
Trotter in the Euclidean plane (see Theorem 3.3).

An easy modification of the method used to prove Theorem 3.4 above yields the
following distance set result.

Corollary 3.6. Let E,F ⊂ Fd
q , d ≥ 2. Suppose that q is a prime number

congruent to 1 modulo 3 and #E · #F ≥ Cqd+1. Let Δ3(E,F) = {||x − y||3 : x ∈
E, y ∈ F}. Then if C is sufficiently large, then Δ3(E,F) contains every element of
F∗

q.
As before, in two dimensions the same conclusion holds with d = 2 and Δ3 re-

placed by Δn(E).
Observe that if E = F , then we can safely say that in fact Δ3(E,F) contains

every element of Fq, but if E 	= F , then the zero distance may not be present.
We also call the reader’s attention to the fact that an analogous version of this

result was independently obtained by Shparlinski in [17].

4. Fourier analytic preliminaries and notation. Let Fq be a finite field with
q elements, where q is a prime number. Let

χ(t) = e
2πi

q t.

Given a complex valued function f on Fd
q , define the Fourier transform of f by

f̂(m) = q−d
∑
x∈Fd

q

χ(−x ·m)f(x).

We also need the following basic identity, typically known as the Plancherel the-
orem. Let f be as above. Then

∑
m∈Fd

q

|f̂(m)|2 = q−d
∑
x∈Fd

q

|f(x)|2.

5. Proof of the first part of Theorem 3.1. Let χ(s) = e
2πi

q s. Let Sj denote
the characteristic function of the cubic sphere

{x ∈ Fd
q : ||x||3 = j},

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ERDÖS–FALCONER DISTANCE PROBLEM 127

where, as before,

||x||3 = x3
1 + · · ·+ x3

d.

The key estimate of the paper is the following theorem.
Theorem 5.1. Let ||x||3 = x3

1 + · · · + x3
d. Suppose that q is a prime number

congruent to 1 modulo 3 and j 	= 0. Then if m 	= (0, . . . , 0), then

∣∣∣Ŝj(m)
∣∣∣ =

∣∣∣∣∣∣q−d
∑

{x∈Fd
q :||x||3=j}

χ(x ·m)

∣∣∣∣∣∣ � q−
d+1
2 ,

and if m = (0, . . . , 0), then

Ŝj(m) = q−1 +O(q−
d+1
2) ≈ q−1.

For j 	= 0, consider

#{(x, y) ∈ E × E : ||x− y||3 = j}

=
∑

x,y∈Fd
q

E(x)E(y)Sj(x − y)

= q2d
∑
m

|Ê(m)|2Ŝj(m) = A + B,

where

A = q2d|Ê(0, . . . , 0)|2Ŝj(0, . . . , 0),

and

B = q2d
∑

m �=(0,...,0)

|Ê(m)|2Ŝj(m).

Using the second part of Theorem 5.1,

A ≈ q2dq−2d(#E)2 · q−1.

Whereas using the first part of Theorem 5.1,

|B| � q2dq−
d+1
2

∑
m �=(0,...,0)

|Ê(m)|2

� q2dq−
d+1
2 q−d

∑
x∈Fd

q

E2(x) = q
d−1
2 ·#E.

We therefore obtain that

#{(x, y) ∈ E × E : ||x− y||3 = j} = A + B,

where

A � (#E)2q−1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

128 ALEX IOSEVICH AND DOOWON KOH

and

|B| � #E · q d−1
2 .

We conclude that if #E ≥ Cq d+1
2 , with C sufficiently large, then

#{(x, y) ∈ E × E : ||x− y||3 = j} > 0

for each j 	= 0. This completes the proof of Theorem 3.1.

6. Proof of Theorem 5.1. We have

Ŝj(m) = q−d
∑

{x∈Fd
q :||x||3=j}

χ(−x ·m)

= q−1δ(m) + q−d−1
∑

x

∑
t∈F∗

q

χ(t(||x||3 − j))χ(−x ·m),

where δ(m) = 1 if m = (0, . . . , 0) and 0 otherwise.
Lemma 6.1. Let χ be a nontrivial additive character of Fq with q congruent to

1 modulo 3. Suppose that m = (m1, . . . ,ml) ∈ (F∗
q)

l
. Then for any multiplicative

character ψ of Fq of order 3 and t 	= 0, we have

l∏
j=1

∑
sj∈Fq

χ(−sjmj + s3j t)

= ψ−l(t)
∑

s1,...,sl∈F∗
q

χ(s1 + · · ·+ sl +m3
1t

−1s−1
1 + · · ·+m3

l t
−1s−1

l)ψ(s1) · · ·ψ(sl),

where 3−3m3
j is denoted by m3

j in the right-hand side of the equation.
We shall also need the following result due to Duke and Iwaniec [5].
Theorem 6.2. Suppose that q is congruent to 1 modulo 3, and let ψ be a multi-

plicative character of order three. Then∑
s∈Fq

χ(as3 + s) =
∑
s∈F∗

q

ψ(sa−1)χ(s− (33as)
−1

)

for any a ∈ F∗
q.

It follows that ∑
s∈Fq

χ(−smj + s3t) =
∑
s∈Fq

χ(s− s3tm−3
j)

=
∑
s∈F∗

q

ψ(st−1)χ(s+m3
j t

−13−3s−1)

since ψ is a multiplicative character of Fq of order three and mj 	= 0. Absorbing 3−3

into mj to make the notations simple, we complete the proof of Lemma 6.1.
Lemma 6.3. Let χ be a nontrivial additive character of Fq with q congruent to

1 modulo 3. Then for any multiplicative character ψ of Fq of order 3 and t 	= 0, we
have ⎛

⎝∑
s∈Fq

χ(ts3)

⎞
⎠

l

=
l∑

r=0

(
l
r

)
ql ψ−(l+r)(t)

(
ψ̂(−1)

)l−r (
ψ̂2(−1)

)r

,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ERDÖS–FALCONER DISTANCE PROBLEM 129

where (··) is a binomial coefficient , l is a positive integer, and the Fourier transform
of a multiplicative character ψ of Fq is given by

ψ̂(v) = q−1
∑
s∈F∗

q

χ(−vs)ψ(s).

Remark 6.4. ψ̂(v) = O(q−
1
2) for v 	= 0.

To prove Lemma 6.3, we need the following theorem. For the proof, see [13,
Theorem 5.30, p. 217].

Theorem 6.5. Let χ be a nontrivial additive character of Fq, n ∈ N, and ψ a
multiplicative character of Fq of order h =gcd(n, q − 1). Then

∑
s∈Fq

χ(tsn + b) = χ(b)
h−1∑
k=1

ψ−k(t)G(ψk, χ)

for any t, b ∈ Fq with t 	= 0, where G(ψk, χ) =
∑

s∈F∗
q
ψk(s)χ(s).

By using Theorem 6.5, we see that for any multiplicative character ψ of order
three, ⎛

⎝∑
s∈Fq

χ(ts3)

⎞
⎠

l

=

⎛
⎝ 2∑

k=1

ψ−k(t)
∑
s∈F∗

q

ψk(s)χ(s)

⎞
⎠

l

=

⎛
⎝ψ−1(t)

∑
s∈F∗

q

ψ(s)χ(s) + ψ−2(t)
∑
s∈F∗

q

ψ2(s)χ(s)

⎞
⎠

l

=
(
G1(t) +G2(t)

)l

=
l∑

r=0

(
l
r

)
G1(t)

l−r
G2(t)

r
,

where

G1(t) = ψ−1(t)
∑
s∈F∗

q

ψ(s)χ(s),

and

G2(t) = ψ−2(t)
∑
s∈F∗

q

ψ2(s)χ(s).

Note that G1(t) = qψ−1(t) ψ̂(−1) and G2(t) = qψ−2(t) ψ̂2(−1).
Thus we conclude that⎛

⎝∑
s∈Fq

χ(ts3)

⎞
⎠

l

=
l∑

r=0

(
l
r

)
qlψ−(l+r)(t)

(
ψ̂(−1)

)l−r(
ψ̂2(−1)

)r

.

We are now ready to prove Theorem 5.1. First, we assume that m = (0, . . . , 0) ∈
Fd

q . Then, using Lemma 6.3, we see that

Ŝj(0, . . . , 0) = q−d
∑

{x∈Fd
q :||x||3=j}

1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

130 ALEX IOSEVICH AND DOOWON KOH

= q−1 + q−d−1
∑
t∈F∗

q

χ(−tj)
∑

x

χ(t(||x||3))

= q−1 + q−d−1
∑
t∈F∗

q

χ(−tj)
d∑

r=0

(
d
r

)
qdψ−(d+r)(t)

(
ψ̂(−1)

)d−r(
ψ̂2(−1)

)r

= q−1 + q−1
d∑

r=0

(
d
r

)(
ψ̂(−1)

)d−r (
ψ̂2(−1)

)r ∑
t∈F∗

q

χ(−tj)ψ−(d+r)(t)

= q−1 + q−1
d∑

r=0

(
d
r

)(
ψ̂(−1)

)d−r (
ψ̂2(−1)

)r

qψ̂−(d+r)(j)

= q−1 +O(q−
d+1
2) ≈ q−1.

In the last equality, we used the fact that ψ̂(v) = O(q−
1
2) for any multiplicative

character of Fq with v 	= 0. Thus the second part of Theorem 5.1 is proved.
In order to prove the first part of Theorem 5.1, we shall deal with the problem in

case m = (m1, . . . ,md) 	= (0, . . . , 0). Suppose that mj 	= 0 for j ∈ J ⊂ {1, 2, . . . , d}
and mj = 0 for j ∈ {1, 2, . . . , d} \ J = J

′
. Without loss of generality, we may assume

that J = {1, 2, . . . , l} and J
′
= {l+1, . . . , d} for some l = 1, 2, . . . , d. Using Lemma 6.1

and Lemma 6.3, we see that

Ŝj(m) = q−d−1
∑
t∈F∗

q

χ(−tj)
∑
x∈Fd

q

χ(t||x||3 −m · x)

= q−d−1
∑
t∈F∗

q

χ(−tj)
⎛
⎝ l∏

k=1

∑
sk∈Fq

χ(ts3k −mksk)

⎞
⎠
⎛
⎝ d∏

k=l+1

∑
sk∈Fq

χ(ts3k)

⎞
⎠

= q−d−1
∑
t∈F∗

q

χ(−tj)ψ−l(t)
∑

s1,...,sl∈F∗
q

× χ(s1 + · · ·+ sl +m3
1t

−1s−1
1 + · · ·+m3

l t
−1s−1

l)ψ(s1) · · ·ψ(sl)

×
d−l∑
r=0

(
d− l
r

)
qd−lψ−(d−l+r)(t)

(
ψ̂(−1)

)d−l−r(
ψ̂2(−1)

)r

= q−1−l
d−l∑
r=0

(
d− l
r

)(
ψ̂(−1)

)d−l−r(
ψ̂2(−1)

)r ∑
t∈F∗

q

χ(−tj)ψ−(d+r)(t)

×
∑

s1,...,sl∈F∗
q

χ(s1 + · · ·+ sl +m3
1t

−1s−1
1 + · · ·+m3

l t
−1s−1

l)ψ(s1) · · ·ψ(sl).

Since (d−l
r)(ψ̂(−1))

d−l−r
(ψ̂2(−1))

r
= O(q−

1
2 (d−l)), we obtain that

∣∣∣Ŝj(m)
∣∣∣ � q−1− d+l

2

d−l∑
r=0

|Ar(χ, ψ)|,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ERDÖS–FALCONER DISTANCE PROBLEM 131

where Ar(χ, ψ) is given by∑
t∈F∗

q

χ(−tj)ψ−(d+r)(t)
∑

s1,...,sl∈F∗
q

× χ(s1 + · · ·+ sl +m3
1t

−1s−1
1 + · · ·+m3

l t
−1s−1

l)ψ(s1) · · ·ψ(sl).

We now apply the result of Adolphson and Sperber [1, Theorem 4.2, Corollary 4.3]
to see that for all r = 0, 1, . . . , d− l,

|Ar(χ, ψ)| � q
l+1
2 .

This completes the proof.

7. Proof of the second part of Theorem 3.1. As in the proof of the first
part of Theorem 3.1, it suffices to prove the following estimation.

Theorem 7.1. Let ||x||n = xn
1 + xn

2 for x ∈ F2
q and n ≥ 2. Suppose that q is a

prime number and j 	= 0. Then if m 	= (0, 0), then

∣∣∣Ŝj(m)
∣∣∣ =

∣∣∣∣∣∣q−2
∑

{x∈F2
q:||x||n=j}

χ(−x ·m)

∣∣∣∣∣∣ � q−
3
2 ,

and if m = (0, 0), then

Ŝj(m) = q−1 +O(q−
3
2) ≈ q−1.

To prove Theorem 7.1, we observe that for j 	= 0 and m ∈ F2
q,

Ŝj(m) = q−2
∑

{x∈F2
q:||x||n=j}

χ(−x ·m)

= q−1δ(m) + q−3
∑

x

∑
t∈F∗

q

χ(t(||x||n − j))χ(−x ·m),

where δ(m) = 1 if m = (0, 0) and 0 otherwise.
First, we shall prove the second part of Theorem 7.1. Let ψ be a multiplicative

character of Fq of order h = gcd(n, q − 1). For each i = 1, 2, . . . , (h − 1), we denote
by βi a nonnegative integer. Then by Theorem 6.5, we see that

⎛
⎝∑

s∈Fq

χ(tsn)

⎞
⎠

2

=
∑

β1+···+βh−1=2

2!
β1! · · ·βh−1!

ψ−(β1+···+(h−1)βh−1)(t)q2
(
ψ̂(−1)

)β1 · · ·
(
ψ̂h−1(−1)

)βh−1

.

It therefore follows that

Ŝj(0, 0) = q−1+
∑

β1+···+βh−1=2

2!
β1! · · ·βh−1!

̂ψ−γ(h,β)(j)
(
ψ̂(−1)

)β1 · · ·
(
ψ̂h−1(−1)

)βh−1

,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

132 ALEX IOSEVICH AND DOOWON KOH

where γ(h, β) is given by β1 + 2β2 + · · ·+ (h− 1)βh−1.

Since ψ̂(v) = O(q−
1
2) for each multiplicative character ψ and v ∈ F∗

q , we conclude
that

Ŝ(0, 0) = q−1 +O(q−
3
2) ≈ q−1.

This completes the proof of the second part of Theorem 7.1.
It remains to prove the first part of Theorem 7.1. The cohomological interpreta-

tion can be used to estimate the exponential sums. We now introduce the cohomology
theory based on the work of the authors in [4] and [1]. Let g be a polynomial given
by

g =
∑
α∈J

Aαx
α ∈ Fq[x1, . . . , xd],(7.1)

where J is a finite subset of (N∪ {0})d, and Aα 	= 0 if α ∈ J. We denote by
∑

(g) the
Newton polyhedron of g which is the convex hull in Rd of the set J ∪ (0, . . . , 0). For
any face σ (of any dimension) of

∑
(g), we put

gσ =
∑

α∈σ∩J

Aαx
α.

Definition 7.2. Let g ∈ Fq[x1, . . . , xd] be a polynomial as in (7.1). We say that
g is nondegenerate with respect to

∑
(g) if for every face σ of

∑
(g) that does not

contain the origin, the polynomials

∂gσ

∂x1
, . . . ,

∂gσ

∂xd

have no common zero in (F̄q
∗)d, where F̄q denotes an algebraic closure of Fq. We say

that g is commode with respect to
∑

(g) if for each k = 1, 2, . . . , d, g contains a term
Akx

αk

k for some αk > 0 and Ak 	= 0.
The general version of the following theorem can be found in [4, Theorem 9.2].
Theorem 7.3. Let q be a prime number. Suppose that g : Fd

q → Fq, d ≥ 2, is
commode and nondegenerate with respect to

∑
(g). Then∑

x∈Fd
q

χ(g(x)) = O(q
d
2).

Proof. We now prove the first part of Theorem 7.1. Since m 	= (0, 0), we have∑
x∈F2

q
χ(−x ·m) = 0. We therefore see that for j 	= 0,

Ŝj(m) = q−3
∑

(t,x1,x2)∈F∗
q×F2

q

χ(g(t, x1, x2)) = q−3
∑

(t,x1,x2)∈F3
q

χ(g(t, x1, x2)),

where g(t, x1, x2) = txn
1 + txn

2 −m1x1 −m2x2 − jt.
If m1 ·m2 	= 0, then g is commode. By Theorem 7.3, it suffices to show that g is

nondegenerate with respect to
∑

(g). Note that
∑

(g) has five zero-dimensional faces,
eight one-dimensional faces, and three two-dimensional faces which do not contain
the origin. It is easy to show that for every face σ of

∑
(g) that does not contain the

origin, the polynomials

∂gσ

∂t
,
∂gσ

∂x1
,
∂gσ

∂x2

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ERDÖS–FALCONER DISTANCE PROBLEM 133

have no common zero in (F∗
q)

3 because we may assume that q is sufficiently large
and so n is not congruent to 0 modulo q. This implies that g is nondegenerate with
respect to

∑
(g). We now assume that m1 ·m2 = 0. Without loss of generality, we

may assume that m1 	= 0, and m2 = 0 because m 	= (0, 0). By using Theorem 6.5, we
obtain that for a multiplicative character ψ of Fq of order h = gcd(n, q − 1),

Ŝj(m) = q−3
∑

(t,x1)∈F∗
q×Fq

χ(txn
1 −m1x1 − jt)

h−1∑
k=1

ψ−k(t)qψ̂k(−1)

= q−2
h−1∑
k=1

ψ̂k(−1)
∑

(t,x1)∈F∗
q×Fq

ψ−k(t)χ(txn
1 −m1x1 − jt)

� q−2q−
1
2

h−1∑
k=1

|Rk(ψ−k, χ)|,

where Rk(ψ−k, χ) is given by∑
(t,x1)∈F∗

q×Fq

ψ−k(t)χ(txn
1 −m1x1 − jt).

For each k = 1, 2, . . . , h− 1, define ψ−k(0) = 0. Then we can obtain that

Rk(ψ−k, χ) =
∑

(t,x1)∈Fq×Fq

ψ−k(t)χ(txn
1 −m1x1 − jt).

Applying Theorem 7.3, we have

Rk(ψ−k, χ) = O(q).

This completes the proof.

8. Proof of Theorem 3.4 and Corollary 3.6. As we mentioned in the intro-
duction, this is a simple variation on the proof of Theorem 3.1. Indeed,

#{(x, y) ∈ E × F : ||x− y||n = j}

= q2d
∑
m

Ê(m)F̂ (m)Ŝj(m)

= #E ·#F · Ŝj(0, . . . , 0) + q2d
∑

m �=(0,...,0)

Ê(m)F̂ (m)Ŝj(m) = I + II.

By the second part of Theorem 5.1 (or Theorem 7.1),

I � #E ·#F · q−1.

Applying Cauchy–Schwarz, Theorem 5.1 (or Theorem 7.1), and Plancherel, we
see that

|II| � q2dq−
d+1
2

∑
m �=(0,...,0)

|Ê(m)||F̂ (m)|

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

134 ALEX IOSEVICH AND DOOWON KOH

≤ q2dq−
d+1
2

(∑
m

|Ê(m)|2
) 1

2

·
(∑

m

|F̂ (m)|2
) 1

2

≤ q2dq−
d+1
2 q−d

(∑
x

|E(x)|2
) 1

2

·
(∑

x

|F (x)|2
) 1

2

= q
d−1
2 ·

√
#E ·

√
#F .

This completes the proof of Theorem 3.4.
Proof. In order to prove Corollary 3.6, we observe that by the second part of

Theorem 5.1 (or Theorem 7.1),

I � #E ·#F · q−1.

On the other hand, we have seen above that

|II| � q
d−1
2 ·

√
#E ·

√
#F ,

and the result follows by a direct comparison.

REFERENCES

[1] A. Adolphson and S. Sperber, Exponential sums and Newton polyhedra: Cohomology and
estimates, Ann. of Math. (2), 130 (1989), pp. 367–406.

[2] P. Agarwal and J. Pach, Combinatorial Geometry, Wiley-Interscience Series in Discrete
Mathematics and Optimization, John Wiley and Sons, New York, 1995.

[3] J. Bourgain, N. Katz, and T. Tao, A sum-product estimate in finite fields, and applications,
Geom. Funct. Anal., 14 (2004), pp. 27–57.

[4] J. Denef and F. Loeser, Weights of exponential sums, intersection cohomology, and Newton
polyhedra, Invent. Math., 106 (1991), pp. 275–294.

[5] W. Duke and H. Iwaniec, A relation between cubic exponential and Kloosterman sums, in A
Tribute to Emil Grossweld: Number Theory and Related Analysis, Contemp. Math. 143,
AMS, Providence, RI, 1993, pp. 255–258.

[6] P. Erdös, On sets of distances of n points, Amer. Math. Monthly, 53 (1946), pp. 248–250.
[7] K. J. Falconer, On the Hausdorff dimensions of distance sets, Mathematika, 32 (1985),

pp. 206–212.
[8] B. J. Green, Restriction and Kakeya Phenomena, Lecture notes, 2003; available online at

http://www.dpmms.cam.ac.uk/ bjg23/rkp.html.
[9] A. Iosevich and M. Rudnev, Erdös distance problem in vector spaces over finite fields, Trans.

Amer. Math. Soc., 359 (2007), pp. 6127–6142.
[10] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53,

AMS, Providence, RI, 2004.
[11] N. Katz, Gauss sums, Kloosterman Sums, and Monodromy Groups, Ann. of Math. Stud. 116,

Princeton University Press Princeton, NJ, 1988.
[12] M. Lacey and W. McClain, On an argument of Shkredov in the finite field setting, Analytic

Online Journal of Combinatorics, 2007; available online at http://www.ojac.org.
[13] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, Cambridge, UK,

1997.
[14] J. Matoušek, Lectures on Discrete Geometry, Grad. Texts in Math. 212, Springer-Verlag, New

York, 2002.
[15] G. Mockenhaupt and T. Tao, Restriction and Kakeya phenomena for finite fields, Duke

Math. J., 121 (2004), pp. 35–74.
[16] H. Niederreiter, The distribution of values of Kloosterman sums, Arch. Math., 56 (1991),

pp. 270–277.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ERDÖS–FALCONER DISTANCE PROBLEM 135

[17] I. Shparlinski, On the set of distances between two sets over finite fields, Int. J. Math. Math.
Sci., (2006), pp. 1–5.

[18] E. Stein and R. Shakarchi, Fourier Analysis, Princeton Lect. Anal. 1, Princeton University
Press, Princeton, NJ, 2003.

[19] T. Tao, Finite Field Analogues of Erdös, Falconer, and Furstenberg Problems, preprint.
[20] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), pp. 204–207.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 136–154

INTEGER EXACT NETWORK SYNTHESIS PROBLEM∗

S. N. KABADI† , J. YAN‡ , D. DU† , AND K. P. K. NAIR†

Abstract. Given an integer, nonnegative, symmetric matrix R = (rij)n×n, we consider the
problem of synthesizing an undirected network G on node set V = {1, 2, . . . , n} with nonnegative,
integer edge capacities such that (i) for any pair {i, j} of distinct nodes in V , the value of maximum
flow between i and j in G equals exactly rij and (ii) the sum of capacities of edges in G is minimum.
Chou and Frank [IEEE Trans. Circuit Theory, CT-17 (1970), pp. 192–197] claim to give an algorithm
for this problem. But, Schrijver [Algorithms Combin. 24, Springer-Verlag, Berlin, 2003, pp. 1049–
1057] gives a counter-example to their claim. We present an O(n2) algorithm for the problem.

Key words. combinatorial algorithm, cut-tree, network flows, strongly polynomial algorithm

AMS subject classifications. 90C27, 90B10

DOI. 10.1137/050641776

1. Introduction. Let R = (rij)n×n be a symmetric, nonnegative matrix of min-
imum flow requirements between all pairs of distinct nodes in the set V = {1, 2, . . . , n},
where rii = 0 (i = 1, 2, . . . , n). We call an undirected network G = [V,E, u] on node
set V with edge set E and nonnegative edge capacities {ue : e ∈ E} a realization of
R if and only if for every pair {i, j} of distinct nodes in V , the value of maximum
flow between i and j in G is at least rij . We say that G is an exact realization of R
if and only if for every pair {i, j} of distinct nodes in V , the value of maximum flow
between i and j in G equals exactly rij . If R has an exact realization, then we say
that it is exactly realizable.

The network synthesis problem (NSP) constructs a realization of R with a min-
imum sum of edge capacities, while the exact network synthesis problem (ENSP)
constructs an exact realization of R with a minimum sum of edge capacities, or else
concludes that it is not exactly realizable. In these two problems, if the elements of
R are integers and we require all of the edge capacities of G to be integers, then we
get, respectively, the integer network synthesis problem (INSP) and the integer exact
network synthesis problem (IENSP).

The main focus of this work is the last problem and our main contribution is to
present an O(n2) combinatorial algorithm for the IENSP. We review existing results
for these four problems below.

The NSP (and its generalization to the case of synthesizing a network with min-
imum weighted sum of edge capacities) has a polynomial size linear programming
formulation [8] which can be solved in strongly polynomial time using Tardos’ algo-
rithm [26]. However, the Tardos’ algorithm is not very efficient in practice, nor does
it provide any insight into the combinatorial structure of the problem. In [9, 21] effi-

∗Received by the editors October 3, 2005; accepted for publication (in revised form) June 30,
2008; published electronically November 14, 2008.

http://www.siam.org/journals/sidma/23-1/64177.html
†Faculty of Business Administration, University of New Brunswick, Fredericton, NB, E3B 5A3,

Canada (kabadi@unb.ca, ddu@unb.ca, nairk@unb.ca). The research of these authors was supported
in part by research grants from the Natural Sciences and Engineering Research Council of Canada
(NSERC).

‡Faculty of Business Administration, University of New Brunswick, Fredericton, NB, E3B 5A3,
Canada (jyan@unb.ca), and School of Mathematics and Systems Sciences, Shandong University,
Jinan 250100, People’s Republic of China (yanj@sdu.edu.cn).

136

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGER EXACT NETWORK SYNTHESIS PROBLEM 137

cient, combinatorial, and strongly polynomial algorithms are presented for the NSP.
The Gomory–Hu algorithm in [9] has a computational complexity of O(n2). Also,
when all of the elements of the matrix R are integers, then the edge capacities in the
final network are multiples of half. Alternately, combinatorial algorithms for the NSP
are also presented in [10, 25].

In [3] and independently in [24], combinatorial algorithms of computational com-
plexity O(n2) are presented for the INSP and it is shown that whenever max{rij :
j ∈ V − {i}} > 1 for all i ∈ V , the problem has integer rounding property (i.e., the
difference between the sum of edge capacities in the optimal networks for the integer
and continuous versions of the problem is less than 1). Alternate algorithms for the
problem are given in [18, 23]. In [6], a strongly polynomial algorithm is given for a
generalization of this problem to one in which we want to increase given integer edge
capacities by integer amounts so as to obtain a realization of a given integer matrix
R such that the sum of additional edge capacities is minimum.

For the weighted cases of the NSP and INSP, strongly polynomial combinatorial
algorithms are known only for the special case in which the network is restricted to be
a cycle [12, 13]. Results on generalizations of these problems are reported in [11, 14]
for the case of 2-commodity flows, in [7, 17] for the case of hop-constrained flows, and
in [1, 2, 16] for the case of multipath flows [19].

As pointed out in [23], a modification of the Gomory–Hu algorithm in [9] produces
an optimal solution to the NSP that is also an optimal solution to the corresponding
ENSP whenever the latter has a feasible solution. It is shown in [15] that generaliza-
tion of the ENSP to the case of 2-path flows [19] is NP-hard.

In [3], Chou and Frank claim to give an algorithm for the IENSP. However,
in [23], Schrijver gives a counterexample to their claim, and hence leaves open the
status of the problem.

The purpose of this work is to devise an O(n2) combinatorial algorithm for the
IENSP. To facilitate presentation of our algorithm, we define four subproblems and
present an algorithm for each of them. The final algorithm for the IENSP invokes
these algorithms as subroutines.

The rest of this paper is organized as follows. After presenting notation and some
basic results in section 2, we discuss the four subproblems in sections 3, 4, 5, and 6,
respectively. Our algorithm for the IENSP is then presented in section 7.

2. Notation and preliminaries. Throughout this paper, all networks are sim-
ple, undirected, and edge-capacitated, and all of the edge capacities considered are
nonnegative. Let G = [V,E, u] be a network on node set V = {1, 2, . . . , n} with edge
set E and edge capacities {ue : e ∈ E}.

The degree degG(v) of a node v ∈ V is the number of edges incident to it in
G. For any nonempty set X ⊆ V , we denote the sum of capacities of all of the
edges in the subgraph of G induced by node set X as u[X] =

∑{ue : e = (i, j) ∈
E, {i, j} ⊆ X}. For any nonempty and proper subset X ⊂ V and its complement
X̄ = V −X , we denote the cut separating node sets X and X̄ as [X, X̄] = {e : e =
(i, j) ∈ E, i ∈ X, j ∈ X̄} and denote the capacity of cut [X, X̄] as δu[X] =

∑{ue :
e ∈ [X, X̄]}.

Definition 2.1. Two networks G1 = [V,E1, u1] and G2 = [V,E2, u2] on the
same node set V and with edge capacities {u1

e : e ∈ E1} and {u2
e : e ∈ E2} are said

to be flow-equivalent if for any pair {i, j} of distinct nodes in V , the maximum flow
values between i and j in the two networks are the same. An edge-capacitated tree
T = [V,ET , uT] that is flow-equivalent to a network G is called a flow-tree of G.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

138 S. N. KABADI, J. YAN, D. DU, AND K. P. K. NAIR

The following result is easy to prove and implicit in [9, 21].
Lemma 2.2. Let T 1 = [V,E1, u1] and T 2 = [V,E2, u2] be a pair of edge-

capacitated trees on the same node set V . For each i ∈ {1, 2}, let ui
min = min{ui

e : e ∈
Ei}, and let T i

1, T
i
2, . . . , T

i
�i

be the subtrees formed by deleting from T i all the edges
of capacity ui

min. Then T 1 and T 2 are flow-equivalent if and only if u1
min = u2

min,
�1 = �2 = � and there exists a permutation φ on {1, 2, . . . , �} such that T 1

j is flow-
equivalent to T 2

φ(j) for each j ∈ {1, 2, . . . , �}.
Definition 2.3. Given a tree T = [V,E] and any edge f = (i, j) ∈ E, let Vfi and

Vfj be the node sets of the two subtrees formed by deleting edge f from T such that
i ∈ Vfi and j ∈ Vfj. Then the cut [Vfi, Vfj] is the fundamental cut of T corresponding
to edge f .

Definition 2.4 (see [5]). Given a network G = [V,E, u], an edge-capacitated tree
T = [V,ET , uT] is said to be a cut-tree of G if and only if for each edge f = (i, j) ∈ ET ,
the fundamental cut [Vfi, Vfj] of T corresponding to edge f is a minimum capacity
cut separating nodes i and j in G, and uT

f = δu[Vfi].
We also need the following results.
Lemma 2.5 (see [9]). Let T = [V,ET , uT] be a cut-tree of a network G = [V,E, u].

Then T is a flow-tree of G. Moreover, for any pair of distinct nodes {x, y} in V , let
f = (i, j) ∈ ET be an edge on the unique path in T joining nodes x and y with the
smallest value of uT

f . Then the fundamental cut [Vfi, Vfj] of T corresponding to edge
f is a minimum capacity cut separating nodes x and y in G.

Theorem 2.6 (see [9]). For a symmetric, n× n, nonnegative matrix R, let GR

be a complete network on node set V = {1, 2, . . . , n} with the capacity of each edge
(i, j) equal to rij . Then we have the following.

1. Every maximum weight spanning tree T = [V,E] of GR with edge capacities
ue = rij for all e = (i, j) ∈ E is a realization of R.

2. The following three statements are equivalent.
(a) R is exactly realizable.
(b) rij ≥ min{rik, rkj} for all distinct i, j, k ∈ V .
(c) Every maximum weight spanning tree T = [V,E] of GR with edge capac-

ities ue = rij for all e = (i, j) ∈ E is an exact realization of R.
The following is a corollary to the above.
Corollary 2.7 (see [9, 21]). There exists an O(n2) algorithm to test whether a

given matrix is exactly realizable.
Lemma 2.8 (see [3, 21]). If R is exactly realizable, then there exists a maximum

weight spanning tree of GR that is a path.
We give below a version of the Gomory–Hu algorithm [9] for the NSP that we

will require in later sections.
Algorithm GOMORY–HU

Input. An n× n, symmetric, nonnegative matrix R.
Output. An optimal solution G∗ = [V,E∗, u∗] to the instance of the NSP.
Step 0. Select a Hamiltonian cycle H = v1v2 · · · vnv1 on node set V . Find a max-

imum weight spanning tree T = [V,E] in GR. Set E0 = E, F 0 = [V,E0],
r0e = rab, and u0

e = 0 for all e = (a, b), where a, b ∈ V and a �= b. Initialize
i = 0.

Step 1. Arbitrarily choose a connected component T i = [V i, Êi] of F i with at least
two nodes. Let V i = {�1, �2, . . . , �mi}, where �1, �2, . . . , �mi appears in that
order along the cycle H. Define cycle Ci = �1�2 · · · �mi�1. Set

θi = min{ri
e : e ∈ Êi};

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGER EXACT NETWORK SYNTHESIS PROBLEM 139

Δiue =
{

1
2θ

i if e is an edge in Ci,
0 otherwise;

ui+1
e = ui

e + Δiue ∀e;

ri+1
e =

{
ri
e − θi ∀ e ∈ Êi,

ri
e ∀ e ∈ Ei − Êi.

Step 2. Delete from Ei all the edges with ri+1
e = 0 to get edge set Ei+1. Set

F i+1 = [V,Ei+1],
i = i+ 1.

1. If F i contains only isolated nodes, then set

E∗ = {e : ui
e > 0},

u∗e = ui
e ∀e ∈ E∗.

Output G∗ = [V,E∗, u∗] and stop.
2. Else, go to Step 1.

Theorem 2.9 (see [9]). Let πi = max{rij : j ∈ V − {i}} for each i ∈ V . The
network G∗ output by Algorithm Gomory–Hu is an optimal solution to the NSP with
u∗[V] = 1

2

∑
i∈V πi. Also, if r0e is even for all e ∈ T (a maximum weight spanning

tree in GR), then u∗e is integer for all e.
Theorem 2.10 (see [23]). Suppose R is exactly realizable. If in Step 0 of Al-

gorithm Gomory–Hu we choose a maximum weight spanning tree in GR that is a
path and choose H as the cycle obtained by joining the endnodes of the path, then the
network G∗ output by Algorithm Gomory–Hu is an optimal solution to the ENSP
on R.

The following result generalizes Theorem 2.10.
Theorem 2.11. Suppose R is exactly realizable. Let T be any maximum weight

spanning tree in GR. Let the Hamiltonian cycle H in Step 0 of Algorithm Gomory–

Hu be such that every fundamental cut of T contains precisely two edges of H. Then
the network G∗ output by Algorithm Gomory–Hu has T as its cut-tree, and hence it
is an optimal solution to the ENSP on R.

The proof of this theorem follows from the proof of Theorem 6.5. Hence, we shall
not give details here. The following simple scheme for constructing such a Hamiltonian
cycle was pointed out to us by Punnen [22]. For any planar embedding of T , join the
leaf nodes of T to obtain a Halin graph G [4]. Then a Hamiltonian cycle in G satisfies
the desired property and can be obtained in linear time [4].

We explain the key ideas of our approach and the organization of the rest of this
paper. To avoid technical complication, we assume that rij > 1 for all i, j. The cases
when some elements of R are zero or one are easy to handle, as we show in section 7.
First, we check (using Theorem 2.6) whether matrix R is exactly realizable. If the
answer is positive, then we use the observations below that follow from the previous
discussion. Let MR be the set of all the maximum weight spanning trees of GR. Then
(i) MR is the set of all cut-trees of all the possible exact realizations of R and (ii) for
any T ∈MR, MR is the set of all the trees that are flow-equivalent to T .

We consider a slight modification of the IENSP which we call the optimal cut-
tree realization problem (OCRP): Given an edge-capacitated tree T = [V,E, u] with
integer edge capacity ue > 1 for all e ∈ E, construct a network G∗ = [V,E∗, u∗] that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

140 S. N. KABADI, J. YAN, D. DU, AND K. P. K. NAIR

has T as its cut-tree such that (i) u∗e is an integer for each e ∈ E∗ and (ii) u∗[V] =∑
e∈E∗ u∗e minimum.

We present an O(n2) algorithm for this problem in section 6 and show that the
optimal objective function value equals

∑
i∈V πi + |V e

1 (T)|+ |V o
2 (T)|

2
,

where for each node i ∈ V , πi = max{ue : e = (i, j) ∈ E}, V1 = {i ∈ V : πi is odd},
V2 = V − V1, and V e

1 (T) (V o
2 (T)) is the set of nodes in V1 (V2) each of which has an

even (odd) number of odd edges (edges with capacity ue odd) incident to it in T .
The values {πi : i ∈ V } are the same for each T ∈ MR. Hence, if we choose

T ∈MR with a minimum value of |V e
1 (T)|+ |V o

2 (T)|, then an optimal solution to the
corresponding instance of the OCRP will be an optimal solution to the IENSP. We
therefore consider the problem of finding such a tree, which we call the flow-equivalent
tree problem (FETP) and present an O(n2) algorithm for it in section 5.

The algorithms for the OCRP and the FETP require as subroutines algorithms
for two other problems, which we call the tree path covering problem (TPCP) and the
degree constrained spanning forest problem (DCSFP), respectively. We therefore first
discuss these two problems and present efficient algorithms for them, respectively, in
sections 3 and 4.

Finally in section 7, we combine the results in the previous sections to present
our algorithm for the IENSP.

3. Subproblem 1: The tree path covering problem (TPCP).
Statement of the problem. We are given a tree T = [V,E] and partitions (V1, V2)

and (E1, E2) of node set V and edge set E into sets of odd-even nodes and odd-even
edges, respectively, such that each node in V1 has at least one edge in E1 incident to it.
The problem is to find a set P = {p1, p2, . . . , pk} of edge-disjoint paths in T covering
all of the edges in E1 and not containing any edge in E2 such that (i) every node in
V1 (i.e., every odd node) is an endnode of some path in P and (ii) k is minimum. We
denote the minimum value of k by λ(T).

Let V o
1 (T) ⊆ V1 and V o

2 (T) ⊆ V2 be such that each node in V o
1 (T)∪V o

2 (T) has an
odd number of odd edges (edges in E1) incident to it in T . Let V e

1 (T) = V1 − V o
1 (T)

and V e
2 (T) = V2 − V o

2 (T). Then each node in V e
1 (T) ∪ V e

2 (T) has an even number of
odd edges incident to it in T . The following observation is easy to verify.

Observation 3.1. In any feasible solution to an instance of the TPCP, every
node in V o

1 (T)∪ V o
2 (T) must appear as an endnode of a path an odd number of times

and every node in V e
1 (T)∪V e

2 (T) must appear as an endnode of a path an even number
of times.

Theorem 3.2. For any instance of the TPCP, an optimal set P∗ of edge-disjoint
paths with optimal value

λ(T) = |P∗| = |V1|+ |V e
1 (T)|+ |V o

2 (T)|
2

can be computed in O(n) time.
Proof. From the statement of the problem and Observation 3.1, we infer that in

any feasible solution, each node in V e
1 (T) occurs as an endnode of some path at least

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGER EXACT NETWORK SYNTHESIS PROBLEM 141

twice and each node in V o
2 (T) occurs as an endnode at least once. Thus,

λ(T) =
total number of endnodes in an optimal solution

2

≥ |V1|+ |V e
1 (T)|+ |V o

2 (T)|
2

.

Let X be the multiset containing nodes in V o
1 (T), V o

2 (T), and two copies of each
node in V e

1 (T). The cardinality of X is obviously even. Let EM be a perfect matching
of elements of X such that no element of V e

1 (T) is matched with the copy of itself.
Then each connected component of G = [V,E1 ∪EM] (here the duplicated nodes are
contracted to recover the original node set V) is an Eulerian graph [20]. We can find
Eulerian tours C1, C2, . . . , C� in the connected components ofG inO(|E1∪EM |) = O(n)
time [20]. It is easy to see that since each node in V1 has at least one edge ofE1 incident
to it, such tours can be chosen such that no two edges in EM are adjacent in any
tour. Deleting the edges in EM from these Eulerian tours gives us a set of paths P∗

with

|P∗| = |EM | = |V1|+ |V e
1 (T)|+ |V o

2 (T)|
2

.

This proves the theorem.

4. Subproblem 2: The degree constrained spanning forest problem
(DCSFP) on a complete graph.

Statement of the problem. Given an integer n ≥ 2 and positive integer weights
w1, w2, . . . , wn, find a spanning forest F = [V,E] on node set V = {1, 2, . . . , n} with
a maximum number of edges |E| such that degF (i) ≤ wi for all i ∈ V .

Theorem 4.1. For any instance of the DCSFP, an optimal spanning forest
F ∗ = [V,E∗] with optimal value

|E∗| = min
{⌊∑n

i=1 wi

2

⌋
, n− 1

}

can be computed in O(n) time.
Proof. Each of

∑n
i=1 wi

2 � and (n− 1) is obviously an upper bound on the number
of edges in any optimal solution to the DCSFP. Next, we construct a feasible spanning
forest F ∗ = [V,E∗] with the claimed value.

Partition the node set V into two sets V ′ = {i ∈ V : wi ≥ 2} and V ′′ = {i ∈ V :
wi = 1}.

If |V ′| = 0, then a maximum cardinality matching on node set V ′′ is the desired
F ∗ with

|E∗| =
⌊ |V |

2

⌋
=
⌊∑n

i=1 wi

2

⌋
= min

{⌊∑n
i=1 wi

2

⌋
, n− 1

}
.

If |V ′| ≥ 1 ≥ |V ′′|, then a path on node set V with the node in V ′′, if it exists, as
an endnode of the path is our desired F ∗ with |E∗| = n− 1.

So in the following we assume |V ′| ≥ 1 and |V ′′| ≥ 2. First, we form a path
P that visits each node in V ′ and two distinct nodes u, v ∈ V ′′ exactly once such
that u and v are endnodes of this path. Next, let V̂ ′ = {i ∈ V ′ : wi − 2 > 0} and
V̂ ′′ = V ′′ − {u, v}. Partition V̂ ′′ into two parts V̂ ′′

1 and V̂ ′′
2 = V̂ ′′ − V̂ ′′

1 such that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

142 S. N. KABADI, J. YAN, D. DU, AND K. P. K. NAIR

|V̂ ′′
1 | = min

{∑
i∈V ′(wi − 2), |V ′′| − 2

}
. Then, arbitrarily join each node in V̂ ′′

1 with
some node in V̂ ′ to form a forest F (a set of stars) such that degF (i) = 1 for all
i ∈ V̂ ′′

1 and degF (i) ≤ wi − 2 for all i ∈ V̂ ′. Finally, find a maximum cardinality
matching M in V̂ ′′

2 . We now show that the superimposing of P , F , and M gives us
the desired F ∗. Evidently, the superimposed graph is a spanning forest and satisfies
the degree constraints, and hence is feasible. Moreover, the claimed objective function
value follows from

|E∗| = (|V ′|+ 1) + |V̂ ′′
1 |+

⌊
|V̂ ′′

2 |
2

⌋
= (|V ′|+ 1) + |V̂ ′′

1 |+
⌊
|V ′′| − 2− |V̂ ′′

1 |
2

⌋

=

⌊
2|V ′|+ |V ′′|+ |V̂ ′′

1 |
2

⌋
=

⎢⎢⎢⎢⎢⎣
2|V ′|+ |V ′′|+ min

{ ∑
i∈V ′

(wi − 2), |V ′′| − 2
}

2

⎥⎥⎥⎥⎥⎦
= min

{⌊∑n
i=1 wi

2

⌋
, n− 1

}
.

All the operations involved can be done in O(n) time. This proves the theorem.

5. Subproblem 3: The flow-equivalent tree problem (FETP). We first
introduce notation useful in this section. For any edge-capacitated tree T = [V,E, u]
with integer-valued edge capacities, let πi = max{ue : e = (i, j) ∈ E} for all i ∈ V .
We call V1 = {i ∈ V : πi is odd} and V2 = V − V1 the sets of odd and even nodes,
respectively. We call E1 = {e ∈ E : ue is odd} and E2 = E − E1 the sets of odd and
even edges of T , respectively. As defined in the previous section, let V e

1 (T) (V o
2 (T))

be the set of nodes in V1 (V2) each of which has an even (odd) number of odd edges of
T incident to it. It follows from Lemma 2.2 that the values {πi : i ∈ V } and therefore
the node sets V1 and V2 are the same for all of the trees flow-equivalent to T .

Statement of the problem. Find an edge-capacitated tree T ∗ = [V,E∗, u∗] that is
flow-equivalent to a given edge-capacitated tree T = [V,E, u] with integer-valued edge
capacities such that the optimal objective function value λ(T ∗) of the corresponding
instance of the TPCP with the node and edge partitions (V1, V2) and (E∗

1 , E
∗
2), re-

spectively, is minimum.
We propose the following recursive algorithm for the FETP. The algorithm

deletes from the given tree T all of the minimum capacity edges, recursively ob-
tains optimal solutions (flow-equivalent trees) to the instances of the FETP on each
of the subtrees obtained, and then optimally links these optimal subtrees to get an
optimal solution to the given instance of the FETP.
Algorithm TREE-FINDING

Input: An edge-capacitated tree T = [V,E, u] on node set V = {1, 2, . . . , n} with
integer-valued edge capacities.

Output: A tree T ∗ = [V,E∗, u∗] that is an optimal solution to the instance of the
FETP.

Step 1. If |V | ≤ 2, then output T ∗ = T and stop. Else, compute {πi : i ∈ V }, node
partition (V1, V2), and edge partition (E1, E2). Find umin = min{ue : e ∈ E}.
Let T i = (V i, Ei), i = 1, . . . , �, be the subtrees resulting from deletion of all
of the edges of capacity umin from tree T .

Step 2. For each i ∈ {1, 2, . . . , �}, recursively find an optimal solution T ∗i = [V i, E∗i,
u∗i] to the FETP with tree T i as input.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGER EXACT NETWORK SYNTHESIS PROBLEM 143

1. If umin is even, then arbitrarily choose a node xi ∈ V i for each i ∈
{1, 2, . . . , �}. Let Ẽ = {(xi, xi+1) : i ∈ {1, 2, . . . , �− 1}}.

2. If umin is odd, then set V i
1 = V i∩V1, V i

2 = V i∩V2, and wi = |V i,e
1 |+|V i,o

2 |
for each i ∈ {1, 2, . . . , �}, where V i,e

1 is the set of nodes in V i
1 , each of

which has an even number of odd edges of T ∗i incident to it, and V i,o
2

is the set of nodes in V i
2 , each of which has an odd number of odd edges

of T ∗i incident to it. Renumber the trees T ∗1, T ∗2, . . . , T ∗�, if necessary,
such that for some integer m, wi ≥ 1 for any i ≤ m and wi = 0 for any
i > m.
(a) If m = 0, then arbitrarily choose a node xi ∈ V i for each i ∈
{1, 2, . . . , �}. Let Ẽ = {(xi, xi+1) : i ∈ {1, 2, . . . , �− 1}}.

(b) If m = 1, then choose x1 ∈ V 1,e
1 ∪ V 1,o

2 and arbitrarily choose a
node xi ∈ V i for each i ∈ {2, . . . , �}. Let Ẽ = {(xi, xi+1) : i ∈
{1, 2, . . . , �− 1}}.

(c) If m > 1, then find an optimal solution F̄ = [M, Ē] on node set
M = {1, 2, . . . ,m} to the DCSFP with weights w1, w2, . . . , wm as
input. Define set Ẽ as follows:
• For each edge (i, j) ∈ Ē, associate with the edge distinct nodes
x ∈ V ie

1 ∪V io
2 and y ∈ V je

1 ∪V jo
2 (i.e., no node is associated with

two edges in Ē in this process) and add edge (x, y) to Ẽ.
• Arbitrarily delete one edge (a, b) from Ẽ. Let Ê = (∪�

i=1E
∗i)∪Ẽ.

• Let the node sets of the connected components of the graph Ĝ =
[V, Ê] be V̂ 1, V̂ 2, . . . , V̂ q. Without loss of generality, let a ∈ V̂ 1

and b ∈ V̂ q. Arbitrarily choose a node xi ∈ V̂ i for each i ∈
{2, . . . , q − 1}. Add to Ẽ edges {a, x2), (x2, x3), . . . , (xq−1, b)}.

Step 3. Let E∗ = (∪�
i=1E

∗i) ∪ Ẽ. Define

u∗e =
{
u∗i

e if e ∈ E∗i for some i ∈ {1, 2, . . . , �},
umin if e ∈ Ẽ.

Output tree T ∗ = [V,E∗, u∗] and stop.
The following two properties are easy to verify and will be useful in the proof of

validity of the algorithm.
Lemma 5.1. For any edge-capacitated tree T on node set V , |V1| + |V e

1 (T)| +
|V o

2 (T)| is an even number. Hence, for any two flow-equivalent trees T 1 and T 2 on
the node set V ,

(|V e
1 (T 1)|+ |V o

2 (T 1)|) ≡ (|V e
1 (T 2)|+ |V o

2 (T 2)|)mod 2.

Lemma 5.2. For any tree T on a node set V and any S ⊆ V , let βS
T =∑

i∈S degT (i). Then the set S̄ = V − S contains at least βS
T − 2|S| + 2 leaf nodes

of T .
Proof. This follows from the fact that βS̄

T = 2(|V |− 1)−βS
T = 2|S̄|− (βS

T − 2|S|+
2).

We will now prove the validity of Algorithm Tree-Finding.
Theorem 5.3. For any instance of the FETP, Algorithm Tree-Finding con-

structs an optimal tree in O(n2) time.
Proof. For |V | ≤ 2, the tree T is obviously an optimal solution to the given

instance of the FETP. It follows from Lemma 2.2 and the inductive hypothesis that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

144 S. N. KABADI, J. YAN, D. DU, AND K. P. K. NAIR

for any value of |V |, the tree T ∗ output by the algorithm is flow-equivalent to the
given tree T . Let us now prove the optimality of T ∗.

Suppose T ∗ is optimal for any |V | ≤ k for some k ≥ 2. Let us consider the case
|V | = k+1. Let T 1, T 2, . . . , T � be the subtrees of T obtained by deleting from T all of
the edges with capacity = umin in Step 1 of Algorithm Tree-Finding. It follows from
the induction hypothesis that for each i ∈ {1, 2, . . . , �}, tree T ∗i obtained recursively
by the algorithm with tree T i as input is an optimal solution to the corresponding
instance of the FETP. Also, for each i such that |V i| ≥ 2, (V i

1 , V
i
2) is precisely the

odd-even node partition in T i.
Suppose umin is even. By Theorem 3.2, for any tree T , the optimal objective

function value of the TPCP on T is independent of the structure of even edges of T .
It follows from this and Lemma 2.2 that the tree T ∗ obtained by the algorithm by
joining trees T ∗1, T ∗2, . . . , T ∗� using (�− 1) edges each of capacity umin is an optimal
solution to the given instance of the FETP.

Suppose umin is odd. Let integer m be as defined in Step 2 of the algorithm and
let w = |V e

1 (T ∗)|+ |V o
2 (T ∗)|. Then λ(T ∗) = |V1|+w

2 . It is easy to see that (i) if m = 0,
then w = 2, (ii) if m = 1, then w = w1, and (iii) if m > 1, then w =

∑m
i=1 wi − 2|Ē|,

where F̄ = [M, Ē] is the optimal solution to the DCSFP obtained in Step 2 of the
algorithm. By Theorem 4.1, |Ē| = min{ 1

2

∑m
i=1 wi,m− 1}. Thus, in general, for any

m ≥ 0, w =
∑m

i=1 wi − 2z, where z = min{ 1
2

∑m
i=1 wi,m− 1}.

If z = 1
2

∑m
i=1 wi, then w = 0 and λ(T ∗) = |V1|

2 . By Theorem 3.2, in this case T ∗

is obviously optimal.
Suppose z = m− 1. Then

λ(T ∗) =
|V1|+

∑m
i=1 wi − 2m+ 2

2
.

Consider any other feasible solution T̄ to the problem. By Lemma 2.2, if we delete
from T̄ all of the edges of capacity umin, then we get subtrees T̄ 1, T̄ 2, . . . , T̄ � that are
flow-equivalent to subtrees T 1, T 2, . . . , T � of T . Let V̄ ie

1 (V̄ io
2) be the set of nodes in

V i
1 (V i

2) each of which has an even (odd) number of odd edges of T̄ i incident to it,
and let w̄i = |V̄ ie

1 |+ |V̄ io
2 |. By optimality of T ∗i, we have w̄i ≥ wi. Let ¯̄T be the tree

obtained from T̄ by contracting each subtree T̄ i to a supernode αi, i = 1, . . . , �. Let
S = {α1, . . . , αm}, βS

¯̄T
=
∑

i∈S deg ¯̄T (i), and let X ⊆ {α1, . . . , α�}−S be the nodes not

in S that are leaf nodes of ¯̄T . Then node set ∪m
i=1V

i contains at least
∑m

i=1 w̄i − βS
¯̄T

elements of the set V e
1 (T̄) ∪ V 0

2 (T̄).
By Lemma 5.2, |X | ≥ βS

¯̄T
− 2m+ 2. For each i ∈ X , wi = 0; therefore, it follows

from Lemma 5.1 that w̄i is an even number. Hence, V i contains at least one element
of V e

1 (T̄) ∪ V o
2 (T̄). Thus,

|V e
1 (T̄)|+ |V o

2 (T̄)| ≥
m∑

i=1

w̄i−βS
¯̄T
+ |X | ≥

m∑
i=1

w̄i−βS
¯̄T
+βS

¯̄T
−2m+2 ≥

m∑
i=1

wi−2m+2.

And λ(T̄) ≥ |V1|+
∑m

i=1 wi−2m+2

2 = λ(T ∗).
In each iteration of the recursive process, all of the operations can be done in

O(n) time. The total number of iterations is O(n). Hence, the overall computational
complexity of the algorithm is O(n2). This proves the theorem.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGER EXACT NETWORK SYNTHESIS PROBLEM 145

6. Subproblem 4: The optimal cut-tree realization problem (OCRP).
Statement of the problem. Given an edge-capacitated tree T = [V,E, u] with

integer edge capacity ue > 1 for all e ∈ E, construct a network G∗ = [V,E∗, u∗] that
has T as its cut-tree such that (i) u∗e is integer for all e ∈ E∗ and (ii) u∗[V] =

∑
e∈E∗ u∗e

minimum.
We first establish a lower bound on the optimal objective function value of the

OCRP and then we give an algorithm that achieves this bound. Thus, for any node
i ∈ V , let πi = max{ue : e = (i, j) ∈ E}. Let V1 = {i ∈ V : πi is odd} and
V2 = V − V1. Let E1 = {e : e ∈ E;ue is odd} and E2 = E − E1. As before, we
define V e

1 (T) (V o
2 (T)) as the set of nodes in V1 (V2), each of which has an even (odd)

number of odd edges (edges with capacity ue odd) incident to it in T .
Lemma 6.1. Suppose a network Ḡ = [V, Ē, ū], with integer-valued edge capacities

{ūe : e ∈ Ē}, has T = [V,E, u] as its cut-tree. Then

ū[V] ≥
∑

i∈V πi + |V e
1 (T)|+ |V o

2 (T)|
2

.

Proof. Since Ḡ has T as its cut-tree, Ḡ is flow-equivalent to T ; therefore, δū[i] ≥ πi

for each i ∈ {1, 2, . . . , n}.
Consider any node v ∈ V e

1 (T) ∪ V o
2 (T). Let the set of odd edges incident to

v in T be Ev = {e1, . . . , e�}, and let the set of even edges incident to it in T be
Fv = {f1, . . . , fq}. For each ei ∈ Ev, i = 1, . . . , �, if we delete ei from T , we get two
subtrees. Let Yi be the node set of the subtree not containing v. Similarly, for each
fi ∈ Fv, define Zi as the node set of the subtree of T obtained by deleting edge fi

that does not contain the node v.
In Ḡ, contract node sets Y1, . . . , Y�, Z1, . . . , Zq to nodes y1, . . . , y�, z1, . . . , zq,

respectively, to get a network G̃ = [Ṽ , Ẽ, ũ] on node set Ṽ = {v, y1, . . . , y�, z1, . . . , zq}.
Then, δũ[v] = δū[v]. Since T is a cut-tree of Ḡ, δũ[yi] = δū[Yi] = uei for each
i ∈ {1, . . . , �} and δũ[zi] = δū[Zi] = ufi for each i ∈ {1, . . . , q}. Thus,

(6.1)
∑
x∈Ṽ

δũ[x] =
l∑

i=1

uei +
q∑

i=1

ufi + δū[v].

In (6.1),
∑q

i=1 ufi and
∑

x∈Ṽ δũ[x] = 2ũ[Ṽ] are both even. Hence, if v ∈ V e
1 , then∑�

i=1 uei is even, implying δū[v] is even and if v ∈ V o
2 , then

∑l
i=1 uei is odd, implying

δū(v) is odd. In either case, δū[v] ≥ πv + 1. Therefore, we have

ū[V] =
1
2

∑
i∈V

δū[v] ≥ 1
2

(∑
i∈V

πi + |V e
1 |+ |V o

2 |
)
.

We now present an algorithm for the OCRP that produces a feasible solution to
the problem with sum of edge capacities equal to the lower bound established in the
above lemma and hence is an optimal solution to the problem.

Before giving a formal description of our algorithm, we briefly explain the main
ideas. This will facilitate understanding of the algorithm and the proof of its validity.

Given an edge-capacitated tree T = [V,E, u] with an integer edge capacity ue > 1
for all e ∈ E, our algorithm first defines edge capacities {ũe : e ∈ E} as follows:

ũe =
{
ue if ue is even,
ue − 1 if ue is odd.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

146 S. N. KABADI, J. YAN, D. DU, AND K. P. K. NAIR

Since ũe is even for all e ∈ E it follows from Theorem 2.9 that the Gomory–Hu
algorithm, with T̃ = [V,E, ũ] as the choice of the tree in Step 0 of the algorithm,
outputs a network that is an optimal solution to the corresponding instance of INSP.
The network constructed by the algorithm depends on the choice of the Hamiltonian
cycle H on node set V in Step 0 of the algorithm. We choose the cycle H = H∗ such
that the solution Ĝ = [V, Ê, û] obtained has the following two properties:
(I) T̃ is a cut-tree of Ĝ.
(II) We can add to Ĝ some edge set Ep with unit capacity per edge to get a network

G∗ = [V,E∗, u∗] such that (i) T is a cut-tree of G∗ and (ii)
∑

e∈E∗ u∗e equals
the lower bound established in Lemma 6.1.

Property (I) is ensured by choosing H∗ such that every fundamental cut of T
contains precisely two edges of H∗.

In our approach to ensure property (II) above, the case when T is a star network
plays a crucial role, and we illustrate the basic idea using the following example.

Let T = [V,E, u], where V = {1, 2, . . . , 10}, E = {(1, i) : i = 2, . . . , 10}, and

u1i =
{

3 if i = 2, . . . , 6,
2 if i = 7, . . . , 10.

In this case the fundamental cuts of T are {[{i}, V − {i}] : i = 2, . . . , 10} and every
Hamiltonian cycle on node set V contains precisely two edges of each of the fun-
damental cuts of T . To ensure property (II) we proceed as follows: We first find
an optimal solution P to the instance of the TPCP with input T . It is easy to see
that P = {(2 − 1 − 3), (4 − 1 − 5), (1 − 6)} is such an optimal solution. We choose
Ep = {(i, j) : i and j are the endnodes of a path in P} = {(2, 3), (4, 5)(1, 6)}.

Node 1 is the unique nonleaf node of T and edge (1, 6) is in Ep. Hence we choose
node 6 as a special node z. If node 1 is not incident to any edge in Ep, then we choose
z such that u1z = π1. Now we construct H∗ such that the two nodes incident to every
other edge in Ep lie on the two subpaths formed by deleting nodes 1 and 6 from H∗.
It is easy to verify that H∗ = (1−2−4−6−5−3−1) is one such choice. The Gomory–
Hu algorithm with choice of T̃ and H∗ in Step 0 outputs network Ĝ = [V, Ê, û] with
Ê = {(1, 2), (2, 4), (4, 6), (6, 5), (5, 3), (3, 1)} and ûij = 1 for all (i, j) ∈ Ê. The tree T̃
can be easily seen to be a cut-tree of Ĝ. In fact, it can be easily verified that for any
φ �= Y ⊂ V ,

δû[Y] =
{

2 if node set Y forms a subpath of H∗,
> 2 otherwise.

The final network G∗ = [V,E∗, u∗] is obtained by adding to Ĝ the edge set Ep

with unit capacity per edge. It is easy to see that

δu∗ [{i}] =
{

3 if i = 2, . . . , 6,
2 if i = 7, . . . , 10.

For every nonempty proper subset Y of V , such that {1, 2, . . . , 6} � Y �
{7, . . . , 10}, and the node set Y forms a subpath of H∗, we need δu∗ [Y] ≥ 3; therefore,
the cut [Y, Ȳ] should contain some edge in Ep. But this follows from the choice of H∗.

Now let us consider the general case (when T is not a star network). We first find
an optimal solution P to the instance of TPCP with input T and define

Ep = {(i, j) : i and j are the two endnodes of a path in P}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGER EXACT NETWORK SYNTHESIS PROBLEM 147

As will be clear from the proof of the validity of our algorithm, to ensure property (II),
it is sufficient for the Hamiltonian path H∗ to satisfy the following local property.

For any nonleaf node v of T , let T 1, . . . , T � be the subtrees on node sets V 1, . . . , V �,
respectively, formed by deleting node v from T . Then each node set V i must form a
subpath pi of H∗, and if for each i, we contract T i in T and pi in H∗ to supernode yi,
then the resultant star network T̄ and cycle H̄ must satisfy the conditions discussed
previously with respect to the set Ēp = {(a, b) : a �= b and there exists (i, j) ∈ Ep

such that a = i or (for some �, a = y� and i ∈ V �) and b = j or (for some r, b = yr

and j ∈ V r)}.
Algorithm CUT-TREE-REALIZATION

Input. An edge-capacitated tree T = [V,E, u] on node set V = {1, 2, . . . , n} with
integer-valued edge capacity ue > 1 for all e ∈ E.

Output. A network G∗ = [V,E∗, u∗] that is an optimal solution to the instance of
the OCRP.

Step 0. Find an optimal solution P to the instance of the TPCP with input T , node
partition (V1, V2), and edgepartition (E1, E2). Arbitrarily choose a nonleaf
node v ∈ T . Initialize S = ∅, T̄ = T , i = 0.

Phase 1: Node ordering.
(In this phase, we construct an appropriate Hamiltonian cycle H∗ on node set V .

This cycle has two important properties: (i) every fundamental cut of T contains two
edges of the cycle and (ii) certain pairs of paths in P cross in H∗ (i.e., the endnodes
v and z of one of the paths are in the two separate subpaths obtained by deleting the
endnodes s and t of the other path from H∗, implying that the four nodes occur in
H∗ in the order of vsztv).
Step 1. Let T̄ i1, T̄ i2, . . . , T̄ i�i be the subtrees with more than one node, each resulting

from deletion of node v from tree T .
1. Out of these subtrees, add to set S those that are also subtrees of T̄ .
2. In T , contract each T̄ ij (j = 1, . . . , �i) to a supernode yij to get a star net-

work Ḡ = [V̄ , Ē, ū] on node set V̄ = {v, x1, x2, . . . , xki , yi1, yi2, . . . , yi�i},
where xh ∈ V (h = 1, . . . , ki), ūvxh

= uvxh
, and ūvyij = uvz, where

(v, z) ∈ E and node z is in T̄ ij .
3. For each path p in P and each j ∈ {1, 2, . . . , �i}, replace the subpath of
p in T̄ ij (if any) by node yij . Let P̃ be the collection of resultant paths
of positive size.

4. If there exists a path p̃ ∈ P̃ with v as its endnode, then choose one
such path and denote its other endnode by z. Else, let z be such that
πv = ūvz.

5. Construct a cycle ΔHi = va1a2 · · · aki+�iv on node set V̄ such that
(1) a� ki+�i

2 � = z and (2) for every path p̃ ∈ P̃ passing through node v,
the two endnodes s and t of the path are in the two subpaths formed
by deleting the nodes v and z from ΔHi (i.e., the nodes v, z, s, t appear
in ΔHi in the order of vsztv.). If i = 0, then set H0 = ΔH0 and go to
Step 3.

Step 2. Delete from ΔHi the supernode from the set {yi1, . . . , yi�i} that does not
correspond to any subtree of T̄ to get a path. In Hi−1 replace the supernode
corresponding to T̄ by this path to get the cycle Hi.

Step 3. If S �= ∅, choose an element of S, denote it by T̄ , and delete it from S. Let v
be the node in T̄ that is incident to some edge not in T̄ . Increment i = i+ 1
and go to Step 1. Else, set H∗ = Hi.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

148 S. N. KABADI, J. YAN, D. DU, AND K. P. K. NAIR

Phase 2: Design of the optimal network.
Step 4. Define

ũe =
{
ue ∀ e ∈ E such that ue is an even number,
ue − 1 ∀ e ∈ E such that ue is an odd number.

Let T̃ = [V,E, ũ]. Define r̃ij = the maximum flow value between nodes i and
j in T̃ . Construct a network Ĝ = [V, Ê, û] using Algorithm Gomory–Hu

with matrix R̃ = (r̃ij)n×n as input and with T̃ as the choice of the maximum
weight spanning tree, and with H∗ as the choice of the cycle on node set V
in Step 0 of Algorithm Gomory–Hu.

Step 5. Let Ep = {(i, j) : i and j are the endnodes of some path in P}. Set E∗ =
Ê ∪Ep.

u∗e =

⎧⎨
⎩

ûe ∀ e ∈ Ê − Ep,

ûe + 1 ∀ e ∈ Ê ∩ Ep,

1 ∀ e ∈ Ep − Ê.

Output the network G∗ = [V,E∗, u∗] and stop.
The following results will be useful in proving the validity of Algorithm Cut-

Tree-Realization.
Lemma 6.2. Let T 0 = [V 0, E0, u0] be an edge-capacitated tree. For some edge

e = (p, q) ∈ E0, let T̄ be the subtree containing node q formed when edge e is deleted
from T 0. Let T 1 = [V 1, E1, u1] be the tree obtained by contracting in T the subtree
T̄ to a supernode y. For each k ∈ {0, 1}, let πk

i = max{uk
e : e = (i, j) ∈ Ek} for all

i ∈ V k, V k
1 = {i ∈ V k : πk

i is odd}, Ek
1 = {e ∈ Ek : uk

e is odd}, V k
2 = V k − V k

1 ,
and Ek

2 = Ek −Ek
1 . Let P0 be an optimal solution to the instance of the TPCP with

input {T 0, (V 0
1 , V

0
2), (E0

1 , E
0
2)}. Then the path set P1 containing all of the paths in

P0 with no endnode in T̄ , together with the path in P0 containing the edge e (if such
a path exists), with its subpath in T̄ replaced by node y is an optimal solution to the
instance of the TPCP with data {T 1, (V 1

1 , V
1
2), (E1

1 , E
1
2)}.

The proof of the above lemma follows easily from the results in section 3 and is
omitted.

Lemma 6.3. Let T = [V,E, u] be the input to Algorithm Cut-Tree-Realiza-

tion. Then, for any fundamental cut [X, X̄] of T , X (and hence also X̄) is the node
set of a subpath of the Hamiltonian cycle H∗ constructed in Phase 1 of the algorithm.

Proof. We shall prove the result by induction on |V | = n. The result is obviously
correct for n ≤ 3. Suppose the result is true for all n ≤ k for some k ≥ 3. Let us
consider the case n = k + 1.

For |X | = 1 or n− 1 (= k), the result is obviously correct. So let us suppose that
1 < |X | < n − 1. Let [X, X̄] be the fundamental cut of T corresponding to an edge
e = (x, y) ∈ E with y ∈ X̄ .

Suppose the nonleaf node v of T selected by Algorithm Cut-Tree-Realization

in Step 0 satisfies v ∈ {x, y}. Without loss of generality, let us assume that v = y.
Then in Step 1 in the first iteration, the subtree of T on node set X is replaced by
a supernode yi or zi, and in subsequent iterations, this supernode is progressively
replaced by a path on node set X in H∗.

Suppose the node v selected by the algorithm in Step 0 is neither x nor y. Without
loss of generality, let us assume that v ∈ X̄−{y}. Then in the first iteration, for some
X ⊂ S ⊂ V , the subtree of T on node set S is contracted in Step 1 to a supernode

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGER EXACT NETWORK SYNTHESIS PROBLEM 149

yi or zi, and in subsequent iterations, this supernode is progressively replaced by a
path on node set S in H∗. It follows easily from Lemma 6.2 and the description of
the algorithm that if in T we contract the subtree on node set S̄ to a supernode α to
get a tree T 1 = [V 1, E1, u1] and perform the algorithm with input T 1 and choose in
Step 0 the same node v and path set P1 as defined in Lemma 6.2, then the algorithm
will produce the same path on node set S. But |V 1| ≤ k and [X, X̄ − S̄ ∪ {α}] is
a fundamental cut of T 1. Hence, it follows by induction that node set X forms a
subpath of this path. This proves the lemma.

The following is a corollary of Lemma 6.3.
Corollary 6.4. Let [X, X̄] be the fundamental cut of T = [V,E, u] correspond-

ing to some edge e = (i, j) ∈ E. Then we have the following.
1. The Hamiltonian cycle H∗ constructed in Phase 1 of Algorithm Cut-Tree-

Realization contains precisely two edges of the cut.
2. Every cycle Ci constructed by Algorithm Gomory–Hu invoked in Step 4 of

Algorithm Cut-Tree-Realization contains either zero or two edges of the
cut.

We shall now prove the validity of Algorithm Cut-Tree-Realization.
Theorem 6.5. For any instance T = (V,E, u) of the OCRP with ue > 1 for

all e ∈ E, Algorithm Cut-Tree-Realization constructs in O(n2) time an optimal
network G∗ = [V,E∗, u∗] for the problem with optimal value

u∗[V] =
∑

i∈V πi + |V e
1 |+ |V o

2 |
2

.

Proof. It follows from Theorem 2.9 that the network G∗ output by the algorithm
has integer edge capacities. Also, the computational complexity of the algorithm can
be easily seen to be O(n2).

For the tree T̃ = [V,E, ũ] constructed in Step 4 of the algorithm, let π̃i = max{ũe :
e = (i, j) ∈ E} for any i ∈ V . Then

π̃i =
{
πi − 1 ∀ i ∈ V1,
πi ∀ i ∈ V2.

It follows from Theorem 2.9 that the network Ĝ = [V, Ê, û] constructed in Step 4
using Algorithm Gomory–Hu satisfies

û[V] =
1
2

∑
i∈V

π̃i =
1
2

(∑
i∈V

πi − |V1|
)
.

Also, it follows from Theorem 3.2 that |Ep| = 1
2 (|V1|+ |V e

1 |+ |V o
2 |). Thus

u∗[V] = û[V] + |Ep| = 1
2

(∑
i∈V

πi + |V e
1 |+ |V o

2 |
)
.

Thus, from Lemma 6.1, G∗ (if feasible) is an optimal solution to the instance of the
OCRP. Let us now prove the feasibility of G∗.

For any edge e = (s, t) ∈ E, let [X, X̄] be the fundamental cut in T corresponding
to e with s ∈ X and t ∈ X̄ . By the definition of cut-tree, to prove the feasibility of
G∗ it is sufficient to prove that δu∗ [X] = ue and every other cut [Y, Ȳ] separating s
and t has δu∗ [Y] ≥ ue.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

150 S. N. KABADI, J. YAN, D. DU, AND K. P. K. NAIR

It follows from the description of Algorithm Gomory–Hu that

ũe =
∑{

θi : nodes s and t lie on the cycle Ci
}
.

By Corollary 6.4, it follows that cut [X, X̄] contains precisely two edges of each such
cycle Ci and no edge of any other cycle. Thus,

δû[X] =
∑{

2 · 1
2
θi : nodes s and t lie on the cycle Ci

}
= ũe.

If ue is even, then ue = ũe. In this case, no path in P covers edge e, and hence, no
edge of Ep lies in cut [X, X̄]. Thus,

δu∗ [X] = δû[X] = ũe = ue.

If ue is odd, then ue = ũe +1. In this case, precisely one path in P covers edge e, and
hence, exactly one edge of Ep lies in cut [X, X̄]. Thus,

δu∗ [X] = δû[X] + 1 = ũe + 1 = ue.

Now, consider any other cut [Y, Ȳ] with s ∈ Y and t ∈ Ȳ . We will show that
δu∗ [Y] ≥ ue. Cut [Y, Ȳ] obviously contains at least two edges of each cycle Ci con-
structed by Algorithm Gomory–Hu that contains both nodes s and t. Thus,

δû[Y] ≥
∑{

2 · 1
2
θi : nodes s and t are in Ci

}
= ũe.

If ũe = ue, then

δu∗ [Y] ≥ δû[Y] ≥ ũe = ue,

and the result is proved. So, suppose ũe = ue − 1, and therefore ue is odd. For each
f ∈ E, uf ≥ 2. Since ũf is an even integer, it is implied that ũf ≥ 2. Hence, θi ≥ 2
and is an even integer for each i. If [Y, Ȳ] contains four or more edges of any Ci

containing both s and t, then

δu∗ [Y] ≥ δû[Y] ≥ ũe + 2 ≥ ue.

So, suppose [Y, Ȳ] contains precisely two edges of each Ci containing both nodes
s and t, and therefore of C0 = H∗. Then node set Y forms a subpath of H∗. Since ue

is odd, a path of P covers edge e.
If s and t are the two endnodes of a path in P , then (s, t) ∈ Ep, and therefore

δu∗ [Y] ≥ δû[Y] + 1 ≥ ũe + 1 = ue.

If not, then we consider three cases.
Case 1. {s, t} ⊆ V1, and s is the endnode of a path p1 ∈ P that contains edge

(s, t).
Let the other endnode of path p1 be z1, and let another path p2 ∈ P have

endnodes t and z2, where {z1, z2} ⊆ V − {s, t}. Then, node t is not a leaf node of
T , and therefore in some iteration i of Phase 1, the algorithm must choose v = t.
Let nodes s, z1, and z2 belong to supernodes yi1, yi2, and yi3, respectively. Then it
follows from part (5) of Step 1 of the algorithm that in cycle ΔHi, nodes t, yi1, yi2,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGER EXACT NETWORK SYNTHESIS PROBLEM 151

and yi3 appear in the order tyi1yi3yi2t. Hence in H∗, nodes t, s, z1, z2 appear in the
order tsz2z1t. If any of (t, z2) and (s, z1) lies in cut [Y, Ȳ], then we are done. Else,
s ∈ Y and t ∈ Ȳ together implies a contradiction to the fact that nodes in Y form a
subpath of H∗, and the result is proved.

Case 2. {s, t} ⊆ V1, and neither s nor t is the endnode of any path in P that
contains edge (s, t).

Let {p1, p2, p3} ⊆ P be such that the endnodes of p1, p2, and p3 are, respectively,
{s, z1}, {t, z2}, and {z3, z4}, and path p3 contains edge (s, t). Without loss of general-
ity, let z3 ∈ X and z4 ∈ X̄. Then since s ∈ Y and t ∈ Ȳ , we have z1 ∈ Y and z2 ∈ Ȳ
and either {z3, z4} ⊆ Y or {z3, z4} ⊆ Ȳ . For else, an edge of Ep is in cut [Y, Ȳ], and
we are done.

The above implies that neither s nor t is a leaf node of T . Hence, in some iterations
i and j of Phase 1, the algorithm chooses v = s and v = t, respectively. Without loss
of generality, let i < j.

In iteration i, let node set {t, z2, z4} belong to supernode yi1, and let z3 and z1
belong to supernodes yi2 and yi3, respectively. Then it follows from part (5) of Step 1
of the algorithm that nodes s, yi1, yi2, and yi3 appear in cycle ΔHi in the order
syi1yi3yi2s.

In iteration j, let node set {s, z1, z3} belong to supernode yj1 , and let z4 and z2
belong to supernodes yj2 and yj3 , respectively. Then nodes t, yj1, yj2, and yj3 appear
in cycle ΔHj in the order tyj1yj3yj2t.

Hence in H∗, nodes {s, t, z1, z2, z3z4} appear in the order sz3z1z2z4ts or
sz3z1tz4z2s. In either case, we have a contradiction to the fact that nodes in Y
form a subpath of H∗, and the result is proved.

Case 3. {s, t} ∩ V2 �= ∅.
Without loss of generality, let us assume that t ∈ V2. Then there exists an edge

f = (t, z1) in E such that uf is even and πt = ũf = uf ≥ ue + 1 ≥ ũe + 2.
Hence, in some iteration i, Algorithm Gomory–Hu constructs a cycle Ci con-

taining nodes t and z1 but not containing node s and assigns to this cycle a capacity
1
2θ

i ≥ 1. If this cycle contains any node in Y , then

δu∗ [Y] ≥ δû[Y] ≥ ũe + θi > ue,

and the result is proved.
Hence, let us assume that the cycle Ci does not contain any node in Y . This

implies that z1 ∈ Ȳ , and therefore the subpath of H∗ containing nodes t and z1 but
not containing node s is in Ȳ .

Let p1 be the path in P containing the edge e. Let z2 and z3 be the endnodes of p1

in Y and Ȳ , respectively. We have to consider only the case when |{z2, z3}∩{s, t}| = 0
or 1.

Node t is not a leaf node of T . Hence, in some iteration j of Phase 1, the algorithm
chooses v = t. If t �= z2, then the cycle ΔHj formed in the jth iteration contains
node t and supernodes yj1 , yj2 , and yj3 , containing, respectively, nodes s, z1, and z2,
in the order tyj1yj2yj3t. Hence, in the cycle H∗, nodes s, t, z1, and z2 occur in the
order sz1z2ts. Therefore z2 ∈ Ȳ .

If z3 ∈ Y , then the edge (z3, z2) ∈ Ep lies in the cut [Y, Ȳ], and the result is
proved.

Let us consider the case s �= z3 ∈ Ȳ . In this case, node s is the endnode of some
path p2 ∈ P . Let the other endnode of p2 be z4. Since node s is not a leaf node of
T , in some iteration i of Phase 1, the algorithm chooses v = s and forms the cycle

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

152 S. N. KABADI, J. YAN, D. DU, AND K. P. K. NAIR

ΔHi in which node s and the supernodes yi1 , yi2 , and yi3 , containing, respectively,
the nodes t, z3, and z4, occur in the order syi1yi3yi2s. Hence the nodes s, t, z3, and
z4 occur in H∗ in the order stz4z3s. Since {t, z3} ⊆ Ȳ , this implies that z4 ∈ Ȳ and
hence the edge (s, z4) ∈ Ep lies in the cut [Y, Ȳ]. This proves the theorem.

7. An algorithm for the IENSP. We will now present a combinatorial, strongly
polynomial algorithm for the IENSP. The algorithm invokes as subroutines the algo-
rithms for the subproblems discussed in the previous sections.
Algorithm EXACT-SYNTHESIS

Input. A symmetric, integer, nonnegative matrix R = (rij)n×n.
Output. A network G∗ = [V,E∗, u∗], that is an optimal solution to the instance of

the IENSP.
Step 0. Find a maximum weight spanning tree T = [V,E, u] in GR (the complete

graph on node set V with edge weight ue = rij for all e = (i, j), i �= j).
1. If T does not exactly realize R, then conclude that “R is not exactly

realizable” and stop.
2. Otherwise, let Ē = {e : e ∈ E, ue ≤ 1} and F = [V,E − Ē, u].

Let T 1, T 2, . . . , T k be the connected components of F with node sets
V 1, . . . , V k, respectively.

Step 1. For each i ∈ {1, 2, . . . , k}, find an optimal solution T ∗i = [V i, Ei, ui] to the
FETP with input T i using Algorithm Tree-Finding.

Step 2. For each i ∈ {1, 2, . . . , k}, find the optimal solution G∗i = [V i, E∗i, u∗i] to
the OCRP with input T ∗i.

Step 3. Construct network G∗ = [V,E∗, u∗] with E∗ = (∪k
i=1E

∗i) ∪ Ē and

u∗e =
{
u∗i

e if e ∈ E∗i for some i ∈ {1, 2, . . . , k},
ue if e ∈ Ē.

Output the network G∗ and stop.
The theorem below now follows from the results in the previous sections.
Theorem 7.1. Algorithm Exact-Synthesis produces an optimal solution to

the IENSP in O(n2) time.
Proof. Suppose an input R = (rij)n×n to the IENSP is exactly realizable. Let

T = [V,E, u] be the maximum weight spanning tree in GR computed in Step 0 of
Algorithm Exact-Synthesis.

If ue > 1 for all e ∈ E, then the desired result follows from Theorems 6.5 and 5.3
and the fact that the set of all maximum weight spanning trees of GR is precisely
(i) the set of all cut-trees of all possible exact realizations of GR and (ii) the set of all
the trees flow-equivalent to T .

Suppose ue = 0 for some e ∈ E. Let the corresponding fundamental cut of T
be [X, X̄]. Then R being exactly realizable implies that rxy = 0 for any x ∈ X and
y ∈ X̄. Therefore in any feasible solution G to the instance of the IENSP, node sets
X and X̄ are disconnected in G. Hence, an optimum solution to the problem can be
obtained by solving the subproblems on node sets X and X̄ with input R|X and R|X̄ ,
respectively. Here R|S is the principal submatirx of R restricted to subindex set S for
any S ⊆ V .

So we assume ue ≥ 1 for all u ∈ T in the rest of the argument. Suppose there
exist k ≥ 1 edges in T such that ue = 1. Let the subtrees obtained by deleting these
k edges from T be T 1, . . . , T k+1 on node sets X1, . . . , Xk+1, respectively. Then R
being exactly realizable implies that, for any two nodes x, y ∈ V , rxy > 1 if they
are in the same subtree and rxy = 1 if they are not. Hence, in any feasible solution

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGER EXACT NETWORK SYNTHESIS PROBLEM 153

G to the IENSP, (i) if we contract node sets X1, . . . , Xk+1 to supernodes, then we
must get a tree with k edges and (ii) the subnetwork of G spanned by X i is a feasible
solution to the IENSP with input R|Xi for every i. Now each T i is a maximum weight
spanning tree in GR|Xi and by Theorem 2.6; each R|Xi is exactly realizable. Hence,
it follows from Theorems 6.5 and 5.3 that each subnetwork G∗i constructed by the
algorithm is an optimal solution to the corresponding subproblem. Therefore, the
overall optimum solution can be obtained by finding optimum subnetworks for the
IENSP with R|X1 , . . . , R|Xk+1 as inputs, respectively, and adding to these subnetworks
the k edges on T with ee = 1. This proves the theorem.

We now show that our algorithm for the IENSP leads to an algorithm for the
INSP. Thus, consider an instance of the INSP with a nonnegative, integer, and
symmetric matrix R as input. Let πi = max{rij : j ∈ V − {i}} for all i ∈ V .
For convenience, we will consider only the case πi > 1 for all i. Define a matrix
R̄ = (r̄ij)n×n as r̄ij = min{πi, πj} for all i �= j. Then any exact realization of R̄
is a realization of R. It is easy to see that T ∗ = [V,E, u] with E = {(1, j) : j ∈
V − {1}} is an optimal solution to the corresponding FETP with λ(T ∗) = � |V1|

2 �.
Thus, by Theorem 7.1 Algorithm Exact-Synthesis produces an exact realization
G∗ = [V,E∗, u∗] of R̄ with integer capacities and

∑
e∈E∗ u∗e = � 12

∑
i∈V πi�. We thus

get the following corollary.
Corollary 7.2. If the input matrix R satisfies πi = max{rij : j ∈ V −{i}} > 1

for all i ∈ V , then the optimal objective function value of the corresponding instance
of the INSP is � 12

∑
i∈V πi�.

Acknowledgments. We thank the associate editor, A. Schrijver, and two anon-
ymous referees for their valuable suggestions which greatly improved the presentation
of this paper.

REFERENCES

[1] Y. P. Aneja, R. Chandrasekaran, S. N. Kabadi, and K. P. K. Nair, Flows over edge-
disjoint mixed multipaths and applications, Discrete Appl. Math., 155 (2007), pp. 1979–
2000.

[2] R. Chandrasekaran, K. P. K. Nair, Y. P. Aneja, and S. N. Kabadi, Multi-terminal mul-
tipath flows: Synthesis, Discrete Appl. Math., 143 (2004), pp. 182–193.

[3] W. Chou and H. Frank, Survivable communication networks and the terminal capacity ma-
trix, IEEE Trans. Circuit Theory, CT-17 (1970), pp. 192–197.

[4] G. Cornuejols, D. Naddef, and W. R. Pulleyblank, Halin graphs and the traveling sales-
man problem, Math. Programming, 26 (1983), pp. 287–294.

[5] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton,
NJ, 1962.

[6] A. Frank, Connectivity augmentation problems in network design, in Mathematical Program-
ming: State of the Art, J. Birge and K. G. Murty, eds., The University of Michigan Press,
Ann Arbor, MI, 1994, pp. 34–63.

[7] R. J. Gibbens and F. P. Kelly, Dynamic routing in fully connected networks, IMA J. Math.
Control Inform., 7 (1990), pp. 77–111.

[8] R. E. Gomory and T. C. Hu, An application of generalized linear programming to network
flows, J. Soc. Indust. Appl. Math., 10 (1961), pp. 260–283.

[9] R. E. Gomory and T. C. Hu, Multi-terminal network flows, J. Soc. Indust. Appl. Math., 9
(1961), pp. 551–570.

[10] D. Gusfield, Simple constructions for the multi-terminal network flow synthesis, SIAM J.
Comput., 12 (1983), pp. 157–165.

[11] R. Hassin and A. Levin, Synthesis of 2-commodity flow networks, Math. Oper. Res., 29
(2004), pp. 280–288.

[12] M. Hojati, The network synthesis problem in a cycle, Oper. Res. Lett., 17 (1995), pp. 231–236.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

154 S. N. KABADI, J. YAN, D. DU, AND K. P. K. NAIR

[13] S. N. Kabadi, Strongly Polynomial Algorithms for the Continuous and Integer Versions of
the Network Augmentation Problem in a Cycle, Technical report, Faculty of Business
Administration, University of New Brunswick, New Brunswick, Canada, 2003.

[14] S. N. Kabadi, R. Chandrasekaran, and K. P. K. Nair, 2-Commodity Integer Network
Synthesis Problem, Technical report, Faculty of Business Administration, University of
New Brunswick, New Brunswick, Canada, 2003.

[15] S. N. Kabadi, R. Chandrasekaran, and K. P. K. Nair, Multiroute flows: Cut-trees and
realizability, Discrete Optim., 2 (2005), pp. 229–240.

[16] S. N. Kabadi, R. Chandrasekaran, K. P. K. Nair, and Y. P. Aneja, Integer version of the
multipath flow network synthesis problem, Discrete Appl. Math., to appear.

[17] S. N. Kabadi, J. Kang, R. Chandrasekaran, and K. P. K. Nair, Hop-Constrained Net-
work Flows: Analysis and Synthesis, Technical report, Faculty of Business Administration,
University of New Brunswick, New Brunswick, Canada, 2003.

[18] S. N. Kabadi and R. Sridhar, Peeling Algorithm for Integral Network Synthesis, Technical
report, Faculty of Business Administration, University of New Brunswick, New Brunswick,
Canada, 1996.

[19] W. Kishimoto, A method for obtaining the maximum multiroute flows in a network, Networks,
27 (1996), pp. 279–291.

[20] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Win-
ston, New York, 1976.

[21] W. Mayeda, Terminal and branch capacity matrices of a communication net, IRE Trans.,
CT-7 (1960), pp. 261–269.

[22] A. Punnen, private communication, 2005.
[23] A. Schrijver, Combinatorial optimization: Polyhedra and efficiency. Vol. B. Matroids, trees,

stable sets, Algorithms Combin. 24, Springer-Verlag, Berlin, 2003, pp. 1049–1057.
[24] R. Sridhar and R. Chandrasekaran, Integer solution to synthesis of communication net-

work, Math. Oper. Res., 17 (1992), pp. 581–585.
[25] K. Talluri, Network synthesis with few edges, Networks, 27 (1996), pp. 109–115.
[26] E. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Oper.

Res., 34 (1986), pp. 250–256.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 155–162

RAMSEY-TYPE PROBLEM FOR AN ALMOST MONOCHROMATIC
K4

∗

JACOB FOX† AND BENNY SUDAKOV‡

Abstract. In this short note we prove that there is a constant c such that every k-edge-coloring
of the complete graph Kn with n ≥ 2ck contains a K4 whose edges receive at most two colors. This
improves on a result of Kostochka and Mubayi, and is the first exponential bound for this problem.

Key words. Ramsey-type problems, dependent random choice, probabilistic method

AMS subject classifications. 05C55, 05C35, 05D10, 05D40

DOI. 10.1137/070706628

1. Introduction. The Ramsey number R(t; k) is the least positive integer n such
that every k-coloring of the edges of the complete graphKn contains a monochromatic
Kt. In 1916 Schur showed that R(3; k) is at least exponential in k and at most a
constant times k!. Despite various efforts over the past century to determine the
asymptotics of R(t; k), there were improvements only in the exponential constant in
the lower bound and the constant factor in the upper bound. It is a major open
problem to determine whether there is a constant c such that R(3; k) ≤ ck for all k
(see, e.g., the monograph [9]).

In 1981, Erdős [6] proposed studying the following generalization of the classical
Ramsey problem. Let p, q be positive integers with 2 ≤ q ≤ (p2). A (p, q)-coloring of
Kn is an edge-coloring such that every copy of Kp receives at least q distinct colors.
Let f(n, p, q) be the minimum number of colors in a (p, q)-coloring ofKn. Determining
the numbers f(n, p, 2) is equivalent to determining the multicolor Ramsey numbers
R(p; k), as an edge-coloring is a (p, 2)-coloring if and only if it does not contain a
monochromatic Kp. Over the last two decades, the study of f(n, p, q) drew a lot
of attention. Erdős and Gyárfás [7] proved several results on f(n, p, q); e.g., they
determined for which fixed p and q we have where f(n, p, q) is at least linear in n,
quadratic in n, or

(
n
2

)
minus a constant. For fixed p, they also gave bounds on the

smallest q for which f(n, p, q) is asymptotically
(
n
2

)
. These bounds were significantly

tightened by Sárközy and Selkow [15] using Szemerédi’s regularity lemma. In a dif-
ferent paper, Sárközy and Selkow [14] show that f(n, p, q) is linear in n for at most
log p values of q. (Here, and throughout the paper, all logarithms are base 2.) There
are also results on the behavior of f(n, p, q) for particular values of p and q. Mubayi
[13] gave an explicit construction of an edge-coloring which together with the already
known lower bound shows that f(n, 4, 4) = n1/2+o(1). Using Behrend’s construction
of a dense set with no arithmetic progressions of length three, Axenovich [2] showed

∗Received by the editors October 28, 2007; accepted for publication (in revised form) July 23,
2008; published electronically November 14, 2008.

http://www.siam.org/journals/sidma/23-1/70662.html
†Department of Mathematics, Princeton University, Princeton, NJ 08544 (jacobfox@math.

princeton.edu). This author’s research was supported by an NSF Graduate Research Fellowship
and a Princeton Centennial Fellowship.

‡Department of Mathematics, UCLA, Los Angeles, CA 90095 and Institute for Advanced Study,
Princeton, NJ 08544 (bsudakov@math.ucla.edu). This author’s research was supported in part by
NSF CAREER award DMS-0546523, NSF grants DMS-0355497 and DMS-0635607, by a USA-Israeli
BSF grant, and by the State of New Jersey.

155

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

156 JACOB FOX AND BENNY SUDAKOV

that 1+
√

5
2 n− 3 ≤ f(n, 5, 9) ≤ 2n1+c/

√
log n. These examples demonstrate that special

cases of f(n, p, q) lead to many interesting problems.
As was pointed out by Erdős and Gyárfás [7], one of the most intriguing problems

among the small cases is the behavior of f(n, 4, 3). This problem can be rephrased in
terms of another more convenient function. Let g(k) be the largest positive integer n
for which there is a k-edge-coloring of Kn, in which every K4 receives at least three
colors, i.e., for which f(n, 4, 3) ≤ k. Restated, g(k) + 1 is the smallest positive
integer n for which every k-edge-coloring of the edges of Kn contains a K4 that
receives at most two colors. In 1981, Erdős [6] showed that g(k) is superlinear in k by
an easy application of the probabilistic method. Later, Erdős and Gyárfás used the
Lovász local lemma to show that g(k) is at least quadratic in k. Mubayi [12] improved
these bounds substantially, showing that g(k) ≥ 2c(log k)2 for some absolute positive
constant c. On the other hand, the progress on the upper bound was much slower.
Until very recently, the best result was of the form g(k) < kck for some constant c,
which follows trivially from the multicolor k-color Ramsey number forK4. This bound
was improved by Kostochka and Mubayi [10], who showed that g(k) < (log k)ck for
some constant c. Here we further extend their neat approach and obtain the first
exponential upper bound for this problem.

Theorem 1.1. For k > 2100, we have g(k) < 22000k.
While it is a longstanding open problem to determine whether R(t; k) grows faster

than exponential in k, it is not difficult to prove an exponential upper bound if we
restrict the colorings to those that do not contain a rainbow Ks for fixed s. Let
M(k, t, s) be the minimum n such that every k-edge-coloring of Kn has a monochro-
matic Kt or a rainbow Ks. Axenovich and Iverson [4] showed that M(k, t, 3) ≤ 2kt2 .
We improve on their bound by showing that M(k, t, s) ≤ s4kt for all k, t, s. In the
other direction, we prove that for all positive integers k and t with k even and t ≥ 3,
M(k, t, 3) ≥ 2kt/4, thus determining M(k, t, 3) up to a constant factor in the exponent.

The rest of this paper is organized as follows. In the next section, we prove our
main result, Theorem 1.1. In section 3, we study the Ramsey problem for colorings
without rainbow Ks. The last section of this note contains some concluding remarks.
Throughout the paper, we systematically omit floor and ceiling signs whenever they
are not crucial for the sake of clarity. We also do not make any serious attempt to
optimize absolute constants in our statements and proofs.

2. Proof of Theorem 1.1. Our proof develops further on ideas in [10]. Like
the Kostochka–Mubayi proof, we show that the K4 we find is monochromatic or is a
C4 in one color and a matching in the other color. Call a coloring of Kt rainbow if
all
(

t
2

)
edges have different colors. Let g(k, t) be the largest positive integer n such

that there is a k-edge-coloring of Kn with no rainbow Kt, and in which the edges of
every K4 have at least three colors. We will study g(k) by investigating the behavior
of g(k, t).

Before jumping into the details of the proof of Theorem 1.1, we first outline the
proof idea. Note that g(k) = g(k, k) for k > 2 as a rainbow Kk would use

(
k
2

)
> k

colors. We give a recursive upper bound on g(k, t) which implies Theorem 1.1. We
first prove a couple of lemmas which show that in any k-edge-coloring without a
rainbow Kt, there are many vertices that have large degree in some color i. We then
apply a simple probabilistic lemma to find a large subset V2 of vertices such that
every vertex subset of size d (with d � t) has many common neighbors in color i.
We use this to get an upper bound on g(k, t) as follows. Consider a k-edge-coloring
of Kn with n = g(k, t) without a rainbow Kt and with every K4 containing at least

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALMOST MONOCHROMATIC K4 157

three colors. There are two possible cases. If there is no rainbow Kd in the set V2,
then we obtain an upper bound on g(k, t) using the fact that |V2| has size at most
g(k, d). If there is a set R ⊂ V2 of d vertices which forms a rainbow Kd, then the(
d
2

)
colors that appear in this rainbow Kd cannot appear in the edges inside the set

Ni(R) of vertices that are adjacent to every vertex in R in color i, for otherwise we
would obtain a K4 having at most two colors (the color i and the color that appears
in both R and in Ni(R)). In this case we obtain an upper bound on g(k, t) using the
fact that |Ni(R)| ≤ g(k − (d2), t). Finally, if the coloring has no rainbow Kd with d
constant, it is easy to show an exponential upper bound.

For an edge-coloring of Kn, a vertex x, and a color i, let di(x) denote the degree
of vertex x in color i. Our first lemma shows that if, for every vertex x and color i,
di(x) is not too large, then the coloring contains many rainbow cliques.

Lemma 2.1. If an edge-coloring of the complete graph Kn satisfies di(x) ≤ δn for
each x ∈ V (Kn) and each color i, then this coloring has at most 5

8δt
4
(
n
t

)
nonrainbow

copies of Kt.
Proof. If a Kt is not rainbow, then it has two adjacent edges of the same color

or two nonadjacent edges of the same color. We will use this fact to give an upper
bound on the number of Kt’s that are not rainbow.

Let ν(i, t, n) be the number of copies of Kt in Kn in which there are at least two
adjacent edges of color i. To bound the number of such Kt we can first choose the
vertex, then the two edges with color i incident to this vertex and then the remaining
t − 3 vertices. Hence, the number of Kt’s for which there is a vertex with degree at
least two in some color is at most

∑
i

ν(i, t, n) ≤
∑

i

∑
x∈V

(
di(x)

2

)(
n− 3
t− 3

)
≤ nδ−1

(
δn

2

)(
n− 3
t− 3

)

≤ δn3

2

(
t

n

)3(
n

t

)
=

1
2
δt3
(
n

t

)
.

Here we used the fact that
∑

i

(
di(x)

2

) ≤ δ−1
(
δn
2

)
, since di(x) ≤ δn,

∑
i di(x) = n− 1,

and the function f(y) =
(
y
2

)
is convex.

Let ψ(i, t, n) be the number of copies of Kt in Kn in which there is a matching
of size at least two in color i. Let ei denote the number of edges of color i. Since

ei ≤ n

2
max
x∈V

di(x) ≤ δ

2
n2,

then the number of Kt’s in which there is a matching of size at least two in some color
is at most

∑
i

ψ(i, t, n) ≤
∑

i

(
ei

2

)(
n− 4
t− 4

)
≤ δ−1

(
δn2/2

2

)(
n− 4
t− 4

)
≤ δt4

8

(
n

t

)
,

where again we used the convexity of the function f(y) =
(
y
2

)
together with ei ≤ δn2/2

and
∑

i ei ≤ n2/2. Hence, the number of Kt’s which are not rainbow is at most
1
2δt

3
(
n
t

)
+ 1

8δt
4
(
n
t

) ≤ 5
8δt

4
(
n
t

)
, completing the proof.

For the proof of Theorem 1.1, we do not need the full strength of this lemma
since we will use only the existence of at least one rainbow Kt. We also would like
to mention the following stronger result. Call an edge-coloring m-good if each color
appears at most m times at each vertex. Let h(m, t) denote the minimum n such

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

158 JACOB FOX AND BENNY SUDAKOV

that every m-good edge-coloring of Kn contains a rainbow Kt. The above lemma
demonstrates that h(m, t) is at most mt4. It is shown by Alon et al. [1] that there are
constant positive constants c1 and c2 such that

c1mt
3/ log t ≤ h(m, t) ≤ c2mt3/ log t.

The following easy corollary of Lemma 2.1 demonstrates that in every k-edge-
coloring without a rainbow Kt, there is a color and a large set of vertices which have
large degree in that color.

Corollary 2.2. In every k-edge-coloring of Kn without a rainbow Kt, there is a
subset V1 ⊂ V (Kn) with |V1| ≥ n

2k and a color i such that di(x) ≥ n
2t4 for each vertex

x ∈ V1.
Proof. Let V ′ ⊂ V (Kn) be those vertices x for which there is a color i such that

di(x) ≥ n
2t4 .

Case 1: |V ′| < n/2. In this case, letting V ′′ = V (Kn) \ V ′, |V ′′| ≥ n/2 and no
vertex in V ′′ has degree at least n

2t4 ≤ |V ′′|/t4 in any given color. By Lemma 2.1
applied to the coloring of Kn restricted to V ′′ with δ = t−4, there are at least 3

8

(|V ′′|
t

)
rainbow Kt’s, contradicting the assumption that the coloring is free of rainbow Kt’s.

Case 2: |V ′| ≥ n/2. In this case, by the pigeonhole principle, there is a color i
and at least n

2k vertices x for which di(x) ≥ n
2t4 , completing the proof.

The following lemma is essentially the same as results in [11] and [16]. Its proof
uses a probabilistic argument commonly referred to as dependent random choice,
which appears to be a powerful tool in proving various results in Ramsey theory (see,
e.g., [8] and its references). In a graph G, the neighborhood N(v) of a vertex v is
the set of vertices adjacent to v. For a vertex subset U of a graph G, the common
neighborhood N(U) is the set of vertices adjacent to all vertices in U .

Lemma 2.3. Let G = (V,E) be a graph with n vertices and let V1 ⊂ V be a subset
with |V1| = m in which each vertex has degree at least αn. If β ≤ m−d/h, then there
is a subset V2 ⊂ V1 with |V2| ≥ αhm− 1 such that every d-tuple in V2 has at least βn
common neighbors.

Proof. Let U = {x1, . . . , xh} be a subset of h random vertices from V chosen
uniformly with repetitions, and let V ′

1 = N(U) ∩ V1. We have

E[|V ′
1 |] =

∑
v∈V1

Pr(v ∈ N(U)) =
∑
v∈V1

(|N(v)|
n

)h

≥ αhm.

The probability that a given setW ⊂ V1 of vertices is contained in V ′
1 is (|N(W)|

n)h.
Let Z denote the number of d-tuples in V ′

1 with less than βn common neighbors. So

E[Z] =
∑

W⊂V1,|W |=d,|N(W)|<βn

Pr(W ⊂ V ′
1) ≤

(
m

d

)
βh ≤ mdβh ≤ 1.

Hence, the expectation of |V ′
1 |−Z is at least αhm−1 and thus, there is a choice U0 for

U such that the corresponding value of |V ′
1 |−Z is at least αhm−1. For every d-tuple

D of vertices of V ′
1 with less than βn common neighbors, delete a vertex vD ∈ D

from V ′
1 . Letting V2 be the resulting set, it is clear that V2 has the desired properties,

completing the proof.
The proof of the next lemma uses the standard pigeonhole argument together

with Lemma 2.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALMOST MONOCHROMATIC K4 159

Lemma 2.4. Let d, k be integers with d, k ≥ 2. Then every k-edge-coloring of Kn

with n ≥ d12k and without a rainbow Kd has a monochromatic K4. In particular, we
have g(k, d) < d12k.

Proof. Suppose for contradiction that there is a k-edge-coloring of Kn with n ≥
d12k and without a rainbow Kd and without a monochromatic K4. By Lemma 2.1
with t = d and δ = d−4, this graph contains a vertex x1 with degree at least n

d4 in
some color c1. Pick this vertex x1 and let N1 be the set of vertices adjacent to x1 by
color c1. We will define a sequence x1, . . . , x2k+1 of vertices, a sequence c1, . . . , c2k+1

of colors, and a sequence V (Kn) ⊃ N1 ⊃ · · · ⊃ N2k+1 of vertex subsets. Once xj ,
cj , and Nj have been defined, pick a vertex xj+1 in Nj such that there are at least
|Nj|
d4 vertices in Nj connected to xj+1 by edges of the same color cj+1. Let Nj+1 be

the set of vertices in Nj that are adjacent to xj+1 by edges of color cj+1. Note that
|Nj+1| ≥ d−4|Nj | so

|N2k+1| ≥ (d−4)2k+1n ≥ 1.

Therefore, there is a color c that is represented at least three times in the list
c1, . . . , c2k+1 and the three vertices xj1 , xj2 , xj3 together with a vertex from N2k+1

form a monochromaticK4 in color c, where cj1 = cj1 = cj3 = c with j1 < j2 < j3.
Lemma 2.5. Let d, k, t be positive integers with 3 ≤ d ≤ t and d ≥ 40 log t. If

k ≥ (d2), then

(2.1) g(k, t) ≤ max
(

4kg(k, t)
20 log t

d g(k, d), 2(d
2)g
(
k −

(
d

2

)
, t

))
.

Otherwise, we have g(k, t) = g(k, d).
Proof. Note that if k <

(
d
2

)
, then a k-edge-coloring cannot have a rainbow Kd.

Therefore, g(k, t) = g(k, d) in this case. So we assume k ≥ (d2). By the definition
of g(k, t), there is a k-edge-coloring of Kn with n = g(k, t) with no rainbow Kt

and in which every K4 receives at least three colors. Consider such a coloring. By
Corollary 2.2, there is a color i and a subset V1 ⊂ V (Kn) with |V1| ≥ n

2k and di(x) ≥
n

2t4 for every vertex x ∈ V1. Apply Lemma 2.3 to the graph of color i with α = 1
2t4 ,

β = 2−(d
2), m = |V1| ≥ n

2k , and h = 4d−1 logn. We can apply Lemma 2.3 since
β < 2−d2/4 = n−d/h ≤ |V1|−d/h. So there is a subset V2 ⊂ V1 such that

|V2| ≥ αhm− 1 ≥ αhm/2 ≥ (2t4)−4d−1 log n · n
4k
≥ n1− 20 log t

d /(4k)

and every subset of V2 of size d has at least βn = 2−(d
2)n common neighbors in color

i.
There are two possibilities: Either every Kd in V2 is not rainbow, or there is a

Kd in V2 that is rainbow. In the first case, the k-edge-coloring restricted to V2 is free
of rainbow Kd, so

g(k, d) ≥ |V2| ≥ n1− 20 log t
d /(4k).

Since n = g(k, t), we can restate this inequality as

g(k, t) ≤ 4kg(k, t)
20 log t

d g(k, d).

In the second case, there is a rainbow d-tuple R ⊂ V2 such that Ni(R), the common
neighborhood of R in color i, has cardinality at least βn. The

(
d
2

)
colors present in R

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

160 JACOB FOX AND BENNY SUDAKOV

cannot be present in Ni(R) since otherwise we would have a K4 using only two colors
(the color i and the color that appears in both R and in Ni(R)). In this case we have

g

(
k −

(
d

2

)
, t

)
≥ |Ni(R)| ≥ βn = 2−(d

2)g(k, t).

In either case we have

g(k, t) ≤ max
(

4kg(k, t)
20 log t

d g(k, d), 2(d
2)g
(
k −

(
d

2

)
, t

))
,

which completes the proof.
Having finished all the necessary preparation, we are now ready to prove Theorem

1.1, which says that g(k) ≤ 22000k for k > 2100. The iterated logarithm log∗ n is de-
fined by log∗ n = 0 if n ≤ 1 and otherwise log∗ n = 1+log∗ logn. It is straightforward
to verify that log∗ n < logn holds for n > 8.

Proof of Theorem 1.1. Note that g(k) = g(k, k) since no k-edge-coloring contains
a rainbow Kk. Assume k > 2100 and suppose for contradiction that there is a k-
edge-coloring of Kn with n = g(k) ≥ 22000k such that every K4 has at least three
colors.

Let t1 = k, and if ti > 2100, let ti+1 = (log ti)2. We first exhibit several inequalities
which we will use. We have ti+1 > 100 log ti and 20 log ti

ti+1
= 20/ log ti ≤ 1

5 . Let � be
the largest positive integer for which t� is defined, so 1002 < t� ≤ 2100. Note that
� < 2 log∗ k, as one can easily check that tj+1 = (log tj)2 = (2 log log tj−1)2 < log tj−1.
Since � < 2 log∗ k ≤ 2 log k and n ≥ 22000k, then (4k)� < n1/12. For 1 ≤ i ≤ �− 1, we
have 20/ log t�−i < 5−i. Indeed, for i = 1, since t�−1 > 2100, we have 20/ log t�−1 <
1/5. Suppose by induction on i that we already have 20/ log t�−i < 5−i. Then
t�−i > 220·5i

and therefore we have 20/ log t�−i−1 = 20/
√
t�−i ≤ 20 · 2−10·5i

< 5−i−1.

Therefore,
∑�−1

i=1 20/ log ti <
∑∞

i=1 5−i ≤ 1/4. Putting this together, we have

(4k)�−1n
∑ �−1

i=1 20/ log ti < n1/3.

To get an upper bound on g(k, k) we repeatedly apply Lemma 2.5. Given k′ ≤ k
and t = ti, to bound g(k′, t), we use this lemma with d = ti+1. Note that we have
d = ti+1 > 100 log ti, so indeed the condition of the lemma holds. If k′ <

(
ti+1

2

)
, then

g(k′, ti) = g(k′, ti+1). Otherwise, we have one of two possible upper bounds given by
(2.1). If the maximum of the two terms in (2.1) is the left bound, then

g(k′, t) ≤ 4k′g(k′, t)
20 log t

d g(k′, d) ≤ 4kn
20 log t

d g(k′, d) = 4kn20/ log tig(k′, d);

otherwise we have g(k′, t) ≤ 2jg(k′ − j, t) with j =
(
d
2

)
. Since g(k′,t)

g(k′,d) ≤ 4kn20/ log ti if
the left bound holds, we can accumulate only up to a total upper bound factor of

l−1∏
i=1

4kn20/ log ti = (4k)�−1n
∑ �−1

i=1 20/ log ti < n1/3

in all of the applications of the left bound. When we use the right bound, we pick up
a factor of g(k′,t)

g(k′−j,t) ≤ 2j with j =
(
d
2

)
and also decrease k′ by j. Since in the end of

the process k′ ≥ 3, this can give only another multiplicative factor of at most 2k in
all of the applications of the right bound.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALMOST MONOCHROMATIC K4 161

As we already mentioned above, if k′ <
(
ti+1
2

)
, then g(k′, ti) = g(k′, ti+1). There-

fore when we finish repeatedly applying Lemma 2.5 we end up with a term of the
form g(k0, t�) with k0 ≤ k. In that case, we use that t� ≤ 2100 together with Lemma
2.4 to bound it by g(k, t�) ≤ t12k

� ≤ 21200k. Putting this all together, we obtain the
upper bound

n = g(k) = g(k, k) < n1/32kg(k, t�) < 21201kn1/3,

which implies that n < 22000k. This completes the proof.

3. Monochromatic or rainbow cliques. In this section, we prove bounds on
the smallest n, denoted by M(k, t, s), such that every k-edge-coloring of Kn contains
a monochromatic Kt or a rainbow Ks. The following proposition is a straightforward
generalization of Lemma 2.4.

Proposition 3.1. We have M(k, t, s) ≤ s4kt.
Let Ms(t1, . . . , tk) be the maximum n such that there is a k-edge-coloring of Kn

with colors {1, . . . , k} without a rainbow Ks and without a monochromatic Kti in
color i for 1 ≤ i ≤ k. The above proposition follows from repeated application of the
following recursive bound.

Lemma 3.2. We have

Ms(t1, . . . , tk) ≤ s4 max
1≤i≤k

Ms(t1, . . . , ti − 1, . . . , tk).

Proof. By Lemma 2.1, for every edge-coloring of Kn without a rainbow Ks, there
is a vertex v with degree at least n/s4 in some color i. If the coloring of Kn does not
contain a monochromatic Kti in color i, then the neighborhood of v in color i has at
least n/s4 vertices and does not contain Kti−1 in color i, completing the proof.

Using a slightly better estimate by Alon et al. [1] (which we mentioned earlier)
instead of Lemma 2.1, one can improve the constant in the exponent of the above
proposition from 4 to 3. Together with the next lemma, Proposition 3.1 determines
M(k, t, 3) up to a constant factor in the exponent.

Lemma 3.3. For all positive integers k and t with k even and t ≥ 3, we have
M(k, t, 3) > 2kt/4.

Proof. To prove the lemma, it suffices by induction to prove M(k, t, 3) − 1 ≥
2t/2 (M(k − 2, t, 3)− 1) for all k ≥ 2 and t ≥ 3. Consider a 2-edge-coloring C1 of
Km with m = 2t/2 and without a monochromatic Kt. Such a 2-edge-coloring exists
by the well-known lower bound of Erdős [5] on the 2-color Ramsey number R(t; 2).
Consider also a (k − 2)-edge-coloring C2 of Kr with r = M(k − 2, t, 3) − 1 without
a rainbow triangle and without a monochromatic Kt. We use these two colorings to
make a new edge-coloring C3 of Kmr with k colors: We first partition the vertices of
Kmr into m vertex subsets V1, . . . , Vm each of size r, and color any edge e = (v, w)
with v ∈ Vi, w ∈ Vj , and i
= j by the color of (i, j) in the 2-edge-coloring C1 of
Km, and color within each Vi identical to the coloring C2 of Kr. First we show that
coloring C3 has no rainbow triangle. Indeed, consider three vertices of Kmr. If all
three vertices lie in the same vertex subset Vi, then the triangle between them is not
rainbow by the assumption on coloring C2. If exactly two of the three vertices lie in
the same vertex subset, then the two edges from these vertices to the third vertex will
receive the same color. Finally, if they lie in three different vertex subsets, then the
triangle between them receives only colors from C1 and is not rainbow since C1 is a
2-coloring. Similarly, one can see that coloring C3 has no monochromatic Kt, which
completes the proof.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

162 JACOB FOX AND BENNY SUDAKOV

4. Concluding remarks. In this paper we proved that there exists a constant
c such that every k-edge-coloring of Kn with n ≥ 2ck contains a K4 whose edges
receive at most two colors. On the other hand, for n ≤ 2c(log k)2 , Mubayi constructed
a k-edge-coloring of Kn in which every K4 receives at least three colors. There is still
a large gap between these results. We believe that the lower bound is closer to the
truth, and the correct growth is likely to be subexponential in k.

Our upper bound is equivalent to f(n, 4, 3) ≥ (logn)/2000 for n sufficiently large.
Kostochka and Mubayi showed that f(n, 2a, a + 1) ≥ ca

log n
log log log n

, where ca is a
positive constant for each integer a ≥ 2. Like the Kostochka–Mubayi proof, our proof
can be generalized to demonstrate that for every integer a ≥ 2 there is ca > 0 such
that f(n, 2a, a + 1) ≥ ca logn for every positive integer n. For brevity, we do not
include the details.

We do not yet have a good understanding of how M(k, t, s), which is the smallest
positive integer n such that every k-edge-coloring of Kn has a monochromatic Kt or
a rainbow Ks, depends on s. From the definition, it is an increasing function in s.
For constant s, we showed that M(k, t, s) grows only exponentially in k. On the
other hand, for

(
s
2

)
> k, we have M(k, t, s) = R(t; k), so understanding the behavior

of M(k, t, s) for large s is equivalent to understanding the classical Ramsey numbers
R(t; k).

REFERENCES

[1] N. Alon, T. Jiang, Z. Miller, and D. Pritikin, Properly colored subgraphs and rainbow
subgraphs in edge-colorings with local constraints, Random Structures Algorithms, 23 (2003),
pp. 409–433.

[2] M. Axenovich, A generalized Ramsey problem, Discrete Math., 222 (2000), pp. 247–249.
[3] M. Axenovich, Z. Füredi, and D. Mubayi, On generalized Ramsey theory: The bipartite case,

J. Combin. Theory Ser. B, 79 (2000), pp. 66–86.
[4] M. Axenovich and P. Iverson, Edge-colorings avoiding rainbow and monochromatic subgraphs,

Discrete Math., 308 (2008), pp. 4710–4723.
[5] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc., 53 (1947), pp. 292–

294.
[6] P. Erdős, Solved and unsolved problems in combinatorics and combinatorial number theory,

Congr. Numer., 32 (1981), pp. 49–62.
[7] P. Erdős and A. Gyárfás, A variant of the classical Ramsey problem, Combinatorica, 17

(1997), pp. 459–467.
[8] J. Fox and B. Sudakov, Density theorems for bipartite graphs and related Ramsey-type results,

Combinatorica, to appear.
[9] R. Graham, B. Rothschild, and J. Spencer, Ramsey Theory, 2nd ed., Wiley, New York, 1990.
[10] A. Kostochka and D. Mubayi, When is an almost monochromatic K4 guaranteed?, submitted.
[11] A. Kostochka and V. Rödl, On graphs with small Ramsey numbers, J. Graph Theory, 37

(2001), pp. 198–204.
[12] D. Mubayi, Edge-coloring cliques with three colors on all 4-cliques, Combinatorica, 18 (1998),

pp. 293–296.
[13] D. Mubayi, An explicit construction for a Ramsey problem, Combinatorica, 24 (2004), pp.

313–324.
[14] G. N. Sárközy and S. M. Selkow, On edge colorings with at least q colors in every subset of

p vertices, Electron. J. Combin., 8 (2001), Research Paper 9, 6 pp.
[15] G. N. Sárközy and S. M. Selkow, An application of the regularity lemma in generalized

Ramsey theory, J. Graph Theory, 44 (2003), pp. 39–49.
[16] B. Sudakov, Few remarks on the Ramsey-Turan-type problems, J. Combin. Theory Ser. B, 88

(2003), pp. 99–106.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 163–177

APPROXIMATE INTEGER DECOMPOSITIONS FOR UNDIRECTED
NETWORK DESIGN PROBLEMS∗

CHANDRA CHEKURI† AND F. BRUCE SHEPHERD‡

Abstract. A well-known theorem of Nash-Williams and Tutte gives a necessary and sufficient
condition for the existence of k edge-disjoint spanning trees in an undirected graph. A corollary of
this theorem is that every 2k–edge-connected graph has k edge-disjoint spanning trees. We show that
the splitting-off theorem of Mader in undirected graphs implies a generalization of this to finding
k edge-disjoint Steiner forests in Eulerian graphs. This leads to new 2-approximation rounding
algorithms for certain constrained 0-1 forest problems considered by Goemans and Williamson. These
algorithms also produce approximate integer decompositions of fractional solutions. We then discuss
open problems and outlets for this approach to the more general class of 0-1 skew supermodular
network design problems.

Key words. network design, supermodular function, integer decomposition, approximation
algorithm

AMS subject classifications. 68Q25, 68W25, 90C27, 90C59

DOI. 10.1137/040617339

1. Introduction. In this article we consider the application of splitting-off tech-
niques to obtain integer decomposition theorems and rounding algorithms for undi-
rected network design problems such as the Steiner forest problem and others. A
well-known theorem in graph theory is the following.

Theorem 1.1 (Nash-Williams and Tutte). Given an undirected multigraph G =
(V,E), there exist k edge-disjoint spanning trees T1, T2, . . . , Tk in G if and only if for
every partition V1, V2, . . . , V� of V the number of edges between the node sets of the
partition is at least k(�− 1).

An easy corollary of the above is the following.
Corollary 1.2. If G is 2k–edge-connected, then there exist k edge-disjoint

spanning trees in G.
Let λG(u, v) denote the connectivity between u and v in G. We consider packing

Steiner forests instead of spanning trees and obtain the following generalization of
Corollary 1.2 for Eulerian graphs.

Lemma 1.3 (the forest packing lemma). Given a Eulerian graph G and pairs
of nodes s1t1, s2t2, . . . , s�t� such that for 1 ≤ i ≤ �, λG(si, ti) ≥ 2k, there are k
edge-disjoint forests F1, F2, . . . , Fk such that in each Fj, si and ti are connected for
1 ≤ i ≤ �.

We give a proof of this result (in section 3) that relies on a simple application of
Theorem 1.1 and the classical splitting-off technique of Mader [32]. A special case is
proved in [17] where the goal is to pack Steiner “S-trees,” i.e., trees that each contains
a given subset S of the nodes. Splitting-off for packing Steiner trees in general graphs
is also considered in [26]. While simple, the extension above to forests, rather than

∗Received by the editors October 20, 2004; accepted for publication (in revised form) June 11,
2008; published electronically December 17, 2008. This work was done while both authors were at
Lucent Bell Labs, and their work was partially funded by a basic research grant N00014-03-M-0141
from ONR to Lucent Bell Labs.

http://www.siam.org/journals/sidma/23-1/61733.html
†Dept. of Computer Science, University of Illinois, Urbana, IL 61801 (chekuri@cs.uiuc.edu).
‡McGill University, 805 Sherbrooke West, Montreal H3A 2K6, QC, Canada (bruce.shepherd@

mcgill.ca).

163

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

164 CHANDRA CHEKURI AND F. BRUCE SHEPHERD

trees, is of interest in its own right and has already been of use in a related con-
text [29].

Our algorithmic motivation for proving Lemma 1.3 actually arises from the fol-
lowing network design problem, which is “dual” to the forest packing problem. In the
Steiner forest problem (also called the generalized Steiner problem) we are given an
edge-weighted undirected graph G = (V,E,w) and a set of pairs s1t1, s2t2, . . . , s�t�.
The goal is to find a minimum cost subgraph H of G such that, for 1 ≤ i ≤ �, si and
ti are connected in H . This problem has been studied intensively, with some of the
most general outcomes appearing in [21, 25]. Ultimately we seek results for packing
more general classes of subgraphs, not just forests, in connection with network design
arising from certain supermodular set functions. We outline this more general frame-
work in the following subsections and state Theorem 1.5, a strict generalization of the
forest packing lemma, that we prove in this paper.

1.1. Approximate integer decomposition properties. In this article we
work exclusively with the standard cut-based linear programming (LP) relaxation for
our network design problems. For e ∈ E there is a variable xe ∈ [0, 1] that indicates
if e is part of the subgraph. We seek to minimize

∑
e wexe subject to the constraint

that for each S ⊂ V that separates some pair siti, x(δ(S)) ≥ 1 . The primal-dual
2-approximation algorithms of Agrawal, Klein, and Ravi [3] and later Goemans and
Williamson [20] show that the integrality gap of the cut-based LP is (2− 2/h), where
h is the number of distinct terminals. We obtain an alternative proof of a gap of 2,
and of more interest, we show the relaxation (and our 2-approximation algorithm)
has a stronger “integrality” property. We can describe this now.

Let x be a solution to the LP, and let k be an integer such that kx is integral.
Consider the graph G′ = (V,E′) obtained by taking 2kxe copies of each edge e ∈ E.
By Lemma 1.3 it follows that E′ contains k edge-disjoint forests, each of which is a
feasible solution to the Steiner forest problem. Thus the vector 2kx dominates a sum
of k integral solutions. By convexity it follows that one of the k forests is of cost no
more than 2w · x, in other words twice the cost of the original LP solution.

The above approach yields a 2-approximation algorithm with a stronger property
than those from earlier methods in the following sense: it is always the case that if
the integrality gap of an LP relaxation for a minimization problem is α ≥ 1, then
αx dominates a convex (i.e., fractional) combination of integral solutions. However,
in general, it does not follow that αkx, when kx is integral, dominates a sum (i.e.,
integral combination) of k integral solutions. If this stronger property holds for any
feasible fractional solution x, we say the relaxation has the α-approximate integer
decomposition property; more precisely, this is a property of the polyhedron consisting
of feasible solutions for the relaxation. If α = 1, the above decomposition property
is called the integer decomposition property (IDP) and is well-studied, cf. [34]. Baum
and Trotter [5, 6] show, for instance, that a matrix A is totally unimodular if and
only if {x : Ax ≤ b, x ≥ 0} has the IDP for each integral b. Approximate integer
decomposition for maximization problems, in particular packing problems, can be
defined in a fashion similar to that for minimization problems. For a fractional solution
x, one considers an integral vector kx but seeks a decomposition (or cover) of kx into
at most αk ≥ k integer feasible solutions: kx =

∑�αk�
i=1 gi. Obviously, one of the gi’s

is an integral solution whose weight (profit) is at least 1
α times that of x.

This decomposition approach is perfectly natural and is often the technique used
in the literature to establish an approximation ratio (the first mention of a connection
to the IDP seems to appear in [10]). Some well-known combinatorial problems have

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATE DECOMPOSITIONS FOR NETWORK DESIGN 165

an integrality gap equal to their approximation ratio for integer decomposition. For
instance, it is an exercise to show that the natural LP relaxation for the knapsack
problem has the 2-approximate IDP. It is not always obvious, however, when such a
property does hold. In this paper, we ask, for example, whether recently celebrated
2-approximation results of Jain [25] can be extended to have the 2-approximate IDP
(see section 1.2.1).

We believe it is not only worthwhile to make the integer decomposition approach
explicit (including its connections to traditional polyhedral results for IDP) but also
that such stronger decomposition results are potentially important in their own right.
For instance, the results of [10] for packing paths in trees provided the stronger IDP.
These results were subsequently used in [1, 2, 13], where the integer decompositions
corresponded to partitioning pairwise demands so that each class of demands could be
routed with a distinct wavelength in an optical network. In some recent work, Fuku-
naga and Nagamochi [14] applied the approximate integer decomposition methodology
to obtain algorithms for the set connector problem.

Before continuing with our main focus, approximations for network design, we give
another application of integer decompositions, this time to yield an approximation
result due to Goemans and Williamson [20] for the prize-collecting Steiner tree prob-
lem. Namely, we mention that their result can be alternatively derived from a result
of Bang-Jensen, Frank, and Jackson [4] on packing arc-disjoint Steiner arborescences
in directed graphs. We give some details below. In the prize-collecting Steiner tree
problem we are given an undirected edge-weighted graphG = (V,E, c) and a root node
r ∈ V . Each node v also has a nonnegative penalty value π(v). The objective is to find
a tree T = (V (T), E(T)) rooted at r that minimizes

∑
e∈E(T) c(e) +

∑
v �∈V (T) π(v).

The first constant factor approximation algorithm for this problem was given in [7]
and subsequently [20], which gave a primal-dual algorithm that finds a tree T such
that

∑
e∈E(T) c(e) + 2

∑
v �∈V (T) π(v) ≤ 2opt, where opt is the optimum value of the

natural LP relaxation for the problem. This result has found use in other approxima-
tion algorithms, notably for the k-minimum spanning tree problem [8, 18] and several
others. The result can be obtained from [4] as follows: consider a fractional solution
x to the LP relaxation: xe is the value on edge e and x(v) is the flow from r to v
supported by x. We obtain a directed graph by bidirecting each edge e and placing
a value of xe on both of the resulting arcs. This clearly increases the cost of edges
by a factor of 2. Now we apply Theorem 2.1 in [4] to obtain a convex combination
of arborescences rooted at r in which each v occurs in at least x(v) arborescences.
Picking the lowest cost arborescence yields the desired result. The remaining details
are left to the interested reader.

1.2. Constrained forest problems and f-connected networks. Goemans
and Williamson [20] obtain 2-approximation algorithms for a large class of network
design problems that they refer to as constrained forest problems; they apply their
primal-dual framework for this. Each of these problems is determined by an integer-
valued function f that for each set S ⊆ V gives a requirement value f(S). (In some
cases, we only require this for sets in a given family F—see section 1.2.1.) A solution
to the connectivity problem modeled by f is a collection of edges A such that at least
|A ∩ δ(S)| ≥ f(S) for each S ⊆ V . Such a solution will be called f -connected, or an
f -connector. The optimization problem is to find a minimum cost f -connector.

The most general class of functions for which the network design problem is known
to have a constant factor approximation is the set of integer-valued skew supermodu-
lar functions. In establishing this result, Jain [25] introduced a new iterative rounding

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

166 CHANDRA CHEKURI AND F. BRUCE SHEPHERD

approach to obtain a 2-approximation for such skew supermodular problems, called
Steiner network design problems. As we see in section 1.2.1, many natural (NP-hard
or otherwise) network design problems are modeled as minimum cost f -connector
problems for a skew supermodular function f . In section 5 we discuss a kind of in-
verse problem which we believe deserves further investigation. Given a requirement
function, does it encode a natural class of network design problems? We give sev-
eral results on when {0, 1}-valued requirement functions encode certain connectivity
augmentation design problems.

Jain’s approach, based on the framework designed for submodular flows [12, 31],
requires finding a basic solution to the cut LP relaxation for f -connected subgraphs.
One of our motivations for studying primal rounding methods via a decomposition-
based approach is to find a combinatorial rounding algorithm for the Steiner network
problem. The LP for the Steiner network problem can be solved to any given precision
using efficient combinatorial methods [19], and hence a rounding approach that works
with any feasible primal solution would yield an efficient and combinatorial (2 +
ε)-approximation for the problem. A second motivation is to determine whether
the f -connected subgraph relaxation for the much larger class of skew supermodular
functions f possesses the 2-approximate IDP. Our main result, Theorem 1.5, provides
some evidence that this may hold. Theorem 1.5 is a decomposition theorem and
rounding algorithm that applies to some of the more general f -connector problems
studied in [21].

1.2.1. Steiner networks and supermodular functions: Results and ter-
minology. Let G = (V,E) be an undirected graph. A family F of subsets of V is
skew crossing if for each A,B ∈ F , either A − B,B − A ∈ F or A ∩ B,A ∪ B ∈ F
(or both). Let f : F → Z+ be an integer-valued function. We call a subgraph H of
G f -connected if for each A ∈ F , we have that |δH(A)| ≥ f(A). The main problem
considered in this paper is that of finding a minimum cost f -connected subgraph for
some interesting classes of functions f that capture natural network design problems.
We present our arguments as though F = P(V), but one easily verifies that the results
hold even in the case where f ’s domain is an arbitrary skew-crossing set family.

We focus on the natural LP relaxation for this problem:

(1) P (G, f) = {x ∈ [0, 1]E : x(δ(A)) ≥ f(A) for each subset A ∈ F}.
The f -connectivity problem asks us to find an integer vector x ∈ P (G, f) which

minimizes w · x =
∑

ewexe. The most general class of functions we consider are skew
supermodular functions [16] (also called weakly supermodular in [25]).1 A function f is
skew supermodular if for each pair of sets A,B ∈ F , at least one of the following holds:

1. A ∩B,A ∪B ∈ F and f(A) + f(B) ≤ f(A ∩B) + f(A ∪B),
2. A−B,B −A ∈ F and f(A) + f(B) ≤ f(B − A) + f(A−B).

The class of {0, 1} skew supermodular f -connectivity problems captures a variety
of well-known combinatorial problems, many of which are outlined in the survey [21].
Let us reconsider a few special cases of this problem.

First if f(A) = 1 for every proper subset A of V , then this coincides with the
minimum spanning tree problem. Given a set of terminals T ⊂ V if we define f by
f(A) = 1 if A splits T (that is, A∩T
= ∅ and A∩T
= T), then f captures the NP-hard

1Andras Frank, at a workshop in Bertinoro, Italy, has convinced the authors that skew super-
modular is a more appropriate name than weakly supermodular. He indicates that David Shmoys
suggested this name in 1993.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATE DECOMPOSITIONS FOR NETWORK DESIGN 167

Steiner tree problem. If f(A) = 1 for each A = {v} and f(A) = 0 otherwise, then
this is just the minimum node cover problem. Another case of interest is obtained as
follows: consider some pair of nodes s, t ∈ V . Define the following skew supermodular
function f : f(A) = 1 for each subset A that separates s and t. Then f -connectivity
is just asking for the minimum cost s-t path. Suppose that the maximum number of
edge-disjoint s-t paths is k, and define f(A) = 1 for each A that induces a minimum
s-t cut. Then the f -connectivity problem asks for a minimum cost subset of edges
which, if we duplicate, increases the connectivity from k to k + 1. Call this the s-t
connectivity augmentation problem.

For certain classes of functions f , the polytope P (G, f) has integral extreme
points. Examples include the shortest path and connectivity augmentation functions
defined above. This is not always the case, for instance, the NP-hard Steiner tree
problem. It was shown in [36] that for all {0, 1} skew supermodular functions the
optimum over P (G, f) is no better than a factor of 2 from the optimum over the integer
hull of P (G, f). This is proved via a primal-dual algorithm. Jain [25] generalized
this to all integer-valued skew supermodular functions using a different approach of
iterative rounding.

Encouraged by the decomposition results for Steiner forests in Lemma 1.3, we
conjecture the following.

Conjecture 1.4. For any graph G and {0, 1} skew supermodular f , if x ∈
P (G, f) and kx is integral, then there exist f -connected integer vectors h1, h2, . . . , hk

such that 2kx ≥∑i hi.
Indeed, we know of no reason why the statement could not hold for general

integer-valued skew supermodular functions. Although we are unable to prove the
above conjecture, our main theorem establishes some positive evidence by establishing
it for certain classes of skew supermodular functions introduced by Goemans and
Williamson [20]. We introduce these classes now.

A {0, 1} function is termed maximal if the following holds: for any disjoint subsets
A,B ⊆ V , f(A ∪ B) ≤ max(f(A), f(B)). Equivalently, if A and B are disjoint, then
f(A) = f(B) = 0 implies that f(A ∪ B) = 0. A function is symmetric if for each
A ⊂ V , f(A) = f(V − A). A {0, 1} function is proper if it is maximal, symmetric,
and f(V) = 0. Another special class of skew supermodular functions are downward
monotone functions which satisfy the property that f(A) ≥ f(B) if A ⊂ B.

Theorem 1.5. For any graph G and {0, 1} function f where f is either proper or
downward monotone, if x ∈ P (G, f) and kx is integral, then there exist f -connected
integer vectors h1, h2, . . . , hk such that 2kx ≥ ∑k

i=1 hi. Moreover, given x we may
find this decomposition in polynomial time.

Note that the above theorem generalizes Lemma 1.3 since the Steiner forest prob-
lem is defined by a {0, 1} proper function. One consequence of the above theorem is a
new polynomial-time 2-approximation algorithm for the minimum cost f -connectivity
problem for proper and downward monotone functions. These new algorithms are pri-
marily of theoretical interest since their running times are not competitive with the
primal-dual algorithms [20].

In addition to proving Lemma 1.3 and Theorem 1.5, we consider the general
question of whether f -connectivity problems arise in a natural way from other basic
problems. We show in section 5 that this is indeed the case for intersecting supermod-
ular functions: they are effectively disguised connectivity augmentation problems in
both the directed and undirected settings. We also characterize the (supermodular)
functions which define Steiner forest problems. Negative results are given, however,
for proper and skew supermodular functions.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

168 CHANDRA CHEKURI AND F. BRUCE SHEPHERD

1.2.2. Further related work. Our approach to finding approximate integer
decompositions for {0, 1} network design problems amounts to packing forests, each
satisfying some connectivity requirement. As alluded to earlier, one special case of
this has been considered more extensively in the literature. Given an undirected
graph G = (V,E) and set S ⊆ V of terminals, find the maximum number of edge-
disjoint S-Steiner trees in G. This problem has been studied from a polyhedral and
computational point of view by Grötschel, Martin, and Weismantel [23, 24]. Their
motivating application is routing in VLSI design. Kriesell [27] considered the same
problem and conjectured that Corollary 1.2 generalizes to packing Steiner trees; that
is, if a set S is 2k–edge-connected in G, then there are k edge-disjoint S-Steiner trees
in G. As mentioned earlier, if G is Eulerian, Frank, Kiraly, and Kriesell [17] show
that if S is 2k–edge-connected in G, then there are such disjoint Steiner trees. They
also showed that if S is 3k–edge-connected and V − S is a stable set, then there are
k edge-disjoint S-Steiner trees. In general graphs, Jain, Mahdian, and Salvatipour
[26] showed that if S is k–edge-connected, then there are α|S|k edge-disjoint Steiner
trees, where α|S| → 4

|S| . They also give results on fractional packing of Steiner trees,
and for this case they use the duality between fractional packing and approximation
algorithms [9, 22]. As observed in [27, 26], the known results had not guaranteed two
edge-disjoint Steiner trees even if S is k–edge-connected for any k = o(n). Recently,
Lau [28] showed that a k-packing of Steiner trees can in fact be found if S is 26k–
edge-connected, in the process obtaining the first constant factor approximation for
integer packing of Steiner trees. In [29] Lau extended his ideas to the Steiner forest
packing problem; given node pairs s1t1, . . . , s�t� such that λG(siti) ≥ 32k for 1 ≤ i ≤ �
then there are k edge-disjoint forests such that each siti is connected in each of the k
forests. This extension was partly motivated by our work in this paper.

2. Preliminaries. The central tool used in this article is that of splitting off
edges. We state Mader’s splitting-off theorem, that was conjectured earlier by Lovász
[30].

Theorem 2.1 (Mader [32]). Let G = (V ∪ {s}, E) be an undirected multigraph,
where s has positive even degree and s is not incident with a cut edge of G. Then s
has two neighbors u and v such that the graph G′ obtained from G by replacing su
and sv by uv satisfies λG′(x, y) = λG(x, y) for all x, y ∈ V \ {s}.

In this paper we apply the above splitting-off theorem only for Eulerian graphs
which do not have cut edges.

The following claim is standard.
Claim 2.2. In an undirected graph G, for any three distinct nodes u, v, w,

λG(u,w) ≥ min{λG(u, v), λG(v, w)}.
Let S be a proper subset of the nodes V of an undirected graph G = (V,E). We

denote by δ(S) the cut induced by S, that is, the subset of edges E with exactly one
endpoint in S. For an edge vector x : E → R and E′ ⊆ E, we use x(E′) to denote the
quantity

∑
e∈E′ xe. We say that a set X splits a set S, or is S-splitting, if both X ∩S

and X − S are nonempty. We call a set of nodes S an �-island, if for any u, v ∈ S,
λG(u, v) ≥ �. From Claim 2.2, it follows that the maximal �-islands are unique and
disjoint. We also refer to S as being a fractional �-island with respect to some edge
vector x∗, if for any S-splitting set U , x∗(δ(U)) ≥ �.

For a vector x ∈ RE
+ we call a subset S′ deficient if x(δ(S′)) ≤ 1 and strongly

deficient if the inequality is strict. Each strongly deficient set S′ evidently satisfies
f(S′) = 0 if x ∈ P (G, f). We make repeated use of the following lemma. It follows

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATE DECOMPOSITIONS FOR NETWORK DESIGN 169

directly from the well-known fact that the function δ(S) is posi-modular,2 a definition
introduced by Nagamochi and Ibaraki [33].

Lemma 2.3. For any graph G and x ∈ RE
+, if S′ and S′′ are deficient sets, then

at least one of S′ − S′′ and S′′ − S′ is deficient.
We need another simple lemma given below.
Lemma 2.4. Let x∗ ∈ RE

+, and let K be a minimal deficient set. Then K induces
a fractional 1-island in the graph obtained by contracting V −K to a single node.

Proof. Let G∗ be obtained by contracting V − K to a single node v∗. If K is
not a fractional 1-island, then there exists some proper subset Y ′ of K such that
x∗(δG∗(Y ′)) = x∗(δG(Y ′)) < 1. But then Y ′ is strongly deficient for x∗, contradicting
the minimality of K.

We give a corollary of Theorem 1.1 that is useful in subsequent sections.
Lemma 2.5. Let G = (V ′ ∪ {s}, E) be such that V ′ is a 2k-island in G and

|δG(s)| ≤ 2k. Then the subgraph induced by V ′ has k edge-disjoint spanning trees.
Proof. Let G′ = (V ′, E′) be the subgraph of G induced by V ′. Let V1, V2, . . . , V�

be any partition of V ′ in G′. We claim that
∑�

i=1 |δG′(Vi)| ≥ 2k�−|δG(s)| ≥ 2k�−2k,
and hence the number of edges in G′ between nodes of the partition is at least k(�−1).
Thus G′ satisfies the conditions of Theorem 1.1 and hence has k edge-disjoint spanning
trees.

3. Packing Steiner forests. In this section we prove Lemma 1.3. Recall that
we are given a Eulerian graph G = (V,E) and pairs of nodes s1t1, s2t2, . . . , sktk such
that λG(si, ti) ≥ 2k for 1 ≤ i ≤ k. Given G let S1, S2, . . . , Sh be the maximal 2k-
islands. In fact we prove the following theorem, which can be easily seen to imply
Lemma 1.3.

Theorem 3.1. Let G = (V,E) be a Eulerian graph, and let S1, S2, . . . , Sh be the
maximal 2k-islands in G. Then, there are k edge-disjoint forests F1, F2, . . . , Fk in G
such that, in each Fj and for 1 ≤ i ≤ h, Si is contained in a connected component of
Fj. Given G and k, there is an algorithm that finds such a packing in time polynomial
in n and log k.

Proof. The proof is by induction on |V |. The base cases with |V | ≤ 2 are easy to
see. We call v ∈ V a Steiner node if v is a singleton island; otherwise it is a terminal.
We reduce the problem to basic instances, defined as instances in which ∪jSj = V and
|Si| ≥ 2 for 1 ≤ i ≤ h; in other words there are no Steiner nodes. We get rid of Steiner
nodes by splitting off the edges incident to them. Let s be a Steiner node. Since G
is Eulerian, d(s) is even. From Theorem 2.1, there are edges su and sv incident to
s such that su and sv can be split off without affecting the connectivity of any pair
of nodes not involving s. A solution to the problem on the modified graph can be
extended to a solution to the original graph by replacing the edge uv by the path
consisting of su and sv. Hence we can repeatedly split off edges incident to s until
the degree of s is 0. We can eliminate all Steiner nodes in this way and reduce the
graph G to a basic instance.

We now assume that G is basic. If h = 1, then, from Corollary 1.2, we can find
k spanning trees, and hence we are done. If h ≥ 2, we may apply Lemma 2.4 to find
a set K := ∪i∈ISi such that |δG(K)| < 2k, and contracting V −K to a single node s
produces a graph G′, where K is a 2k-island. To see this, simply choose x∗ to be the
edge vector with weight 1/2k on each edge and let K be a minimal deficient set. Since
a deficient set cannot be Si-splitting for any i, the Si’s inside K form our set I. From

2A function f : F → R+ is posi-modular if f(A)+f(B) ≥ f(A−B)+f(B −A) for all A, B ∈ F .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

170 CHANDRA CHEKURI AND F. BRUCE SHEPHERD

Lemma 2.5 we can find k edge-disjoint trees in G[K] that do not use edges incident
to s. Let these be T1, T2, . . . , Tk. Now consider the graph G′′ obtained by shrinking
K in G to a single node s′. We can apply induction to G′′ since it has fewer nodes
than G (note that |K| ≥ 2 since the instance is basic) to obtain edge-disjoint forests
F ′

1, F
′
2, . . . , F

′
k such that each Si, i
∈ I, is contained in a single component in each of

the forests. We obtain the desired forests F1, F2, . . . , Fk in G as follows: to obtain Fi

we replace s′ in F ′
i with Ti. Note that two nodes u and v which are connected in F ′

i

via s′ will still be connected in Fi since Ti is spanning on K. This finishes the proof
of the existence of the packing.

We now prove that the packing can be found in time polynomial in n and log k. To
obtain a time polynomial in log k, the decomposition will be output in a compact form
with some forests having integer multiplicities. We assume without loss of generality
that the number of edges between any two pairs of nodes is at most 2k; otherwise
we can remove some edges without violating the connectivity requirements. We first
observe that the maximum number of edge-disjoint spanning trees in a given graph
can be found in time polynomial in n and log k (see Chapter 51, pp. 887–889 in [35]).
Therefore the trees in Lemma 2.5 can found in poly(n, log k). There are two nontrivial
steps to verify polynomial running time.

First, we describe the implementation of the splitting-off step. Let v be a Steiner
node with v1, v2, . . . , v� as its neighbors, and let c(v, vi) be the number of edges be-
tween v and vi. Let c(v) =

∑
i c(v, vi). From Theorem 2.1, we can split off edges

incident to v in pairs. After we split off all of the edges incident to v, let c′(vi, vj) be
the number of new edges generated between vi and vj . It follows that there exists a
pair vi, vj such that c′(vi, vj) ≥ max{1, c(v)/(2�2)}. For each pair vi, vj we can find
the maximum number of edges that can be split off at v to generate edges between vi

and vj by doing a binary search in the range [0,min{c(v, vi), c(v, vj)}]. Each search
involves finding the edge connectivity between all pairs of nodes to ensure that the
splitting-off is legal. Thus we can split off edges incident to v in time polynomial in
log k and n.

Second, when G is basic and h ≥ 2, we need to find a minimal set K such that
|δG(K)| < 2k. This can be accomplished in polynomial time as follows: we compute
the minimum-cut value λG(s, t) for all node pairs s, t. Pick an arbitrary node u, and
let K be the set of all nodes v such that λG(u, v) ≥ 2k. From Claim 2.2 it is easy to
see that K is a desired minimal set.

This finishes the proof.

4. Skew supermodular functions. We have essentially examined the problem
of decomposing fractional solutions into forests so that any pair of nodes that were
originally 1-connected (fractionally) are in the same component of each forest. In
this section we study this scheme for more general {0, 1} connectivity functions. In
particular we prove Theorem 1.5 on proper and downward monotone functions. For
skew supermodular functions we describe a reduction to a special case.

4.1. Proper functions. First, we ask if for such a function f , the following
property holds: for any fractional solution to the f -connector problem, a feasible
integral solution is obtained from any forest which includes each maximal island in a
common component. We show that that this holds true for the class of {0, 1} proper
set functions. Hence Lemma 1.3 will imply our desired decomposition result.

Theorem 4.1. Let x be a fractional f -connector of G = (V,E), and let X1, . . . , Xl

be the maximal islands for x. If f is proper, then any forest F that includes each Xi

in a common connected component is an f -connector of G.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATE DECOMPOSITIONS FOR NETWORK DESIGN 171

Proof. Note that the Xi’s partition V (G). It is sufficient to show that f(S) = 1
implies that there is an i such that S splits Xi. Suppose this is not the case, and let
S be a minimal such set. We may write S as the union of some of the islands. But
then by repeated application of the maximality of f , at least one of these islands X
must have f(X) = 1. Thus by the minimality of S, and without loss of generality,
we may assume that S = X1. Now, since X1 is an island, we have that for each node
u ∈ X1 and each node v
∈ X1, there is a subset S′ ⊆ V −X1 containing v such that
x(δ(S′)) < 1; that is, S′ is strongly deficient. Note that f(S′) = 0.

By Lemma 2.3, if S′, S′′ are strongly deficient sets and S′ − S′′, S′′ − S′
= ∅,
then at least one of S′−S′′, S′′−S′ is strongly deficient. Now to complete the proof,
consider a minimal collection of strongly deficient sets that covers V − S; such a
collection exists since each v ∈ V −S is in a strongly deficient set, as we argued above
(recall that S = X1). If for some pair S′, S′′ we have that S′ − S′′, S′′ − S′, and
S′ ∩ S′′ are nonempty, then by our previous claim, we may assume that S′ − S′′ is
also deficient. We may thus replace S′ by the set S′−S′′. Clearly we may repeat this
process until the family of strongly deficient sets we obtain is a partition of V −S. By
our assumption, f(S) = 1 and therefore, by symmetricity, f(V − S) = 1. However,
V − S is the disjoint union of sets S′ with f(S′) = 0 contradicting the maximality of
f . This contradiction completes the proof.

Given a fractional solution x ∈ P (G, f) let k be such that kx is integral. It
follows that 2kx induces a Eulerian graph G∗. It is easy to see that the 1-islands
induced by x in G are precisely the 2k-islands in G∗. From Theorem 3.1 in G∗

there are k edge-disjoint forests F1, F2, . . . , Fk such that each island is connected in
each of the Fi. Thus, from Theorem 4.1 each Fi is an f -connector. This establishes
that 2kx can be decomposed into k f -connectors when f is a {0, 1} proper function.
Further the decomposition can be found in time polynomial in n and log k as shown
by Theorem 3.1.

4.2. Downward monotone functions. We now consider the the class of {0, 1}
downward monotone functions. Recall that f downward monotone implies that
f(A) ≥ f(B) if A ⊂ B. Whereas for proper functions, one can apply the forest-
packing lemma directly, one must do more work in the case of downward monotone
functions. We identify a collection of subproblems for which we apply Lemma 2.5,
and collectively these will give the desired f -connected forests. Thus the second claim
of Theorem 1.5 will be established.

Let x ∈ P (G, f) and k be an integer such that kx is integral. We denote by G∗

the Eulerian graph induced by 2kx. Suppose there is no strongly deficient set in G.
Then G∗ has k edge-disjoint spanning trees, each of which is an f -connector, and we
are done. Otherwise let S = {S1, S2 . . . , S�} be the minimal strongly deficient sets
for x. Lemma 2.3 implies that these sets are disjoint. Let S = V \ (∪iSi). Note that
S could be the empty set. We observe some useful properties. First, (i) for each i,
f(Si) = 0 since Si is strongly deficient; (ii) by downward monotonicity, f(Y) = 0 if
Si ⊆ Y . Second, if S
= ∅, for any Y ⊆ S, Y is not strictly deficient; otherwise S would
not be the set of all minimal strongly deficient sets. Each Si is a minimal strongly
deficient set, and hence from Lemmas 2.4 and 2.5 we can find k disjoint spanning
trees in G∗[Si]. Let Ti = {Ti,1, . . . , Ti,k} be such a set of trees.

First, we consider the case that S = ∅, which implies that S1, S2, . . . , S� par-
tition V . Let F = {F1, . . . , Fk} be a collection of k edge-disjoint forests, where
Fj = ∪�

i=1E(Ti,j). It is easy to see that the Fj are edge-disjoint. Each Fj is an
f -connector by remark (ii) above.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

172 CHANDRA CHEKURI AND F. BRUCE SHEPHERD

We now consider the case that S
= ∅. Obtain a graph G∗
1 from G∗ by shrinking

V \S into a single node s. We note that S is a 2k-island in G∗
1 since neither S nor any

of its subsets was strongly deficient in G. Therefore, for any u, v ∈ S, λG∗
1
(u, v) ≥ 2k.

Let the degree of s in G∗
1 be 2k′. Since S was not strongly deficient in G, k′ ≥ k. We

modify G∗
1 by splitting off edges incident to s, while preserving the connectivity of

nodes in S, until the degree of s is exactly 2k. Let G∗
2 be the resulting graph. Using

Lemma 2.5, there are k edge-disjoint spanning trees T1, . . . , Tk in G∗
2[S]. Let Ei be

the edge set of Ti. An edge e ∈ Ei is either an original edge from G∗ or is an edge
that is obtained by splitting off two edges e′, e′′ incident to s. In the latter case, note
that e′ and e′′ also correspond to original edges from G∗ (possibly incident to distinct
nodes in ∪iSi). Let E′

i ⊆ E(G∗) be the set of edges obtained from Ei by replacing
each split-off edge e ∈ Ei by its corresponding edges e′, e′′. We remark that E′

i may no
longer induce a connected component on S in the graph G∗. Finally, let e1, e2, . . . , e2k

be the edges incident to s in G∗
2. We also associate these edges to their original edges

in G∗. We obtain the desired edge-disjoint f -connectors F = {F1, . . . , Fk} in G∗

as follows: we set Fj = {ej} ∪ E′
j ∪ (∪�

i=1E(Ti,j)). By construction, the Fj ’s are
edge-disjoint.

Lemma 4.2. For 1 ≤ j ≤ k, Fj is an f -connector.
Proof. Recall that we already argued the the case when S = ∅. Let Y ⊂ V such

that f(Y) = 1. Note that Y cannot contain Si for any i; otherwise f(Y) = 0 since
f(Si) = 0. In addition, if Y “properly” intersects some Si, then there is an edge
e ∈ E(Ti,j) that crosses Y (that is, e ∈ δG∗(Y)). Therefore it is sufficient to restrict
attention to those sets Y such that Y ⊆ S. Note that ej ∈ δG∗(S) and ej ∈ Fj ;
therefore ej satisfies S if f(S) = 1. So suppose Y is a proper subset of S. Since Tj is
a spanning tree in G∗

2[S], there is an edge e in Ej that crosses Y . If e is an edge from
G∗, then e ∈ E′

j and hence e ∈ Fj . Otherwise e is an edge obtained in the splitting-off
process at s, and we replace e by e′ and e′′ in E′

j . Since at least one of e′ and e′′

crosses Y in G∗, the proof is complete.
We have thus shown the existence of k f -connectors in G∗. It remains to argue

that these f -connectors can be found in time polynomial in n and log k. We observe
that the only nontrivial parts in converting the existence proof into an algorithmic
proof are the splitting-off step at s when S
= ∅ and the use of Lemma 2.5 to find
spanning trees in G∗[Si], for 1 ≤ i ≤ �, and in G∗

2[S]. The arguments in the proof
of Theorem 3.1 can be used identically here to implement these steps in polynomial
time.

4.3. Reduction to split instances. We now consider arbitrary {0, 1} skew
supermodular functions. We describe a reduction of Conjecture 1.4 to a restricted
class of instances that we next define. Given a function f and a feasible fractional
solution x ∈ P (G, f), we call (G, f, x) a split instance if x ∈ P (G, f) and there is a
subset of nodes S ⊂ V such that

• for every A ⊆ S, x(δ(A)) ≥ 1; that is, no subset of S is strongly deficient for
x, and
• for every A ⊂ V \ S, f(A) = 0.

Theorem 4.3. Let f be a {0, 1} skew supermodular function and x ∈ P (G, f)
such that kx is integral. Given G, x, and k there is an algorithm that obtains a
split instance (G′, f ′, x′) such that (i) f ′ is a {0, 1} skew supermodular function, (ii)
x′ ∈ P (G′, f ′), and (iii) 2kx is decomposable into k f -connectors in G if 2kx′ is
decomposable into k f ′-connectors in G′.

If the following conjecture is true, so is Conjecture 1.4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATE DECOMPOSITIONS FOR NETWORK DESIGN 173

Conjecture 4.4. Let f be {0, 1} skew supermodular function on G, and let
(G, f, x) induce a split instance. If kx is integral, then there exist f -connected integer
vectors h1, h2, . . . , hk such that 2kx ≥∑i hi.

Theorem 4.3 does not claim polynomial time for the algorithm that reduces a
given instance to a split instance. We give a sketch of the proof of Theorem 4.3.
In the following we assume that kx is integral and that G∗ is the Eulerian graph
induced by 2kx and G. The algorithm starts with an instance (G, f, x) and loops
between two phases: a deficient shrinking phase and a 1-set shrinking phase; and it
stops once it produces a split instance. In each phase some nonsingleton subset of
nodes Y is shrunk into a single node y, and the connectivity function is modified for
the new graph G′. More precisely if f is the original function on G, then we obtain
a new {0, 1} function f ′ in G′ as follows: (i) f ′({y}) = f(Y), (ii) for A ⊂ V \ Y ,
f ′(A) = f(A), and (iii) for A ⊃ Y , f ′({y} ∪ (A \ Y)) = f(A). It is easy to check that
for any Y the function f ′ is skew supermodular if f is.

Deficient shrinking phase. This phase is similar to the first step in section 4.2
on downward monotone functions. Given x ∈ P (G, f), let S = {S1, S2 . . . , S�} be the
minimal strongly deficient sets for x. Lemma 2.3 implies that these sets are disjoint.
Also, by Lemma 2.5, for 1 ≤ i ≤ �, we can find k edge-disjoint spanning trees in the
graph G∗

i = G∗[Si].
Consider the problem G′, f ′ obtained by shrinking each Si to a single node and

defining f ′ as the restriction of f to this modified graph. Let E′ ⊆ E(G′) and E′′ be
a subset of edges from the G∗

i ’s. If E′ induces an f ′-connected graph in the smaller
instance G′, f ′, and E′′ includes a spanning tree for each G∗

i , then E′ ∪ E′′ induces
an f -connected subgraph of G. Moreover, for any f -connected subgraph H = (V, F)
we must have that F ∩ E(G′) induces an f ′-connected graph in G′. Thus it suffices
to focus on the reduced problem for G′, f ′.

If we have a split instance after the deficit shrinking step, we stop the procedure.
Otherwise, we continue to a 1-set shrinking phase.

1-set shrinking phase. Such a phase begins with an instance G′, f ′ and a
subset S (possibly empty and arising from the deficient shrinking phase in G, f , with
S = V (G) − (∪iSi)) such that (1) for each v ∈ V (G′) − S, we have f ′(v) = 0 and
(2) for each subset Y ⊆ S, Y is not strongly deficient. Note that property (1) follows
from our processing because f(Si) = 0 since Si was strongly deficient and property
(2) follows since otherwise Y would contain a minimal strongly deficient set and so
would have been one of the Si’s in the deficient shrinking phase.

We now consider any minimal A ⊆ V (G′) \ S such that f ′(A) = 1. One notes
that the minimal sets of this type are node-disjoint by the skew supermodularity of
f ′. Also, if there is no such set, we have a split instance, and so we would have
terminated. Note also that since each v ∈ V (G′) \ S satisfies f ′(v) = 0, we have that
|A| ≥ 2 for any such A. We shrink A without affecting feasibility, since any set Y
with f ′(Y) = 1 is not A-splitting; for otherwise skew supermodularity would imply
a proper subset of A has f ′(A) = 1 which contradicts the minimality of A. Since
|A| ≥ 2, such a shrinking operation reduces the size of the graph. Upon completion
of 1-set shrinking we return to deficient shrinking.

This completes the description of the procedure. After every pair of phases, we
shrink some nontrivial subset, and hence after at most n iterations, we obtain a split
instance. This finishes the proof sketch of Theorem 4.3.

Recall that we do not claim that the the reduction to a split instance can be
carried out in polynomial time. The bottleneck is the step in the 1-set reduc-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

174 CHANDRA CHEKURI AND F. BRUCE SHEPHERD

tion that requires us to find a minimal set A ⊆ V (G′) \ S such that
f ′(A) = 1.

5. What problem is f-connectivity solving? Given a specific {0, 1} skew
supermodular function f , it is natural to ask, What problem is f -connectivity solving?
In other words, in which cases does a supermodular function f encode a problem of
more natural combinatorial significance? To make this more concrete, we give several
(positive and negative) results related to this agenda.

In each case, we may have a graph G = (V,E) and a skew supermodular function
f . Our goal is to build minimum cost networks that are f -connected. Throughout
this section, we refer to a set A as good if f(A) = 1; otherwise it is bad. As usual,
G represents where we may install capacity, and so it does not play a central role in
this section. Instead, we explore whether certain functions f can be interpreted as a
connectivity problem in a related network.

5.1. Connectivity augmentation. We first examine two instances where f -
connectivity is encoding a connectivity augmentation problem in some graph G′ =
(V,E′), in other words, where there is a set of edges E′ and list of terminal pairs siti
for some i = 1, 2 . . . , k such that a set S ⊆ V is good (for f) if and only if δG′(S) = ∅
and there is some pair with si ∈ S, ti
∈ S.

5.1.1. Fully supermodular functions. A set function f is fully supermodular
if f(V) = f(∅) = 0 and for all A,B we have f(A)+f(B) ≤ f(A∪B)+f(A∩B). Again,
more generally these may be defined in terms of an intersecting family F of sets, but we
only present our arguments in the case where all sets are in the family. Such functions
can be used to generalize a number of classical results in combinatorial optimization,
including Edmonds’ disjoint branching theorem [11]. This was proposed by Frank [15],
who actually introduced the more general class of intersecting supermodular functions
that only require the inequality above for A,B, with nonempty intersection.

We show that f -connectivity network design for {0, 1} fully supermodular func-
tions f arises as a connectivity augmentation problem. Namely, we show that there
is a set of “auxiliary” edges E′ such that in the graph G′ = (V,E′) there exist nodes
s, t and f(S) = 1 if and only if S is {s, t}-splitting and δ(S)∩E′ = ∅. Thus finding a
minimum cost f -connected graph is the same as finding a minimum cost set F ⊆ E
of edges such that s, t are connected in G[V,E′ ∪ F]. We mention that the following
argument applies equally well to directed network design problems.

For any pair of good sets A,B we have A∩B,A∪B are also good. Thus there is
a unique maximal good set M and a unique minimal good set S. Since M
= V, S
= ∅,
we may choose an arbitrary s ∈ S and an arbitrary t ∈ V −M , and so every good set
contains s and not t.

We obtain the above claimed G′ by starting with the empty graph G0 := (V, ∅)
and adding edges in an iterative fashion. In iteration i we find a single edge ei that
we add to Gi to obtain Gi+1. This is done as follows: suppose there is some bad set
X such that δGi(X) = ∅. (If there is no such set, then G′ = Gi, and the procedure
terminates.) We show that there is some edge ei = uv such that u ∈ X, v
∈ X , and ei

is not contained in any δ(A) for a good set A. Suppose this is not the case; then for
each u ∈ X and v ∈ V −X , there is a good set Yuv containing u but not v. Fix some
v ∈ V − X , and note that Y (v) = ∪u∈XYuv is also good and X ⊆ Y (v). But then
∩v∈V −XY (v) is also good, and evidently this set is just X , a contradiction. Thus
after some � ≤ (n2) iterations, we have that in G� a cut δG�(A) is empty if and only if
it is good. A similar proof yields an analogous result for directed graphs.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATE DECOMPOSITIONS FOR NETWORK DESIGN 175

5.1.2. Fastidious functions. Recall that a {0, 1} proper function f is a sym-
metric set function f : V → {0, 1} such that f(A ∪ B) ≤ max{f(A), f(B)}. In the
next section, we see that not all proper functions arise from connectivity augmenta-
tion. In this section we consider a subclass of proper functions that arise from Steiner
forest problems. A symmetric function is fastidious if no good set is the union of bad
sets. (For proper functions, no good set is the disjoint union of bad sets.) We show
that fastidious functions are precisely those that encode Steiner forest problems. One
direction is clear: a Steiner forest problem obviously gives rise to a fastidious function.
We now show the converse.

Given a fastidious f , we define a graph H = (V,E(H)), where

E(H) = {uv : every {u, v}-splitting set S is good (that is, f(S) = 1)}.
Let S1, S2, . . . , S� be the connected components of H . We now claim that a set X is
good according to f if and only if it splits some Si, which would give us the desired
result. Suppose this is not the case, and let X be a minimal good set such that
δH(X) = ∅. That is, for any u ∈ X and v ∈ V −X , there is a bad set Yuv such that
u ∈ Yuv and v
∈ Yuv. Consider two cases. Suppose first that for some pair such a set
exists with X − Yuv nonempty. Then, since f is proper, either X − Yuv or Yuv ∩X
is good. By minimality of X , there is some edge zw of H with z ∈ X − Yuv and
w ∈ Yuv ∩ X . But any such edge must lie in δH(Yuv), contradicting the fact that
f(Yuv) = 0.

In the second case, for every pair uv with u ∈ X, v ∈ V \X , we have X ⊆ Yuv.
But then the (V − Yuv)’s are a collection of bad sets whose union is the good set
V −X , a contradiction.

5.2. Skew supermodular functions and embedded connectivity. We have
seen several cases of supermodular functions encoding an underlying (or hidden) con-
nectivity problem. We cannot expect to be as lucky for general skew supermodular
functions. Consider the node cover problem that arises from the skew supermodu-
lar function f : V → {0, 1}, where a set S is good if and only if S is a singleton.
One may deduce that there is no graph G′ = (V,E′) for which f encodes a con-
nectivity augmentation problem on G′. However, we may cast the problem in this
form if we embed it in a larger graph and allow higher connectivity requirements:
take H = (V + s, {sv : v ∈ V }). Consider the problem of adding edges E′′ to H
so that each node v is 2–edge-connected to s in H + E′′. The good sets for f now
correspond precisely to the “deficit cuts” for this 2-connectivity problem. In general,
we may define an embedded connectivity problem as consisting of a pair of graphs
G = (V,E), H ′ = (V ′, E′), with V ⊆ V ′; � node pairs s1t1, . . . , s�t�, where si, ti ∈ V ′

for each i; and integers ki for i = 1, 2 . . . , �. For such an instance, we call a subset
S ⊆ V ′ a target set if for some i, S is {si, ti}-splitting, and |δH′ (S)| < ki, the target
connectivity for si, ti. The following is easily shown.

Fact 5.1. Any embedded connectivity problem gives rise to a skew supermodular
function.

We believe that analyzing which functions encode embedded connectivity prob-
lems is a potentially fruitful direction for further study. Such embedding problems
would seem, however, of limited use unless the size of H ′ is polynomially bounded
in G (and somehow f). The focus should thus be on p-bounded problems, where in
addition |V ′| ≤ p(|V |), for some polynomial p.

6. Conclusions. We have shown how splitting off, combined with Theorem 1.1,
yields decomposition and rounding algorithms for a large class of 0-1 network design

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

176 CHANDRA CHEKURI AND F. BRUCE SHEPHERD

problems. Several open problems remain. First, it would be interesting to resolve Con-
jecture 1.4. If the decomposition algorithm can be generalized to integer-valued skew
supermodular functions, it would yield an alternative algorithm to that of Jain [25]. It
would also yield a combinatorial rounding algorithm for the Steiner network problem.
Second, the inverse f -connectivity questions raised in section 5 are of interest in their
own right and may also prove useful in resolving Conjecture 1.4.

Acknowledgment. We thank the anonymous referees for useful comments that
greatly improved the paper.

REFERENCES

[1] M. Andrews and L. Zhang, Bounds on fiber minimization in optical networks with fixed
fiber capacity, in Proceedings of the 24th IEEE INFOCOM Conference, Miami, FL, 2005,
pp. 409–419.

[2] M. Andrews and L. Zhang, Complexity of wavelength assignment in optical network op-
timization, in Proceedings of the 25th IEEE INFOCOM Conference, Barcelona, Spain,
2006.

[3] A. Agrawal, P. Klein, and R. Ravi, When trees collide: An approximation algorithm for the
generalized Steiner problem on networks, SIAM J. Comput., 24 (1995), pp. 440–456.

[4] J. Bang-Jensen, A. Frank, and B. Jackson, Preserving and increasing local edge-connectivity
in mixed graphs, SIAM J. Discrete Math., 8 (1995), pp. 155–178.

[5] S. Baum and L. E. Trotter, Jr., Integer rounding and polyhedral decomposition for totally
unimodular systems, in Optimization and Operations Research, Lecture Notes in Econ.
and Math. Systems 157, R. Henn, B. Korte, and W. Oettli, eds., Springer, Berlin, 1978,
pp. 15–23.

[6] S. Baum and L. E. Trotter, Jr., Integer rounding for polymatroid and branching optimization
problems, SIAM J. Algebraic Discrete Meth., 2 (1981), pp. 416–425.

[7] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson, A note on the prize
collecting traveling salesman problem, Math. Program., 59 (1993), pp. 413–420.

[8] A. Blum, R. Ravi, and S. Vempala, A constant-factor approximation for the k-MST problem,
J. Comput. System Sci., 58 (1999), pp. 101–108.

[9] R. Carr and S. Vempala, Randomized meta-rounding, Random Structures Algorithms, 20
(2002), pp. 343–352.

[10] C. Chekuri, M. Mydlarz, and F. B. Shepherd, Multicommodity demand flow in a tree and
packing integer programs, ACM Trans. Algorithms, 3 (2007).

[11] J. Edmonds, Edge-disjoint branchings, in Combinatorial Algorithms, B. Rustin, ed., Academic
Press, New York, 1973, pp. 91–96.

[12] J. Edmonds and R. Giles, A min-max relation for submodular functions on graphs, Ann.
Discrete Math., 1 (1977), pp. 185–204.

[13] T. Erlebach, A. Pagourtzis, K. Potika, and S. Stefanakos, Resource allocation problems
in multifiber WDM tree networks, in Proceedings of Workshop on Graph Theoretic Con-
cepts in Computer Science, Lecture Notes in Comput. Sci. 2880, Springer, Berlin, 2003,
pp. 218–229.

[14] T. Fukunaga and H. Nagamochi, The set connector problem in graphs, in Proceedings of the
12th IPCO Conference, Ithaca, NY, Mathematical Programming Society, 2007, pp. 484–
498.

[15] A. Frank, Kernel systems of directed graphs, Acta Sci. Math., 41 (1979), pp. 63–76.
[16] A. Frank, Applications of relaxed submodularity, in Proceedings of the International Congress

of Mathematicians, Berlin, 1998, Vol. III: Invited Lectures, Documenta Mathematica, Ex-
tra Volume ICM 1998, G. Fischer and U. Rehmann, eds., Documenta Mathematica, Berlin,
1998, pp. 343–354.

[17] A. Frank, T. Kiraly, and M. Kriesell, On decomposing a hypergraph into k connected
sub-hypergraphs, Discrete Appl. Math., 131 (2003), pp. 373–383.

[18] N. Garg, A 3-approximation for the minimum tree spanning k vertices, in Proceedings of
the 37th IEEE Symposium on Foundations of Computer Science, Burlington, VT, 1996,
pp. 302–309.

[19] N. Garg and R. Khandekar, Fast approximation algorithms for fractional Steiner forest and
related problems, in Proceedings of the 43rd IEEE Symposium on Foundations of Computer
Science, Vancouver, Canada, 2002, pp. 500–509.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATE DECOMPOSITIONS FOR NETWORK DESIGN 177

[20] M. X. Goemans and D. P. Williamson, A general approximation technique for constrained
forest problems, SIAM J. Comput., 24 (1995), pp. 296–317.

[21] M. Goemans and D. Williamson, The primal-dual method for approximation algorithms and
its application to network design problems, in Approximation Algorithms for NP-Hard
Problems, D. Hochbaum, ed., PWS, Boston, 1997.

[22] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer, Berlin, 1988.

[23] M. Grötschel, A. Martin, and R. Weismantel, Packing Steiner trees: Polyhedral investi-
gations, Math. Program., 72 (1996), pp. 101–123.

[24] M. Grötschel, A. Martin, and R. Weismantel, Packing Steiner trees: Separation algo-
rithms, SIAM J. Discrete Math., 9 (1996), pp. 233–257.

[25] K. Jain, A factor 2 approximation algorithm for the generalized Steiner network problem,
Combinatorica, 21 (2001), pp. 39–60.

[26] K. Jain, M. Mahdian, and M. R. Salvatipour, Packing Steiner trees, in Proceedings of the
14th ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD, 2003, pp. 266–274.

[27] M. Kriesell, Local spanning trees in graphs and hypergraph decomposition with respect to edge
connectivity, Proceedings of the 6th Cologne-Twente Workshop on Graphs and Combina-
torial Optimization, Electron. Notes Discrete Math. 3, Elevier, Amsterdam, 1999.

[28] L. C. Lau, An approximate max-Steiner-tree-packing min-Steiner-cut theorem, Combinatorica,
27 (2007), pp. 71–90.

[29] L. C. Lau, Packing Steiner forests, in Proceedings of the 11th IPCO Conference, Berlin,
Mathematical Programming Society, 2005, pp. 362–276.

[30] L. Lovász, Unsolved Problems, in Proceedings of the Fifth British Combinatorial Conference,
Aberdeen, 1975, Congr. Numer., XV, C. St. J. A. Nash-Williams, Win-Sheehan, eds.,
Utilitas Mathematica, Winnipeg, Manitoba, 1976, pp. 638–685.

[31] C. Lucchesi and D. Younger, A minimax theorem for directed graphs, J. London Math. Soc.
(2), 17 (1978), pp. 369–374.

[32] W. Mader, A reduction method for edge-connectivity in graphs, in Advances in Graph Theory,
Ann. of Discrete Math. 3, B. Bollobas, ed., North–Holland, Amsterdam, 1978, pp. 145–164.

[33] H. Nagamochi and T. Ibaraki, Polyhedral structure of submodular and posi-modular systems,
Discrete Appl. Math., 107 (2000), pp. 165–189.

[34] A. Schrijver, Theory of Linear and Integer Programming, John Wiley and Sons, New York,
1987.

[35] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, Berlin, 2003.
[36] D. P. Williamson, M. X. Goemans, M. Mihail, and V. Vazirani, A primal-dual approx-

imation algorithm for generalized Steiner network problems, Combinatorica, 15 (1995),
pp. 435–454.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 178–194

INTEGRALITY GAPS OF SEMIDEFINITE PROGRAMS FOR
VERTEX COVER AND RELATIONS TO �1 EMBEDDABILITY OF

NEGATIVE TYPE METRICS∗

HAMED HATAMI† , AVNER MAGEN† , AND EVANGELOS MARKAKIS‡

Abstract. We study various semidefinite programming (SDP) formulations for Vertex Cover

by adding different constraints to the standard formulation. We show that Vertex Cover cannot
be approximated better than 2 − O(

√
log log n/ log n) even when we add the so-called pentagonal

inequality constraints to the standard SDP formulation, and thus almost meet the best upper bound
known due to Karakostas [Proceedings of the 32nd International Colloquium on Automata, Lan-

guages and Programming, 2005], of 2 − Ω(
√

1/ log n). We further show the surprising fact that by
strengthening the SDP with the (intractable) requirement that the metric interpretation of the solu-
tion embeds into �1 with no distortion, we get an exact relaxation (integrality gap is 1), and on the
other hand, if the solution is arbitrarily close to being �1 embeddable, the integrality gap is 2− o(1).
Finally, inspired by the above findings, we use ideas from the integrality gap construction of Charikar
[SODA ’02: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, Philadelphia, 2002, pp. 616–620] to provide a family of simple examples for negative type
metrics that cannot be embedded into �1 with distortion better than 8/7 − ε. To this end we prove
a new isoperimetric inequality for the hypercube.

Key words. vertex cover, semidefinite programming, integrality gap

AMS subject classifications. 90C22, 68W25, 54C25

DOI. 10.1137/070700103

1. Introduction. A vertex cover in a graph G = (V,E) is a set S ⊆ V such
that every edge e ∈ E intersects S in at least one endpoint. Denote by vc(G) the
size of the minimum vertex cover of G. It is well known that the minimum vertex
cover problem has a 2-approximation algorithm, and it is widely believed that for every
constant ε > 0, there is no (2−ε)-approximation algorithm for this problem. Currently
the best-known hardness result for this problem, based on the PCP theorem, shows
that 1.36-approximation is NP-hard [10]. If we were to assume the Unique Games
Conjecture [19], the problem would be essentially settled as 2− Ω(1) would then be
NP-hard [20].

In [15], Goemans and Williamson introduced semidefinite programming (SDP)
as a tool for obtaining approximation algorithms. Since then semidefinite program-
ming has become an important technique, and for many problems the best-known
approximation algorithms are obtained by solving an SDP relaxation of them.

The best-known algorithms for Vertex Cover compete in “how big is the little
oh” in the 2−o(1) factor. The best two are in fact based on SDP relaxations: Halperin
[16] gives a (2 − Ω(log log Δ/ log Δ)) approximation where Δ is the maximal degree
of the graph while Karakostas obtains a (2 − Ω(1/

√
logn)) approximation [18]. As

we later show, our lower bound almost meets the latter upper bound even in this
resolution of the little oh.

∗Received by the editors August 14, 2007; accepted for publication (in revised form) July 2, 2008;
published electronically December 17, 2008. A preliminary version of this work appears in [17].

http://www.siam.org/journals/sidma/23-1/70010.html
†Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada

(hamed@cs.toronto.edu, avner@cs.toronto.edu).
‡Corresponding author. Center for Math and Computer Science (CWI), Amsterdam, The Nether-

lands (vangelis@cwi.nl).

178

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRALITY GAPS OF SDPs FOR VERTEX COVER 179

The standard way to formulate the Vertex Cover problem as a quadratic in-
teger program is the following:

Min
∑

i∈V (1 + x0xi)/2
s.t. (xi − x0)(xj − x0) = 0 ∀ ij ∈ E,

xi ∈ {−1, 1} ∀ i ∈ {0} ∪ V,
where the set of the vertices i for which xi = x0 corresponds to the vertex cover. Re-
laxing this integer program to a semidefinite program, the scalar variable xi becomes
a vector vi and we get

(1)
Min

∑
i∈V (1 + v0vi)/2

s.t. (vi − v0) · (vj − v0) = 0 ∀ ij ∈ E,
‖vi‖ = 1 ∀ i ∈ {0} ∪ V.

Kleinberg and Goemans [22] proved that SDP (1) has an integrality gap of 2− o(1).
Specifically, given ε > 0 they construct a graph Gε for which vc(Gε) is at least
(2 − ε) times larger than the solution to SDP (1). They also suggested the following
strengthening of SDP (1) and left its integrality gap as an open question:

(2)

Min
∑

i∈V (1 + v0vi)/2
s.t. (vi − v0) · (vj − v0) = 0 ∀ ij ∈ E,

(vi − vk) · (vj − vk) ≥ 0 ∀ i, j, k ∈ {0} ∪ V,
‖vi‖ = 1 ∀ i ∈ {0} ∪ V.

Charikar [6] answered this question by showing that the same graph Gε but a different
vector solution satisfies SDP (2)1 and gives rise to an integrality gap of 2 − o(1) as
before. The following is an equivalent formulation to SDP (2):

(3)

Min
∑

i∈V 1− ‖v0 − vi‖2/4
s.t. ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2 ∀ ij ∈ E,

‖vi − vk‖2 + ‖vj − vk‖2 ≥ ‖vi − vj‖2 ∀ i, j, k ∈ {0} ∪ V,
‖vi‖ = 1 ∀ i ∈ {0} ∪ V.

Viewing SDPs as relaxations over �1. The above reformulation reveals a
connection to metric spaces. The second constraint in SDP (3) says that ‖ ·‖2 induces
a metric on {vi : i ∈ {0} ∪ V }, while the first says that v0 is on the shortest path
between the images of every two neighbors. This suggests a more careful study of
the problem from the metric viewpoint, which is the purpose of this article. Such
connections are also important in the context of the Sparsest Cut problem, where
the natural SDP relaxation was analyzed in the breakthrough work of Arora, Rao,
and Vazirani [5] and it was shown that its integrality gap is at most O(

√
logn). This

later gave rise to some significant progress in the theory of metric spaces [7, 4].
Let f : (X, d) → (X ′, d′) be an embedding of metric space (X, d) into another

metric space (X ′, d′). The value supx,y∈X
d′(f(x),f(y))

d(x,y) × supx,y∈X
d(x,y)

d′(f(x),f(y)) is called
the distortion of f . For a metric space (X, d), let c1(X, d) denote the minimum
distortion required to embed (X, d) into �1. Notice that c1(X, d) = 1 if and only if
(X, d) can be embedded isometrically into �1, namely, without changing any of the
distances. Consider a vertex cover S and its corresponding solution to SDP (2), i.e.,

1To be more precise, Charikar’s result was about a slightly weaker formulation than (2) but it is
not hard to see that the same construction works for SDP (2) as well.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

180 HAMED HATAMI, AVNER MAGEN, AND EVANGELOS MARKAKIS

vi = 1 for every i ∈ S ∪{0} and vi = −1 for every i
∈ S. The metric defined by ‖ · ‖2
on this solution (i.e., d(i, j) = ‖vi − vj‖2) is isometrically embeddable into �1. Thus
we can strengthen SDP (2) by allowing any arbitrary list of valid inequalities in �1 to
be added. The triangle inequality is one type of such constraints. The next natural
inequality of this sort is the pentagonal inequality: A metric space (X, d) is said to
satisfy the pentagonal inequality if for S, T ⊂ X of sizes 2 and 3, respectively, it holds
that

∑
i∈S,j∈T d(i, j) ≥

∑
i,j∈S d(i, j) +

∑
i,j∈T d(i, j). Note that this inequality does

not apply to every metric, but it does hold for those that are �1-embeddable. This
leads to the following natural strengthening of SDP (3):

(4)
Min

∑
i∈V 1− ‖v0 − vi‖2/4

s.t. ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2 ∀ ij ∈ E,∑
i∈S,j∈T ‖vi − vj‖2 ≥

∑
i,j∈S ‖vi − vj‖2+∑
i,j∈T ‖vi − vj‖2

∀ S, T ⊆ {0} ∪ V,
|S| = 2, |T | = 3

‖vi‖ = 1 ∀ i ∈ {0} ∪ V.

In Theorem 5, we prove that SDP (4) has an integrality gap of 2 − o(1). It is
important to point out that a priori there is no reason to believe that local addition
of inequalities such as these will not improve the integrality gap; indeed in the case
of Sparsest Cut triangle inequality is necessary to achieve the O(

√
log n) bound

mentioned above. It is interesting to note that for Sparsest Cut, it is not known
how to show a nonconstant integrality gap against pentagonal (or any other k-gonal)
inequalities, although recently a nonconstant integrality gap was shown in [21] and
later in [8], in the presence of the triangle inequalities.2

One can further impose any �1-constraint not only for the metric defined by
{vi : i ∈ V ∪ {0}}, but also for the one that comes from {vi : i ∈ V ∪ {0}} ∪ {−vi :
i ∈ V ∪ {0}}. Triangle inequalities for this extended set result in the constraints
‖vi − vj‖2 + ‖vi − vk‖2 + ‖vj − vk‖2 ≤ 2. The corresponding tighter SDP is used in
[18] to get an integrality gap of at most 2− Ω(1√

log n
). Karakostas [18] asks whether

the integrality gap of this strengthening breaks the “2 − o(1) barrier”: we answer
this negatively in section 4.3. In fact we show that the above upper bound is almost
asymptotically tight, exhibiting integrality gap of 2−O(

√
log log n

log n).

Integrality gap with respect to �1 embeddability. At the extreme, strength-
ening the SDP with �1-valid constraints would imply the condition that the metric
defined by ‖ · ‖ on {vi : i ∈ {0} ∪ V }, namely, d(i, j) = ‖vi − vj‖2, is �1 embeddable.
Doing so leads to the following intractable program:

(5)

Min
∑

i∈V 1− ‖v0 − vi‖2/4
s.t. ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2 ∀ ij ∈ E

‖vi‖ = 1 ∀ i ∈ {0} ∪ V
c1({vi : i ∈ {0} ∪ V }, ‖ · ‖2) = 1.

In [1], it is shown that an SDP formulation of Minimum Multicut, even with
the constraint that the ‖ · ‖2 distance over the variables is isometrically embeddable
into �1, still has a large integrality gap. Let us next consider the Max Cut problem,
which is more intimately related to our problem. For this problem it is easy to see

2As Khot and Vishnoi note, and leave as an open problem, it is possible that their example
satisfies some or all k-gonal inequalities.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRALITY GAPS OF SDPs FOR VERTEX COVER 181

that K3, the complete graph on three vertices, exhibits an integrality gap of 8/9. Now
since every metric space on three points is isometrically embeddable into �1, the �1
embeddability does not prevent integrality gap of 8/9.3 It is, therefore, tempting to
believe that there is a large integrality gap for SDP (5) as well. Surprisingly, SDP (5)
has no gap at all: we show in Theorem 2 that the value of SDP (5) is exactly the size
of the minimum vertex cover. A consequence of this fact is that any feasible solution
to SDP (2) that surpasses the minimum vertex cover induces an �22 distance which is
not isometrically embeddable into �1. This includes the integrality gap constructions
of Kleinberg and Goemans, and that of Charikar’s for SDPs (2) and (3), respectively.
The construction of Charikar is more interesting in this context as the obtained �22
distance is also a negative type metric, that is, an �22 metric that satisfies triangle
inequality. See [9] for background and nomenclature.

In contrast to Theorem 2, we show in Theorem 3 that if we relax the embeddability
constraint in SDP (5) to c1({vi : i ∈ {0} ∪ V }, ‖ · ‖2) ≤ 1 + δ for any constant δ > 0,
then the integrality gap may “jump” to 2− o(1). Compare this with a problem such
as Sparsest Cut in which an addition of such a constraint immediately implies
integrality gap at most 1 + δ.

Negative type metrics that are not �1 embeddable. Negative type metrics
are metrics which are the squares of Euclidean distances of set of points in Euclidean
space. Inspired by Theorem 2, we construct in section 5 a simple negative type metric
space (X, ‖ · ‖2) that does not embed well into �1. Specifically, we get c1(X) ≥ 8

7 − ε
for every ε > 0. In order to show this we prove a new isoperimetric inequality for the
hypercube Qn = {−1, 1}n, which we believe is of independent interest. This theorem
generalizes the standard one, and under certain conditions provides better guarantees
for edge expansion.

Theorem 1 (generalized isoperimetric inequality). For every set S ⊆ Qn,

|E(S, Sc)| ≥ |S|(n− log2 |S|) + p(S),

where p(S) denotes the number of vertices u ∈ S such that −u ∈ S.
Khot and Vishnoi [21] constructed an example of an n-point negative type metric

that for every δ > 0 requires distortion at least (log logn)1/6−δ to embed into �1.
Krauthgamer and Rabani [23] showed that, in fact, Khot and Vishnoi’s example
requires a distortion of at least Ω(log logn). Later Devanur, Khot, Saket, and Vishnoi
[8] showed an example with distortion Ω(log logn) even on average when embedded
into �1 (we note that our example is also “bad” on average). Although the above
examples require nonconstant distortion to embed into �1, we believe that our result is
still interesting because (i) our construction is much simpler than the ones in [8, 21, 23];
in comparison, showing that triangle inequality holds requires a lot of technical work in
[8, 21, 23], whereas in our construction it is immediate that (ii) very few examples are
known of negative type metrics that do not embed isometrically into �1, and any such
example reveals some underlying structure. Prior to Khot and Vishnoi’s result, the
best-known lower bounds (see [21]) were due to Vempala, 10/9 for a metric obtained
by a computer search, and Goemans, 1.024 for a metric based on the Leech Lattice.
We mention that by [4] every negative type metric embeds into �1 with distortion
O(
√

logn log logn).

3Notice that an SDP to this problem does not have the auxiliary vector v0 (as does SDP (5))
in addition to the vectors that correspond to the vertices of the graph, but even if we add such a
vector, it has no effect on the program, and it could be simply set to identify with one of the other
vectors.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

182 HAMED HATAMI, AVNER MAGEN, AND EVANGELOS MARKAKIS

2. Preliminaries and notation. A vertex cover of a graph G is a set of vertices
that touch all edges. An independent set in G is a set I ⊆ V such that no edge e ∈ E
joins two vertices in I. We denote by α(G) the size of the maximum independent
set of G. Vectors are always denoted in bold font (such as v, w, etc.); ‖v‖ stands
for the Euclidean norm of v, u · v for the inner product of u and v, and u ⊗ v for
their tensor product. Specifically, if v,u ∈ R

n, u ⊗ v is the vector with coordinates
indexed by ordered pairs (i, j) ∈ [n]2 that assumes value uivj on coordinate (i, j).
Similarly, the tensor product of more than two vectors is defined. It is easy to see
that (u⊗ v) · (u′ ⊗ v′) = (u · u′)(v · v′). For two vectors u ∈ R

n and v ∈ R
m, denote

by (u,v) ∈ R
n+m the vector whose projection to the first n coordinates is u and to

the last m coordinates is v.
Next, we give a few basic definitions and facts about finite metric spaces. As we

have already defined above, we say that a metric space (X, dX) embeds with distortion
at most D into (Y, dY), if there exists a mapping φ : X → Y so that for all a, b ∈ X ,
γ · dX(a, b) ≤ dY (φ(a), φ(b)) ≤ γD · dX(a, b), for some γ > 0. We say that (X, d) is
�1 embeddable if it can be embedded with distortion 1 into R

m equipped with the �1
norm. An �22 distance on X is a distance function for which there there are vectors
vx ∈ R

m for every x ∈ X so that d(x, y) = ‖vx − vy‖2. If, in addition, d satisfies
triangle inequality, we say that d is an �22 metric or negative type metric. It is well
known [9] that every �1 embeddable metric is also a negative type metric.

3. �1 and integrality gap of SDPs for vertex cover – an “all or nothing”
phenomenon. It is well known that for Sparsest Cut there is a tight connection
between �1 embeddability and integrality gap. In fact, the integrality gap is bounded
above by the least �1 distortion of the SDP solution. At the other extreme stand
problems like Max Cut and Multi Cut, where �1 embeddability does not provide
any strong evidence for small integrality gap. In this section we show that Vertex

Cover falls somewhere between these two classes of �1-integrality gap relationship
witnessing a sharp transition in integrality gap in the following sense: while �1 em-
beddability implies no integrality gap, allowing a small distortion, say 1.001, does not
prevent an integrality gap of 2− o(1)!

Theorem 2. For a graph G = (V,E), the answer to the SDP formulated in SDP
(5) is the size of the minimum vertex cover of G.

Proof. Let d be the metric solution of SDP (5). We know that d is the result of
an �22 unit representation (i.e., it comes from square norms between unit vectors), and
furthermore it is �1 embeddable. By cut representations of �1 embeddable metrics
(see, e.g., [9]) we can assume that there exist λt > 0 and ft : {0} ∪ V → {−1, 1},
t = 1, . . . ,m, such that

(6) ‖vi − vj‖2 =
m∑

t=1

λt|ft(i)− ft(j)|,

for every i, j ∈ {0} ∪ V . Without loss of generality, we can assume that ft(0) = 1 for
every t. For convenience, we switch to talk about Independent Set and its relax-
ation, which is the same as SDP (5) except the objective becomes Max

∑
i∈V ‖v0 −

vi‖2/4. Obviously, the theorem follows from showing that this is an exact relaxation.
We argue that (i) It = {i ∈ V : ft(i) = −1} is a (nonempty) independent set for

every t, and (ii)
∑
λt = 2. Assuming these two statements we get∑

i∈V

‖vi − v0‖2
4

=
∑
i∈V

∑m
t=1 λt|1− ft(i)|

4
=

m∑
t=1

λt|It|
2
≤ max

t∈[m]
|It| ≤ α(G),

and so the relaxation is exact and we are done.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRALITY GAPS OF SDPs FOR VERTEX COVER 183

We now prove the two statements. The first is rather straightforward: For i, j ∈
It, (6) implies that d(i, 0) + d(0, j) > d(i, j). It follows that ij cannot be an edge or
it would violate the first condition of the SDP (we may assume that It is nonempty
since otherwise the ft(·) terms have no contribution in (6)). The second statement is
more surprising and uses the fact that the solution is optimal. The falsity of such a
statement for the problem of Max Cut explains the different behavior of the latter
problem with respect to integrality gaps of �1 embeddable solutions. We now describe
the proof.

Let v′
i = (

√
λ1/2f1(i), . . . ,

√
λm/2fm(i), 0). From (6) we conclude that ‖v′

i −
v′

j‖2 = ‖vi − vj‖2; hence there exists a vector w = (w1, w2, . . . , wm+1) ∈ R
m+1 and

a linear isometry T on span{v′
i + w : 0 ≤ i ≤ n} such that

vi = T (v′
i + w) .

Since the constraints and the objective function of the SDP are invariant under
linear isometries, without loss of generality we may assume that

vi = v′
i + w,

for i ∈ V ∪ {0}. We know that

(7) 1 = ‖vi‖2 = ‖v′
i + w‖2 = w2

m+1 +
m∑

t=1

(√
λt/2ft(i) + wt

)2

.

Since ‖v′
i‖2 = ‖v′

0‖2 =
∑m

t+1 λt/2, for every i ∈ V ∪{0}, from (7) we get v′
0 ·w = v′

i ·w.
Summing this over all i ∈ V , we have

|V |(v′
0 ·w) =

∑
i∈V

v′
i ·w =

m∑
t=1

(|V | − 2|It|)
√
λt/2wt,

or
m∑

t=1

|V |
√
λt/2wt =

m∑
t=1

(|V | − 2|It|)
√
λt/2wt,

and therefore

(8)
m∑

t=1

|It|
√
λt/2wt = 0.

Now (7) and (8) imply that

(9) max
t∈[m]

|It| ≥
m∑

t=1

(
√
λt/2ft(0) + wt)2|It| =

m∑
t=1

(
λt|It|

2
+ w2

t |It|
)
≥

m∑
t=1

λt|It|
2

.

As we have observed before
m∑

t=1

λt|It|
2

=
∑
i∈V

‖vi − v0‖2
4

,

which means (as clearly
∑

i∈V
‖vi−v0‖2

4 ≥ α(G)) that the inequalities in (9) must be
tight. This implies w2

t |It| = 0, for every 1 ≤ t ≤ m. But since |It|
= 0, we get that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

184 HAMED HATAMI, AVNER MAGEN, AND EVANGELOS MARKAKIS

wt = 0 for 1 ≤ t ≤ m. Furthermore by (7) and tightness of the first inequality in (9),
we get that wm+1 = 0. Hence w = 0, and then from (7) we get the second statement,
i.e.,

∑
λt = 2. This concludes the proof.

Now let δ be an arbitrary positive number, and let us relax the last constraint in
SDP (5) to get

Min
∑

i∈V 1− ‖v0 − vi‖2/4
s.t. ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2 ∀ ij ∈ E,

‖vi‖ = 1 ∀ i ∈ {0} ∪ V,
c1({vi : i ∈ {0} ∪ V }, ‖ · ‖2) ≤ 1 + δ.

Theorem 3. For every ε > 0, there is a graph G for which vc(G)
sd(G) ≥ 2− ε, where

sd(G) is the solution to the above SDP.
The proof appears in the next section after we describe Charikar’s construction.

4. Integrality gap for stronger semidefinite formulations. In this section
we discuss the integrality gap for stronger semidefinite formulations of vertex cover.
In particular we show that Charikar’s construction satisfies both SDPs (11) and (4).
We start by describing this construction.

4.1. Charikar’s construction. The graphs used in the construction are the
so-called Hamming graphs. These are graphs with vertices {−1, 1}n, and two vertices
are adjacent if their Hamming distance is exactly an even integer d = γn. A result
of Frankl and Rödl [12] shows that vc(G) ≥ 2n − (2 − δ)n, where δ > 0 is a constant
depending only on γ. In fact, when one considers the exact dependency of δ in γ it
can be shown (see [13]) that as long as γ = Ω(

√
logn/n), any vertex cover comprises

1−O(1/n) fraction of the graph. Kleinberg and Goemans [22] showed that by choosing
a constant γ and n sufficiently large, this graph gives an integrality gap of 2 − ε for
SDP (1). Charikar [6] showed that in fact G implies the same result for the SDP
formulation in (2) too. To this end he introduced the following solution to SDP (2):

For every ui ∈ {−1, 1}n, define u′
i = ui/

√
n, so that u′

i · u′
i = 1. Let λ = 1 − 2γ,

q(x) = x2t + 2tλ2t−1x, and define y0 = (0, . . . , 0, 1), and

yi =

√
1− β2

q(1)

⎛
⎜⎝u′

i ⊗ . . .⊗ u′
i︸ ︷︷ ︸

2t times

,
√

2tλ2t−1u′
i, 0

⎞
⎟⎠ + βy0,

where β will be determined later. Note that yi is normalized to satisfy ‖yi‖ = 1.
Moreover yi is defined so that yi · yj takes its minimum value when ij ∈ E, i.e.,

when u′
i · u′

j = −λ. As is shown in [6], for every ε > 0 we may set t = Ω(1
ε), β =

Θ(1/t), γ = 1
4t to get that (y0−yi)·(y0−yj) = 0 for ij ∈ E, while (y0−yi)·(y0−yj) ≥

0 always.
Now we verify that all the triangle inequalities; i.e., the second constraint of SDP

(2) is satisfied: First note that since every coordinate takes only two different values
for the vectors in {yi : i ∈ V }, it is easy to see that c1({yi : i ∈ V }, ‖ · ‖2) = 1. So
the triangle inequality holds when i, j, k ∈ V . When i = 0 or j = 0, the inequality is
trivial, and it only remains to verify the case that k = 0, i.e., (y0 − yi) · (y0 − yj) ≥
0, which was already mentioned above. Now

∑
i∈V (1 + y0 · yi)/2 = 1+β

2 · |V | =(
1
2 +O(ε)

) |V |. In our application, we prefer to set γ and ε to be Ω(
√

log log n
log n) and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRALITY GAPS OF SDPs FOR VERTEX COVER 185

since, by the above comment, vc(G) = (1 −O(1/n))|V | the integrality gap we get is

(1−O(1/n))/(1/2 +O(ε)) = 2−O(ε) = 2−O
(√

log log |V |
log |V |

)
.

4.2. Proof of Theorem 3. We show that the negative type metric implied by
Charikar’s solution (after adjusting the parameters appropriately) requires distortion
of at most 1 + δ. Let yi and u′

i be defined as in section 4.1. To prove Theorem 3, it
is sufficient to prove that c1({yi : i ∈ {0} ∪ V }, ‖ · ‖2) = 1 + o(1). Note that every
coordinate of yi for all i ∈ V takes at most two different values. It is easy to see that
this implies c1({yi : i ∈ V }, ‖ · ‖2) = 1. In fact,

(10) f : yi �→ 1− β2

q(1)

⎛
⎜⎝ 2
nt

u′
i ⊗ . . .⊗ u′

i︸ ︷︷ ︸
2t times

,
2√
n

2tλ2t−1u′
i

⎞
⎟⎠

is an isometry from ({yi : i ∈ V }, ‖ · ‖2) to �1. For i ∈ V , we have

‖f(yi)‖1 =
1− β2

q(1)

(
2
nt
× n2t

nt
+

2√
n

2tλ2t−1 1√
n

+ 0
)

=
1− β2

q(1)
× (

2 + 4tλ2t−1
)
.

Since β = Θ(1
t), recalling that λ = 1 − 1

2t , it is easy to see that for every i ∈ V ,
limt→∞ ‖f(yi)‖1 = 2. On the other hand, for every i ∈ V

lim
t→∞ ‖yi − y0‖2 = lim

t→∞ 2− 2(yi · y0) = lim
t→∞ 2− 2β = 2.

So if we extend f to {yi : i ∈ V ∪ {0}} by defining f(y0) = 0, we obtain a mapping
from ({yi : i ∈ V ∪ {0}}, ‖ · ‖2) to �1 whose distortion tends to 1 as t goes to infinity.

4.3. Karakostas’ and pentagonal SDP formulations. Karakostas suggests
the following SDP relaxation, which is the result of adding to SDP (3) the triangle
inequalities applied to the set {vi : i ∈ V ∪ {0}} ∪ {−vi : i ∈ V ∪ {0}}.

(11)

Min
∑

i∈V (1 + v0vi)/2
s.t. (vi − v0) · (vj − v0) = 0 ∀ ij ∈ E

(vi − vk) · (vj − vk) ≥ 0 ∀ i, j, k ∈ V
(vi + vk) · (vj − vk) ≥ 0 ∀ i, j, k ∈ V
(vi + vk) · (vj + vk) ≥ 0 ∀ i, j, k ∈ V
‖vi‖ = 1 ∀ i ∈ {0} ∪ V.

Theorem 4. The integrality gap of SDP (11) is 2−O(
√

log log |V |/ log |V |).
Proof. We show that Charikar’s construction satisfies formulation (11). By [6]

and from the discussion in section 4.1, it follows that all edge constraints and triangle
inequalities of the original points hold. Hence we need only consider triangle inequal-
ities with at least one nonoriginal point. By homogeneity, we may assume that there
is exactly one such point.

Since all coordinates of yi for i > 0 assume only two values with the same absolute
value, it is clear that not only is the metric they induce �1, but also taking ±yi for
i > 0 gives an �1 metric; in particular, all triangle inequalities that involve these
vectors are satisfied. In fact, we may fix our attention to triangles in which ±y0 is
the middle point. This is since

(±yi −±yj) · (y0 −±yj) = (±yj − y0) · (∓yi − y0).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

186 HAMED HATAMI, AVNER MAGEN, AND EVANGELOS MARKAKIS

Consequently, and using symmetry, we are left with checking the nonnegativity
of (yi + y0) · (yj + y0) and (−yi − y0) · (yj − y0).

(yi+y0)·(yj +y0) = 1+y0 ·(yi+yj)+yi ·yj ≥ 1+2β+β2−(
1− β2

)
= 2β(1+β) ≥ 0.

Finally, (−yi − y0) · (yj − y0) = 1 + y0 · (yi − yj)− yi · yj = 1− yi · yj ≥ 0 as yi,yj

are of norm 1.
By now we know that taking all the �1 constraints leads to an exact relaxation, but

not a tractable one. Our goal here is to explore the possibility that stepping towards
�1 embeddability while still maintaining computational feasibility would considerably
reduce the integrality gap. A canonical subset of valid inequalities for �1 metrics is
the so-called Hypermetric inequalities. Metrics that satisfy all these inequalities are
called hypermetrics. Again, taking all these constraints is not feasible, and yet we do
not know whether this may lead to a better integrality gap (notice that we do not
know that Theorem 2 remains true if we replace the �1 embeddability constraints with
a hypermetricity constraint). See [9] for a related discussion about hypermetrics. We
instead consider the effect of adding a small number of such constraints. The simplest
hypermetric inequalities beside triangle inequalities are the pentagonal inequalities.
These constraints consider two sets of points of size 2 and 3, and require that the sum
of the distances between points in different sets is at least the sum of the distances
within sets. Formally, let S, T ⊂ X , |S| = 2, |T | = 3, and then we have the inequality∑

i∈S,j∈T d(i, j) ≥
∑

i,j∈S d(i, j) +
∑

i,j∈T d(i, j). To appreciate this inequality it is
useful to describe where it fails. Consider the graph metric of K2,3. Here, the LHS of
the inequality is 6 and the RHS is 8; hence K2,3 violates the pentagonal inequality. In
the following theorem we show that this strengthening past the triangle inequalities
fails to reduce the integrality gap significantly.

Theorem 5. The integrality gap of SDP (4) is 2−O(
√

log log |V |/ log |V |).
Proof. We note that in order to satisfy the triangle inequalities, the conditions

that should be satisfied by the “tensoring-polynomial” used in the construction (“q”
in the notation of the previous subsection) are rather modest. Essentially we needed
that q′(−λ) = 0, q(−λ)/q(1) approaches−1, and that q′′(−λ) ≥ 0. For the pentagonal
inequalities we need to require more properties from q, namely that it is convex on its
entire domain and that its derivative satisfies certain linear conditions, all of which
turn out to be true.

We show that the metric space used in Charikar’s construction is a feasible so-
lution. By ignoring y0 the space defined by d(i, j) = ‖yi − yj‖2 is �1 embeddable.
Therefore, the only �1-valid inequalities that may be violated are ones containing
y0. Hence, we wish to consider a pentagonal inequality containing y0 and four other
vectors, denoted by y1,y2,y3,y4. Assume first that the partition of the five points
in the inequality puts y0 together with two other points; then, using the fact that
d(0, 1) = d(0, 2) = d(0, 3) = d(0, 4) and triangle inequality we get that such an inequal-
ity must hold. It remains to consider a partition of the form ({y1,y2,y3}, {y4,y0}),
and show that

d(1, 2)+d(1, 3)+d(2, 3)+d(0, 4) ≤ d(1, 4)+d(2, 4)+d(3, 4)+d(0, 1)+d(0, 2)+d(0, 3).

As the vectors are of unit norm, it is clear that d(0, i) = 2 − 2β for all i > 0
and that d(i, j) = 2− 2yiyj . Recall that every yi is associated with a {−1, 1} vector
ui and with its normalized multiple u′

i. Also, it is simple to check that yi · yj =
β2 + (1 − β2)q(u′

i · u′
j)/q(1) where q(x) = x2t + 2λ2t−1x. After substituting the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRALITY GAPS OF SDPs FOR VERTEX COVER 187

distances as functions of the normalized vectors, our goal will then be to show

(12) E = q(u′
1 ·u′

2)+q(u
′
1 ·u′

3)+q(u
′
2 ·u′

3)−q(u′
1 ·u′

4)−q(u′
2 ·u′

4)−q(u′
3 ·u′

4) ≥ −
2q(1)
1 + β

.

The rest of the proof analyzes the minima of the function E and ensures that
(12) is satisfied at those minima. We first partition the coordinates of the original
hypercube into four sets according to the values assumed by u1,u2, and u3. We may
assume that in any coordinate at most one of these get the value 1 (otherwise multiply
the values of the coordinate by −1). We get four sets, P0 for the coordinates in which
all three vectors assume value −1, and P1, P2, P3 for the coordinates in which exactly
u1,u2,u3, respectively, assumes value 1.

We now consider u4. We argue that without loss of generality, we may assume
that u4 is “pure” on each of the P0, P1, P2, P3 at a minimum of E; in other words it
is either all 1 or all −1 on each one of P0, P1, P2, P3.

Proposition 1. If there is a violating configuration, then there is one in which
u4 is either all 1 or all −1 on each one of P0, P1, P2, P3.

Proof. Assume for the sake of contradiction that there are w coordinates in P0

on which u4 assumes value −1, and that 0 < w < |P0|. Let u+
4 (similarly u−

4)
be identical to u4 except we replace one 1 in P0 by −1 (replace one −1 in P0 by
1). We show that replacing u4 by u+

4 or by u−
4 we decrease the expression E. Let

pi = ui ·u4, p+
i = u′

i · (u+
4)′, and p−i = u′

i · (u−
4)′ for i = 1, 2, 3. Notice that the above

replacement changes only the negative terms in (12) so our goal now is to show that∑3
i=1 q(pi) < max{∑3

i=1 q(p
+
i),

∑3
i=1 q(p

−
i)}. But

max

{
3∑

i=1

q(p+
i),

3∑
i=1

q(p−i)

}
≥

3∑
i=1

q(p+
i) + q(p−i)

2
>

3∑
i=1

q

(
p+

i + p−i
2

)
=

3∑
i=1

q(pi),

where the last inequality is using the (strict) convexity of q. This of course applies to
P1, P2, and P3 in precisely the same manner.

For P0, we can in fact say something stronger than we do for P1, P2, P3:
Proposition 2. If there is a violating configuration, then there is one in which

u4 has all the P0 coordinates set to −1.
The above characterizations significantly limit the type of configurations we need

to check. Proposition 1 was based solely on the (strict) convexity of q. Proposition 2
is more involved and uses more properties of the polynomial q. If q was a monotone
increasing function it would be obvious, but of course the whole point behind q is that
it brings to minimum some intermediate value (−λ) and hence cannot be increasing.
We postpone the proof of Proposition 2 till the end of the section, and we will now
continue our analysis assuming the proposition.

The cases that are left are characterized by whether u4 is 1 or −1 on each of
P1, P2, P3. By symmetry all we really need to know is ξ(u4) = |{i : u4 is 1 on Pi}|.
If ξ(u4) = 1 it means that u4 is the same as one of u1,u2, or u4; hence the pentagonal
inequality reduces to the triangle inequality, which we already know is valid. If ξ(u4) =
3, it is easy to see that u′

1u
′
4 = u′

2u
′
3, and likewise u′

2u
′
4 = u′

1u
′
3 and u′

3u
′
4 = u′

1u
′
2;

hence E is 0 for these cases, which means that (12) is satisfied.
We are left with the cases ξ(u4) ∈ {0, 2}.
Case 1: ξ(u4) = 0. Let x = 2

n |P1|, y = 2
n |P2|, and z = 2

n |P3|. Notice that
x+ y + z = 2

n (|P1|+ |P2|+ |P3|) ≤ 2, as these sets are disjointed. Now, think of

E = q(1 − (x+ y)) + q(1− (x+ z)) + q(1 − (y + z))− q(1 − x)− q(1− y)− q(1− z)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

188 HAMED HATAMI, AVNER MAGEN, AND EVANGELOS MARKAKIS

as a function from R
3 to R. We will show that E achieves its minimum at points

where either x, y or z are zero. Assume that 0 ≤ x ≤ y ≤ z.
Consider the function g(δ) = E(x − δ, y + δ, z). It is easy to see that g′(0) =

q′(1−(x+z))−q′(1−(y+z))−q′(1−x)+q′(1−y). We will prove that g′(δ) ≤ 0 for every
δ ∈ [0, x]. This, by the mean value theorem, implies that E(0, x + y, z) ≤ E(x, y, z),
and hence we may assume that x = 0. This means that y1 = y4 which reduces to the
triangle inequality on y0,y2,y3.

Note that in g′(0), the two arguments in the terms with positive signs have
the same average as the arguments in the terms with negative signs, namely, μ =
1− (x+ y + z)/2. We now have g′(0) = q′(μ+ b)− q′(μ+ s)− q′(μ− s) + q′(μ− b),
where b = (x − y + z)/2, s = (−x+ y + z)/2. After calculations:

g′(0) = 2t
[
(μ+ b)2t−1 + (μ− b)2t−1 − (μ+ s)2t−1 − (μ− s)2t−1

]
= 4t

∑
i even

(
2t− 1
i

)
μ2t−1−i(bi − si).

Observe that μ ≥ 0. Since x ≤ y, we get that s ≥ b ≥ 0. This means that
g′(0) ≤ 0. It can be easily checked that the same argument holds if we replace x, y
by x− δ and y + δ. Hence g′(δ) ≤ 0 for every δ ∈ [0, x], and we are done.

Case 2: ξ(u4) = 2. The expression for E is now

E = q(1 − (x+ y)) + q(1− (x+ z)) + q(1 − (y + z))− q(1 − x)
− q(1− y)− q(1 − (x+ y + z))

Although E(x, y, z) is different than in Case 1, the important observation is that if
we consider again the function g(δ) = E(x−δ, y+δ, z), then the derivative g′(δ) is the
same as in Case 1, and hence the same analysis shows that E(0, x+ y, z) ≤ E(x, y, z).
But if x = 0, then y2 identifies with y4 and the inequality reduces to the triangle
inequality on y0,y1,y3.

To complete the proof, it remains to prove Proposition 2.
Proof of Proposition 2. Fix a configuration for u1,u2,u3 and as before let x =

2
n |P1|, y = 2

n |P2|, z = 2
n |P3|, and w = 2

n |P0|, where w > 0. Consider a vector u4 that
has all −1’s in P0. Let Hi = 2

nH(ui,u4), where H(ui,u4) is the Hamming distance
from u4 to ui, i = 1, 2, 3. It suffices to show that replacing the P0 part of u4 with 1’s
(which means adding w to each Hi) does not decrease the LHS of (12), i.e.,

(13)
q(1 −H1) + q(1−H2) + q(1−H3) ≥ q(1− (H1 + w)) + q(1− (H2 + w))

+ q(1− (H3 + w)).

Because of the convexity of q, the cases that we need to consider are characterized
by whether u4 is 1 or −1 on each of P1, P2, P3. By symmetry there are four cases to
check, corresponding to the different values of ξ(u4). In most of these cases, we use
the following argument: consider the function g(δ) = q(1 − (H1 + δ)) + q(1 − (H2 +
δ)) + q(1− (H3 + δ)), where δ ∈ [0, w]. Let ai = 1− (Hi + δ). The derivative g′(δ) is

g′(δ) = −(q′(a1) + q′(a2) + q′(a3)) = −2t
(
a2t−1
1 + a2t−1

2 + a2t−1
3 + 3λ2t−1

)
.

If we show that the derivative is negative for any δ ∈ [0, w], that would imply that
g(0) ≥ g(w) and hence we are done since we have a more violating configuration if we
do not add w to the Hamming distances.

Case 1: ξ(u4) = 0. In this case H1 = x, H2 = y, and H3 = z. Note that x+ y +
z +w = 2. Hence, if Hi ≥ 1 for some i, say for H1, then H2 + δ ≤ 1 and H3 + δ ≤ 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRALITY GAPS OF SDPs FOR VERTEX COVER 189

This implies that a2 ≥ 0 and a3 ≥ 0. Thus

g′(δ) ≤ − (−1 + 3λ2t−1
) ≤ 1− 3/e < 0

since λ2t−1 = (1− 1
2t)

2t−1 ≥ 1/e. Hence we are done.
Therefore, we can assume that Hi < 1 for all i, i.e., 1−Hi ≥ 0. We now compare

the LHS and RHS of (13). In particular we claim that each term q(1−Hi) is at least
as big as the corresponding term q(1 − (Hi + w)). This is because of the form of
the function q. Note that q is increasing in [0, 1] and also that the value of q at any
point x ∈ [0, 1] is greater than the value of q at any point y ∈ [−1, 0). Therefore since
1−Hi > 0 and since we only subtract w from each point, it follows that (13) holds.

Case 2: ξ(u4) = 1. Assume without loss of generality that u4 is 1 on P1 only. In
this case, H1 = 0, H2 = x+ y, and H3 = x+ z. The LHS of inequality (13) is now

LHS = q(1) + q(1 − (x+ y)) + q(1− (x+ z)),

whereas the RHS is

RHS = q(1− w) + q(1− (x+ y + w)) + q(1 − (x+ z + w))

= q(1− w) + q(−1 + z) + q(−1 + y)

by using the fact that x+ y + w = 2− z.
Let α1 = 1, α2 = 1−(x+y), and α3 = 1−(x+z). The LHS is the sum of the values

of q at these points whereas the RHS is the sum of the values of q after shifting each
point αi to the left by w. Let α′

i = αi−w. The difference Δ = q(1)− q(1−w) will al-
ways be positive since q(1) is the highest value that q achieves in [−1, 1]. Therefore, to
show that (13) holds it is enough to show that the potential gain in q from shifting α2

and α3 is at most Δ. Suppose not and consider such a configuration. This means that
either q(α′

2) > q(α2) or q(α′
3) > q(α3) or both. We consider the case that both points

achieve a higher value after being shifted. The same arguments apply if we have only
one point that improves its value. Hence we assume that q(α′

2) > q(α2) and q(α′
3) >

q(α3). Before we proceed, we state some properties of q, which can be easily verified.
Claim 1. The function q is decreasing in [−1,−λ] and increasing in [−λ, 1].

Furthermore, for any 2 points x, y such that x ∈ [−1, 2− 3λ] and y ≥ 2− 3λ, q(y) ≥
q(x).

Using the above claim, we argue about the location of α2 and α3. If α2 ≥
2−3λ ≥ −λ, then q(α2) ≥ q(α′

2). Thus both α2 and α3 must belong to [−1, 2−3λ] =
[−1,−1 + 3

2t]. We will restrict further the location of α2 and α3 by making some
more observations about q. The interval [−1, 2 − 3λ] is the union of A1 = [−1,−λ]
and A2 = [−λ, 2− 3λ], and we know q is decreasing in A1 and increasing in A2. We
claim that α2, α3 should belong to A1 in the worst possible violation of (13). To see
this, suppose α2 ∈ A2 and α3 ∈ A2 (the case with α2 ∈ A2, α3 ∈ A1 can be handled
similarly). We know that q is the sum of a linear function and the function x2t. Hence
when we shift the 3 points to the left, the difference q(1)− q(1−w) is at least as big
as a positive term that is linear in w. This difference has to be counterbalanced by
the differences q(α′

2)− q(α2) and q(α′
3)− q(α3). However, the form of q ensures that

there is a point ζ2 ∈ A1 such that q(α2) = q(ζ2) and ditto for α3. By considering the
configuration where α2 ≡ ζ2 and α3 ≡ ζ3 we will have the same contribution from the
terms q(α′

2)− q(α2) and q(α′
3)− q(α3) and at the same time a smaller w.

Therefore, we may assume that w ≤ |A1| = 1
2t . By substituting the value of q,

(13) is equivalent to showing that

1− (1− w)2t + 6tλ2t−1w ≥ (α2 − w)2t − α2t
2 + (α3 − w)2t − α2t

3 .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

190 HAMED HATAMI, AVNER MAGEN, AND EVANGELOS MARKAKIS

It is easy to see that the difference 1 − (1 − w)2t is greater than or equal to the
difference (α2 − w)2t − α2t

2 by convexity. Hence it suffices to show

6tλ2t−1w ≥ (α3 − w)2t − α2t
3 .

We know that the LHS is at least (6t/e)w. The difference (α3 − w)2t − α2t
3 can be

estimated using the derivatives of x2t and turns out to be at most (6t/e)w. Therefore,
no configuration in this case can violate (13).

Case 3: ξ(u4) = 2. Assume that u4 is 1 on P1 and P2. Now H1 = y, H2 = x,
and H3 = x+ y + z. The LHS and RHS of (13) are

LHS = q(1− y) + q(1− x) + q(1 − (x+ y + z)),
RHS = q(1− (y + w)) + q(1− (x+ w)) + q(−1).

As in case 2, let α1 = 1 − y, α2 = 1 − x, and α3 = 1 − (x + y + z) be the
three points before shifting by w. First note that either α1 > 0 or α2 > 0. This
comes from the constraint that x + y + z + w = 2. Assume that α1 > 0. Hence
q(α1) − q(α1 − w) > 0. If α2
∈ [−1, 2 − 3λ], then we would be done because by the
above claim, q(α2)−q(α2−w) > 0. Therefore, the only way that (13) can be violated
is if the nonlinear term (α3 − w)2t − α2t

3 can compensate for the loss for the other
terms. It can be easily checked that this cannot happen. Hence we may assume that
both α2, α3 ∈ [−1, 2− 3λ] and that q(α2 − w) > q(α2), q(α3 − w) > q(α3). The rest
of the analysis is based on arguments similar to case 2 and we omit it.

Case 4: ξ(u4) = 3. This case can be handled using similar arguments to cases 2
and 3.

5. Lower bound for embedding negative type metrics into �1. While, in
view of Theorem 3, Charikar’s metric does not supply an example that is far from
�1, we may still (partly motivated by Theorem 2) utilize the idea of “tensoring the
cube” and then adding some more points in order to achieve negative type metrics
that are not �1 embeddable. Our starting point is an isoperimetric inequality on the
cube that generalizes the standard one. Such a setting is also relevant in [21, 23]
where harmonic analysis tools are used to bound expansion; these tools are unlikely
to be applicable to our case where the interest and improvements lie in the constants.

Theorem 1 (generalized isoperimetric inequality). For every set S ⊆ Qn,

|E(S, Sc)| ≥ |S|(n− log2 |S|) + p(S),

where p(S) denotes the number of vertices u ∈ S such that −u ∈ S.
Proof. We use induction on n. Divide Qn into two sets V1 = {u : u1 = 1}

and V−1 = {u : u1 = −1}. Let S1 = S ∩ V1 and S−1 = S ∩ V−1. Now, E(S, Sc)
is the disjoint union of E(S1, V1 \ S1), E(S−1, V−1 \ S−1), and E(S1, V−1 \ S−1) ∪
E(S−1, V1 \ S1). Define the operator ·̂ on Qn to be the projection onto the last n− 1
coordinates, so, for example, Ŝ1 = {u ∈ Qn−1 : (1,u) ∈ S1}. It is easy to observe that
|E(S1, V−1 \ S−1) ∪ E(S−1, V1 \ S1)| = |Ŝ1ΔŜ−1|. Without loss of generality assume
that |S1| ≥ |S−1|. We argue that

(14) p(S) + |S1| − |S−1| ≤ p
(
Ŝ1

)
+ p

(
Ŝ−1

)
+

∣∣∣Ŝ1ΔŜ−1

∣∣∣ .
To prove (14), for every u ∈ {−1, 1}n−1, we show that the contribution of (1,u),
(1,−u), (−1,u), and (−1,−u) to the right-hand side of (14) is at least as large as

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRALITY GAPS OF SDPs FOR VERTEX COVER 191

their contribution to the left-hand side: This is trivial if the contribution of these
four vectors to p(S) is not more than their contribution to p(Ŝ1), and p(Ŝ−1). We
therefore assume that the contribution of the four vectors to p(S), p(Ŝ1), and p(Ŝ−1)
are 2, 0, and 0, respectively. Then without loss of generality we may assume that
(1,u), (−1,−u) ∈ S and (1,−u), (−1,u)
∈ S, and in this case the contribution to
both sides is 2. By induction hypothesis and (14) we get

|E(S, Sc)| = |E(Ŝ1, Qn−1 \ Ŝ1)|+ |E(Ŝ−1, Qn−1 \ Ŝ−1)|+ |Ŝ1ΔŜ−1|
≥ |S1|(n− 1− log2 |S1|) + p(Ŝ1) + |S−1|(n− 1− log2 |S−1|)

+ p(Ŝ−1) + |Ŝ1ΔŜ−1|
≥ |S|n− |S| − (|S1| log2 |S1|+ |S−1| log2 |S−1|) + p(Ŝ1)

+ p(Ŝ−1) + |Ŝ1ΔŜ−1|
≥ |S|n− (2|S−1|+ |S1| log2 |S1|+ |S−1| log2 |S−1|) + p(S).

Now the lemma follows from the fact that 2|S−1| + |S1| log2 |S1| + |S−1| log2 |S−1| ≤
|S| log2 |S|, which can be obtained from the assumption |S−1| ≤ |S1| using easy
calculus.

We call a set S ⊆ Qn symmetric if −u ∈ S whenever u ∈ S. Note that p(S) = |S|
for symmetric sets S.

Corollary 1. For every symmetric set S ⊆ Qn

|E(S, Sc)| ≥ |S|(n− log2 |S|+ 1).

The corollary above implies the following Poincaré inequality.
Proposition 3 (Poincaré inequality for the cube and an additional point).
Let f : Qn ∪ {0} → R

m satisfy that f(u) = f(−u) for every u ∈ Qn, and let
α = ln 2

14−8 ln 2 .
Then the following Poincaré inequality holds.

1
2n
·4
7
(4α+1/2)

∑
u,v∈Qn

‖f(u)−f(v)‖1 ≤ α
∑

uv∈E

‖f(u)−f(v)‖1+1
2

∑
u∈Qn

‖f(u)−f(0)‖1

Proof. It is enough to prove the above inequality for f : V → {0, 1}. We may
assume without loss of generality that f(0) = 0. Associating S with {u : f(u) = 1},
the inequality of the proposition reduces to

(15)
1
2n

8
7
(4α+ 1/2)|S||Sc| ≤ α|E(S, Sc)|+ |S|/2,

where S is a symmetric set, owing to the condition f(u) = f(−u). From the isoperi-
metric inequality of Theorem 1 we have that |E(S, Sc)| ≥ |S|(x+1) for x = n−log2 |S|
and so (

α(x + 1) + 1/2
1− 2−x

)
1
2n
|S||Sc| ≤ α|E(S, Sc)|+ |S|/2.

Lemma 1 below shows that α(x+1)+1/2
1−2−x attains its minimum in [1,∞) at x = 3 when

α(x+1)+1/2
1−2−x ≥ 4α+1/2

7/8 , and Inequality (15) is proven.

Lemma 1. The function f(x) = α(x+1)+1/2
1−2−x for α = ln 2

14−8 ln 2 attains its minimum
in [1,∞] at x = 3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

192 HAMED HATAMI, AVNER MAGEN, AND EVANGELOS MARKAKIS

Proof. The derivative of f is

α(1 − 2−x)− (α(x + 1) + 1/2) ln(2)2−x

(1− 2−x)2
.

It is easy to see that f ′(3) = 0, f(1) = 4α+ 1 > 8/7, and limx→∞ f(x) =∞. So it is
sufficient to show that

g(x) = 1− 2−x − (α(x + 1) + 1/2) ln(2)2−x

is an increasing function in the interval [1,∞). To show this note that

g′(x) = 2−x ln(2) (1− α+ αx ln(2) + α ln(2)) > 0

for x ≥ 1.
Theorem 6. Let V = {ũ : u ∈ Qn} ∪ {0}, where ũ = u⊗ u. Then for the semi-

metric space X = (V, ‖ · ‖2) we have c1(X) ≥ 8
7 − ε, for every ε > 0 and sufficiently

large n.
Proof. We start with an informal description of the proof. The heart of the

argument is showing that the cuts that participate in a supposedly good �1 embedding
of X cannot be balanced on one hand, and cannot be imbalanced on the other. First
notice that the average distance in X is almost double that of the distance between 0
and any other point (achieving this in a cube structure without violating the triangle
inequality was where the tensor operation came in handy). For a cut metric on
the points of X , such a relation occurs only for very imbalanced cuts; hence the
representation of balanced cuts in a low distortion embedding cannot be large. On the
other hand, comparing the (overall) average distance to the average distance between
neighboring points in the cube shows that any good embedding must use cuts with
very small edge expansion, and such cuts in the cube must be balanced (the same
argument says that one must use the dimension cuts when embedding the hamming
cube into �1 with low distortion). The fact that only symmetric cuts participate in
the �1 embedding (or else the distortion becomes infinite due to the tensor operation)
enables us to use the stronger isoperimetric inequality which leads to the current lower
bound. We now proceed to the proof.

We may view X as a distance function with points in u ∈ Qn∪{0}, and d(u,v) =
‖ũ−ṽ‖2. We first notice that X is indeed a metric space, i.e., that triangle inequalities
are satisfied: notice that X \ {0} is a subset of {−1, 1}n2

. Therefore, the square
Euclidean distances is the same (upto a constant) as their �1 distance. Hence, the
only triangle inequality we need to check is ‖ũ − ṽ‖2 ≤ ‖ũ− 0‖2 + ‖ṽ − 0‖2, which
is implied by the fact that ũ · ṽ = (u · v)2 is always nonnegative.

For every u,v ∈ Qn, we have d(u,0) = ‖ũ‖2 = ũ · ũ = (u · u)2 = n2, and
d(u,v) = ‖ũ− ṽ‖2 = ‖ũ‖2 +‖ṽ‖2−2(ũ · ṽ) = 2n2−2(u ·v)2. In particular, if uv ∈ E
we have d(u,v) = 2n2 − 2(n− 2)2 = 8(n− 1). We next notice that

∑
u,v∈Qn

d(u,v) = 22n×2n2−2
∑
u,v

(u·v)2 = 22n×2n2−2
∑
u,v

(∑
i

uivi

)2

= 22n(2n2−2n),

as
∑

u,v uiviujvj is 22n when i = j, and 0 otherwise.
Let f be a nonexpanding embedding of X into �1. Notice that

d(u,−u) = 2n2 − 2(u · v)2 = 0,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRALITY GAPS OF SDPs FOR VERTEX COVER 193

and so any embedding with finite distortion must satisfy f(u) = f(−u). Therefore
inequality (3) can be used and we get that

(16)
α

∑
uv∈E ‖f(ũ)− f(ṽ)‖1 + 1

2

∑
u∈Qn

‖f(ũ)− f(0)‖1
1
2n

∑
u,v∈Qn

‖f(ũ)− f(ṽ)‖1
≥ 4

7
(4α+ 1/2).

On the other hand,

(17)
α

∑
uv∈E d(u,v) + 1

2

∑
u∈Qn

d(u,0)
1
2n

∑
u,v∈Qn

d(u,v)
=

8α(n2 − n) + n2

4n2 − 4
=

1
2
(4α+1/2)+ o(1).

The discrepancy between (16) and (17) shows that for every ε > 0 and for suffi-
ciently large n, the required distortion of V into �1 is at least 8/7− ε.

6. Discussion. We have considered the metric characterization of SDP relax-
ations of Vertex Cover and specifically related the amount of “�1 information”
that is enforced with the resulting integrality gap. We showed that no integrality gap
exists in the most powerful extreme, i.e., when �1 embeddability of the solution is
enforced. We further demonstrated that integrality gap is not a continuous function
of the possible distortion that is allowed, as it jumps from 1 to 2 − o(1) when the
allowed distortion changes from 1 to 1 + δ.

The natural extensions of these results are as follows: (i) check whether the
addition of more k-gonal inequalities (something that can be done efficiently for any
finite number of such inequalities) can reduce the integrality gap or prove otherwise.
It is interesting to note that related questions are discussed in the context of LP
relaxations of Vertex Cover and Max Cut in [3, 11]; (ii) use the nonembeddability
construction and technique in section 5 to find negative type metrics that incur more
significant distortion when embedded into �1. After the completion of this work, point
(i) above was partially resolved [14], as it was shown that the integrality gap remains
2−o(1) even when all k-gonal inequalities with k = O(

√
logn/ log logn) are added to

the standard SDP. It is also important to understand our results in the context of the
Lift and Project system defined by Lovász and Schrijver [24], specifically the one that
uses positive semidefinite constraints, called LS+ (see [2] for relevant discussion). A
new result of Georgiou, Magen, Pitassi, and Tourlakis [13] shows that after a super-
constant number of rounds of LS+, the integrality gap is still 2−o(1). Such results are
related, however incomparable in general, to Theorem 5. For more related discussion
we refer the reader to [14].

Last, we suggest looking at connections of �1-embeddability and integrality gaps
for other NP-hard problems. Under certain circumstances, such connections may be
used to convert hardness results of combinatorial problems into hardness results of
approximating �1 distortion.

Acknowledgment. Special thanks to George Karakostas for very valuable dis-
cussions.

REFERENCES

[1] A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev, O(
√

log n) approxima-
tion algorithms for min UnCut, min 2CNF deletion, and directed cut problems, in STOC
’05: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing,
ACM Press, New York, 2005, pp. 573–581.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

194 HAMED HATAMI, AVNER MAGEN, AND EVANGELOS MARKAKIS

[2] S. Arora, M. Alekhnovich, and I. Tourlakis, Towards strong nonapproximability results
in the Lovász-Schrijver hierarchy, in STOC ’05: Proceedings of the Thirty-seventh Annual
ACM Symposium on Theory of Computing, ACM, New York, 2005.

[3] S. Arora, B. Bollobas, L. Lovász, and I. Tourlakis, Proving integrality gaps without
knowing the linear program, Theory Comput., 2 (2006), pp. 19–51.

[4] S. Arora, J. Lee, and A. Naor, Euclidean distortion and the sparsest cut [extended abstract],
in STOC’05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
ACM, New York, 2005, pp. 553–562.

[5] S. Arora, S. Rao, and U. Vazirani, Expander flows, geometric embeddings and graph par-
titioning, in Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
ACM, New York, 2004, pp. 222–231 (electronic).

[6] M. Charikar, On semidefinite programming relaxations for graph coloring and vertex cover,
in SODA ’02: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, 2002, pp. 616–620.

[7] S. Chawla, A. Gupta, and H. Räcke, Embeddings of negative-type metrics and an improved
approximation to generalized sparsest cut, in SODA ’05: Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, Vancouver, BC, Canada, 2005,
pp. 102–111.

[8] N. Devanur, S. Khot, R. Saket, and N. Vishnoi, Integrality gaps for sparsest cut and
minimum linear arrangement problems, in Proceedings of the Thirty-eighth Annual ACM
Symposium on Theory of Computing, 2006.

[9] M. Deza and M. Laurent, Geometry of Cuts and Metrics, Springer-Verlag, Berlin, 1997.
[10] I. Dinur and S. Safra, On the hardness of approximating minimum vertex-cover, Ann. Math.,

162 (2005), pp. 439–486.
[11] W. Fernandez de la Vega and C. Kenyon-Mathieu, Linear programming relaxations of

maxcut, in Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms, 2007.
[12] P. Frankl and V. Rödl, Forbidden intersections, Trans. Amer. Math. Soc., 300 (1987),

pp. 259–286.
[13] K. Georgiou, A. Magen, T. Pitassi, and I. Tourlakis, Integrality gaps of 2 - o(1) for vertex

cover sdps in the Lovész-Schrijver hierarchy, in FOCS, 2007, pp. 702–712.
[14] K. Georgiou, A. Magen, and I. Tourlakis, Vertex cover resists SDPs tightened by local

hypermetric inequalities, in Proceedings of the 13th Conference on Integer Programmong
and Combinatorial Optimization (IPCO 2008), pp. 140–153.

[15] M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming, J. Assoc. Comput. Mach.,
42 (1995), pp. 1115–1145.

[16] E. Halperin, Improved approximation algorithms for the vertex cover problem in graphs and
hypergraphs, SIAM J. Comput., 31 (2002), pp. 1608–1623.

[17] H. Hatami, A. Magen, and E. Markakis, Integrality gaps of semidefinite programs for vertex
cover and relations to �1 embeddability of negative type metrics, in APPROX-RANDOM,
2007, pp. 164–179.

[18] G. Karakostas, A better approximation ratio for the vertex cover problem, in Proceedings of
the Thirty-Second International Colloquium on Automata, Languages and Programming,
2005.

[19] S. Khot, On the power of unique 2-prover 1-round games, in Proceedings of the Thirty-Fourth
Annual ACM Symposium on Theory of Computing, ACM, New York, 2002, pp. 767–775.

[20] S. Khot and O. Regev, Vertex cover might be hard to approximate to within 2 − ε, in Pro-
ceedings of the 18th IEEE Conference on Computational Complexity, 2003, pp. 379–386.

[21] S. Khot and N. Vishnoi, The unique games conjecture, integrality gap for cut problems and
embeddability of negative type metrics into �1, in Proceedings of The 46th Annual Sympo-
sium on Foundations of Computer Science, 2005.

[22] J. Kleinberg and M. X. Goemans, The Lovász theta function and a semidefinite programming
relaxation of vertex cover, SIAM J. Discrete Math., 11 (1998), pp. 196–204.

[23] R. Krauthgamer and Y. Rabani, Improved lower bounds for embeddings into l1, in Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms, 2006.

[24] L. Lovász and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization, SIAM
J. Optim., 1 (1991), pp. 166–190.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 195–204

DISJOINT COLOR-AVOIDING TRIANGLES∗

RAPHAEL YUSTER†

Abstract. A set of pairwise edge-disjoint triangles of an edge-colored Kn is r-color avoiding if it
does not contain r monochromatic triangles, each having a different color. Let fr(n) be the maximum
integer so that in every edge coloring of Kn with r colors, there is a set of fr(n) pairwise edge-disjoint
triangles that is r-color avoiding. We prove that 0.1177n2(1 − o(1)) < f2(n) < 0.1424n2(1 + o(1)).
The proof of the lower bound uses probabilistic arguments, fractional relaxation and some packing
theorems. We also prove that fr(n)/n2 < 1

6
(1 − 0.145r−1) + o(1). In particular, for every r, if n

is sufficiently large, there are edge colorings of Kn with r colors so that the removal of any o(n2)
members from any Steiner triple system does not turn it r-color avoiding.

Key words. edge coloring, packing, triangles

AMS subject classifications. 05C15, 05C35, 05C70

DOI. 10.1137/060666664

1. Introduction. All graphs considered here are finite, undirected, and simple.
For standard graph-theoretic terminology the reader is referred to [1]. The study of
properties of edge colorings of Kn is a central topic of research in Ramsey theory and
extremal graph theory. In this paper a coloring always refers to an edge coloring.

A subgraph of a colored Kn is monochromatic if all of its edges are colored with
the same color. A set of pairwise edge-disjoint subgraphs of a colored Kn is r-color
avoiding if it does not contain r monochromatic elements, each having a different color.
For an r-coloring C of Kn, and for an integer k ≥ 3, let fr,k(C) be the maximum
size of a set of pairwise edge-disjoint copies of Kk in Kn that is r-color avoiding. Let
fr,k(n) be the minimum possible value of fr,k(C), where C ranges over all r-colorings
of Kn. When k = 3, we denote fr,k(C) = fr(C) and fr,k(n) = fr(n). Thus, the value
f2(n) guarantees that in any red-blue coloring of Kn we will always have a set of
f2(n) edge-disjoint triangles that either does not contain a blue triangle or else does
not contain a red one. The main result of this paper establishes nontrivial lower and
upper bounds for f2(n).

Theorem 1.1.

0.1177− o(1) <
f2(n)
n2

<
3
√

5− 5
12

+ o(1).

Notice that (3
√

5− 5)/12 < 0.1424. The term o(1) denotes a quantity that tends
to 0 as n → ∞. The constant 0.1177 in the lower bound in Theorem 1.1 may be
taken to be (3β2 − β4)/12, where β = 0.7648 . . . is the smallest root of x4 − 3x3 + 1.
Multiplying the constants by 600, we obtain that, in terms of covering percentages,
we can always cover more than 70% of the edges with a set of triangles that is 2-color
avoiding, while we cannot, in general, expect to cover more than 86% of the edges
with such a set. The main difficulty in the proof of Theorem 1.1 is in the lower bound.
Our proof for it requires the use of some probabilistic arguments, some known packing
theorems, and the use of fractional relaxation and a connection between it and the

∗Received by the editors August 2, 2006; accepted for publication (in revised form) July 28, 2008;
published electronically December 17, 2008.

http://www.siam.org/journals/sidma/23-1/66666.html
†Department of Mathematics, University of Haifa, Haifa 31905, Israel (raphy@math.haifa.ac.il).

195

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

196 RAPHAEL YUSTER

integral problem. Closing the gap between the upper and lower bounds in Theorem
1.1 is currently beyond our reach.

The upper bound follows from a general construction. Notice that a (1
6 − o(1))n2

upper bound for fr(n) is trivial since every set of pairwise edge-disjoint triangles (we
also use the expression triangle packing) has at most n(n− 1)/6 elements. In fact, it
is well known that fr(n) = (1

6 − o(1))n2 if r is sufficiently large as a function of n, as
Kirkman [9] proved that there are triangle packings with n2

6 (1− o(1)) triangles. Our
construction, however, shows that no finite number of colors suffices to guarantee an
asymptotic optimal r-color avoiding triangle packing for all n.

Theorem 1.2. For all r ≥ 2, fr(n)
n2 < 1

6 (1 − ζr−1) + o(1), where ζ = 7−3
√

5
2 >

0.145.
We briefly mention three related parameters that have been investigated by several

researchers. Erdős et al. [4] considered the function N(n, k), which is the minimum
number of pairwise edge-disjoint monochromatic Kk in any 2-coloring of Kn. Erdős
conjectured thatN(n, 3) = n2/12+o(n2). This conjecture is still open. A lower bound
of slightly more than n2/13 is given in [8]. Similarly, let N ′(n, k) be the minimum
number of pairwise edge-disjoint monochromatic Kk, all in the same color, in any
2-coloring of Kn. Jacobson (see, e.g., [4]) conjectured that N ′(n, 3) = n2/20 + o(n2)
(there is a simple example showing this would be the best possible). Again, the result
from [8] immediately implies a lower bound of slightly more than n2/26. For a fixed
graph H and a 2-coloring C of Kn, let fH(C) be the number of edges that do not
belong to monochromatic copies of H . Now let f(n,H) = maxC fH(C). It is shown
in [7] that if H is a complete graph (or, in fact, any edge-color-critical graph) and n
is sufficiently large, then f(n,H) equals the Turán number ex(n,H).

The rest of this paper is organized as follows. The proof of the lower bound
in Theorem 1.1 is given in section 2. The proof of the general upper bound yielding
Theorem 1.2 is given in section 3. Notice that the case r = 2 of Theorem 1.2 coincides
with the upper bound in Theorem 1.1. In section 4 we give some nontrivial proofs
of the exact value of f2(n) for n ≤ 8. The final section contains some concluding
remarks and open problems.

2. A lower bound for f2(n). The proof of the lower bound in Theorem 1.1
is obtained by combining two different approaches; one approach (which we call the
quadratic approach) is more suitable for colorings where no color is significantly more
frequent than the other, and the second approach (the fractional approach) is more
suitable when one color is significantly more frequent than the other.

For an integer k ≥ 3, a Steiner system S(2, k, n) is a set X of n points, and a
collection of subsets of X of size k (called blocks), such that any 2 points of X are in
exactly one of the blocks. In the case k = 3, we have a Steiner triple system, which
exists if and only if n ≡ 1, 3 mod 6. The case k = 4 is known to exist if and only if
n ≡ 1, 4 mod 12; see, e.g., [2].

In the proof of the lower bound for Theorem 1.1 we assume that C is a red-blue
coloring of Kn with α

(
n
2

)
blue edges and (1− α)

(
n
2

)
red edges, and 1/2 ≤ α ≤ 1. We

will also assume that n ≡ 1 mod 12 as this does not affect the asymptotic results.
Each approach will yield a lower bound for f2(n) in terms of n and α. For each
plausible α, one of these lower bounds will be at least as large as the claimed lower
bound in Theorem 1.1.

2.1. The quadratic approach. For a red-blue coloring C of Kn, let t(C) be
the number of monochromatic triangles. Let t(n,m) be the maximum value of t(C)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISJOINT COLOR-AVOIDING TRIANGLES 197

ranging over colorings with m blue edges. Clearly, t(n,m) = t(n,
(
n
2

) −m) = Θ(n3).
Goodman [5] conjectured the value of t(n,m). This conjecture has been proved by
Olpp [10], who determined t(n,m), and also determined at least one coloring with m
blue edges having t(n,m) monochromatic triangles.

Before we state Olpp’s result we need to define two graphs. Let u and v be two
integers which satisfy m =

(
v
2

)
+ u, where 0 ≤ u ≤ v − 1. Note that for every m ≥ 0,

v and u are uniquely defined. Let H1(n,m) be the n-vertex graph which is composed
of a clique on v vertices and, if u > 0, a unique vertex outside the clique, which is
connected to exactly u vertices of that clique. (The remaining vertices, if there are
any, are isolated.) Note that H1(n,m) has exactly m edges. Let H2(n,m) be the
complement of H1(n,

(
n
2

) −m). Note that H2(n,m) has exactly m edges. Olpp has
proved the following lemma.

Lemma 2.1 (see Olpp [10]). Let C1 be the coloring of Kn, where the edges colored
blue are defined by H1(n,m). Let C2 be the coloring of Kn, where the edges colored
blue are defined by H2(n,m). Then t(n,m) = max{t(C1), t(C2)}.

Note that Lemma 2.1 also supplies a formula for t(n,m) since t(C1) and t(C2)
can be explicitly computed.

Lemma 2.2. If C is a red-blue coloring with m = α
(
n
2

)
blue edges and α ≥ 0.5,

then

f2(C) ≥ n2

12
(1 + 3α(1−√α))− o(n2).

Proof. Let C1 and C2 be the colorings in Lemma 2.1, where m = α
(
n
2

)
. By

examining the graphs H1(n,m) and H2(n,m) it is easy to verify that

t(C1) =
(
n

3

)
(1− 3α(1−√α))− o(n3),

t(C2) =
(
n

3

)
(1− 3(1− α)(1 −√1− α))− o(n3).

Since α ≥ 0.5, we have t(C1) ≥ t(C2). Thus, by Lemma 2.1,

(2.1) t(C) ≤ t(n,m) =
(
n

3

)
(1− 3α(1−√α))− o(n3).

Fix a Steiner triple system S(2, 3, n). A random permutation π of [n] that maps the
vertices of Kn to the elements of S(2, 3, n) corresponds to a random triangle packing
Lπ of Kn of order n(n − 1)/6. Every triangle is equally likely to appear in Lπ,
each with probability 1/(n − 2). The expected number of monochromatic triangles
in Lπ is, therefore, equal to t(C)/(n − 2). Fix a π for which Lπ contains at most
t(C)/(n − 2) monochromatic triangles. Thus, there is a packing M ⊂ Lπ, of size at
least |Lπ| − t(C)/(2n− 4) which is 2-color avoiding. By (2.1),

f2(C) ≥ n(n− 1)
6

− t(C)
2n− 4

≥ n(n− 1)
6

− 1
2n− 4

((
n

3

)
(1− 3α(1 −√α))− o(n3)

)

≥ n2

12
(1 + 3α(1−√α))− o(n2).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

198 RAPHAEL YUSTER

2.2. The fractional approach. We start with the definition of our fractional
relaxation. For a red-blue coloring C of Kn, let Tr be the set of triangles that con-
tain a red edge and let Tb be the set of triangles that contain a blue edge. A frac-
tional blue-avoiding packing is a function ν : Tr → [0, 1] satisfying, for each edge e,∑

e∈T∈Tr
ν(T) ≤ 1. Similarly, a fractional red-avoiding packing ν : Tb → [0, 1] satis-

fies, for each edge e,
∑

e∈T∈Tb
ν(T) ≤ 1. The value of ν is |ν| = ∑

T∈Tc
ν(T), where

c = r or c = b, depending on whether ν is blue-avoiding or red-avoiding. Let r∗(C)
(resp., b∗(C)) be the maximum possible value of a fractional blue-avoiding (resp.,
red-avoiding) packing. Let f∗

2 (C) = max{r∗(C), b∗(C)}. Finally, let f∗
2 (n) be the

minimum of f∗
2 (C) ranging over all red-blue colorings of Kn.

It is easy to see that f∗
2 (n) ≥ f2(n), by considering only functions ν that take

values 0 and 1. It is also not difficult to construct examples showing strict inequality.
For example, we trivially have f2(4) = 1, while f∗

2 (4) = 2. It is interesting, however,
and far from trivial, that the gap between f∗

2 (n) and f2(n) cannot be too large. Haxell
and Rödl showed in [6] that the gap between a fractional and an integral triangle
packing is o(n2). This, however, is not sufficient since our graphs are colored. In other
words, our packings are not allowed to assign positive values to certain triangles. In
[11] the author has extended the result from [6] to packings whose elements are taken
from any given family of graphs, using a different (probabilistic) approach. In fact, the
same proof from [11] also holds for induced packings. More formally, let F be any given
family of graphs. An induced F -packing of a graph G is a set of induced subgraphs of
G, each of them isomorphic to an element of F , and any two of them intersecting in
at most one vertex. Let νF (G) be the maximum cardinality of an induced F -packing.
Similarly, a fractional induced F -packing is a function that assigns weights from [0, 1]
to the induced subgraphs of G that are isomorphic to elements of F , so that for each
pair of vertices x, y, the sum of the weights of the subgraphs containing both x and y
is at most one. Let ν∗F(G) be the maximum value of a fractional induced F -packing.

Theorem 2.3 (see Yuster [11], induced version). Let F be a family of graphs. If
G is a graph with n vertices, then ν∗F (G)− νF (G) = o(n2).

From Theorem 2.3 it is easy to show that f∗
2 (n) and f2(n) are close.

Corollary 2.4. f∗
2 (n)− f2(n) = o(n2).

Proof. Consider a red-blue coloring C of Kn. Let r(C) be the maximum cardi-
nality of a blue-avoiding triangle packing and let b(C) be the maximum cardinality
of a red-avoiding triangle packing. It suffices to show that r∗(C) − r(C) = o(n2)
and that b∗(C) − b(C) = o(n2). Let G be the n-vertex graph obtained by taking
only the edges colored red. Consider the family F = {K3,K1,2,K1,2}. Clearly,
r(C) = νF(G) and r∗(C) = ν∗F (G). The result now follows from Theorem 2.3. Simi-
larly b∗(C) − b(C) = o(n2) by considering the complement of G.

By Corollary 2.4, in order to prove the lower bound claimed for f2(n) in Theorem
1.1, it suffices to prove the same lower bound for f∗

2 (n).
Let Fr be the set of nonisomorphic graphs on r vertices. We note that each

element of Fr corresponds to a red-blue coloring of Kr by coloring the edges blue
and the nonedges red. It is easy to verify that F4 consists of 11 graphs, each being
one of {K4,K

−
4 , Q,C4, P4,K1,3} or a complement of one of these (the complement

of P4 is P4; Q is the graph with four edges that contains a triangle). For a graph
H let b∗(H) = b∗(C), where C is the red-blue coloring corresponding to H . It is
easy to verify that b∗(K4) = 2, b∗(K−

4) = 2, b∗(Q) = 2, b∗(C4) = 2, b∗(P4) = 2,
b∗(K1,3) = 1.5, b∗(K1,3) = 2, b∗(C4) = 2, b∗(Q) = 1.5, b∗(K−

4) = 1, b∗(K4) = 0.
Lemma 2.5. If C is a red-blue coloring with m = α

(
n
2

)
blue edges and α ≥ 0.5,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISJOINT COLOR-AVOIDING TRIANGLES 199

then

f2(C) ≥ n2

12
(3α− α2)− o(n2).

Proof. By Corollary 2.4 it suffices to prove the claimed lower bound for f∗
2 (C).

In fact, we shall prove a stronger statement:

(2.2) b∗(C) ≥ n2

12
(3α− α2)− o(n2).

Fix a Steiner system T = S(2, 4, n) on the set X = {1, . . . , n}. We shall also fix,
for each block B = {i, j, k, �} of T , a matching M(B) = {{i, j}, {k, �}}. Let π be a
permutation of [n] selected uniformly at random from Sn. The permutation π defines
a decomposition of the edges of Kn into a set Lπ of n(n−1)/12 pairwise edge-disjoint
red-blue colored K4. Indeed, assume that the set of vertices of Kn is V = {v1, . . . , vn}
and use π to map the blocks of T to pairwise edge-disjoint red-blue colored K4. A
block B = {i, j, k, �} is mapped to the element of Lπ which is the subgraph induced
by {π(i), π(j), π(k), π(�)}. As noted earlier, each element of Lπ corresponds to an
element of F4. Now let

fπ =
∑

H∈Lπ

b∗(H) ≤ b∗(C).

We will prove that the expectation of the random variable fπ is at least n2(3α −
α2)/12− o(n2), which implies (2.2).

For H ∈ F4, let tπ(H) denote the number of elements of Lπ corresponding to H .
Clearly, ∑

H∈F4

tπ(H) =
n(n− 1)

12
.

We may therefore rewrite fπ as

(2.3) fπ =
∑

H∈F4

tπ(H)b∗(H).

We need to estimate the expectation E[tπ(H)] for various H .
Our first observation is that E[tπ(K4)] ≤ α2

12 n(n− 1)(1− o(1)). Indeed, consider
a block B of T , and consider its preassigned matching M(B) = {{i, j}, {k, �}}. The
probability that (π(i), π(j)) is blue is precisely α. The probability that (π(k), π(�))
is blue given that we are told that (π(i), π(j)) is blue (and even told its identity) is
α(1 − o(1)). Since there are n(n − 1)/12 blocks we have that E[tπ(K4)] ≤ α2

12 n(n −
1)(1 − o(1)). Similarly, E[tπ(K4)] ≤ (1−α)2

12 n(n − 1)(1 − o(1)). However, we can do
much better.

Lemma 2.6.

E

[
tπ(K4) +

2
3
tπ(K−

4) +
1
3
tπ(Q) +

2
3
tπ(C4) +

1
3
tπ(P4) +

1
3
tπ(C4)

]

=
α2

12
n(n− 1)(1− o(1)).

E

[
tπ(K4) +

2
3
tπ(K−

4) +
1
3
tπ(Q) +

2
3
tπ(C4) +

1
3
tπ(P4) +

1
3
tπ(C4)

]

=
(1− α)2

12
n(n− 1)(1− o(1)).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

200 RAPHAEL YUSTER

Proof. For each element H ∈ Lπ, let m(H) be the number of blue perfect match-
ings it contains, and let gπ =

∑
H∈Lπ

m(H). Clearly,

gπ = 3tπ(K4) + 2tπ(K−
4) + tπ(Q) + 2tπ(C4) + tπ(P4) + tπ(C4).

Since K4 has precisely three perfect matchings, the expected number of blocks B for
which M(B) is mapped to two blue edges is 1

3E[gπ]. On the other hand, the expected
number of blocks B for which M(B) is mapped to two blue edges is α2

12n(n− 1)(1−
o(1)), as noted in the paragraph preceding the lemma. Thus, the first equality in the
statement of the lemma follows. The second equality follows analogously.

To simplify notation, consider the following eleven variables: x1 = E[tπ(K4)],
x2 = E[tπ(K−

4)], x3 = E[tπ(Q)], x4 = E[tπ(C4)], x5 = E[tπ(P4)], x6 = E[tπ(K1,3)],
x7 = E[tπ(K1,3)], x8 = E[tπ(C4)], x9 = E[tπ(Q)], x10 = E[tπ(K−

4)], x11 = E[tπ(K4)].
With these variables, placing expectations on both sides of (2.3) we obtain

E[fπ] = 2x1 + 2x2 + 2x3 + 2x4 + 2x5 + 1.5x6 + 2x7 + 2x8 + 1.5x9 + x10.

Let yi = xi/n(n− 1) for i = 1, . . . , 11. Using Lemma 2.6, a lower bound for E[fπ] is
obtained by solving the following linear program:

min 2y1 + 2y2 + 2y3 + 2y4 + 2y5 + 1.5y6 + 2y7 + 2y8 + 1.5y9 + y10

s.t.
11∑

i=1

yi =
1
12
,

y1 +
2
3
y2 +

1
3
y3 +

2
3
y4 +

1
3
y5 +

1
3
y8 =

α2

12
− o(1),

y11 +
2
3
y10 +

1
3
y9 +

2
3
y8 +

1
3
y5 +

1
3
y4 =

(1− α)2

12
− o(1),

yi ≥ 0 for i = 1, . . . , 11.

In order to derive an optimal solution for this linear program, we exhibit matching
solutions both for it and for its dual. The dual program is

max
1
12
z1 +

(
α2

12
− o(1)

)
z2 +

(
(1− α)2

12
− o(1)

)
z3

s.t.

(z1 z2 z3)

⎛
⎜⎝

1 1 1 1 1 1 1 1 1 1 1
1 2

3
1
3

2
3

1
3 0 0 1

3 0 0 0

0 0 0 1
3

1
3 0 0 2

3
1
3

2
3 1

⎞
⎟⎠

≤ (2 2 2 2 2 1.5 2 2 1.5 1 0).

(In the argument below and, in fact, throughout Lemma 2.6, we could write all
expressions explicitly, instead of writing o(1) terms. However, this would be somewhat
cumbersome and, moreover, the reader will be able to check that this is not necessary.)
A feasible solution for the dual is z1 = 3/2, z2 = 1/2, and z3 = −3/2 (notice that the
constraint set of the dual does not involve o(1) terms). The value this solution attains
is (3α−α2)/12−o(1). To prove that this is, in fact, an asymptotically optimal solution,
we exhibit a feasible solution for the primal problem whose value is also (3α−α2)/12−
o(1). Indeed, consider the solution y1 = α2/12− o(1), y11 = (1 − α)2/12− o(1), and
y6 = (α−α2)/6+o(1) and all the other eight variables are zero, so that all constraints
are satisfied. Indeed this solution attains the value (3α− α2)/12− o(1), as required.
It follows that E[fπ] ≥ n2(3α− α2)/12− o(n2), as required.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISJOINT COLOR-AVOIDING TRIANGLES 201

2.3. Combining the results. Given Lemmas 2.2 and 2.5, we see that if α ≥ 0.5
is close to 0.5 then the bound in Lemma 2.2 is larger than the bound in Lemma 2.5.
On the other hand, when α approaches 1, the bound in Lemma 2.5 approaches the
optimal packing of size n2/6 − o(n2). By equating 1 + 3α(1 −√α) with 3α− α2 we
get that the point of equilibrium is the square of the smallest root of x4 − 3x3 + 1. If
β = 0.7648 . . . denotes this root we clearly have

f2(n) ≥ 3β2 − β4

12
n2 − o(n2) ,

proving the lower bound in Theorem 1.1.

3. An upper bound for fr(n). We start this section with a construction of
a red-blue coloring of Kn that cannot avoid a monochromatic red triangle and a
monochromatic blue triangle in any large triangle packing.

Let 0 < α < 1 be a parameter and let A be a set of αn vertices and B a set of
n(1−α) vertices. The vertices of A induce a monochromatic red clique, and all other
edges are colored blue. Suppose there is aK3-packing of size x with no monochromatic
red K3. Then, each element of this packing either contains two edges from the cut
(A,B) or has all its three vertices from B. Thus,

(3.1) x <
α(1 − α)

2
n2 +

(1− α)2

6
n2 + o(n2).

Suppose there is a packing of size y with no monochromatic blue K3. Then we cannot
use edges with both endpoints in B at all. Thus,

(3.2) y <
α2/2 + α(1 − α)

3
n2 + o(n2).

Now, let z = max{x, y}. By equating (3.1) and (3.2) we get that for α = (
√

5− 1)/2
we have

z <
3
√

5− 5
12

n2 + o(n2) ≈ 0.1424n2(1 + o(1)).

In particular, this proves the upper bound in Theorem 1.1.
The construction for r > 2 generalizes the construction above. Suppose the set

of vertices V of Kn is partitioned into vertex classes V1, . . . , Vr. The edges with
both endpoints in Vi are colored with color i, and an edge between Vi and Vj for
i < j is colored with color j. The idea is to choose the sizes of the vertex classes
so that a sufficiently large K3-packing must contain an i-monochromatic K3 for each
color i. Fix 0 < α < 1, and assume that |Vi| = α(1 − α)i−1n for i = 1, . . . , r − 1
and |Vr| = (1 − α)r−1n (we ignore floors and ceilings as these have no effect on the
asymptotic result).

Suppose there is a K3-packing Li of size xi with no i-monochromatic K3. An
upper bound for x1 is identical to the upper bound for x in (3.1):

(3.3) x1 <
α(1 − α)

2
n2 +

(1− α)2

6
n2 + o(n2).

For i = 2, . . . , r− 1, we notice that no two edges inside Vi appear together in a non–i-
monochromatic K3. Since the third vertex of a non–i-monochromatic K3 having two
vertices in Vi must belong to some Vj with j > i, we have

(3.4) xi <
1
6
n2 − α2(1− α)2i−2

6
n2 +

α(1− α)i−1(1− α)i

6
n2 + o(n2).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

202 RAPHAEL YUSTER

For i = r, Lr cannot cover edges with both endpoints in Vr at all. Thus, similarly to
(3.2) we get

(3.5) xr <
(1− (1 − α)r−1)2/2 + (1− α)r−1(1− (1− α)r−1)

3
n2 + o(n2).

Simplifying (3.3), (3.4), and (3.5) we get that

6xi

n2
− o(1) ≤ 1− α(2α− 1)(1− α)2i−2, i = 1, . . . , r − 1,(3.6)

6xr

n2
− o(1) ≤ 1− (1 − α)2r−2.(3.7)

Now, let z = max{x1, . . . , xr}, and notice that, in fact, it suffices to consider z =
max{xr−1, xr}. By equating the case i = r − 1 in (3.6) with (3.7) we get that for
α = (

√
5− 1)/2 we have

z <
1− (3−√

5
2)2r−2

6
n2 + o(n2).

It follows that fr(n)
n2 < 1

6 (1− ζr−1)+o(1), where ζ = 7−3
√

5
2 . This completes the proof

of Theorem 1.2.

4. Determining f2(n) for small n. Clearly, f2(3) = f2(4) = 1. For n = 5
we notice that there are 15 distinct pairs of edge-disjoint triangles. Each of the 10
triangles appears in three of these pairs. If each pair contains a red triangle and a blue
triangle we must have five red triangles and five blue triangles. Suppose, w.l.o.g., that
there are at most five red edges. Notice that five edges cannot induce five triangles.
Thus, f2(5) = 2.

For n = 6, notice that K6 has 15 distinct perfect matchings. Each perfect match-
ing uniquely defines two sets of four pairwise edge-disjoint triangles (by considering
the K2,2,2 obtained by deleting the matching). All together, there are 30 distinct
triangle packings of size 4. Totally, they contain 120 triangles, but since K6 has 20
triangles, each triangle appears in precisely six such packings. Suppose each packing
has a red and a blue monochromatic triangle. Then there are at least five monochro-
matic red triangles and at least five monochromatic blue triangles. Assume, w.l.o.g.,
that there are at most seven red edges. Notice that seven edges cannot induce five
triangles. It follows that f2(6) = 4. (K6 does not have five pairwise edge-disjoint
triangles.)

For n = 7, we first notice that f2(7) ≤ 6 (although K7 does have a Steiner
triple system with seven edge-disjoint triangles). Indeed, take a red K5 and color the
remaining 11 edges blue. In a packing that has no red triangle there are at least two
blue edges in each triangle, and hence its size is at most 5. In a packing that has no
blue triangle the unique blue edge that is not incident with any red edge does not
appear. Hence, the packing contains at most six triangles. In fact, it is easy to verify
that this coloring indeed contains six edge-disjoint triangles, none of which is entirely
blue. For the other direction, K7 contains precisely 30 distinct Steiner triple systems.
Totally, they contain 210 triangles, but sinceK7 has 35 triangles, each triangle appears
in precisely six such systems. If each system contains two blue triangles and two red
triangles, then there are 10 red triangles and 10 blue triangles. Assume, w.l.o.g., that
there are at most 10 red edges. The only way 10 edges can induce 10 triangles is if

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISJOINT COLOR-AVOIDING TRIANGLES 203

they form a K5, and this is precisely the construction we examined earlier. Thus,
f2(7) = 6.

For n = 8, notice that K8 has 105 distinct perfect matchings. Each perfect match-
ing uniquely defines eight sets of eight pairwise edge-disjoint triangles (by considering
the K2,2,2,2 obtained by deleting the matching). All together, there are 840 distinct
triangle packings of size 8. Totally, they contain 6720 triangles, but since K8 has 56
triangles, each triangle appears in precisely 120 such packings. Suppose each pack-
ing has two red and two blue monochromatic triangles. Then there are at least 14
monochromatic red triangles and at least 14 monochromatic blue triangles. Assume,
w.l.o.g., that there are at most 14 red edges. If there are 14 red edges, then, by
Lemma 2.1, t(8, 14) = 24, so we cannot have 28 monochromatic triangles. If there are
only 13 red edges or fewer, they cannot induce 14 triangles. It follows that f2(8) ≥ 7.
To see that f2(8) = 7, consider a red K5 and color the remaining 18 edges blue. In
any packing of eight pairwise edge-disjoint triangles, this coloring has both a red and
a blue triangle.

5. Concluding remarks. The most obvious open problem is to determine the
true asymptotic behavior of f2(n). We conjecture that the upper bound construction
is the right (asymptotic) answer. Namely, f2(n) = 3

√
5−5
12 n2 − o(n2). The fractional

approach yielding Lemma 2.5 uses the Steiner system S(2, 4, n). At the price of sig-
nificantly complicating the proof, we can use a higher order system such as S(2, k, n).
(Wilson’s theorem guarantees the existence of an S(2, k, n) when n is any sufficiently
large integer satisfying n ≡ 1 mod k(k−1).) This, however, requires the analysis of all
possible colorings of Kk and their expected frequencies, which is already a daunting
task for k = 6, and which will not lead to a significant improvement in the lower
bound.

A Steiner packing of Kn is a triangle packing of maximum cardinality. As already
mentioned, if n ≡ 1, 3 mod 6, there is a Steiner triple system, which, by definition, is
a Steiner packing that covers every edge and hence consists of n(n − 1)/6 elements.
For other moduli, the cardinality of a Steiner packing is also well known [3]. It
is �n(n − 2)/6� if n is even and �n(n − 1)/6 − 1� if n ≡ −1 mod 6. Let g(r) be
the maximum integer n so that in every r-edge coloring of Kn there is a Steiner
packing that is r-color avoiding. The arguments in section 4 show that g(2) = 6,
since already for n = 7 the Steiner packing has seven elements while f2(7) = 6. It
would be interesting to determine the behavior of g(r) as a function of r. The proof
of Theorem 1.2 shows that g(r) is at most exponential in r (the base being at most
roughly 2.7).

Acknowledgment. I thank Eli Berger for useful discussions.

REFERENCES

[1] B. Bollobás, Modern Graph Theory, Grad. Texts in Math. 184, Springer-Verlag, New York,
1998.

[2] A.E. Brouwer, Optimal packing of K4’s into a Kn, J. Combin. Theory Ser. A, 26 (1979), pp.
278–297.

[3] C.J. Colbourn and J.H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press,
Boca Raton, FL, 1996.

[4] P. Erdős, R.J. Faudree, R.J. Gould, M.S. Jacobson, and J. Lehel, Edge disjoint
monochromatic triangles in 2-colored graphs, Discrete Math., 231 (2001), pp. 135–141.

[5] A.W. Goodman, Triangles in a complete chromatic graph, J. Austral. Math. Soc. Ser. A, 39
(1985), pp. 86–93.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

204 RAPHAEL YUSTER

[6] P.E. Haxell and V. Rödl, Integer and fractional packings in dense graphs, Combinatorica,
21 (2001), pp. 13–38.

[7] P. Keevash and B. Sudakov, On the number of edges not covered by monochromatic copies
of a fixed graph, J. Combin. Theory Ser. B, 90 (2004), pp. 41–53.

[8] P. Keevash and B. Sudakov, Packing triangles in a graph and its complement, J. Graph
Theory, 47 (2004), pp. 203–216.

[9] T.P. Kirkman, On a problem in combinatorics, Cambridge Dublin Math. J., 2 (1847), pp.
191–204.

[10] D. Olpp, A conjecture of Goodman and the multiplicities of graphs, Australas. J. Combin., 14
(1996), pp. 267–282.

[11] R. Yuster, Integer and fractional packing of families of graphs, Random Structures Algo-
rithms, 26 (2005), pp. 110–118.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 205–220

ON (3, 1)∗-COLORING OF PLANE GRAPHS∗

BAOGANG XU†

Abstract. Given positive integers k and d, a graph G is said to be (k, d)∗-colorable if the vertices
of G can be colored with k colors such that every vertex has at most d neighbors receiving the same
color as itself. Let G be the family of plane graphs with neither adjacent triangles nor cycles of length
5. It is proved in this paper that every graph in G is (3, 1)∗-colorable. This result is sharp in the
sense that there exist non-(2, 1)∗-colorable plane graphs with neither triangles nor cycles of length
5. As a corollary, after removing a matching, every graph in G is 3-colorable. This provides a partial
solution to a conjecture of Borodin and Raspaud [J. Combin. Theory Ser. B, 93 (2003), pp. 17–27].

Key words. triangle, defective coloring, plane graph

AMS subject classifications. 05C15, 05C78

DOI. 10.1137/06066093X

1. Introduction. In 1976, Steinberg conjectured (see [11, p. 229]) that every
plane graph without cycles of length 4 and 5 is 3-colorable. Borodin et al. [4] proved
that every plane graph without cycles of length from 4 to 7 is 3-colorable. As a
variation of Steinberg’s 3-coloring problem, Borodin and Raspaud [5] considered the
3-colorability of plane graphs with neither cycles of length 5 nor triangles of shorter
distance, proved that every plane graph with neither cycles of length 5 nor triangles of
distance less than four is 3-colorable, and proposed a conjecture claiming that every
plane graph with neither adjacent triangles nor cycles of length 5 is 3-colorable, where
the distance between triangles is the length of the shortest path between vertices of
different triangles, and two triangles are said to be adjacent if they have an edge in
common.

The result of [5] was improved independently by Borodin and Glebov [3], and
Xu [13]. They showed that every plane graph with neither 5-cycles nor triangles of
distance less than three is 3-colorable. Xu [14] improved the result of [4] by showing
that every plane graph with neither adjacent triangles nor cycles of length 5 and 7 is
3-colorable. Both Steinberg’s conjecture and Borodin and Raspaud’s conjecture are
still open. It seems that there is no expectation to solve these problems completely in
the very near future.

In this paper, instead of studying classical colorings, we consider the defective
coloring problem on plane graphs. Given positive integers k and d, a k-coloring with
deficiency d, simply denoted by a (k, d)∗-coloring of G, is a mapping φ : V (G) �−→
{1, 2, . . . , k} such that every vertex v has at most d neighbors receiving the same color
as v itself. A graph is called (k, d)∗-colorable if it admits a (k, d)∗-coloring. A (k, 0)∗-
coloring is just a classical k-coloring of a graph. So, defective coloring is a natural
generalization of the classical colorings.

The concept of defective coloring (also called improper coloring in some papers)
was simultaneously introduced by Burr and Jacobson (see [1]), Cowen, Cowen, and

∗Received by the editors May 25, 2006; accepted for publication (in revised form) August 13,
2008; published electronically December 17, 2008. This research was supported by the NSFC.

http://www.siam.org/journals/sidma/23-1/66093.html
†School of Mathematics and Computer Science, Nanjing Normal University, 122 Ninghai Road,

Nanjing, 210097, People’s Republic of China (baogxu@njnu.edu.cn).

205

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

206 B. XU

Woodall [6], and Harary and Jones [9]. Defective colorability of plane graphs has been
extensively studied since then (see [8], [10], and [12] for more results and references).
All plane graphs are (4, 0)∗-colorable (by the FCT), and all outerplanar graphs are
(3, 0)∗-colorable. It was proved [6] that all plane graphs are (3, 2)∗-colorable and there
exists one that is not (3, 1)∗-colorable; all outerplanar graphs are (2, 2)∗-colorable and
there exists one that is not (2, 1)∗-colorable. In [7], the authors proved that the (2, k)∗-
coloring, for k ≥ 1, and the (3, 1)∗-coloring problems are NP-complete even for plane
graphs. There is no good characterization for (2, 1)∗-colorable outerplanar graphs.

Graphs considered in this paper are all finite and simple. Undefined terms can be
found in [2]. We use G = (V,E, F) to denote a plane graph with vertex set V , edge
set E, and face set F , and use b(f) and N(f) to denote the boundary of a face f and
the set of faces adjacent to f , respectively. Two faces are adjacent if they share an
edge. The degree of a face f , denoted also by d(f), is the length of the facial walk
of f . A k-vertex (resp., k-face) is a vertex (resp., face) of degree k, a ≤ k-vertex
(resp., ≤ k-face) is a vertex (resp., face) of degree at most k, and a ≥ k-vertex
(resp., ≥ k-face) is defined similarly. An n-face f is called an (l1, l2, . . . , ln)-face if the
vertices on b(f) have degree l1, l2, . . . , ln sequentially. An m-cycle (resp., m-path) is a
cycle (resp., path) with m edges. As usual, a 3-cycle is called a triangle. For a subset
S ⊂ V (G), G \ S denotes the subgraph of G induced by V (G) \ S.

Let C be a cycle of a plane graph G. We use int(C) and ext(C) to denote the sets
of vertices located inside and outside C, respectively. C is called a separating cycle if
int(C) �= ∅ �= ext(C), and is called a nonseparating cycle otherwise. A facial cycle is
a nonseparating cycle that is the boundary of a face. For convenience, we still use C
to denote the set of vertices of C.

Let C be a separating cycle of G. Suppose that G \ int(C) admits a k-coloring φ
and G \ ext(C) admits a k-coloring ψ. If φ and ψ coincide on C, then φ together with
ψ gives a k-coloring of G. This is not true when we consider defective colorings. Even
if G \ int(C) admits a (k, 1)∗-coloring φ′, G \ ext(C) admits a (k, 1)∗-coloring ψ′, and
φ′ and ψ′ coincide on C, φ′ and ψ′ may not offer any (k, 1)∗-coloring of G.

For applying the coloring extension method to defective colorings, we introduce a
new notion and call it superextendability. Let G be a graph,H be an induced subgraph
of G, and φ be a (k, 1)∗-coloring of H for some integer k ≥ 2. The pair (H,φ) is said to
be superextendable in G if φ can be extended to a (k, 1)∗-coloring φ′ of G such that for
every vertex v ∈ V (G) \V (H) and every neighbor u of v in H , φ′(v) �= φ(u). If (H,φ)
is superextendable for every (k, 1)∗-coloring φ of H , H is called a k-superextendable
subgraph.

We use G to denote the family of plane graphs with neither adjacent triangles
nor 5-cycles. In this paper, we focus on the (3, 1)∗-colorability of graphs in G. So,
3-superextendability is simply referred to as superextendability. Below is our main
result.

Theorem 1. Every triangle or 7-cycle of a graph G ∈ G is superextendable.
Let G be a graph in G. If G has no triangle, then G is 3-colorable by Gröztch’s

theorem, and is certainly (3, 1)∗-colorable. If G contains a triangle, then any (3, 1)∗-
coloring of the triangle can be superextended to G. So, as a corollary of Theorem 1,
we have the following.

Corollary 1. Every graph in G is (3, 1)∗-colorable.
This result is sharp in the sense that there exist non-(2, 1)∗-colorable plane graphs

with neither triangles nor 5-cycles as evidenced by the following example. Let l ≥ 3
be an integer, and let Hl be the graph consisting of a cycle v0v1 . . . v2l−1v0, a path

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON (3, 1)∗-COLORING OF PLANE GRAPHS 207

u0u1 . . . u2l, and edges {u0v0, u1v1, . . . , u2l−1v2l−1, u2lv0} (see H3 in Figure 1 as an
example, where the two solid squares represent a single vertex v0). It is obvious that
in any (2, 1)∗-coloring ψ of Hl, ψ(ui) = ψ(vi) iff ψ(ui+1) = ψ(vi+1) for each i ∈
{0, 1, 2, . . . , 2l − 2}, and ψ(u2l−1) = ψ(v2l−1) iff ψ(u2l) = ψ(v0). Let H0

l , H
1
l , . . . , H

l
l

be (l + 1) copies of Hl, and let Bl be the graph obtained from a cycle C2l+1 =
x0x1 . . . x2lx0 and H0

l , H
1
l , . . . , H

l
l as follows. We first identify v0u0 and v0u2l of H l

l

with x2lx2l−1 and x2lx0 of C2l+1, respectively. Then, for i = 0, 1, . . . , l−1, we identify
v0u0 and v0u2l of Hi

l with x2i+1x2i and x2i+1x2i+2 of C2l+1, respectively (see B3 of
Figure 1 as an example). Since l ≥ 3, Bl has neither triangles nor 5-cycles. Assume
that Bl admits a (2, 1)∗-coloring φ. We may assume, without loss of generality, that
φ(x0) = φ(x1). From the restriction of φ on H0

l in Bl, φ(x1) = φ(x2). Then, φ(x0) =
φ(x1) = φ(x2), a contradiction.

���� ���� �� ������ ��

�� �� �� ������

��
��
��
��

��
��
��
��

��

��

����

����

����

����

��
��
��
��

������

�
�
�
�

��
��
��
��

����

�����
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��
��
��
��

��

��
��
��
��

�
�
�
�����

�
�
�
�

����

�
�
�
�

��

��
��
��
��

��

�
�
�
�

��������

�
�
�
�
�
�
�
�

���� ��

����

��
��
��
��

������

x0

x1

x2

x4

x5

x6

x3

u1

v1

u2 u3 u4 u5

v2 v3 v4 v5

u0

v0v0

u6

H3 B3

Fig. 1. H3 and B3.

Let G be a (3, 1)∗-colorable graph. Since in any (3, 1)∗-coloring of G, the edges
joining the vertices of the same color form a matching, there exists a matching M
in G such that G −M is 3-colorable. As a consequence of Corollary 1, we have the
following.

Corollary 2. Every graph G ∈ G has matching M such that G − M is 3-
colorable.

This provides a partial solution to a conjecture of Borodin and Raspaud [5].
The rest of the paper is organized as follows. In section 2, we prove several lemmas

about a minimum counterexample to Theorem 1. Then we complete the proof of
Theorem 1 in section 3 by the discharging method.

2. Structures of the minimum counterexamples. In this section, we al-
ways assume that G ∈ G is a counterexample to Theorem 1 with minimum σ(G) =
|V (G)|+ |E(G)|. Let C be a triangle or a 7-cycle of which a (3, 1)∗-coloring φ cannot
be superextended to G, and let r = |C|.

If C is a separating cycle, then C is superextendable in both G \ ext(C) and
G \ int(C), and hence is superextendable in G, which contradicts the choice of C. So,
we may assume, without loss of generality, that C is the boundary of the outer face
fo of G. Recall that for any cycle C′ of G, we still use C′ to represent the vertex set
of C′.

Let C′ �= C be a triangle or a 7-cycle. If int(C′) �= ∅, then C is superextendable in
G \ int(C′) and C′ is superextendable in G \ ext(C′), and hence C is superextendable
in G. Therefore, we have the following lemma.

Lemma 1. G contains neither separating triangles nor separating 7-cycles.
The next lemma shows that G contains at most one separating 4-cycle, and

furthermore, if G contains a separating 4-cycle, then G has some particular struc-
ture as depicted below. Let A ⊆ G be a subfamily of graphs of which each graph

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

208 B. XU

�
�
�
�

��

��

�
�
�
�

�
�
�
�

��

a1

a2

a3

a

b

c

Fig. 2. The structure of graphs in A.

has the following properties (see Figure 2): The boundary of its outer face is a
triangle, say abca, and there exists a particular separating 4-cycle aa1a2a3a such
that ext(aa1a2a3a) = {b, c}.

Lemma 2. Suppose that G has a separating 4-cycle C1. Then, G ∈ A, and C1 is
the unique separating 4-cycle of G.

Proof. Let C1 = v1v2v3v4v1, let G1 = G \ int(C1), let G2 be the graph obtained
fromG\ext(C1) by substituting v1w1w2w3v2 for v1v2, and letC2 = v1w1w2w3v2v3v4v1.

Since σ(G1) < σ(G), C is superextendable in G1 by the minimality of G. Assume
thatG �∈ A. We will show that C2 is superextendable inG2. Then C is superextendable
in G as C1 is always superextendable in C2. This contradicts the choice of C and shows
G ∈ A.

Since G ∈ G, no edge of C1 is in any triangles. Therefore, G2 ∈ G. To prove
that C2 is superextendable in G2, we need only check that σ(G2) < σ(G). Note that
σ(G2) = σ(G \ ext(C1)) + 6.

If r = 7, then σ(C)−σ(C∩C1) ≥ 7 as C1 �= C, and thus σ(G2) = σ(G\ext(C1))+
6 ≤ [σ(G) − (σ(C) − σ(C ∩ C1))] + 6 < σ(G). So, we assume that r = 3.

If C1∩C = ∅, then G\ int(C1)− (E(C)∪E(C1)) contains at least one edge (since
G is connected), and hence σ(G2) = σ(G\ext(C1))+6 ≤ (σ(G)−σ(C)−1)+6 < σ(G).
So, we may further assume that r = 3 and C ∩C1 �= ∅.

Since G ∈ G, |C ∩ C1| = 1. If |ext(C1)| ≥ 3, then σ(G2) = σ(G \ ext(C1)) + 6 ≤
[σ(G) − ((σ(C) − 1) + 2)] + 6 < σ(G). Therefore, |ext(C1)| = 2 and G ∈ A.

If G contains another separating 4-cycle, say C′, then C′ is a subgraph of G \
ext(C1). By the same arguments as those applied to C1, one shows that C is superex-
tendable in G. So, C1 is the unique separating 4-cycle.

The next lemma shows that G \ C contains no 2-vertex, no adjacent 3-vertices,
and no 3-face with two 4-vertices and a 3-vertex on its boundary.

Lemma 3. G has neither a ≤ 2-vertex nor adjacent 3-vertices in V (G \ C), and
has no (4, 4, 3)-face f with b(f) ∩C = ∅.

Proof. If G has a ≤ 2-vertex v ∈ V (G \ C), let S = {v}. If G has two adjacent
3-vertices u, v in V (G \ C), let S = {u, v}. If G has a (4, 4, 3)-face f in G \ C, let S
consist of the three vertices in b(f).

Let H = G \ S. Then, φ has a superextension φH on H . If (H,φH) is superex-
tendable in G, then so is (C, φ).

If |S| ≤ 2, then each vertex of S has at most two neighbors in H , and hence φH

is superextendable in G. If |S| = 3, let v1 ∈ S be a 3-vertex, and let v2, v3 ∈ S be
two 4-vertices; then each of v2 and v3 has a color not used by φH on its neighbors
in H , and v1 has two colors not used by φH on its neighbor in H , and hence φH is
superextendable in G also. Both contradict the choice of C.

We now show that C is chordless, and for any nonadjacent vertices x, y ∈ C,
N(x) ∩N(y) ⊆ C.

Lemma 4. C is chordless, and for x, y ∈ C with xy �∈ E(C), N(x) ∩N(y) ⊆ C.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON (3, 1)∗-COLORING OF PLANE GRAPHS 209

Proof. The conclusion is trivial if r = 3. So, we suppose that r = 7. Let x, y be
two vertices on cycle C such that xy �∈ E(C). Let P be the shorter path on C joining
x and y, and let l = |E(P)|. Then, l = 2 or 3.

First we assume that xy ∈ E(G). Since (C + xy) − E(P) contains a (7 − l + 1)-
cycle, l = 2. Assume that P = xvy (see Figure 3(a)). Then, xvyx is a facial cycle
(by Lemma 1), and xy is not on any 4-cycle. Let H be the graph obtained from
G \ {v} by inserting a vertex v′ into xy (see Figure 3(b), where the broken edges
and vertex v are not in H). Then, H ∈ G, σ(H) = σ(G) − 1, and hence in H ,
(C\{v})∪xv′y is a superextendable 7-cycle. But this means C itself is superextendable
in G, a contradiction to the choice of C. Therefore, xy �∈ E(G); i.e., C is chordless.

��
����
�
�
�
�

��
��
��
��

����
��
��
����

��
��
��
������

��
��
��
��

����
������

��
��
���
�
�
�

��
��
��
��������

�
�
�
�

��
��
��
��

��
��
��
��

���� ��
��

(a) (b) (c)

x xxy yy

v vv

v′ u

Fig. 3. Two vertices x and y on C.

Next, we assume that (N(x) ∩N(y)) \C has a vertex, say u. Since P ∪ xuy is an
(l + 2)-cycle, l = 2. Again, let P = xvy (see Figure 3(c)). Since G ∈ G, N(u) ∩ C =
{x, y}. Since r = 7, G �∈ A, so both xuyvx and (C ∪ xuy) \ {v} are facial cycles (by
Lemmas 1 and 2). Thus, d(u) = 2 which contradicts Lemma 3.

The next lemma shows that, for an arbitrary 4-face f , |b(f)∩C| ≤ 2 and |b(f) ∩
C| = 2 iff f ∈ N(fo) (recall that b(f) and C represent the vertex sets of b(f) and C,
respectively).

Lemma 5. Suppose that f is a 4-face with b(f) = v1v2v3v4v1 and v1 ∈ C. Then,
v3 �∈ C. Moreover, |N(v3) ∩ C| = 1 if f ∈ N(fo), and |N(v3) ∩C| = 0 otherwise.

Proof. Since G ∈ G, b(f) is chordless. By Lemma 4, v3 ∈ C implies that v2 and
v4 are both in C. So, v3 �∈ C.

Suppose first that f ∈ N(fo). We suppose, without loss of generality, that v2 ∈ C.
Then, v4 �∈ C (for otherwise, v3 ∈ C by Lemma 4). If N(v3) ∩ C has a vertex, say x,
other than v2, then v2x ∈ E(C) (by Lemma 4) and hence v1v2xv3v4v1 is a 5-cycle.
Therefore, N(v3) ∩C = {v2}.

Next, we suppose that f �∈ N(fo), and suppose that v3 has a neighbor, say
x, in C. If r = 3, let C = v1u1u2v1 and assume that x = u2 (see Figure 4(a));
then v1v2v3u2u1v1 is a 5-cycle. So, r = 7. Let C = v1u1u2 . . . u6v1. We may assume
that x ∈ {u4, u5, u6} by symmetry. If x = u4, v1v4v3u4u3u2u1v1 is a separating 7-
cycle (see Figure 4(b)). If x = u5, v1v2v3u5u6v1 is a 5-cycle (see Figure 4(c)). If
x = v6, v1v2v3u6v1 is a separating 4-cycle that has two common vertices with C (see
Figure 4(d)). All are contradictions. Therefore, |N(v3) ∩ C| = 0.

�
�
�
�

�� ����

�
�
�
�
�
�
�
�

��

��

����

��
��
��
��

�
�
�
�
��
��
��
��

����

����

��
��
��
��

����

��

����

����

��

�� ����

����

��

��
��
��
��

����

����

����

����

��

�� ����

����

��

��
��
��
��

����

����

(a) (b) (c) (d)

v1v1 v1
v1

v2v2 v2

v2

v3v3 v3

v3

v4v4 v4

v4

u1u1 u1

u1

u2u2 u2

u2
u3u3 u3u4u4 u4

u5u5 u5

u6u6 u6

Fig. 4. v1 ∈ C and N(v3) ∩ C �⊆ {v2, v4}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

210 B. XU

��

�� �
�
�
�

��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

v1v1v1

v2

v3
v3v3

v4
v′v′

(a) (b) (c)

Fig. 5. Identify a pair of diagonal vertices of a 4-face.

The following several lemmas are about the distribution of 3-vertices on bound-
aries of 4-faces in G \ C. For the convenience of presenting these lemmas, we intro-
duce a new notion. Let S1, S2, . . . , Sl be pairwise disjoint subsets of V (G). We use
G[S1, S2, . . . , Sl] to denote the graph obtained from G by identifying all the vertices
in Si to a single vertex for each i ∈ {1, 2, . . . , l}. Lemma 6 below shows that, by
identifying a pair of diagonal vertices of a facial 4-cycle, the resulting graph is still
in G.

Lemma 6. Let f be a 4-face, and let u and v be a pair of diagonal vertices on
b(f). Then G[{u, v}] ∈ G.

Proof. Suppose that b(f) = uxvyu. By Lemma 5, we may suppose that v, y �∈ C.
Since G ∈ G, G has no 3-path joining u and v, and hence the identification of u

and v produces no triangle. If G[{u, v}] has a 5-cycle, then G has a 5-path P ′ joining
u and v. If one of x and y is in P ′, then b(f)∪P ′ has a 5-cycle. So, x, y �∈ V (P ′), and
hence either P ′ ∪ uxv or P ′ ∪ uyv is a separating 7-cycle; both contradict Lemma 1.
Therefore, G[{u, v}] ∈ G.

This lemma will be used frequently in the proofs of the following four lemmas.
The next lemma shows that every 4-face has at most one 3-vertex from V (G) \C.

Lemma 7. For every 4-face f , b(f) \ C contains at most one 3-vertex.
Proof. Let f be a 4-face with b(f) = v1v2v3v4v1. Since G\C contains no adjacent

3-vertices by Lemma 3, we may suppose that f �∈ N(fo), and suppose by symmetry
that v1, v2, v3 �∈ C (see Figure 5(a)). If d(v2) = 3, we are done. So, we suppose that
d(v2) ≥ 4.

Let G′ = G[{v2, v4}] (see Figure 5(b), where v′ is the resulting new vertex), and
let G′′ = G′ \ {v1, v3}. By Lemma 6, G′ ∈ G, and so is G′′. Since σ(G′′) < σ(G), and
C is still a chordless cycle in G′′ (by Lemma 5), φ has a superextension ψ on G′′.

We will show that at least one of v1 and v3 is a ≥ 4-vertex. If it is not the case,
assume that d(v1) = d(v3) = 3; then dG′(v1) = dG′(v3) = 2 (see Figure 5(c)), and
so ψ has a superextension ψ′ on G′ in which ψ′(v1) �= ψ(v′) �= ψ′(v3). Since d(v1) =
d(v3) = 3, N(v2)∩N(v4) = {v1, v3} (otherwise, assume u ∈ (N(v2)∩N(v4))\{v1, v3}
and assume by symmetry that v3 ∈ int(uv2v1v4u); then uv2v3v4u is a separating
4-cycle contradicting Lemma 2). By coloring v2 and v4 with ψ(v′), ψ′ yields a (3, 1)∗-
coloring of G that superextends φ and contradicts the choice of C. This contradiction
completes the proof of Lemma 7.

A similar technique will be used in the proofs of the following three lemmas in
which we consider the cases where a vertex is incident with more 4-faces.

Lemma 8. Let C1 = uvv1u1u and C2 = uvv2u2u be two 4-cycles in G \ C (see
Figure 6(a)). Then, d(u1) = d(u2) = 3 only if d(v) ≥ 5, d(v1) = d(v2) = 3 only if
d(u) ≥ 5, and for 1 ≤ i �= j ≤ 2, d(ui) = d(vj) = 3 only if d(u) ≥ 5 and d(v) ≥ 5.

Proof. Since C1 ∪ C2 ⊆ V (G \ C), u1v2, u2v1 �∈ E(G), and C1 and C2 are both
facial cycles (by Lemma 2). Since G ∈ G, {u1u2, u1v, uv1, uv2, u2v, v1v2} ∩ E(G) = ∅.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON (3, 1)∗-COLORING OF PLANE GRAPHS 211

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��

��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

��

�
�
�
�

��

v1v1

v2v2

u1u1 u1

u2 u2

v

v uu u′ v′

(b)(a) (c)

Fig. 6. Two adjacent 4-faces.

To prove the lemma, we need only show by symmetry that d(u1) = d(u2) = 3
only if d(v) ≥ 5, and d(u1) = d(v2) = 3 only if d(u) ≥ 5.

First we assume that d(u1) = d(u2) = 3 and d(v) ≤ 4. Then, d(v) = 4 (by
Lemma 7). Let H1 = G[{v1, u, v2}], and let u′ be the new vertex by identifying u, v1,
and v2 (see Figure 6(b)).

By Lemma 6,H1 ∈ G. LetH ′
1 = H1\{u1, u2, v}. Then,H ′

1 ∈ G and σ(H ′
1) < σ(G),

and thus φ has a superextension φH′
1

on H ′
1. Since dH1 (u1) = dH1(u2) = dH1(v) = 2,

φH′
1

has a superextension φH1 on H1 in which φH1 (u′) �∈ {φH1(u1), φH1 (u2), φH1 (v)}.
By Lemma 2, no separating 4-cycles may contain vertices in C1 ∪ C2. So, N(u) ∩
N(v1) = {u1, v}, N(u) ∩N(v2) = {u2, v}, and N(v1) ∩N(v2) = {v} (since d(v) = 4).
By letting φ1(x) = φH1(x) for x �∈ {u, v1, v2}, and letting φ1(u) = φ1(v1) = φ1(v2) =
φH1(u

′), we get a (3, 1)∗-coloring φ1 of G that superextends φ. This contradiction
shows that d(v) ≥ 5 if d(u1) = d(u2) = 3.

Next, we assume that d(u1) = d(v2) = 3 and d(u) ≤ 4. Then, d(u) = 4. Let H2 =
G[{u2, v}], let v′ be the new vertex in H2 by identifying u2 and v (see Figure 6(c)),
and let H ′

2 = H2 \ {u1, u, v2}. Then, H ′
2 ∈ G and σ(H ′

2) < σ(G), and hence φ has
a superextension φH′

2
on H ′

2. Since dH2(u1) = dH2(u) = 3 and dH2(v2) = 2, φH′
2

has a superextension φH2 such that φH2(u) �= φH2(v′) �= φH2(v2). Then, φH2 can be
superextended to G since N(u2) ∩N(v) = {u, v2} (by Lemma 2). This contradiction
completes the proof of this lemma.

Let u be a k-vertex, and let {f0, f1, . . . , fk−1} be the set of faces incident with u.
We use H(u) to denote the subgraph ∪k−1

i=0 b(fi). Figure 7 shows an example of H(u)
while k = 4.

Our last two lemmas of this section concern the cases where a k-vertex (k ∈ {4, 5})
is incident with k 4-faces.

v6
v5

v4

v3
u

v7

v2

v1
v0

Fig. 7. H(u) of a 4-vertex u incident with four 4-faces.

Lemma 9. Let u be a 4-vertex incident with four 4-faces and V (H(u)) ∩ C = ∅.
Suppose that the vertices in H(u) are labeled as shown in Figure 7. Then,

(i) H(u) contains a unique 3-vertex if mini=0,2,4,6 d(vi) = 3;
(ii) for j = 1 or 3, max{d(vj), d(vj+4)} ≤ 4 only if min{d(vj), d(vj+4)} = 3; and
(iii) N(u) has a ≥ 5-vertex, and H(u) has at most one (4, 4, 4, 3)-face.
Proof. Since V (H(u))∩C = ∅, H(u) contains neither a ≤ 2-vertex nor adjacent 3-

vertices (by Lemma 3), and every 4-face in H(u) is incident with at most one 3-vertex
(by Lemma 7).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

212 B. XU

To prove (i), we need only show, by symmetry, that if d(v0) = 3, then all of the
other vertices are ≥ 4-vertices. Suppose that d(v0) = 3. Then d(v1) ≥ 4, d(v7) ≥ 4,
and min{d(v2), d(v3), d(v5), d(v6)} ≥ 4 (by Lemma 8 since d(u) = 4). Assume that
d(v4) = 3. Let H1 = G[{v1, v7}, {v3, v5}], and let v′ and v′′ be the new vertices
obtained by identifying v1 with v7, and v3 with v5, respectively (see Figure 8(a)).
Then, dH1(v0) = dH1(u) = dH1(v4) = 2. Let H ′

1 = H1 \ {v0, u, v4}.
By Lemma 6, H1 ∈ G, and so is H ′

1. Since σ(H ′
1) < σ(G), φ has a superexten-

sion φH′
1

on H ′
1, and φH′

1
can be superextended to a (3, 1)∗-coloring φH1 of H1. By

Lemma 2, no separating 4-cycle may contain either {v1, v7} or {v3, v5}, so N(v1) ∩
N(v7) = {u, v0} and N(v3) ∩ N(v5) = {u, v4}. By coloring v1 and v7 with φH1 (v′),
and coloring v3 and v5 with φH1(v′′), we get a (3, 1)∗-coloring of G that superextends
φ. This contradiction ends the proof of (i).

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��

�
�
�
�

��
��
��
��

��������

��������

����

����

��
��
��
��

����

��
��
��
��

��

��

�
�
�
�

��

�
�
�
�

v0

v0

v2

v2

u

u

v′′ v4
v4

v′
v1

v3

v5
v6

v6

v7

v′
2

v′
3

v′
4

v′
5v′

5

v′
1v′

1

(b)(a) (c)

Fig. 8. A 4-vertex u incident with four 4-faces.

To prove (ii), it suffices to prove that if d(v1) ≥ 4 and d(v5) ≥ 4, then d(v1) ≥ 5 or
d(v5) ≥ 5. Assume on the contrary that d(v1) = d(v5) = 4. Let N(v1) = {u, v0, v2, v′1},
N(v5) = {u, v4, v6, v′5} (see Figure 8(b)). Let B = G \ {v1, u, v5}, and let B′ =
B[{v0, v2}, {v3, v7}, {v4, v6}]. Then, σ(B′) < σ(G). By the similar arguments as used
in the proof of Lemma 6, we can show that B′ ∈ G. Then, φ has a superextension
φB′ on B′. Let v′2, v

′
3, and v′4 be the vertices obtained by identifying v0 with v2, v3

with v7, and v4 with v6, respectively (see Figure 8(c)). Since d(v1) = d(v5) = 4, no
separating 4-cycle may contain {v0, v2}, or {v3, v7}, or {v4, v6} (by Lemma 2), and
hence NB(v0) ∩ NB(v2) = NB(v3) ∩ NB(v7) = NB(v4) ∩ NB(v6) = ∅. By defining
φB(x) = φB′(x) for x ∈ V (B′)\ {v′2, v′3, v′4}, and defining φB(v0) = φB(v2) = φB′(v′2),
φB(v3) = φB(v7) = φB′(v′3), φB(v4) = φB(v6) = φB′(v′4), φB is a superextension of
φ on B. Let φ′(x) = φB(x) for x �∈ {u, v1, v5}, let φ′(v1) �∈ {φ′(v0), φ′(v′1)}, φ′(v5) �∈
{φ′(v6), φ′(v′5)}, and let φ′(u) �∈ {φ′(v5), φ′(v7)}. Then, φ′ is a superextension of φ on
G. This contradiction proves (ii).

Now, we proceed to prove (iii). If d(vi) = 3 for some i ∈ {0, 2, 4, 6}, then H(u)
has a unique 3-vertex (by (i)), and hence has at most one (4, 4, 4, 3)-face and has two
≥ 5-vertices (by (ii)). So, we suppose that d(vi) ≥ 4 for each i ∈ {0, 2, 4, 6}. If v1 is
a unique 3-vertex in H(u), then d(v3) ≥ 5 or d(v7) ≥ 5 (by (ii)), and the conclusion
follows immediately. We then suppose, by symmetry, that d(v1) = d(v5) = 3. Then,
by Lemma 8, d(v3) ≥ 5 and d(v7) ≥ 5, and hence H(u) has no (4, 4, 4, 3)-face and has
two ≥ 5-vertices.

For convenience, we use V4 to denote the set of 4-vertices incident with four 4-
faces in G \ C, and use V ′

4 to denote the subset of vertices of V4 of which each is
incident with a (4, 4, 4, 3)-face.

Lemma 10. Let u be a 5-vertex incident with five 4-faces such that V (H(u))∩C =
∅. Suppose that the vertices in H(u) are labeled as shown in Figure 9. Then, for each
i ∈ {1, 3, 5, 7, 9},

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON (3, 1)∗-COLORING OF PLANE GRAPHS 213

v7
v6

v5

v4
u

v8

v3

v2

v1
v0

v9 f0

f1

f2f3

f4

Fig. 9. H(u) of a 5-vertex u.

(i) d(vi) = d(vi+2) = 3 only if d(vj) ≥ 4 for all j �= i, i+ 2. Moreover, d(vi) =
d(vi+2) = 3 and d(vi+3) = 4 only if d(vi+5) �∈ V ′

4 ;
(ii) d(vi) = d(vi+4) = 3 only if max{d(vi+1), d(vi+3)} ≥ 5; and
(iii) d(vi) = d(vi+5) = 3 only if max{d(vi+1), d(vi+3)} ≥ 5 and max{d(vi+7),

d(vi+9)} ≥ 5,
where the summations of subindex are taken modulo 10.

Proof. Since V (H(u))∩C = ∅, H(u) contains neither a ≤ 2-vertex nor adjacent 3-
vertices, and every 4-face in H(u) is incident with at most one 3-vertex (by Lemma 7).

If (i) does not hold, we first assume by symmetry that d(v1) = d(v3) = 3, and
d(vj) = 3 for some j �= 1, 3. Then, j �∈ {0, 2, 4} (by Lemma 7). If j = 5, let H =
G[{v0, v2, v4, v6}], and let S = {u, v1, v3, v5} (note dH(w) = 2 for w ∈ S). If j = 6,
let H = G[{v0, v2, v4}], S = {u, v1, v3, v6} (note dH(v1) = dH(v3) = 2 and dH(v6) =
dH(u) = 3). If j = 7, let H = G[{v0, v2, v4}, {v6, v8}], S = {u, v1, v3, v7} (then
dH(w) = 2 for w ∈ S). If j = 8, let H = G[{v0, v2, v4}], S = {u, v1, v3, v8} (then
dH(v1) = dH(v3) = 2 and dH(v8) = dH(u) = 3). If j = 9, let H = G[{v0, v2, v4, v8}],
S = {u, v1, v3, v9} (then dH(w) = 2 for w ∈ S).

Let H ′ = H \ S. By repeatedly applying Lemma 6, we have H ′ ∈ G. Since
σ(H ′) < σ(G), φ has a superextension φH′ on H ′. By the degrees of the vertices of
S in H , H ′ is superextendable in H , and any superextension of φH′ to H yields a
superextension of φ to G. This contradiction completes the first assertion of (i).

To prove the second assertion of (i), we assume the contrary, by symmetry, that
d(v1) = d(v3) = 3, d(v4) = 4, and v6 ∈ V ′

4 . Then, one of x5, x6, and x7 is a 4-vertex
adjacent to a 3-vertex x ∈ V (G\[C∪V (H(u))]). If x ∈ N(v6), let H = G[{u, v5}] (then
dH(v3) = dH(v4) = dH(v6) = dH(x) = 3), and let S = {v3, v4, v6, x}. If d(v5) = 4
and x ∈ N(v5), let H = G[{v0, v2, v4, v6}] (then dH(v1) = dH(v3) = dH(u) = 2 and
dH(v5) = dH(x) = 3), and let S = {u, v1, v3, v5, x}. If d(v7) = 4 and x ∈ N(v7),
let H = G[{v0, v2, v4}, {v6, v8}] (then dH(v1) = dH(v3) = dH(u) = 2 and dH(v7) =
dH(x) = 3), and let S = {u, v1, v3, v7, x}. Contradictions can be deduced using the
same arguments as above by superextending φ to H \ S, and then to H and G
sequentially.

If (ii) does not hold, by symmetry, we may assume that d(v1) = d(v5) = 3
and d(v2) = d(v4) = 4. A contradiction can be deduced as previously by letting
H = G[{v3, u}] (then dH(v1) = dH(v2) = dH(v4) = dH(v5) = 3), and letting S =
{v1, v2, v4, v5}.

If (iii) does not hold, we may assume, by symmetry, that d(v1) = d(v6) = 3
and d(v2) = d(v4) = 4. A contradiction can be deduced as previously by letting
H = G[{v3, v5, u}] (then dH(v4) = dH(v6) = 2 and dH(v1) = dH(v2) = 3), and letting
S = {v1, v2, v4, v6}.

3. Proof of Theorem 1. We are ready to prove Theorem 1 by the discharging
method. Assume that G ∈ G is a minimum counterexample to Theorem 1 as described

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

214 B. XU

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

����

�
�
�
�

��
��
��
��

��

u
u

u
u

CCC C

3-face in F̄ 3-face in F̂ 4-face in F̄ 4-face in F̂

1
2

1
4

1
6

1
3

Fig. 10. A vertex u on C and its incident 3- or 4-face.

in section 2. We define a weight ω on V (G) ∪ F (G) by letting ω(v) = d(v)
3 − 1 for

v ∈ V (G), and letting ω(f) = d(f)
6 − 1 for f ∈ F (G). Since

∑
x∈V (G)∪F (G) ω(x) =

1
3

∑
v∈V (G) d(v)+

1
6

∑
f∈F (G) d(f)−|V (G)|−|F (G)|, by Euler’s formula |V |+|F |−|E| =

2 of plane graphs,
∑

x∈V (G)∪F (G) ω(x) = −2.
By transferring the weights between elements, we will obtain a new weight ω′ on

V (G)∪F (G) such that the total sum of the weights is kept constant while the transfer-
ring is in progress. Then the proof will be completed by showing

∑
x∈V (G)∪F (G) ω

′(x) >
−2. For describing discharging rules, we further introduce some notions. Recall that
fo is the outer face of G.

Let F̄ be the set of 3- or 4-faces in N(fo), and let F̂ be the set of 3- or 4-faces f
such that f �∈ N(fo) ∪ {fo} and b(f) ∩ C �= ∅. By Lemma 5, |b(f) ∩ C| = 2 for each
face f ∈ F̄ , and |b(f) ∩ C| = 1 for each face f ∈ F̂ .

For i = 3 or 4, let Fi be the set of i-faces in G \ C, F ′
i ⊂ Fi be the set of i-faces

incident with some 3-vertex, and let F ′
4,j ⊂ F ′

4 be the set of 4-faces incident with
j ≥ 5-vertices for 0 ≤ j ≤ 3. Note that F ′

4 = ∪3
j=0F

′
4,j , and F ′

4,0 is just the set of
(4, 4, 4, 3)-faces in F4.

It is clear that F̄ , F̂ , F3, and F4 are pairwise disjoint, and F̄ ∪ F̂ ∪F3∪F4 contains
all 3- and 4-faces but fo. Recall that V4 ⊂ V (G)\C is the set of 4-vertices incident with
four 4-faces in F4, and V ′

4 ⊂ V4 is the set of 4-vertices incident with a (4, 4, 4, 3)-face.
For x, y ∈ V (G)∪F (G), we use W (x→ y) to denote the weight transferred from

x to y. Let u be a k-vertex, v ∈ N(u), and f �= fo be an l-face (3 ≤ l ≤ 4) incident
with u. The discharging rules are as follows.
(R1) For u ∈ C, W (u → f) = 1

2l−2 if f ∈ F̄ , and W (u → f) = 1
l−1 if f ∈ F̂ (see

Figure 10).
(R2) For u �∈ C and k ≥ 5,

(R2.1) W (u→ f) = 1
3 if f ∈ F ′

3, W (u→ f) = 1
6 if f ∈ F3 \F ′

3 (see Figure 11(a),
(b));

(R2.2) W (u→ f) = i+1
12i if f ∈ F ′

4,i, i = 1, 2, 3 (see Figure 11(c), (d), (e));
(R2.3) W (u→ f) = 1

12 if f ∈ F4 \ F ′
4 (see Figure 11(f));

(R2.4) W (u→ v) = 1
36 if v ∈ V ′

4 (see Figure 11(g)).
(R3) For u �∈ C and k = 4,

(R3.1) W (u→ f) = 1
6 if f ∈ F3 (see Figure 12(a));

(R3.2) W (u→ f) = 1
9 if f ∈ F ′

4,0 (see Figure 12(b));
(R3.3) W (u→ f) = 1

12 if f ∈ F4 \ F ′
4,0 (see Figure 12(c)).

From the discharging rules, if u �∈ C has a neighbor, say v, on C, then u transfers
nothing to the two faces incident with uv. Therefore, for each u �∈ C withN(u)∩C �= ∅,
at least two faces incident with u receive nothing from u.

We turn to calculate ω′.
Claim 1. Let f �= fo be an l-face. Then, ω′(f) ≥ 0, and ω′(f) = ω(f) = l−6

6 if
l ≥ 6.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON (3, 1)∗-COLORING OF PLANE GRAPHS 215

��
��
��
��

��

��

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����

��
��
��
��

��
��
��
��

��

��
��
��
��

����

��
��
��
��

�
�
�
�

����

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

����

����

����

uu u

uu

uu

CC C

CCCC

w

(a) f ∈ F ′
3 (b) f ∈ F3 \ F ′

3 (c) f ∈ F ′
4,3 (d) f ∈ F ′

4,2

(e) f ∈ F ′
4,1 (f) f ∈ F4 \ F ′

4 (g) w ∈ V ′
4

1
3

1
6

1
6

1
9

1
8

1
12

1
36

Fig. 11. A ≥ 5-vertex u and its incident 3- or 4-faces, or its adjacent 4-vertices in V ′
4 .

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

����

��
��
��
��

����

��
��
��
��

��

��
��
��
��

����

uu

u CCC

(a) f ∈ F3 (b) f ∈ F ′
4,0 (c) f ∈ F4 \ F ′

4,0

1
6

1
9

1
12

Fig. 12. A 4-vertex u and its incident 3- or 4-faces.

Proof. Since G has no 5-cycles, l �= 5. If l ≥ 6, ω′(f) = ω(f) = l−6
6 ≥ 0. Suppose

3 ≤ l ≤ 4.
If f ∈ F̄ ∪ F̂ , it totally receives 1

l−1 from the vertices in b(f) ∩ C (by R1), and

then ω′(f) = l−6
6 + 1

l−1 = (l−3)(l−4)
6(l−1) = 0.

If f ∈ F3 \ F ′
3, then b(f) has three ≥ 4-vertices of which each transfers 1

6 to f
(by R2.1 and R3.1). If f ∈ F ′

3, then f is incident with a unique 3-vertex and is not
a (4, 4, 3)-face (by Lemma 3), so b(f) has a ≥ 5-vertex from which it receives 1

3 (by
R2.1), and has a ≥ 4-vertex from which it receives at least 1

6 (by R2.1 and R3.1). In
either case, ω′(f) ≥ − 1

2 + 1
2 = 0.

If f ∈ F4 \ F ′
4, every vertex on b(f) transfers 1

12 to f (by R2.3 and R3.3), so
ω′(f) = − 1

3 + 4 · 1
12 = 0. Note that F ′

4 = ∪3
i=0F

′
4,i, and each face in F ′

4 is incident
with a unique 3-vertex (by Lemma 7). If f ∈ F ′

4,i, 1 ≤ i ≤ 3, b(f) has i ≥ 5-vertices
and each transfers i+1

12i to f (by R2.2) and has (3− i) 4-vertices and each transfers 1
12

to f (by R3.3), so ω′(f) = − 1
3 + i · i+1

12i + (3 − i) · 1
12 = 0. If f ∈ F ′

4,0, b(f) has three
4-vertices and each transfers 1

9 to f (by R3.2), then ω′(f) = − 1
3 + 3 · 1

9 = 0.
Let u be a k-vertex, and let p3 and p4, respectively, be the number of 3-faces and

4-faces in F3 ∪ F4 that are incident with u. Since G ∈ G, u is incident with at most
k

2 � 3-faces, and is incident with at least (p3 + 1) ≥ 6-faces if 0 < p3 <
k
2 . Therefore,

(1) p3 ≤
⌊
k

2

⌋
, and p4 ≤ max{0, k − 2p3 − 1} if 0 < p3 <

k

2
.

Claim 2. Let u �∈ C be a k-vertex. Then, ω′(u) ≥ 0. Moreover, if d(u) �= 3 and
N(u)∩C �= ∅, then ω′(u) ≥ 1

9 unless u is a 5-vertex incident with two 3-faces in F ′
3.

Proof. Since u �∈ C, k ≥ 3 by Lemma 3. If k = 3, then ω′(u) = ω(u) = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

216 B. XU

Suppose that k = 4, i.e., ω(u) = 1
3 . If N(u)∩C �= ∅, then p3 ≤ 1 and p4 ≤ 2−2p3,

and so ω′(u) ≥ 1
3 − p3 · 1

6 − p4 · 1
9 ≥ 2+p3

18 ≥ 1
9 (by R3). If N(u) ∩ C = ∅ and p3 �= 0,

then p4 ≤ 2− p3, and so ω′(u) ≥ 1
3 − p3 · 1

6 − p4 · 1
9 ≥ 0 (by R3). So, we suppose that

N(u) ∩ C = ∅ and p3 = 0. If u ∈ V ′
4 , Lemma 9(iii) ensures that u is incident with a

unique (4, 4, 4, 3)-face that receives 1
9 from u (by R3.2), and N(u) has a ≥ 5-vertex

that transfers 1
36 to u (by R2.4), and then ω′(u) ≥ 1

3 − 1
9 −3 · 1

12 + 1
36 = 0 as each of the

other three 4-faces receives 1
12 from u (by R3.3). If u ∈ V4 \ V ′

4 , ω′(u) = 1
3 − 4 · 1

12 = 0
as u transfers 1

12 to each face around it (by R3.3). If u �∈ V4, u is incident with at most
three 4-faces and ω′(u) ≥ 1

3 − 3 · 1
9 = 0 (by R3.2).

Next we suppose that k ≥ 5. Let q = |N(u)∩ V ′
4 |. Then, u transfers totally q

36 to
its neighbors (by R2.4).

We claim that at least � q
2� of the p4 4-faces incident with u are in F4\F ′

4, of which
each receives at most 1

12 from u (by R2.3). Choose an arbitrary v ∈ N(u)∩ V ′
4 . Then,

V (H(v)) ⊆ G\C, and v is incident with four 4-faces in F4 of which one is a (4, 4, 4, 3)-
face. Suppose N(v) = {u, u1, u2, u3} (see Figure 13). If d(u6) = 3, then v �∈ V ′

4 since
all vertices in V (H(u)) \ {u6} are ≥ 4-vertices (by Lemma 9(i)) and d(u) ≥ 5. So,
d(u6) ≥ 4. The same argument shows that d(u7) ≥ 4. If d(u1) = d(u3) = 3, then
d(u2) ≥ 5 (by Lemma 8) and hence v �∈ V ′

4 too. Therefore, d(u1) ≥ 4 or d(u3) ≥ 4; at
most one of the 4-faces incident with uv is in F ′

4. Our claim follows immediately.
By R2, u transfers at most p3

3 to its incident 3-faces, at most 1
6 to each of its

incident 4-faces in F ′
4,

1
12 to each of its incident 4-faces in F4 \ F ′

4, and q
36 to its

adjacent 4-vertices in N(u)∩V ′
4 , ω′(u) ≥ k−3

3 −p3 · 13−(p4−� q
2�) · 16−� q

2� · 1
12−q · 1

36 ≥
(k−6)+(k−2p3−p4)

6 .

��
��
��
��

��
��
��
��

��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

v

u

u1

u2

u3

u4u5

u6 u7

Fig. 13. A vertex v ∈ V ′
4 adjacent to a ≥ 5-vertex u.

By the second inequality of (1), k − 2p3 − p4 ≥ 0. Furthermore, if N(u) ∩C �= ∅,
then p3 ≤ �k−2

2 � and p4 ≤ k − 1 − 2p3, and hence k − 2p3 − p4 ≥ 1. If k ≥ 6,
then ω′(u) ≥ (k−6)+(k−2p3−p4)

6 ≥ 0, and ω′(u) ≥ (k−6)+(k−2p3−p4)
6 ≥ 1

6 whenever
N(u) ∩ C �= ∅.

If k = 5 and N(u)∩C �= ∅, at least two faces incident with u receive nothing from
u, q ≤ 2, and q = 0 when u is incident with a 3-face in F3. Note that u transfers 1

3 to
each of its incident 3-faces in F ′

3, and transfers at most 1
6 to each of its incident 4-faces

or 3-faces in F3\F ′
3 (by R2). If u is incident with two 3-faces in F ′

3, ω
′(u) ≥ 2

3−2· 13 = 0
(by R2.1). If u is incident with a unique 3-face in F ′

3, ω′(u) ≥ 2
3− 1

3− 1
6 >

1
9 . Otherwise,

ω′(u) ≥ 2
3 − 3 · 1

6 − 2 · 1
36 = 1

9 .
Now, the only remaining case is k = 5 and N(u) ∩ C = ∅. Since ω′(u) ≥

(k−6)+(k−2p3−p4)
6 , we may further assume that p3 = 0 and p4 = 5 (by (1)). Then,

V (H(u))∩C = ∅, and H(u) is as shown in Figure 9. By Lemma 7, N(u) has at most
two 3-vertices. We distinguish three cases.

Case 1.N(u) has two 3-vertices. Since every 4-face ofH(u) is incident with at most
one 3-vertex (by Lemma 7), we may suppose, by symmetry, that d(v0) = d(v6) = 3 (see
Figure 9). Then, d(vi) ≥ 4 for i ∈ {1, 2, 4, 5, 7, 8, 9}, d(v8) ≥ 5 (by applying Lemma 8

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON (3, 1)∗-COLORING OF PLANE GRAPHS 217

to f3 and f4), d(v2) + d(v3) ≥ 8, and d(v3) + d(v4) ≥ 8 (by applying Lemma 8 to f0
and f1, and to f1 and f2, respectively). So,

max{W (u→ f3),W (u→ f4)} ≤ 1
8

(by R2.2).

By applying Lemma 9(i) to H(v2), if v2 ∈ V4, then v0 is the unique 3-vertex in
H(v2), so v2 �∈ V ′

4 (since d(u) = 5). The similar argument shows that v4 �∈ V ′
4 (since

d(u) = 5 and d(v6) = 3). So,

q = 0.

If d(v3) = 3, then d(v2) ≥ 5 (since d(v2) + d(v3) ≥ 8) and d(v4) ≥ 5 (since
d(v2) + d(v3) ≥ 8), so W (u → f0) ≤ 1

8 , W (u → f1) ≤ 1
9 , W (u → f2) ≤ 1

8 (by R2.2),
and so ω′(u) ≥ 2

3 − 4 · 1
8 − 1

9 > 0.
If d(v3) ≥ 4, then W (u→ f1) = 1

12 (by R2.3), W (u→ f0) ≤ 1
6 , and W (u→ f2) ≤

1
6 (by R2.2), and so ω′(u) ≥ 2

3 − 2 · 1
8 − 2 · 1

6 − 1
12 = 0.

Case 2. N(u) has a unique 3-vertex. By symmetry, we suppose that d(v0) = 3 (see
Figure 9 also). Then, d(vi) ≥ 4 for i ∈ {1, 2, 4, 6, 8, 9}. By Lemma 8, d(v2)+ d(v3) ≥ 8
and d(v7)+ d(v8) ≥ 8. Since d(u) = 5 and d(v0) = 3, v2, v8 �∈ V ′

4 (the same arguments
as above by Lemma 9(i)), and so q ≤ 2.

If d(v5) = 3, then d(v3) ≥ 4 and d(v7) ≥ 4 (otherwise, either d(v3) = d(v5) = 3
or d(v5) = d(v7) = 3 implies d(v0) ≥ 4 by Lemma 10(i)), and so, W (u → f1) =
W (u→ f3) = 1

12 (by R2.3). By applying Lemma 10(iii)) with i = 5, d(v5) = d(v0) = 3
ensures that max{d(v2), d(v4)} ≥ 5 and max{d(v6), d(v8)} ≥ 5. If d(v4) ≥ 5 and
d(v6) ≥ 5, then q = 0, and W (u → f2) = 1

9 (by R2.2 since f2 ∈ F ′
4,3), and thus

ω′(u) ≥ 2
3−2· 16−2· 1

12− 1
9 > 0. In each of the remaining three cases (d(v2) ≥ 5 ≤ d(v6),

or d(v2) ≥ 5 ≤ d(v8), or d(v4) ≥ 5 ≤ d(v8)), there exist two faces among f0, f2, and
f4 of which each is incident with two ≥ 5-vertices and receives at most 1

8 from u (by
R2.2), and thus ω′(u) ≥ 2

3 − 1
6 − 2 · 1

8 − 2 · 1
12 − 2 · 1

36 > 0.
So, we suppose that d(v5) ≥ 4. Then, W (u → f2) = 1

12 (by R2.3). If d(v3) ≥ 4
and d(v7) ≥ 4, then W (u → f1) = W (u → f3) = 1

12 (by R2.3), and so ω′(u) ≥
2
3 − 2 · 1

6 − 3 · 1
12 − 2 · 1

36 > 0. If d(v3) = d(v7) = 3, then d(v2) ≥ 5 and d(v8) ≥ 5 (by
Lemma 8), each of f0, f1, f3, and f4 is incident with two ≥ 5-vertices and receives at
most 1

8 from u (by R2.2), and thus ω′(u) ≥ 2
3 − 4 · 18 − 1

12 − 2 · 1
36 > 0. If d(v3) = 3 and

d(v7) ≥ 4, then W (u → f3) = 1
12 (by R2.3), and d(v2) ≥ 5 (by Lemma 8), implying

W (u→ f0) = W (u→ f1) = 1
8 (by R2.2), and so ω′(u) ≥ 2

3− 1
6−2· 18−2· 1

12−2· 1
36 > 0.

The similar argument shows ω′(u) > 0 whenever d(v3) ≥ 4 and d(v7) = 3.
Case 3. N(u) has no 3-vertex. By Lemma 10(i), H(u) has at most two 3-vertices.

If H(u) has at most one 3-vertex, then it has four faces, each of which receives 1
12

from u (by R2.3), and so ω′(u) ≥ 2
3 − 1

6 −4 · 1
12 −5 · 1

36 > 0. Therefore, we suppose that
H(u) has two 3-vertices, and suppose by symmetry that either d(v1) = d(v3) = 3 or
d(v1) = d(v5) = 3 (see Figure 9).

If d(v1) = d(v5) = 3, then W (u → f1) = W (u → f3) = W (u → f4) = 1
12 (by

R2.3), and d(v2) ≥ 5 or d(v4) ≥ 5 (by Lemma 10(ii)) which implies W (u → f0) ≤ 1
8

or W (u→ f2) ≤ 1
8 (by R2.2), and so ω′(u) ≥ 2

3 − 1
6 − 1

8 − 3 · 1
12 − 4 · 1

36 > 0.
Suppose that d(v1) = d(v3) = 3. Then, W (u → f2) = W (u → f3) = W (u →

f4) = 1
12 (by R2.2). By Lemma 8, v2 ∈ V4 and d(v1) = d(v3) = 3 ensure that v2

is adjacent to two ≥ 5-vertices, so v2 �∈ V ′
4 . Since d(v4) = 4 implies v6 �∈ V ′

4 (by
taking i = 1 in Lemma 10(i)), either v4 or v6 is not V ′

4 . So, q ≤ 3, and ω′(u) ≥
2
3 − 2 · 1

6 − 3 · 1
12 − 3 · 1

36 = 0. This ends the proof of Claim 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

218 B. XU

Recall that fo is the outer face of G. All the other faces are called inner faces. For
convenience, we use F (u) to denote the set of inner faces incident with a vertex u.

Claim 3. Let u ∈ C be a k-vertex. Then, ω′(u) ≥ − 1
3 . If F (u) has a ≥ 6-face,

then ω′(u) ≥ − 1
4 whenever k = 3, and ω′(u) ≥ − 1

6 whenever k ≥ 4. Moreover, k ≥ 4
and ω′(u) = − 1

6 only if one face in N(fo) ∩ F (u) is not a 4-face.
Proof. Only R1 should be applied in this proof. If k = 2, the only face in F (u) is a

≥ 6-face (by Lemma 5), and ω′(u) = ω(u) = − 1
3 . If k = 3, then ω′(u) ≥ −2 · 1

6 = − 1
3

whenever F (u) has two 4-faces, and ω′(u) ≥ − 1
4 whenever F (u) has a ≥ 6-face. We

suppose that k ≥ 4.
Let t and t′ be the number of 3-faces and 4-faces in F (u), respectively. Then,

t′ ≤ k−1−2t if N(fo)∩F (u) has a 3-face, and t′ ≤ k−1−(2t+1) = k−2−2t otherwise.
Suppose that the two faces in N(fo) ∩ F (u) have degree k1 and k2, respectively.

If F (u) has no ≥ 6-face, then t = 0 and t′ ≤ k − 1, and so ω′(u) = k−3
3 − 2 · 1

6 −
(k − 3) · 1

3 = − 1
3 . Suppose that F (u) has a ≥ 6-face.

If {k1, k2} = {3, 4}, then t′ ≤ k − 1 − 2t, and so ω′(u) ≥ k−3
3 − 1

6 − 1
4 − 1

2 · (t −
1)− 1

3 (k − 2− 2t) = − 1
4 + t

6 ≥ − 1
12 .

If min{k1, k2} = 3 and max{k1, k2} ≥ 6, then t′ ≤ k − 2− 2t unless k ≥ 5 is odd
and t = k−1

2 . So ω′(u) = k−3
3 − 1

4 − 1
2 · (t − 1) = k−6

12 ≥ − 1
12 if k ≥ 5 is odd and

t = k−1
2 , and ω′(u) ≥ k−3

3 − 1
4 − 1

2 · (t− 1)− 1
3 (k − 2− 2t) = 2t−1

12 > 0 otherwise.
If k1 = k2 = 4, then t′ ≤ k − 1 − (2t+ 1) = k − 2− 2t, ω′(u) ≥ k−3

3 − 2 · 1
6 − 1

2 ·
t− 1

3 (k − 4− 2t) = t
6 ≥ 0.

If k1 = k2 = 3, then t ≥ 2, t′ ≤ k − 2t, and so ω′(u) ≥ k−3
3 − 2 · 1

4 − 1
2 · (t− 2)−

1
3 (k − 2t) = t−3

6 ≥ − 1
6 .

Suppose max{k1, k2} ≥ 6 but min{k1, k2} �= 3. Then, ω′(u) ≥ k−3
3 − 1

2 · t −
1
3 (k − 2 − 2t) = t−2

6 ≥ − 1
6 if t > 0, ω′(u) ≥ k−3

3 − 1
6 − 1

3 (k − 3) = − 1
6 if t = 0 and

min{k1, k2} = 4, and ω′(u) ≥ k−3
3 − 1

3 (k − 3) = 0 otherwise.
So, ω′(u) ≥ − 1

6 , and the equality may occur only in the last two cases where one
face in F (u) ∩N(fo) is not a 4-face.

Now, we proceed to estimate
∑

x∈V (G)∪F (G) ω
′(x). Let r1 be the number of 3-

vertices in C with ω′ ≥ − 1
4 , r2 be the number of ≥ 4-vertices in C with ω′ ≥ − 1

6 ,
r3 be the number of vertices in V (G \ C) with ω′ ≥ 1

9 , and let r4 be the number of
≥ 8-faces.

If
∑

x∈V (G)∪F (G) ω
′(x) > −2, we are done. Assume on the contrary that∑

x∈V (G)∪F (G) ω
′(x) ≤ −2. Then by Claims 1, 2, and 3, −2 ≥ r−6

6 − r1
4 − r2

6 −
(r − r1 − r2) · 1

3 + r3
9 + r4

3 = −1− r
6 + 3r1+6r2+4r3+12r4

36 . So,

(2) r = 7, r4 = 0, and 3r1 + 6r2 + 4r3 ≤ 6.

We will show that C contains no ≥ 4-vertex, and then complete the proof by
showing that r1 + r3 ≥ 2 contradicts (2).

If r2 = 1, suppose that u ∈ C is the ≥ 4-vertex with ω′(u) ≥ − 1
6 . Then, ω′(u) =

− 1
6 , and F (u) ∩N(fo) has no 4-face. So, C has another ≥ 3-vertex incident with an

inner ≥ 6-face that implies r1 ≥ 1 and contradicts (2).
Suppose that r2 = 0. Then ω′(u) = − 1

3 for every ≥ 4-vertex in C. If C has
a ≥ 4-vertex, say u, then F (u) contains only 4-faces (by Claim 3). Suppose that
{f1, f2} = N(fo) ∩ F (u) (see Figure 14(a)). By Lemmas 5 and 7, for each i ∈ {1, 2},
b(fi) \ C has a ≥ 4-vertex, say ui, which is incident with at most one 3-face of F ′

3 if
it is a 5-vertex. So, ω′(ui) ≥ 1

9 (by Claim 2), i = 1, 2, and r3 ≥ 2, contradicting (2).
Therefore, C has no ≥ 4-vertex.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON (3, 1)∗-COLORING OF PLANE GRAPHS 219

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

����

�
�
�
�

��
��
��
��

��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��

�
�
�
�

����

���� ����

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
� �

�
�
�

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

uuu

u1 u2

u3
u4u5

CCC

f1f1 f2 f2

(a) (b) (c)

Fig. 14. r = 7, a vertex u ∈ C and its incident faces.

If C has at most two 3-vertices (see Figure 14(b) as an example), then r4 ≥ 1
(since r = 7) and r1 = 2 (by Claim 3), which contradicts (2). So, C has at least
three 3-vertices. Since r1 ≤ 2 (by (2)), we may suppose that C has a 3-vertex, say
u, such that F (u) consists of two 4-faces f1 and f2 (see Figure 14(c)). By Lemma 7,
u3, u5 �∈ C.

Since d(f1) = d(f2) = 4, for each i ∈ {3, 4, 5}, if d(ui) = 5, then it is incident with
at most one 3-face of F ′

3, and hence ω′(ui) ≥ 1
9 if d(ui) ≥ 4 (by Claim 2). By Lemma 3,

d(u4) = 3 only if d(u3) ≥ 4 and d(u5) ≥ 4, so d(u4) ≥ 4 and d(u3) = d(u5) = 3 since
r3 ≤ 1 by (2). Then, r3 = 1.

If F (u1) (resp., F (u2)) contains a ≥ 6-face, then r1 ≥ 1, contradicting (2). Other-
wise, both F (u1) and F (u2) consist of two 4-faces, and the similar arguments as used
for u show that d(u1) ≥ 4 and d(u2) ≥ 4, which together with u4 give r3 ≥ 3. This
contradicts (2) and totally completes the proof of Theorem 1.

Acknowledgments. The author thanks the referees sincerely for their valuable
suggestions, and thanks Dr. J. Huang for discussion about the examples as illustrated
in Figure 1.

REFERENCES

[1] J. Andrews and M. Jacobson, On a generalization of chromatic number, Congr. Numer., 47
(1985), pp. 33–48.

[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsevier, New York, 1976.
[3] O. V. Borodin and A. N. Glebov, A sufficient condition for the 3-colorability of plane graphs,

Diskretn. Anal. Issled. Oper. Ser. 1, 11 (2004), pp. 13–29 (in Russian).
[4] O. V. Borodin, A. N. Glebov, A. Raspaud, and M. R. Salavatipour, Planar graphs without

cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B, 93 (2005), pp. 303–
311.

[5] O. V. Borodin and A. Raspaud, A sufficient condition for planar graphs to be 3-colorable,
J. Combin. Theory Ser. B, 88 (2003), pp. 17–27.

[6] L. J. Cowen, R. H. Cowen, and D. R. Woodall, Defective coloring of graphs in surfaces:
Partitions into subgraphs of bounded valency, J. Graph Theory, 10 (1986), pp. 187–195.

[7] L. Cowen, W. Goddard, and C. E. Jesurum, Defective coloring revised, J. Graph Theory,
24 (1997), pp. 205–219.

[8] M. Frick, A survey of (m, k)-coloring, in Quo Vadis, Graph Theory?, J. Gimbel, J. W.
Kennedy, and L. V. Quintas, eds., Ann. Discrete Math. 55, North–Holland, Amsterdam,
1993, pp. 45–57.

[9] F. Harary and K. Jones, Conditional colorability II: Bipartite variations, Congr. Numer., 50
(1985), pp. 205–218.

[10] T. Jensen and B. Toft, Graph Coloring Problems, John Wiley and Sons, New York, 1995.
[11] R. Steinberg, The state of the three color problem, in Quo Vadis, Graph Theory?, J. Gimbel,

J. W. Kennedy, and L. V. Quintas, eds., Ann. Discrete Math. 55, North–Holland, Amster-
dam, 1993, pp. 211–248.

[12] D. R. Woodall, List colourings of graphs, in Surveys in Combinatorics, 2001, London Math.
Soc. Lecture Note Ser. 288, Cambridge University Press, Cambridge, UK, 2001, pp. 269–
301.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

220 B. XU

[13] B. Xu, A 3-color theorem on plane graphs without 5-circuits, Acta Math. Sin. (Eng. Ser.), 23
(2007), pp. 1059–1062.

[14] B. Xu, On 3-colorable plane graphs without 5- and 7-cycles, J. Combin. Theory Ser. B, 96
(2006), pp. 958–963.

[15] B. Xu and H. Zhang, Every toroidal graph without adjacent triangles is (4, 1)∗-choosable,
Discrete Appl. Math., 155 (2007), pp. 74–78.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 221–232

GEOMETRIC REALIZATION OF MÖBIUS TRIANGULATIONS∗

MARÍA JOSE CHÁVEZ† , GAŠPER FIJAVŽ‡ , ALBERTO MÁRQUEZ† ,

ATSUHIRO NAKAMOTO§, AND ESPERANZA SUÁREZ†

Abstract. A Möbius triangulation is a triangulation on the Möbius band. A geometric realization
of a map M on a surface Σ is an embedding of Σ into a Euclidean 3-space R3 such that each face
of M is a flat polygon. In this paper, we shall prove that every 5-connected triangulation on the
Möbius band has a geometric realization. In order to prove it, we prove that if G is a 5-connected
triangulation on the projective plane, then for any face f of G, the Möbius triangulation G − f
obtained from G by removing the interior of f has a geometric realization.

Key words. geometric realization, triangulation, Möbius band, projective plane

AMS subject classifications. 05C10, 52B70, 05C83

DOI. 10.1137/070693382

1. Introduction. Let Σ be a surface with at most one boundary component,
and let M be a map on Σ. If Σ has a boundary, we suppose that some cycle of M
coincides with the boundary of Σ. Such a cycle of M is called the boundary of M
and denoted by ∂M . A vertex of M not on ∂M is called an inner vertex. A k-cycle
means a cycle of length k. A triangulation on Σ is a map on Σ such that each face is
bounded by a 3-cycle. In particular, a Möbius triangulation is a triangulation on the
Möbius band. For an inner vertex v of a triangulation, the link of v is the boundary
walk of the 2-cell region consisting of all faces incident to v. Throughout this paper,
we suppose that the graph of a map is simple, i.e., with no multiple edges and no
loops. For a cycle or path C in M , a chord of C means an edge xy of M such that
x, y ∈ V (C) but xy /∈ E(C). Hence C is induced in M if and only if C has no chord.

A geometric realization of a map M on a surface Σ is an embedding of Σ into
a Euclidean 3-space R

3 such that each face of M is a flat polygon. Steinitz’s theo-
rem states that a spherical map has a geometric realization if and only if its graph
is 3-connected [10]. Moreover, Archdeacon, Bonnington, and Ellis-Monanghan proved
that every toroidal triangulation has a geometric realization [1]. In general, Grünbaum
conjectured that every triangulation on any orientable closed surface has a geometric
realization [7], but Bokowski and Guedes de Oliveira recently showed that a triangu-
lation by K12 on the orientable closed surface of genus 6 has no geometric realization
[2]. (For related topics, see [5].)

Let us consider a geometric realization of a triangulation on the projective plane.
Let P denote the projective plane throughout this paper. Since the projective plane
itself is not embeddable in R

3, no map on P has a geometric realization. Let G be a
triangulation on P, and let f be a face of G. Let G−f denote the Möbius triangulation

∗Received by the editors May 31, 2007; accepted for publication (in revised form) August 22,
2008; published electronically December 19, 2008.

http://www.siam.org/journals/sidma/23-1/69338.html
†Departamento de Matematica Aplicada I, Universite de Sevilla, Escuela Universitaria Arqui-

tectura Tecnica, Avda Reina Mercedes S/N, 41012 Sevilla, Spain (mjchavez@cica.es, almar@cica.es,
emsuarez@cica.es).

‡Department of Computer Science, University of Ljubljana, 1000 Ljubljana, Slovenia (gasper.
fijavz@fri.uni-lj.si).

§Department of Mathematics, Yokohama National University, Yokohama 240-8501, Japan
(nakamoto@edhs.ynu.ac.jp).

221

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

222 CHÁVEZ, FIJAVŽ, MÁRQUEZ, NAKAMOTO, AND SUÁREZ

1 2 3

3 1

4

7

5 4

7

5

8

9

6

8

8

7

79

94

6 5
1 2

3

Fig. 1. A Möbius triangulation with no geometric realization.

obtained from G by removing the interior of f . Since the punctured surface obtained
from P by removing a 2-cell, the Möbius band, is embeddable in R

3, G− f might have
a geometric realization. The following is known.

Theorem 1.1 (Bonnington and Nakamoto [3]). Every triangulation G on the
projective plane P has a face f such that the Möbius triangulation G−f has a geometric
realization.

Brehm [4] has already found a Möbius triangulation with no geometric realization,
shown in Figure 1, in which both express the same triangulation. (In Figure 1, we
identify the vertices with the same label. In the right-hand side, the shaded part
means the hole.) Why does Brehm’s example have no geometric realization? We can
prove that for each of its spatial embedding, the two disjoint 3-cycles 123 and 456
have a linking number of at least 2. (See [9] for the definition of the linking number.)
However, two 3-cycles, each with an edge straight segment embedded in R

3, have a
linking number of at most 1, a contradiction. Hence, generalizing this example, we can
see that if a triangulation M on the Möbius band has a boundary cycle C of length
3 and a 3-cycle C′ disjoint from C which forms an annular region with C′, then M
never has a geometric realization.

A graph M is said to be cyclically k-connected if M has no separating set S ⊂
V (M) with |S| ≤ k − 1 such that each connected component of M − S has a cycle.
Then the cyclical 4-connectivity of a triangulation G on P is necessary for a geometric
realization of G − f for any face f of G. We conjecture as follows that it is also
sufficient.

Conjecture 1.2. Let G be a triangulation on the projective plane P. Then
G − f has a geometric realization for any face f of G if and only if G is cyclically
4-connected.

In this paper, we prove the following.
Theorem 1.3. Let G be a 5-connected triangulation on the projective plane P.

Then G− f has a geometric realization for any face f of G.
By Theorem 1.3, a Möbius triangulation M has a geometric realization if M is

obtained from a 5-connected triangulation G on P by removing a 2-cell.
Let M be a 5-connected Möbius triangulation with a boundary cycle C = v1 · · · vk

of length k. Let P be the map on P obtained from M by pasting a 2-cell to C. If k = 3,
then P is a 5-connected triangulation on P. If k = 4, then P can be extended to a 5-
connected triangulation on P by adding an edge v1v3 or v2v4. (If this is impossible, then
M would have edges v1v3 and v2v4, and hence M would contain a quadrangulation

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GEOMETRIC REALIZATION OF MÖBIUS TRIANGULATIONS 223

isomorphic to K4, contrary to the 5-connectivity of M .) If k ≥ 5, then P can be
extended to a 5-connected triangulation on P by adding a new vertex joined to all
vertices on C. Hence we have the following.

Corollary 1.4. Every 5-connected Möbius triangulation has a geometric real-
ization.

Let M be a map on a surface Σ with a boundary, and let C be the boundary cycle
of M . We say that M is internally k-connected if M is (k − 1)-connected and if for
any vertex v ∈ V (M − C), there are at least k disjoint paths from v to C. Clearly, if
G is a 5-connected triangulation on P, then for any v ∈ V (P), G− v can be regarded
as an internally 5-connected Möbius triangulation whose boundary cycle has a length
of at least 5. Hence we can relax the condition of Corollary 1.4 to prove the following.

Corollary 1.5. Every internally 5-connected Möbius triangulation has a geo-
metric realization if the boundary cycle has a length of at least 5.

2. Split-K5’s in 5-connected triangulations. Put a 5-cycle C = v1v2v3v4v5
on P, called the boundary, so that C bounds a 2-cell R on P, where each vi is called
a node. (We always fix its orientation �C along the numbering of the vertices.) Join vi

to vi+2 and vi+3 by edges not in R for each i. Then the resulting graph is isomorphic
to K5 in which each face except R is triangular. (See the left-hand side of Figure 2.)
Consider a splitting (i.e., the inverse operation of an edge contraction) of vi into two
adjacent vertices, vi and v′i, of degree 3. There are two possibilities for the splitting.
When vi and v′i lie on C (we always suppose that vi and v′i appear on �C in this
order), {vi, v

′
i} is called a boundary pair of nodes, and each of vi and v′i is called a

boundary split node. (The path from vi to v′i on �C is called the boundary split interval
of {vi, v

′
i}.) Otherwise, {vi, v

′
i} is called an inner pair of nodes, and each of vi and v′i

is called an inner split node, where we always suppose that vi lies on C. Let K be a
map on P obtained from the above K5 by splittings of some of vi’s. A split-K5 is a
subdivision of K on P. (See the right-hand side of Figure 2.)

v0 v1 v2 v3

v3 v4 v0

v0 v1 v2 v3

v3 v4 v0
K5 Split-K5

v′1

v′2

v′3

v′3

Inner pair

Boundary pair

Fig. 2. K5 and split-K5.

The following is the most important claim in this paper. It guarantees that a
5-connected triangulation on P has a special type of a split-K5.

Lemma 2.1. Let G be a 5-connected triangulation on P, and let uvw be any face
of G. Then G has a split-K5 H such that

(i) the boundary ∂H of H coincides with the link of u in G.
(ii) H has at most one boundary pair of nodes.
(iii) if H has a boundary pair, then at least one of v and w is a boundary split

node, but the edge vw is not contained in a boundary split interval. Otherwise,
v or w is a node of H.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

224 CHÁVEZ, FIJAVŽ, MÁRQUEZ, NAKAMOTO, AND SUÁREZ

In the following two sections, we give preliminaries for the proof of Lemma 2.1.
In section 5, we prove Lemma 2.1.

3. Lemmas. Let G be a graph on P, and let C be a contractible cycle of G, i.e.,
one bounding a 2-cell on P. (A cycle or a closed curve on a surface is essential if it
is not contractible.) Then C cuts P into two surfaces, one homeomorphic to an open
disk and the other homeomorphic to an open Möbius band. Let intC(G) denote the
graph consisting of the vertices and edges lying in the disk component of C, and let
IntC(G) be the graph consisting of the vertices and edges lying on C and in the disk
component of C. We define extC(G) and ExtC(G) analogously. Note that IntC(G) is
not necessarily an induced subgraph of G.

Let C = v1v2v3v4 · · · vk be a cycle. A closed segment [vi, vj] is a vi − vj path
along �C. An open segment (vi, vj) is obtained by deleting the endvertices of the
corresponding closed segment. Moreover, we use the notations [vi, vj) and (vi, vj],
defined similarly.

Lemma 3.1. Let G be a 5-connected triangulation on P. Let C = v1v2v3v4 be a
contractible 4-cycle in G. Then intC(G) contains no vertices.

Proof. Assume v ∈ V (intC(G)). Since G is 5-connected, extC(G) contains no
vertices. Then we can add only two edges v1v3 and v2v4 outside C, since T is simple.
Hence this contradicts that G is a triangulation.

Lemma 3.2. Let v be a vertex of a 5-connected triangulation G on P, and let
C be a contractible 5-cycle containing v in its interior. Then there exists a unique
contractible 5-cycle C so that IntC(G) contains all contractible 5-cycles which contain
v in their respective interiors.

Proof. Let C1 and C2 be contractible 5-cycles containing v in their interiors, and
suppose that IntC1(G) and IntC2(G) are inclusionwise incomparable, that is, neither
IntC1(G) ⊆ IntC2(G) nor IntC1(G) ⊇ IntC2(G). It suffices to prove that there is a
contractible 5-cycle C′ such that IntC′(G) contains both IntC1(G) and IntC2(G).

Since C1 and C2 are of length 5 and neither one is contained in the closed interior
of the other, they intersect in exactly two vertices. These two vertices divide Ci into a
segment lying in the interior of C3−i and one lying in the exterior of C3−i, where i =
1, 2. Combining the common segments and both interior segments yields a contractible
cycle, which contains v in its interior. By Lemma 3.1, its length is at least 5. Combining
the two exterior segments with the two common segments, we obtain a contractible
cycle C′ of length at most 5, since both C1 and C2 were 5-cycles. Since G is simple,
C′ contains no essential cycle, and hence it is a contractible cycle in G. Now C′ has
length 5 by Lemma 3.1 since it contains v in its interior. On the other hand, IntC′(G)
contains both IntC1(G) and IntC2(G), and the proof is complete.

Lemma 3.3. Let G be a 5-connected triangulation on P, and let C = v1v2v3v4v5
be a contractible 5-cycle in G. If G has no vertex in the exterior of C, then ExtC(G)
is isomorphic to K5.

Proof. We have to show that extC(G) contains every possible edge vivi+2 (in in-
dices modulo 5). A similar argument as in the proof of Lemma 3.1 does the trick.

The following lemma is an immediate consequence of 5-connectivity.
Lemma 3.4. Let G be a 5-connected triangulation on P, and let v ∈ V (G). Let

v′ and v′′ be two nonconsecutive neighbors of v. If v′ and v′′ have another common
neighbor w which is not adjacent to v, then the cycle vv′wv′′ is essential.

Let D be a plane graph with boundary cycle C and each inner face triangular,
and let x, y be distinct vertices of C. An internal x− y path is a path in D joining x
and y and intersecting C only at its endvertices.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GEOMETRIC REALIZATION OF MÖBIUS TRIANGULATIONS 225

Lemma 3.5. Let D be a triangulation on the disk with boundary cycle C, and let
x, y be distinct vertices of C with xy /∈ E(C). Then D has an internal x − y path if
and only if D has no chord pq for some p, q ∈ V (D) − {x, y} such that x and y are
contained in distinct components of C − {p, q}.

Proof. The sufficiency is obvious and so we consider the necessity. Suppose that C
has a chord pq. By the assumption, x and y are contained in one, say D1, of the two
subgraphs D1, D2 such that V (D) = V (D1) ∪ V (D2) and V (D1) ∩ V (D2) = {p, q}.
In this case, we have to look for a required internal x − y path in D1. Hence in the
following argument, we may suppose that D has no chord. Observe that since C is
chordless, each vertex on C is adjacent to at least one vertex in D − C. Moreover,
we can see that intC(D) is connected. (For otherwise, i.e., if intC(D) is disconnected,
then there are two vertices p′, q′ ∈ C such that D−{p′, q′} is disconnected. However,
this is impossible since each inner face of D is triangular.) Hence we have an internal
x− y path in D.

Let C be a contractible cycle of length at least 4 in a triangulationG. Suppose that
vertices r1, r2, r3, r4 lie along C in this order, but they do not need to be consecutive
along C. Let us also assume that the segments [r1, r2], [r2, r3], [r3, r4], and [r4, r1]
have no chords in IntC(G). We say that IntC(G) is a 4-patch with nodes r1, r2, r3, r4.

We obtain the following three lemmas, carefully applying Lemma 3.5 to P .
Lemma 3.6. Let P be a 4-patch with nodes r1, r2, r3, r4. Assume that r1r4, r2r3 ∈

E(P) and that u and v are vertices from (r1, r2) and (r3, r4), respectively. Then P −
{r1, r2, r3, r4} contains an u− v path, or a pair of antipodal nodes are adjacent.

Lemma 3.7. Let P be a 4-patch with nodes r1, r2, r3, r4. Then P−{r1, r3} contains
an r2 − r4 path unless r1r3 ∈ E(P).

Let P be a 4-patch with nodes r1, r2, r3, r4. An r2− r4 diagonal in P is an r2− r4
path Q = u1u2u3 · · ·uk−1uk (u1 = r2 and uk = r4) in P − {r1, r3} if there exists
indices i < j such that

(D1) the initial segment u1 · · ·ui is a segment of ∂P ,
(D2) the terminal segment uj · · ·uk is a segment of ∂P , and
(D3) the intermediate segment ui · · ·uj is a segment of P such that ui, uj ∈ V (∂P)

and that all other vertices lie in int(P).
If Q is an r2− r4 diagonal in P , then it is also an r4− r2 diagonal. Further, if a patch
P with nodes r1, r2, r3, r4 contains an r2 − r4 path avoiding r1 and r3, then it also
contains an r2 − r4 diagonal.

We say that an r2 − r4 diagonal Q lies closest to r1 if the number of faces of P
bounded by Q and the segments incident with r1 is as small as possible.

Lemma 3.8. Let P be a 4-patch with nodes r1, r2, r3, r4, and let Q be the r2 − r4
diagonal closest to r1. Let ui and uj be the first and last vertex of the intermediate
segment of Q, respectively. Then r1 is adjacent to ui, ui+1, . . . , uj−1, uj in P .

4. Essential 3-linkages. A near triangulation R is a map on P with a distin-
guished face f such that every other face of R is triangular, and that the facial walk
along f is a cycle. Suppose that the boundary cycle of f , denoted by W , has a length
of at least 6. Let v1, v2, v3, v4, v5, v6 be six vertices that appear along W in this order
but that do not need to be consecutive along W . An essential 3-linkage (with respect
to v1, v2, v3, v4, v5, v6) is a collection L of three disjoint paths P1, P2, P3 so that Pi is
a vi − vi+3 path for i = 1, 2, 3. It is easy to see that W ∪ Pi contains some essential
cycle. Let Q1 be some minimal subpath of P1 so that W ∪Q1 still contains an essential
cycle. Also Q1, P2, P3 form an essential 3-linkage with possibly different endvertices.
By applying the same idea on P2 and P3, we obtain the following lemma.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

226 CHÁVEZ, FIJAVŽ, MÁRQUEZ, NAKAMOTO, AND SUÁREZ

Lemma 4.1. Let L be an essential 3-linkage with respect to nodes v1, . . . , v6.
There exists an essential 3-linkage L′ so that every path in L′ intersects W only at
its endvertices.

The second result has been, in greater generality, proved by Robertson and Sey-
mour in [8]. We state it adapted to our needs.

Theorem 4.2 (Robertson and Seymour [8]). Let R be a near triangulation of P

and f = v1v2v3v4v5v6 its distinguished face of length 6. Then R contains an essential
3-linkage with respect to v1, v2, v3, v4, v5, v6 if and only if

(L1) R contains no pair of parallel nonhomotopic edges with common endvertices;
(L2) R does not contain a contractible cycle C of length at most 5 whose interior

contains f .
A pair of parallel nonhomotopic edges violating (L1) forms an essential cycle of

length 2. Traversing these two edges twice yields a contractible (but not simple) closed
walk whose “interior” contains all faces of R. This observation enables both conditions
(L1) and (L2) to be combined into a single condition, albeit with slight adaptations.
For practicality, we prefer the conditions to be written separately, since they are of
different flavors and have to be tackled with different approaches.

We look for essential 3-linkages in near triangulations. In the case when the length
of the distinguished face exceeds 6, we first decide which six vertices are the endvertices
of a linkage. The rest of this section is devoted to the proof of the following.

Proposition 4.3. Let G be a 5-connected triangulation of P, and let v be a vertex
of degree d ≥ 6. Let D = u1u2 · · ·ud be the link of v in G. Then the near triangulation
R = G − v contains an essential 3-linkage if and only if v is not contained in the
interior of a contractible cycle of length at most 5.

Proof. Clearly a cycle containing v in its interior meets each path in an essential 3-
linkage at least twice. The difficulty lies in the other direction—how to find a linkage—
if v is not contained in the interior of a “short” contractible cycle.

An edge e ∈ E(R) is said to be essential if the endvertices of e lie in D and D∪ e
contains an essential cycle. We shall split the proof of Proposition 4.3 with respect
to the number of essential edges. If R contains a set of three independent essential
edges, then no further proof is needed. This leaves us with the case where a maximal
set of independent essential edges contains at most two edges.

Assume next that R contains a set of two independent essential edges. The four
endvertices of these essential edges split the f -facial walk into four open segments. Let
us choose essential edges e = r1r4 and e′ = r3r6 in such a way that the union of two
consecutive open segments (r1, r6)∪ (r3, r4) in D contains as few vertices as possible.
Suppose that (r1, r3) contains a vertex, say v2, and that (r4, r6) contains a vertex,
say v5. Now if r1r6 ∈ E(R) − E(D), then the contractible cycle vr4r1r6 separates v2
from v5, and if r3r4 ∈ E(R) − E(D), then the contractible cycle vr3r4r1 separates
v2 from v5. Neither can happen since G is 5-connected. By Lemma 3.6, we can join
v2 and v5 by a path avoiding r1, r2, r3, and r4, and hence we can find an essential
3-linkage.

So we assume that there exists a set of two independent essential edges e = w1w3

and e′ = w2w4 so that w1, w2, and w3 lie consecutively along D. We may also assume
that w4 lies closer to w3 than to w1 along D, and that no essential edge incident with
w2 has the other endvertex in (w3, w4). Denote the vertices alongD by v1, v2, v3, . . . , vd

so that v1 = w1 and v2 = w2 (also v3 = w3, but then this may not go on). Add to R
the new edges v1vk, where k = 6, . . . , d−1, and denote the resulting near triangulation
with R′, with the distinguished face of size 6.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GEOMETRIC REALIZATION OF MÖBIUS TRIANGULATIONS 227

It is easy to see that R′ satisfies (L1), since the newly added edges do not have
their essential counterparts. Similarly, a short contractible cycle C containing the
distinguished face of R′ in its interior, i.e., contradicting (L2), would have to use
some new edge v1vk, where k ≥ 6. Now C would contain vertices vk, w1, w2, and w3,
which implies that vertices vk and w3 have a common neighbor in R. This contradicts
Lemma 3.4 since C is contractible. Hence R′ contains an essential 3-linkage. Since all
new edges share a common endvertex, we can, if necessary, transform the linkage into
an essential 3-linkage in R.

Suppose next that there is an essential edge but we cannot find a set of two
independent essential edges. Let e = w1w2 be the essential edge, and assume that
the segment (w1, w2) is as short as possible. Since G is simple, w1 and w2 are not
consecutive along D. Denote the vertices of D so that w1 = v3 and v4 lies in (w1, w2).
As (w1, w2) is as short as possible, we have w2
= v1.

As in the previous case, let R′ be the near triangulation obtained by adding new
edges v1vk, where k = 6, . . . , d− 1. We will argue that R′ has an essential 3-linkage.

If R′ does not satisfy (L1), then an essential edge e′ must be incident with both
v1 and vk for some k satisfying 6 ≤ k ≤ d. By interlacing essential edges incident
to vk ∈ [w1, w2] = [v3, w2], we clearly have vk
= v3. On the other hand, vk cannot
lie in (w1, w2) = (v3, w2), as two independent essential edges cannot exist, and hence
vk = w2. But this contradicts 5-connectivity ofG, since the 4-cycle vv1vkv3 = vv1w2w1

separates v2 and v4.
Next assume that R′ contradicts (L2). The short cycle C contradicting (L2) can

be divided into three segments: the first one between v1 and w1, the second between
w1 and w2, and the third between w2 and v1. Their lengths are at least 2, 2, and 1,
respectively, using the fact that neither v1 and w1 = v3 nor w1 and w2 are consecutive
along D, and the fact that C uses one of the new edges. Since the length of C is at
most 5, all lower bounds are sharp. By Lemma 3.4, C must pass through v2, and also
C must pass through v4 and w2 = v5. On the segment between w2 and v1 the cycle C
uses exactly one edge, namely v1w2 = v1v5, and it also has to use one new edge. This
is a contradiction, so R′ satisfies both (L1) and (L2), and R′ contains an essential
3-linkage. As in the previous case we can, if necessary, transform the linkage into an
essential 3-linkage in R.

We are left with the case where R contains no essential edges. Even if we add
new edges to the interior of f , we cannot contradict (L1), and our only concern will
be meeting the condition (L2).

We proceed naively. Let us assign labels v1, v2, . . . , vd to neighbors of v in the
order of their indices. Add new edges of the form v1vk, where k = 6, . . . , d − 1. The
newly obtained near triangulation R′ may contain an essential 3-linkage, and we win.
On the other hand, it may not, as we contradict (L2), and we lose. In this case, R′

contains a short cycle C which uses a new edge v1v� for some � ∈ {6, . . . , d− 1}.
Hence we assume that we lose for every assignment of labels v1, v2, . . . , vd to the

consecutive neighbors of v. Now fix an assignment of labels so that there exists a cycle
Cv contradicting (L2) using a new edge v1vk, where k is as large as possible.

Let us denote w1 = v1, w2 = v2, w3 = v3, w4 = vk−1, w5 = vk, and w6 =
vk+1. Further, let us add new edges joining w1 to vertices of (w6, w1) and additional
new edges joining w3 to vertices of (w3, w4). We denote the newly obtained near
triangulation by Rw. We claim that Rw contains an essential 3-linkage.

Assume that this is not the case, and let Cw be the obstruction according to (L2).
Clearly Cw contains at least one new edge. Observe that Cw cannot contain both a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

228 CHÁVEZ, FIJAVŽ, MÁRQUEZ, NAKAMOTO, AND SUÁREZ

new edge incident with w1 and a new edge incident with w3, since a segment of Cw of
length at most 2 would join two nonconsecutive vertices of D. The cycle Cw cannot
contain a new edge incident with w1 since this would contradict maximality of k.
Hence, Cw contains a new edge incident with w3. Now let C′ be the cycle containing
the edges of Cw lying outside Cv and the edges of Cv lying outside of Cw. Then C′ is
a contractible cycle containing f in its interior. Let P ⊆ Cw ∪Cv be the v1 − v3 path
whose edges lie in the interior of C′. Since it connects two nonconsecutive vertices
along f , its length is at least 3. This implies that the length of C′ is at most 5, a
contradiction.

Hence Rw contains an essential 3-linkage, and consequently R also contains an
essential 3-linkage. This completes the proof of Proposition 4.3.

5. Proof of Lemma 2.1. In this section, we shall prove Lemma 2.1. We begin
with the following proposition.

Proposition 5.1. Let G be a 5-connected triangulation on P, and let u ∈ V (G).
Then G has a split-K5 H whose boundary coincides with the link of u in G.

Proof. We will split the analysis into two cases regarding the properties of u and
treat one of the two cases by referring to [6]. Let D be the link of u.

Case 1.G contains a contractible 5-cycleC = v1v2v3v4v5 such that u ∈ V (intC(G)).
By Lemma 3.2, we may assume that C is the maximal 5-cycle containing u in

its interior. Since G is 5-connected, there exist internally disjoint u − vi paths Pi for
i = 1, . . . , 5.

In order to find a suitable split-K5, we need to find a subgraph of ExtC(G)
which contracts to the zigzag cycle v1v3v5v2v4. This task has been treated in greater
generality in [6, subsection: Finding a suitable cycle minor U in Gx]. Hence we can
obtain a split-K5 H

′ whose boundary is C. Now let

H = (H ′ − E(C)) ∪D ∪
5⋃

i=1

(Pi − {v}).

Then H is a split-K5 with boundary D, in which there is no boundary pair.
Case 2. u does not lie in the interior of a contractible 5-cycle.
Then we clearly have |D| = deg(u) = k ≥ 6. Let f be the distinguished face

of G − v with boundary D. By Theorem 4.2, G − v contains an essential 3-linkage
L = {P1, P2, P3} with respect to u1, u2, u3, u4, u5, u6, where Pi joins ui and ui+3 for
i = 1, 2, 3. We may also assume that each Pi in L has no chord. Then L divides
the near triangulation G − v into three patches R12, R23, and R13, whose nodes
are (u1, u2, u5, u4), (u2, u3, u6, u5), and (u3, u4, u1, u6) lying on their boundary in this
order, respectively.

We first claim that these patches contain two vertex-disjoint diagonals. Let us
first prove that every two patches, say R12 and R23, contain diagonals with disjoint
endvertices. Suppose this is not the case, and let, say, u2 be an endvertex of every
possible diagonal in both R12 and R23. By Lemma 3.7, we have u2u4 ∈ E(R12) and
u2u6 ∈ E(R23). This contradicts the 5-connectivity of G since {u, u2, u4, u6} separates
v5 and v1 inG. Hence we may assume thatR12 contains a u1−u5 diagonalD15 and that
R23 contains a u2− u6 diagonal D26. We first suppose that D15 and D26 are disjoint.
In this case, we can obtain a required split-K5 H such that H = D ∪ L ∪D15 ∪D26.

Now consider the case when D15 and D26 share an inner vertex. Let us try to push
the diagonals away: suppose that D15 and D26 are closest to u4 and u3, respectively.
If D15 and D26 are not vertex disjoint, then the terminal segment S of D15 intersects

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GEOMETRIC REALIZATION OF MÖBIUS TRIANGULATIONS 229

the initial segment S′ of D26 at P2. Let w be the first vertex of S, and let w′ be the last
vertex of S′. Then, by Lemma 3.8, we have both u4w ∈ E(R12) and u3w

′ ∈ E(R23).
If w
= w′, then we can find a u2 − u4 diagonal in R12 through wu4 and a u3 − u5

diagonal in R23 through u3w
′. Since they are disjoint, we are done, similarly as above.

Suppose that w = w′. Since u4w ∈ E(R12), we focus on the 4-patch R′
12 with

nodes u1, u2, w, u4 contained in R12. Note that u1w /∈ E(R′
12). (For otherwise,

{u, u1, w, u3} separates u2 and u4, since u3w ∈ E(R23). This contradicts the 5-
connectivity of G.) Hence R′

12 admits a u2 − u4 diagonal D24, avoiding w and u1, by
Lemma 3.7. LetD35 be the u3−u5 diagonal ofR23 through u3w. ThenD∪L∪D24∪D35

is a required split-K5 in G since D24 and D35 are disjoint.
By Proposition 5.1, a 5-connected triangulation on P has a split-K5 H whose

boundary coincides with the link of a specified vertex. Let [a, b] denote the path in
H joining two vertices a and b which is contained in the path joining two nodes in
H , where 1 ≤ i < j ≤ 5. Moreover, we denote (a, b) = [a, b]− {a, b}, and also use the
notations [a, b) and (a, b] similarly.

The following claims that a boundary pair of nodes can be “moved” in a sense.
Lemma 5.2. Suppose that a triangulation G on P has a split-K5 H with boundary

C. Let {a′, a′′} be a boundary pair of nodes of H, and let Q be the plane subgraph
of G corresponding to a face of H with nodes a′, a′′, b, c. Then, for some vertex a of
[a′, a′′] in G, we can find a split-K5 H

′ with boundary C such that a is a node of H ′

contained in neither a boundary pair nor an inner pair. Moreover, if b is contained
in a boundary pair, then the number of the boundary pairs can be decreased in H ′;
otherwise, b might be contained in a new boundary pair of H ′.

Proof. We may suppose that a vertex y of (a′, c] and a vertex z of (a′, a′′] are not
adjacent in Q. (For otherwise, replacing [a′, y) with zy, we can regard z as a new a′.)
Then, by Lemma 3.5, we can take an internal a′ − x path P for some x on either
(a′′, b] or (b, c). In the former case, let H ′ = H − (a′′, x)∪P (or H ′ = H − (a′′, b′)∪P
when x is in (b, b′) for an inner pair {b, b′}). See Figure 3. Then we can decrease
the number of boundary split pairs. In the latter case, let H ′ = H − (a′′, b) ∪ P (or
H ′ = K − (a′′, b′) ∪ P when {b, b′} is an inner pair), in which x might be a new
boundary pair.

b c

a′′

b c

a′

x

x

z

y

a′′ a′

Fig. 3. Eliminate or move a boundary split node.

Now we shall prove Lemma 2.1.
Proof of Lemma 2.1. Let G be a 5-connected triangulation on P, and let uvw be

any face of G. By Proposition 5.1, G has a split-K5 H whose boundary ∂H coincides
with the link of u in G. Let v1, v2, v3, v4, v5 be five nodes of H (where �∂H is fixed
along the ordering of v1, . . . , v5); some vi’s might be contained in boundary or inner
pairs {vi, v

′
i} of nodes.

We shall deform H to satisfy conditions (ii) and (iii) in the lemma. We may

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

230 CHÁVEZ, FIJAVŽ, MÁRQUEZ, NAKAMOTO, AND SUÁREZ

suppose that the edge vw is contained in [v1, v2] so that �vw is along �∂H. Moreover,
we may suppose that neither v1 nor v2 is a boundary split node. (For otherwise, we
can apply Lemma 5.2 to {v1, v′1} or {v2, v′2}.)

We first show that one of v and w can be chosen as a node in a new split-K5.
Hence we may suppose that v
= v1 and w
= v2. Let R be the plane subgraph of
G corresponding to a face of H incident to [v1, v2]. Suppose that R is bounded by
[v1, v2], [v1, v4], [v4, v′4], and [v2, v′4] of H , when {v4, v′4} is a boundary split pair.
(See Figure 4. Since the other two cases shown in the figure are similar, we omit the
details.) Observe that there are no two vertices x and y in [v1, v2] joined by a chord.
(For otherwise, {x, y, u} would be a 3-cut of G, contrary to the 5-connectivity of G.)
Hence, by Lemma 3.5, we can find an internal path P from v to a vertex on (v1, v4],
to a vertex on (v4, v′4], or to (v2, v′4]. In the first and second cases, adding P to H
and deleting a segment suitably, we obtain a split-K5 with v a node. If we do not
have these cases, then there is a vertex s in [v1, v) and a vertex t in (v′4, v2) which are
adjacent in R. In this case, we must have an internal path P ′ from w to some vertex
r of (v′4, v2) in R. Similarly to the previous two cases, we obtain a split-K5 with w a
node.

v1 v2

v4 v′4

v w v1 v2

v4

v w v1 v2

v4

v′4

v w

Fig. 4. Take a path from v or w.

We may suppose that v is a node. If v is a boundary split node, then put v = v′1,
and suppose that vw is contained in [v′1, v2]. Otherwise, put v = v1. If v4 is contained
in a boundary pair {v4, v′4}, then we apply Lemma 5.2 to eliminate the boundary pair
{v4, v′4}, fixing v, or move the boundary pair toward v2. (Otherwise, we proceed to v2.)
Then, fixing the new v4, we apply Lemma 5.2 to {v2, v′2} if {v2, v′2} is a boundary split
pair. Similarly, we apply Lemma 5.2 to {v5, v′5} and {v3, v′3} in this order if necessary.
Then, the resulting split-K5 has at most one boundary split pair containing v.

6. Proof of the theorem. In this section, we shall prove Theorem 1.3. The
main part of the proof, which is to make a geometric realization of a 5-connected
triangulationG on P with any one face f removed, depends on the technique developed
in [3].

Lemma 6.1 (Bonnington and Nakamoto [3]). Let T be a Möbius triangulation
with boundary C. Suppose that T has a split-K5 H with boundary C and at most one
boundary pair of nodes.

(i) If H has no boundary pair and we let v1, v2, v3, v4, v5 be the nodes of T lying
on C in this order, then let e be the edge of [v1, v2] incident to v1.

(ii) If H has a boundary pair {v1, v′1} and we let v1, v′1, v2, v3, v4, v5 be the nodes
of T lying on C in this order, then let e be the edge of [v′1, v2] incident to v′1.

Then T has a geometric realization T̂ such that all edges on C except e can be seen
from some fixed point x ∈ R

3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GEOMETRIC REALIZATION OF MÖBIUS TRIANGULATIONS 231

v5

v1

v2

v3

v4
v5

v1

v2

v3

v4 v′1

Fig. 5. Examples of geometric realizations of T .

Figure 5 shows examples of geometric realizations of split-K5’s satisfying
Lemma 6.1. The left-hand side shows one with exactly five nodes v1, v2, v3, v4, v5 on
the boundary, and the right-hand side shows one with exactly one boundary split pair
{v1, v′1}. (Note that a triangulation G dealt with in Lemma 6.1 might have several
inner pairs of nodes.) In both parts of figure, we can see all segments on ∂H , except
a side of [v1, v2] incident to v1 in the left-hand case and a side of [v′1, v2] incident to
v′1 in the right-hand case.

Now we shall prove Theorem 1.3.
Proof of Theorem 1.3. Let G be a 5-connected triangulation on P, and let f be any

face of G bounded by uvw. Let C be the link of u. Then, by Lemma 2.1, G contains
a split-K5 H such that

(i) the boundary ∂H of H coincides with C,
(ii) H has at most one boundary split pair, and
(iii) if H has a boundary pair, then v is a boundary split node of H , but vw is

not contained in a boundary split interval; otherwise, v or w is a node of H .
Consider the Möbius triangulationG′ = G−u with boundary C. We apply Lemma

6.1 to G′ and the above H . Then we get a geometric realization Ĝ′ of G′ such that
from some point x ∈ R

3, all edges on C except vw can be seen.
First, we put the vertex u at x ∈ R

3. For each edge pq of Ĝ′ lying on C, let
Δpq ∈ R

3 denote the triangular disk with x, p, q as its vertices. Now, for any edge
h ∈ E(C) − {vw}, we shall fit Δh into the body of Ĝ′, where Δh corresponds to
a face of G incident to h and v. Since each h ∈ E(C) − {vw} can be seen from
x ∈ R

3, the interior of Δh does not collide with Ĝ′. Moreover, for any two distinct
h, h′ ∈ E(C)−{vw}, the interiors of Δh and Δh′ do not collide internally, since h and
h′ can be seen from x simultaneously. So we get a geometric realization of G−f .

Acknowledgments. The authors are grateful to two anonymous referees for
their carefully reading of the paper and helpful suggestions.

REFERENCES

[1] D. Archdeacon, C. P. Bonnington, and J. A. Ellis-Monanghan, How to exhibit toroidal
maps in space, Discrete Comput. Geom., 38 (2007), pp. 573–594.

[2] J. Bokowski and A. Guedes de Oliveira, On the generation of oriented matroids, Discrete
Comput. Geom., 24 (2004), pp. 197–208.

[3] C. P. Bonnington and A. Nakamoto, Geometric realization of a triangulation on the pro-
jective plane with one face removed, Discrete Comput. Geom., 40 (2008), pp. 141–157.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

232 CHÁVEZ, FIJAVŽ, MÁRQUEZ, NAKAMOTO, AND SUÁREZ

[4] U. Brehm, A nonpolyhedral triangulated Möbius strip, Proc. Amer. Math. Soc., 89 (1983), pp.
519–522.

[5] U. Brehm and J. M. Wills, Polyhedral manifolds, in Handbook of Convex Geometry, P. M.
Gruber and J. M. Wills, eds., North-Holland, Amsterdam, 1993, pp. 535–554.

[6] G. Fijavž and B. Mohar, K6-minors in projective planar graphs, Combinatorica, 23 (2003),
pp. 453–465.

[7] B. Grünbaum, Convex Polytopes, Pure and Appl. Math. 16, Interscience Publishers John Wiley
& Sons, Inc., New York, 1967.

[8] N. Robertson and P. D. Seymour, Graph minors. VI. Disjoint paths across a disc, J. Combin.
Theory Ser. B, 41 (1986), pp. 115–138.

[9] D. Rolfsen, Knots and Links, Math. Lecture Ser. 7, Publish or Perish, Inc., Berkeley, CA,
1976.

[10] E. Steinitz, Polyeder und Raumeinteilunger, Enzykl. Math. Wiss., 3 (1922), part 3A612, pp.
1–139.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 233–250

CLEANING REGULAR GRAPHS WITH BRUSHES∗

NOGA ALON† , PAWE�L PRA�LAT‡ , AND NICHOLAS WORMALD§

Abstract. A model for cleaning a graph with brushes was recently introduced. We consider
the minimum number of brushes needed to clean d-regular graphs in this model, focusing on the
asymptotic number for random d-regular graphs. We use a degree-greedy algorithm to clean a
random d-regular graph on n vertices (with dn even) and analyze it using the differential equations
method to find the (asymptotic) number of brushes needed to clean a random d-regular graph
using this algorithm (for fixed d). We further show that for any d-regular graph on n vertices at
most n(d + 1)/4 brushes suffice and prove that, for fixed large d, the minimum number of brushes
needed to clean a random d-regular graph on n vertices is asymptotically almost surely n

4
(d + o(d)),

thus solving a problem raised in [M.E. Messinger, R.J. Nowakowski, P. Pra�lat, and N. Wormald,
Cleaning random d-regular graphs with brushes using a degree-greedy algorithm, in Combinatorial
and Algorithmic Aspects of Networking, Lecture Notes in Comput. Sci. 4852, Springer, Berlin-
Heidelberg, 2007, pp. 13–26].

Key words. cleaning process, random d-regular graphs, degree-greedy algorithm, differential
equations method

AMS subject classification. 05C80

DOI. 10.1137/070703053

1. Introduction. The cleaning model, introduced in [15, 16], is a combination
of the chip-firing game and edge searching on a simple finite graph. (See also [11]
where the parallel version of the process is studied.) The brush number of a graph
G defined below corresponds to the minimum total imbalance of G which is used in
the graph drawing theory. For the starting point of many graph drawing algorithms,
a “balanced” ordering of the vertices is required; see, for example, [6] for more.

Initially, every edge and vertex of a graph is dirty and a fixed number of brushes
start on a set of vertices. At each step, a vertex v and all of its incident edges which
are dirty may be cleaned if there are at least as many brushes on v as there are
incident dirty edges. When a vertex is cleaned, every incident dirty edge is traversed
(i.e., cleaned) by one and only one brush, and brushes cannot traverse a clean edge.
See Figure 1 for an example of this cleaning process. The initial configuration has
only 2 brushes, both at a. The solid edges are dirty, and the dotted edges are clean.
The circle indicates which vertex is cleaned next.

The assumption in [16], and taken here, is that a graph is cleaned when every
vertex has been cleaned. If every vertex has been cleaned, it follows that every edge
has been cleaned. It may be that a vertex v has no incident dirty edges at the time

∗Received by the editors September 16, 2007; accepted for publication (in revised form) September
2, 2008; published electronically December 19, 2008.

http://www.siam.org/journals/sidma/23-1/70305.html
†Schools of Mathematics and Computer Science, Raymond and Beverly Sackler Faculty of Exact

Sciences, Tel Aviv University, Tel Aviv 69978, Israel (noga@post.tau.ac.il). This research was sup-
ported in part by the Israel Science Foundation, by a USA-Israel BSF grant, and by the Hermann
Minkowski Minerva Center for Geometry at Tel Aviv University.

‡Department of Mathematics and Statistics, Dalhousie University, Halifax B3H 3P6, NS, Canada
(pralat@mathstat.dal.ca). This research was partially supported by grants from NSERC and MI-
TACS.

§Department of Combinatorics and Optimization, University of Waterloo, Waterloo N2L 3G1,
ON, Canada (nickwor@math.uwaterloo.ca). This research was supported by the Canada Research
Chairs Program and NSERC.

233

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

234 NOGA ALON, PAWE�L PRA�LAT, AND NICHOLAS WORMALD

Fig. 1. An example of the cleaning process.

4

4

Fig. 2. An example of the cleaning process for a 4-regular graph requiring 8 brushes.

it is cleaned, in which case no brushes move from v. Although this viewpoint might
seem unnatural, it simplified much of the analysis in [16].

In this paper, we are interested in the asymptotic number of brushes needed to
clean d-regular and mainly random d-regular (finite, simple) graphs. At one extreme,
the graph could consist of disjoint copies ofKd+1. From [16], Kd+1 requires essentially
d2/4 brushes so that the whole graph requires approximately nd/4. At the lower end,
if d is even, then a ring of bipartite graphs Kd/2,d/2 chained together (see Figure 2 for
the case d = 4) requires only d2/2 brushes regardless of the number of vertices (by
placing d brushes at each of d/2 vertices on one “level” and working around the ring).
If d is odd, then every vertex has at least one brush in either the original or the final
configuration (see [16] for more details) so that a graph on n vertices requires at least
n/2 brushes.

In section 2 we introduce the formal definitions for the cleaning process and also
include a description of the pairing model which is used in the results on random
regular graphs, instead of working directly in the uniform probability space.

In section 3 we describe some general upper and lower bounds for the minimum
number of brushes needed to clean a graph and show, in particular, that for any d-
regular graph on n vertices, n(d+ 1)/4 brushes suffice if d is odd and n

4 (d+ 1− 1
d+1)

brushes suffice if d is even. These bounds are tight. We also show that for random d-
regular graphs on n vertices the minimum number of brushes needed is, asymptotically
almost surely (a.a.s.), at least n

4 (d−O(
√
d)).

Section 4 concerns random d-regular graphs. Most of the results in this section
form an extended version of the conference paper [17]. We first observe that if d =
2, then the brush number of a random d-regular graph on n vertices is a.a.s. (1 +
o(1)) log n; for d = 3, the brush number is equal to n/2 + 2 a.a.s.; for d = 4, (1 +
o(1))n/3 brushes are enough to clean a graph a.a.s. and for d = 5, roughly 0.644n.
In order to get an asymptotically almost sure upper bound on the brush number we
use a degree-greedy algorithm [22] to clean the graph and then use the differential
equation method, studied in [25], to find the asymptotic number of brushes required.
We also consider the case of large d and show that the typical brush number in this
case is roughly nd/4, thus solving a problem raised in [17].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLEANING REGULAR GRAPHS WITH BRUSHES 235

We conclude with a few open problems.

2. Definitions. The following cleaning algorithm and terminology was recently
introduced in [16].

Formally, at each step t, ωt(v) denotes the number of brushes at vertex v (ωt :
V → N∪{0}) and Dt denotes the set of dirty vertices. An edge uv ∈ E is dirty if and
only if both u and v are dirty: {u, v} ⊆ Dt. Finally, let Dt(v) denote the number of
dirty edges incident to v at step t:

Dt(v) =

{
|N(v) ∩Dt| if v ∈ Dt,

0 otherwise.

Definition 2.1. The cleaning process P(G,ω0) = {(ωt, Dt)}Tt=0 of an undirected
graph G = (V,E) with an initial configuration of brushes ω0 is as follows:

(0) Initially, all vertices are dirty: D0 = V ; set t := 0.
(1) Let αt+1 be any vertex in Dt such that ωt(αt+1) ≥ Dt(αt+1). If no such vertex

exists, then stop the process, set T = t, and return the cleaning sequence α =
(α1, α2, . . . , αT), the final set of dirty vertices DT , and the final configuration
of brushes ωT .

(2) Clean αt+1 and all dirty incident edges by moving a brush from αt+1 to each
dirty neighbor. More precisely, Dt+1 = Dt \{αt+1}, ωt+1(αt+1) = ωt(αt+1)−
Dt(αt+1), and for every v ∈ N(αt+1) ∩ Dt, ωt+1(v) = ωt(v) + 1 (the other
values of ωt+1 remain the same as in ωt).

(3) t := t+ 1, and go back to (1).
Note that for a graph G and initial configuration ω0 the cleaning process can

return different cleaning sequences and final configurations of brushes; consider, for
example, an isolated edge uv and ω0(u) = ω0(v) = 1. It has been shown (see Theo-
rem 2.1 in [16]), however, that the final set of dirty vertices is determined by G and
ω0. Thus, the following definition is natural.

Definition 2.2. A graph G = (V,E) can be cleaned by the initial configuration
of brushes ω0 if the cleaning process P(G,ω0) returns an empty final set of dirty
vertices (DT = ∅).

Let the brush number b(G) be the minimum number of brushes needed to clean G,
that is,

b(G) = min
ω0:V →N∪{0}

{∑
v∈V

ω0(v) : G can be cleaned by ω0

}
.

Similarly, bα(G) is defined as the minimum number of brushes needed to clean G
using the cleaning sequence α.

It is clear that for every cleaning sequence α, bα(G) ≥ b(G) and b(G) = minα bα(G).
(The last relation can be used as an alternative definition of b(G).) In general, it is
difficult to find b(G), but bα(G) can be easily computed. For this, it seems better not
to choose the function ω0 in advance, but to run the cleaning process in the order α,
and compute the initial number of brushes needed to clean a vertex. We can adjust
ω0 along the way

(1) ω0(αt+1) = max{2Dt(αt+1)− deg(αt+1), 0}, for t = 0, 1, . . . , |V | − 1,

since that is the number of brushes we have to add over and above what we get for
free.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

236 NOGA ALON, PAWE�L PRA�LAT, AND NICHOLAS WORMALD

Our main results refer to the probability space of random d-regular graphs with
uniform probability distribution. This space is denoted by Gn,d, and asymptotics
(such as a.a.s.) are for n→∞ with d ≥ 2 fixed and n even if d is odd.

Instead of working directly in the uniform probability space of random regular
graphs on n vertices Gn,d, we use the pairing model of random regular graphs, first
introduced by Bollobás [7], which is described next. Suppose that dn is even, as in
the case of random regular graphs, and consider dn points partitioned into n labeled
buckets v1, v2, . . . , vn of d points each. A pairing of these points is a perfect matching
into dn/2 pairs. Given a pairing P , we may construct a multigraph G(P), with
loops allowed, as follows: the vertices are the buckets v1, v2, . . . , vn, and a pair {x, y}
in P corresponds to an edge vivj in G(P) if x and y are contained in the buckets
vi and vj , respectively. It is an easy fact that the probability of a random pairing
corresponding to a given simple graph G is independent of the graph, and hence the
restriction of the probability space of random pairings to simple graphs is precisely
Gn,d. Moreover, it is well known that a random pairing generates a simple graph with
probability asymptotic to e(1−d2)/4 depending on d so that any event holding a.a.s.
over the probability space of random pairings also holds a.a.s. over the corresponding
space Gn,d. For this reason, asymptotic results over random pairings suffice for our
purposes. One of the advantages of using this model is that the pairs may be chosen
sequentially so that the next pair is chosen uniformly at random over the remaining
(unchosen) points. For more information on this model, see [23].

3. Bounds.

3.1. Lower bounds. When a graph G is cleaned using the cleaning process
described in Definition 2.1, each edge of G is traversed exactly once and by exactly
one brush.

Note that no brush may return to a vertex it has already visited, motivating the
following definition.

Definition 3.1. The brush path of a brush b is the path formed by the set of
edges cleaned by b.

By definition, G can be decomposed into bα(G) brush paths. (Since no brush can
stay at its initial vertex in the minimal brush configuration, these paths each have at
least one edge.) Thus, the minimum number of paths into which a graph G can be
decomposed yields a lower bound for b(G). This is only a lower bound because some
path decompositions would not be valid in the cleaning process. For example, K4 can
be decomposed into two edge-disjoint paths, but b(K4) = 4.

In any path decomposition, every vertex of odd degree in a graph G will be the
end point of (at least) one path. This leads to a natural lower bound for b(G) since a
graph with do odd vertices cannot be decomposed into less than do/2 paths (see [16]
for more details).

Theorem 3.2. Given initial configuration ω0, suppose G can be cleaned yielding
final configuration ωT . Then for every vertex v in G with odd degree either ω0(v) > 0
or ωT (v) > 0. In particular, b(G) ≥ do(G)/2, where do(G) denotes the number of
vertices of odd degree.

The result can be improved a little if there is a lower bound on the vertex degrees
(see section 4.3 for details).

Another general lower bound for random d-regular graphs can be obtained as
follows. By [16, Theorem 3.2],

(2) b(G) ≥ max
j

min
S⊆V,|S|=j

{jd− 2|E(G[S])|} = max
j

min
S⊆V,|S|=j

|E(S, V \ S)|,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLEANING REGULAR GRAPHS WITH BRUSHES 237

where E(S, V \S) is the set of all edges between S and its complement and E(G[S]) is
the set of all edges in the induced subgraph of G on S. The proof is a simple corollary
of the fact that the minimum above is a lower bound on the number of edges going
from the first j vertices cleaned to elsewhere in the graph. So suppose that x and y are
functions of n such that the expected number S(x, y) of sets S of xn vertices in G ∈
Gn,d with yn edges to the complement V (G) \ S is o(1). Then this theorem, together
with the first moment principle, gives that the brush number is a.a.s. at least yn.

In order to find optimal values of x and y we use the pairing model. (This is
essentially the same argument used by Bollobás [9] to obtain a lower bound on the
isoperimetric number of random regular graphs, but since it is slightly simpler for our
purposes and we obtain a slightly different conclusion, we include the argument.) It
is clear that

S(x, y) =
(
n

xn

)(
xdn

yn

)
M(xdn− yn)

(
(1− x)dn

yn

)
(yn)!M((1 − x)dn− yn)/M(dn),

where M(i) is the number of perfect matchings on i vertices, that is,

M(i) =
i!

(i/2)!2i/2
.

After simplification we get

S(x, y) =
n!(xdn)!((1 − x)dn)!(dn/2)!2yn

(xn)!((1 − x)n)!(yn)!((xd − y)n/2)!(((1− x)d − y)n/2)!(dn)!
.

Using Stirling’s formula (n! ∼ √2πn(n/e)n) and taking the exponential part, we
obtain

S(x, y) ≤ eo(n) xx(d−1)n(1− x)(1−x)(d−1)nddn/2

yyn(xd− y)(xd−y)n/2((1 − x)d− y)((1−x)d−y)n/2

= e−f(x,y,d)n+o(n),(3)

where

f(x, y, d) = x(d− 1) lnx+ (1− x)(d − 1) ln(1− x) + 0.5d lnd− y ln y
−0.5(xd− y) ln(xd− y)− 0.5((1− x)d− y) ln((1 − x)d− y).

Thus, if f(x, y, d) < 0, then S(x, y) is exponentially small (n large) and the brush
number is at least yn. Not surprisingly, the strongest bound is obtained for x = 1/2,
in which case f(x, y, d) becomes

(d− 1) ln(1/2) + (d/2) ln d− y ln y − (d/2− y) ln(d/2− y)
= −d

4
((1 + z) ln(1 + z) + (1 − z) ln(1− z)) + ln 2,

where y = (d/4)(1 − z).
It is straightforward to see that this function is decreasing in z for z ≥ 0. Let ld/n

denote the value of y for which it first reaches 0. Using the full power of Stirling’s
formula, it is also not difficult to see that we can replace eo(n) by O(n−1) in (3).
This gives us the following asymptotically almost sure lower bounds ld for the brush
number of the random d-regular graph: l4 = 0.22n, l5 = 0.36n, and l6 = 0.52n. (In

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

238 NOGA ALON, PAWE�L PRA�LAT, AND NICHOLAS WORMALD

this paper, whenever we quote numerical values for computed constants such as ld/n,
we use three decimal places rounded down for lower bounds and up for upper bounds.)

In Figure 6, the values of ld/dn have been presented for all d-values up to 100;
we have also listed the first 30 and a few more values for higher d in Table 1 (see
section 4.6).

To obtain a result useful for all d, it is straightforward to show (since the Taylor
expansion of (1 + z) ln(1 + z) + (1 − z) ln(1 − z) is z2 + z4/6 + · · ·) that ld/n >
(d/4)(1 − 2

√
ln 2/
√
d). This result has the following implication giving a nontrivial

lower bound for d ≥ 3.
Corollary 3.3. For G ∈ Gn,d, a.a.s.

b(G) ≥ dn

4

(
1− 2

√
ln 2√
d

)
.

Alternatively, one can use the expansion properties of random d-regular graphs
that follow from their eigenvalues to get a similar lower bound.

The adjacency matrix A = A(G) of a given d-regular graph G with n vertices is
an n×n real and symmetric matrix. Thus, the matrix A has n real eigenvalues which
we denote by λ1 ≥ λ2 ≥ · · · ≥ λn. It is known that certain properties of a d-regular
graph are reflected in its spectrum, but, since we focus on expansion properties, we
are particularly interested in the following quantity: λ = λ(G) = max(|λ2|, |λn|). In
other words, λ is the largest absolute value of an eigenvalue other than λ1 = d (for
more details, see the general survey [12] about expanders or Chapter 9 of [5]).

The value of λ for random d-regular graphs has been studied extensively. A major
result due to Friedman [10] is the following.

Lemma 3.4 (see [10]). For every fixed ε > 0 and for G ∈ Gn,d,

P(λ(G) ≤ 2
√
d− 1 + ε) = 1− o(1).

The number of edges |E(S, T)| between sets S and T is expected to be close to
the expected number of edges between S and T in a random graph of edge density
d/n, namely, d|S||T |/n. A small λ (or large spectral gap) implies that this deviation
is small. The following useful bound is essentially proved in [2] (see also [5]).

Lemma 3.5 (expander mixing lemma). Let G be a d-regular graph with n vertices,
and set λ = λ(G). Then for all S, T ⊆ V∣∣∣∣|E(S, T)| − d|S||T |

n

∣∣∣∣ ≤ λ√|S||T |.
(Note that S ∩T does not have to be empty; in general, |E(S, T)| is defined to be

the number of edges between S \ T to T plus twice the number of edges that contain
only vertices of S ∩ T .)

For our purpose here it is better to apply a slightly stronger lower estimate for
|E(S, V \ S)|, namely,

(4) |E(S, V \ S)| ≥ (d− λ)|S||V \ S|
n

for all S ⊆ V . This is proved in [4]; see also [5].
From (4) and Lemma 3.4 we get immediately the following corollary. (In order to

get the second part, it is enough to use (2) with j = n/2�. The second part is only
slightly weaker than Corollary 3.3.)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLEANING REGULAR GRAPHS WITH BRUSHES 239

Corollary 3.6. Let G ∈ Gn,d. For every ε > 0, a.a.s. all S ⊆ V (G) satisfy the
following condition:

|E(S, V \ S)| ≥ (d− 2
√
d− 1− ε)|S||V \ S|

n
.

In particular, a.a.s.

b(G) ≥ dn

4

(
1− 2√

d

)
.

Remark. The minimum number of edges in a cut that splits the vertex set of a
graph into two equal parts is called its bisection width. In the above arguments we
have used it as a lower bound for the brush number of the graph. It is worth noting
that the 2√

d
error term in the lower bound for the bisection width of a d-regular graph

on n vertices is tight, up to a constant factor. Indeed, it is shown in [1] that for n� d
the bisection width of any d-regular graph on n vertices is at most nd

4 (1 − Ω(1√
d
)).

3.2. A general upper bound. The following result provides an upper bound
for the brush number of a general graph.

Theorem 3.7.

b(G) ≤ |E|
2

+
|V |
4
− 1

4

∑
v∈V (G),deg(v) is even

1
deg(v) + 1

for any graph G = (V,E).
Proof. Let π be a random permutation of the vertices of G taken with uniform

distribution. We clean G according to this permutation to get the value of bπ(G)
(note that bπ(G) is a random variable now). For a vertex v ∈ V , it follows from (1)
that we have to assign to v exactly X(v) = max{0, 2N+(v) − deg(v)} brushes in
the initial configuration, where N+(v) is the number of neighbors of v that follow it
in the permutation (that is, the number of dirty neighbors of v at the time when v
is cleaned). The random variable N+(v) attains each of the values 0, 1, . . . ,deg(v)
with probability 1/(deg(v) + 1). Indeed, this follows from the fact that the random
permutation π induces a uniform, random permutation on the set of deg(v)+1 vertices
consisting of v and its neighbors. Therefore, the expected value of X(v) for even
deg(v), is

deg(v) + (deg(v) − 2) + · · ·+ 2
deg(v) + 1

=
deg(v) + 1

4
− 1

4(deg(v) + 1)

and for odd deg(v) it is

deg(v) + (deg(v)− 2) + · · ·+ 1
deg(v) + 1

=
deg(v) + 1

4
.

Thus, by linearity of expectation,

Ebπ(G) = E

(∑
v∈V

X(v)

)
=
∑
v∈V

EX(v) =
|E|
2

+
|V |
4
−1

4

∑
v∈V (G),deg(v) is even

1
deg(v) + 1

,

which means that there is a permutation π0 such that b(G) ≤ bπ0(G) ≤ Ebπ(G), and
the assertion holds.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

240 NOGA ALON, PAWE�L PRA�LAT, AND NICHOLAS WORMALD

Note that the bound is tight when G is a union of cliques. From this we get
immediately the following corollary.

Corollary 3.8. Let G = (V,E) be a d-regular graph on n vertices. If d is even,
then

b(G) ≤ n

4

(
d+ 1− 1

d+ 1

)
,

and if d is odd, then

b(G) ≤ n

4
(d+ 1).

Both bounds are tight for every n and d satisfying (d+1)|n, as shown by a disjoint
union of complete graphs Kd+1.

4. Cleaning random d-regular graphs. The differential equations method
(described in [25]) is used here to find an upper bound on the number of brushes
needed to clean a graph using a degree-greedy algorithm. We consider d = 2 first,
then state some general results, and apply them to the special cases of 3 ≤ d ≤ 5
before discussing higher values of d.

4.1. 2-regular graphs. Let Y = Yn be the total number of cycles in a random
2-regular graph on n vertices. Since exactly two brushes are needed to clean one cycle,
we need 2Yn brushes in order to clean a 2-regular graph.

We know that the random 2-regular graph is a.a.s. disconnected; by simple calcu-
lations one can show that the probability of having a Hamiltonian cycle is asymptotic
to 1

2e
3/4
√
πn−1/2 (see, for example, [23]).

We also know that the total number of cycles Yn is sharply concentrated near
(1/2) logn. It is not difficult to see this by generating the random graph sequentially
using the pairing model. The probability of forming a cycle in step i is exactly
1/(2n− 2i+ 1), so the expected number of cycles is (1/2) logn+O(1). The variance
can be calculated in a similar way. So we get that a.a.s. the brush number for a
random 2-regular graph is (1 + o(1)) logn.

4.2. d-regular graphs (d ≥ 3)—the general setting. In this subsection, we
assume d ≥ 3 is fixed with dn even. In order to get an asymptotically almost sure
upper bound on the brush number, we study an algorithm that cleans random vertices
of minimum degree. This algorithm is called degree-greedy because the vertex being
cleaned is chosen from those with the lowest degree.

We start with a random d-regular graph G = (V,E) on n vertices. Initially, all
vertices are dirty: D0 = V . In every step t of the cleaning process, we clean a random
vertex αt, chosen uniformly at random from those vertices with the lowest degree in
the induced subgraphG[Dt−1], whereDt = Dt−1\{αt}. In the first step, d brushes are
needed to clean a random vertex α1 (we say that this is “phase zero”). The induced
subgraph G[D1] now has d vertices of degree d − 1 and n − d − 1 vertices of degree
d. Note that α1 is a.a.s. the only vertex whose degree in G[Dt] is d at the time of
cleaning. Indeed, if αt (t ≥ 2) has degree d in G[Dt−1], then G[Dt−1] consists of some
connected components of G, and thus G is disconnected. It was proven independently
in [8, 24] that, for constant d, G is disconnected with probability o(1) (this also holds
when d is growing with n, as shown in [14]).

In the second step, d−2 brushes are needed to clean a random vertex α2 of degree
d − 1. Typically, in the third step, a vertex of degree d − 1 is cleaned, and in each

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLEANING REGULAR GRAPHS WITH BRUSHES 241

subsequent step, a vertex of degree d − 1 in G[Dt] is cleaned until some vertex of
degree d − 2 is produced in the subgraph induced by the set of dirty vertices. After
cleaning the first vertex of degree d − 2, we typically return to cleaning vertices of
degree d − 1, but after some more steps of this type we may clean another vertex of
degree d− 2. When vertices of degree d− 1 become plentiful, vertices of lower degree
are more commonly created, and these hiccups occur more often. When vertices of
degree d − 2 take over the role of vertices of degree d − 1, we say (informally!) that
the first phase ends, and we begin the second phase. In general, in the kth phase a
mixture of vertices of degree d− k and d− k − 1 are cleaned.

During the kth phase there are, in theory, two possible endings. It can happen
that the vertices of degree d− k are becoming so common that the vertices of degree
d−k−1 start to explode (in which case we move to the next phase). It is also possible
that the ones of degree d−k+1 are getting so rare that those of degree d−k disappear
(in which case the process goes “backwards”). With various initial conditions, either
one could occur. However, the numerical solutions of the DEs for d = 4, 5, . . . , 100
support the hypothesis that the degree-greedy process we study never goes “back.”
In such cases, the remaining vertices are cleaned “for free” (that is, after the crucial
phases, only o(n) new brushes are required to finish the process). The details of the
following differential equations method have been omitted but can be found in [22].

For 0 ≤ i ≤ d, let Yi = Yi(t) denote the number of vertices of degree i in G[Dt].
(Note that Y0(t) = n− t−∑d

i=1 Yi(t) so Y0(t) does not need to be calculated, but it
is useful in the discussion.) Let S(t) =

∑d
l=1 lYl(t), and for any statement A, let δA

denote the Kronecker delta function

δA =

{
1 if A is true,
0 otherwise.

It is not difficult to see that

E(Yi(t)− Yi(t− 1) | G[Dt−1] ∧ degG[Dt−1](αt) = r)

= fi,r((t− 1)/n, Y1(t− 1)/n, Y2(t− 1)/n, . . . , Yd(t− 1)/n)

= −δi=r − r iYi(t− 1)
S(t− 1)

+ r
(i+ 1)Yi+1(t− 1)

S(t− 1)
δi+1≤d(5)

for i, r ∈ [d] such that Yr(t) > 0. Indeed, αt has degree r and hence the term −δi=r.
When a pair of points in the pairing model is exposed, the probability that the other
point is in a bucket of degree i (that is, the bucket contains i unchosen points) is
asymptotic to iYi(t− 1)/S(t− 1). Thus, riYi(t− 1)/S(t− 1) stands for the expected
number of the r buckets found adjacent to αt which have degree i. This contributes
negatively to the expected change in Yi, while buckets of degree i+1 which are reached
contribute positively (of course, only if this type of vertices (buckets) exists in a graph;
thus δi+1≤d). This explains (5).

Suppose that, at some step t of the phase k, cleaning a vertex of degree d − k
creates, in expectation, βk vertices of degree d− k− 1 and cleaning a vertex of degree
d− k − 1 decreases, in expectation, the number of vertices of degree d− k − 1 by τk.
After cleaning a vertex of degree d − k, we expect to then clean (on average) βk/τk
vertices of degree d − k − 1. Thus, in phase k, the proportion of steps which clean
vertices of degree d− k is 1/(1+βk/τk) = τk/(βk + τk). If τk falls below zero, vertices
of degree d − k − 1 begin to build up and do not decrease under repeated cleaning
vertices of this type, and we move to the next phase.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

242 NOGA ALON, PAWE�L PRA�LAT, AND NICHOLAS WORMALD

From (5) it follows that

βk = βk(x, y1, y2, . . . , yd) = fd−k−1,d−k(x, y1, y2, . . . , yd) = fd−k−1,d−k(x,y),
τk = τk(x, y1, y2, . . . , yd) = −fd−k−1,d−k−1(x, y1, y2, . . . , yd) = −fd−k−1,d−k−1(x,y),

where x = t/n and yi(x) = Yi(t)/n for i ∈ [d]. This suggests (see [25] for more
information on the differential equations method) the following system of differential
equations:

dyi

dx
= F (x,y, i, k),

where

F (x,y, i, k) =

⎧⎪⎨
⎪⎩

τk
βk + τk

fi,d−k(x,y) +
βk

βk + τk
fi,d−k−1(x,y) for k ≤ d− 2,

fi,1(x,y) for k = d− 1.

At this point we may formally define the interval [xk−1, xk] to be phase k, where the
termination point xk is defined as the infimum of those x > xk for which at least one
of the following holds: τk ≤ 0 and k < d − 1; τk + βk = 0 and k < d − 1; yd−k ≤ 0.
Using final values yi(xk) in phase k as initial values for phase k+1, we can repeat the
argument inductively moving from phase to phase starting from phase 1 with obvious
initial conditions yd(0) = 1 and yi(0) = 0 for 0 ≤ i ≤ d− 1.

The general result [22, Theorem 1] studies a deprioritized version of degree-greedy
algorithms, which means that the vertices are chosen to process in a slightly different
way, not always the minimum degree, but usually a random mixture of two degrees.
Once a vertex is chosen, it is treated the same as in the degree-greedy algorithm. The
variables Y are defined in an analogous manner. The hypotheses of the theorem are
mainly straightforward to verify but require several inequalities involving derivatives
to hold at the termination of phases for the full rigorous conclusion to be obtained.
However, in practice, the equations are simply solved numerically in order to find
the points xk, since a fully rigorous bound is not obtained unless one obtains strict
inequalities on the values of the solutions. The conclusion is that, for a certain al-
gorithm using a deprioritized “mixture” of the steps of the degree-greedy algorithm,
with variables Yi defined as above, we have that a.a.s.

Yi(t) = nyi(t/n) + o(n)

for 1 ≤ i ≤ d for phases k = 1, 2, . . . ,m, where m denotes the smallest k for which
either k = d − 1 or any of the termination conditions for phase k hold at xk apart
from xk = inf{x > xk−1 : τk ≤ 0}. We omit all details, pointing the reader to [22]
and the general survey [25] about the differential equations method, which is a main
tool in proving [22, Theorem 1]. In addition, the theorem gives information on an
auxiliary variable such as, of importance to our present application, the number of
brushes used. Instead of quoting this precisely, we use it merely as justification for
being able to use the above equations as if they applied to the greedy algorithm. (This
is no doubt the case, but it is not actually proved in [22]. Instead, we know that they
apply in the limit to a sequence of algorithms that use the steps of the degree-greedy
algorithm.) The solution to the relevant differential equations for d = 3 is shown in
Figure 3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLEANING REGULAR GRAPHS WITH BRUSHES 243

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

(a) 3-regular graph, phase 1

Fig. 3. Solution to the differential equations.

In the kth phase a mixture of vertices of degree d − k and d − k − 1 is cleaned.
Since max{2l − d, 0} brushes are needed to clean a vertex of degree l (see (1)), we
need

uk
d = (1 + o(1))n

(
max{d− 2k, 0}

∫ xk

xk−1

τk
τk + βk

dx

+ max{d− 2k − 2, 0}
∫ xk

xk−1

βk

τk + βk
dx

)

brushes in phase k. Thus, the total number of brushes needed to clean a graph using
the degree-greedy algorithm is a.a.s. equal to

ud =

(d−1)/2�∑

k=1

uk
d + o(n)

= (1 + o(1))n

(
(d−1)/2�∑
k=1

(
(d− 2k − 2)(xk − xk−1) + 2

∫ xk

xk−1

τk
τk + βk

dx

)

+ δd is odd

∫ xk

xk−1

βk

τk + βk
dx

)
.

(We assume here that the solutions of the DEs proceed in the way we presume, that
is, with no “reversion” to earlier phases. This implies that only o(n) new brushes are
required for the remaining phases.)

4.3. 3-regular graphs. Let G = (V,E) be any 3-regular graph on n vertices.
The first vertex cleaned must start three brush paths, the last one terminates three
brush paths, and all other vertices must start or finish at least one brush path, so the
number of brush paths is at least n/2 + 2.

The result mentioned above can be shown to result in an upper bound of n/2+o(n)
for the brush number of a random 3-regular (i.e., cubic) graph. We do not provide
details because of the following stronger result. It is known [21] that a random 3-
regular graph a.a.s. has a Hamilton cycle. The edges not in a Hamilton cycle must
form a perfect matching. Such a graph can be cleaned by starting with three brushes
at one vertex and moving along the Hamilton cycle with one brush, introducing one

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

244 NOGA ALON, PAWE�L PRA�LAT, AND NICHOLAS WORMALD

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.5 0.6 0.7 0.8 0.9

x

(a) 4-regular graph, phase 1 (b) 4-regular graph, phase 2
(vertices are cleaned “for free”)

Fig. 4. Solution to the differential equations.

new brush for each edge of the perfect matching. Hence the brush number of a
random 3-regular graph with n vertices is a.a.s. n/2 + 2. Note that this is also the
brush number of any cubic Hamiltonian graph on n vertices.

4.4. 4-regular graphs. For 4-regular graphs, to estimate the brush number
one has to carefully analyze phase 1 only: we need two brushes to clean vertices of
degree 3, but vertices of degree 2 are cleaned “for free.” Note that y1(x) = y2(x) = 0
throughout phase 1. We have the following system of differential equations:

dy4
dx

=
−6y4(x)

3y3(x) + 2y4(x)
,

dy3
dx

=
−3y3(x) + 4y4(x)
3y3(x) + 2y4(x)

,

with the initial conditions y4(0) = 1 and y3(0) = 0. The solution (see Figure 4(a)) to
these differential equations is

y4(x) = 5− 4
√

1 + 3x+ 3x,

y3(x) =
4(−3 + 3

√
1 + 3x− 5x+ x

√
1 + 3x)

2−√1 + 3x
,

so β1 = −3 + 3
√

1 + 3x and τ1 = 3 − 2
√

1 + 3x. Thus, phase 1 finishes at time
t1 = 5n/12 (x1 = 5/12 is a root of the equation τ1(x) = 0), and the number of
vertices of degree 3 cleaned during this phase is asymptotic to

n

∫ 5/12

0

τ1
τ1 + β1

dx = n/6.

Since we need 2 brushes to clean one such vertex we get an asymptotically almost
sure upper bound of u4 = (1 + o(1))n/3.

The remaining phases can be studied in a similar way, assuring us that no extra
brushes are needed. The solution to the relevant differential equations are shown in
Figure 4.

On the other hand, it is true that a.a.s. a random 4-regular graph can be decom-
posed into two edge-disjoint Hamilton cycles [13] and hence four paths.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLEANING REGULAR GRAPHS WITH BRUSHES 245

0

0.2

0.4

0.6

0.8

1

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

x

0

0.1

0.2

0.3

0.4

0.5

0.2 0.3 0.4 0.5 0.6 0.7

x

(a) 5-regular graph, phase 1 (b) 5-regular graph, phase 2

Fig. 5. Solution to the differential equations.

Note that the following two problems can be posed in general for any d ≥ 3.
Open Problem 4.1. Is it true that for the random case it is best to clean lowest

degree vertices?
In other words, if one is going to choose a random vertex of a given degree, is it

true that one might as well choose a random vertex of minimum degree?
If Problem 4.1 is proven to be true, then the following problem should be con-

sidered. To get the brush number one might (in fact, probably should) choose non-
random vertices during the cleaning process. But it might be true that a.a.s. one
cannot save more than o(n) brushes compared to the greedy algorithm under consid-
eration.

Open Problem 4.2. Is it true that a.a.s. the brush number for a random d-
regular graph is ud(1− o(1))?

4.5. 5-regular graphs. In order to study the brush number for 5-regular graphs
yielded by the degree-greedy algorithm, we cannot consider phase 1 only as before;
we need 3 brushes to clean vertices of degree 4 but also 1 brush to clean vertices of
degree 3. Thus, two phases must be considered.

In phase 1, y1(x) = y2(x) = y3(x) = 0, and we have the following system of
differential equations:

dy5
dx

=
−20y5(x)

8y4(x) + 5y5(x)
,

dy4
dx

=
−8y4(x) + 15y5(x)
8y4(x) + 5y5(x)

,

with the initial conditions y5(0) = 1 and y4(0) = 0. The numerical solution (see
Figure 5(a)) suggests that the phase finishes at time t1 = 0.1733n. The number of
brushes needed in this phase is asymptotic to

u1
5 = (1 + o(1))

(
3n
∫ t1/n

0

τ1
τ1 + β1

dx+ n

∫ t1/n

0

β1

τ1 + β1
dx

)

= (1 + o(1))

(
t1 + 2n

∫ t1/n

0

τ1
τ1 + β1

dx

)
≈ 0.3180n.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

246 NOGA ALON, PAWE�L PRA�LAT, AND NICHOLAS WORMALD

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

20 40 60 80 100

Fig. 6. A graph of ud/dn and ld/dn versus d (from 3 to 100).

In phase 2, z1(x) = z2(x) = 0, and we have another system of differential equa-
tions

dz5
dx

=
−15z5(x)

6z3(x) + 4z4(x) + 5z5(x)
,

dz4
dx

=
−3(4z4 − 5z5(x))

6z3(x) + 4z4(x) + 5z5(x)
,

dz3
dx

=
−6z3(x) + 8z4(x)− 5z5(x)
6z3(x) + 4z4(x) + 5z5(x)

,

with the initial conditions z5(t1/n) = y5(t1/n) = 0.5088, z4(t1/n) = y4(t1/n) =
0.3180, and z3(t1/n) = 0. The numerical solution (see Figure 5(b)) suggests that the
phase finishes (approximately) at time t2 = 0.7257n. The number of brushes needed
in this phase is asymptotic to (the numerical solution)

u2
5 = (1 + o(1))n

∫ t2/n

t1/n

τ2
τ2 + β2

dx ≈ 0.3259n.

(Note that there is no β2/(τ2 + β2) term this time; each vertex of degree 2 receives
3 extra brushes from already cleaned neighbors and thus can be cleaned “for free.”)
Finally, we get an asymptotically almost sure upper bound of u5 = u1

5+u2
5 ≈ 0.6439n.

4.6. d-regular graphs of higher order. Note that the lower bound for d = 4
(see section 3.1) will be considerably lower than the lower bound of n/2+2 for d = 3,
whereas the upper bound we have been discussing is the same degree-greedy algorithm
in all cases. However, the upper bound is also sensitive to the parity of d. For the
4-regular case, vertices of degree 2 are processed “for free,” and so one really worries
only about degree 3 vertices, and there are fewer of those processed than degree 2
vertices when d = 3. But it seems that the parity of d does not greatly affect the
value of ud/n for d big enough (see Figure 6 and Table 1).

In Figure 6, the values of ld/dn (see section 3.1 for more details about the lower
bound) and ud/dn have been presented for all d-values up to 100, although we have
only listed the first 30 and a few more values for higher d in Table 1. (To save effort, the
values for d > 100 are based on the hypothesis mentioned near the start of section 4.2
that there is no contribution from phases after the (d− 1)/2�th one.) The computa-
tions presented in the paper were performed by using MapleTM [18]. The worksheets
can be found at the following address: http://www.mathstat.dal.ca/˜pralat/.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLEANING REGULAR GRAPHS WITH BRUSHES 247

Table 1

Approximate upper and lower bounds on the brush number.

d ld/n ud/n
3 0.0922 0.500
4 0.220 0.334
5 0.365 0.644
6 0.521 0.684
7 0.686 0.949
8 0.858 1.06
9 1.03 1.31
10 1.21 1.45
11 1.39 1.69
12 1.58 1.85

d ld/n ud/n
13 1.77 2.08
14 1.96 2.25
15 2.16 2.49
16 2.35 2.67
17 2.55 2.90
18 2.75 3.08
19 2.95 3.32
20 3.16 3.51
21 3.36 3.74
22 3.56 3.93

d ld/n ud/n
23 3.77 4.16
24 3.98 4.36
25 4.18 4.59
26 4.39 4.80
27 4.60 5.03
28 4.81 5.23
29 5.02 5.46
30 5.23 5.67
31 5.44 5.90
32 5.66 6.11

d ld/n ud/n
99 20.6 21.5
100 20.8 21.7
149 32.1 33.2
150 32.4 33.5
199 43.8 45.1
200 44.1 45.3
249 55.6 57.0
250 55.9 57.3
299 67.5 69.0
300 67.7 69.3

In [17] the following open question was asked, “does limd→∞ ud/dn exist?” (Open
Problem 3), and it was conjectured that there is a constant c such that the brush
number is asymptotically cdn (Open Problem 4). The next theorem settles both
questions.

Theorem 4.3. The brush number of a random d-regular graph is a.a.s. n
4 (d +

o(d)). Moreover, limd→∞ ud/dn = 1/4, that is, for large d, the degree-greedy algorithm
a.a.s. achieves the optimal number of brushes up to a lower order term.

Proof. The first part of the theorem follows from Corollary 3.3 (or Corollary 3.6)
and Corollary 3.8, which show that if G ∈ Gn,d, then a.a.s.

dn

4

(
1− 2

√
ln 2√
d

)
≤ b(G) ≤ n(d+ 1)

4
.

The upper bound here can in fact be slightly improved, as shown in Theorem 4.4
below.

It remains to estimate the performance of the degree-greedy algorithm. Let d > 2
be an integer, and let G ∈ Gn,d, as before. It follows from Lemmas 3.4 and 3.5 that
a.a.s. for all m ∈ {0, 1, . . . , n− 1} and all sets X ⊆ V with |X | = m,

|E(G[V \X])| ≤ (n−m)2d
2n

+
1
2
2
√
d(n−m)

since the number of edges inside G[V \ X] is |E(V \ X,V \ X)|/2. So the average
degree of G[V \X] (and thus the minimum degree as well) is at most

ξm = min
{

(n−m)d
n

+ 2
√
d, d

}
.

Thus, using (1) we get that a.a.s. the number of brushes used by the degree-greedy
algorithm is at most

n−1∑
m=0

max{2ξm − d, 0} ≤ dn

4
+O

(√
dn
)
.

It follows, by Corollary 3.3, that for large d the greedy algorithm achieves, a.a.s.,
essentially the optimum number of brushes. This completes the proof of the theo-
rem.

The numerical values of the upper bound following from the degree-greedy algo-
rithm suggest that the brush number of a random d-regular graph is a.a.s. smaller than

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

248 NOGA ALON, PAWE�L PRA�LAT, AND NICHOLAS WORMALD

dn/4 for every d ≥ 3. This fact can be proved by combining the basic idea in the proof
of Theorem 3.7 with some known properties of random d-regular graphs. Indeed, the
bound in Theorem 3.7 holds for every d-regular graph, and for a random d-regular
graph G one can slightly improve the result as follows. It is known (see [23]) that, for
the purpose of proving statements a.a.s., such a random graph can be viewed as the
multigraph formed from the union of a Hamilton cycle and a random (d− 2)-regular
graph G′ on the same vertex set. (The probability of multiple edges being created is
bounded away from 1, and the resulting graph, conditional upon no multiple edges,
is contiguous to a random d-regular graph. Indeed, Molloy and Reed [19] exploited
this fact in a way related to our argument here.) This is equivalent to taking a fixed
Hamilton cycle, together with a random (d− 2)-regular graph G′, and permuting its
vertices randomly by a permutation π. Therefore, if we clean this multigraph accord-
ing to the order of the Hamilton cycle, which we denote by 1, 2, . . . , n, the edges of G′

will be cleaned according to a random permutation. We can thus apply the estimate
proved in Corollary 3.8 and conclude that the expected number of brushes needed is
at most the bound given in that corollary for (d− 2)-regular graph, plus 2 additional
brushes needed to be placed in the first vertex in order to start the process; one of
them will keep going along the Hamilton cycle, cleaning all of its edges, and the other
one will clean the edge 1, n and stay in vertex n until the end of the process. This
implies that when G is generated by taking a Hamilton cycle, and a random (d− 2)-
regular G′ permuted randomly on the cycle, the expected number of brushes when
cleaning along the cycle is at most 2 + n

4 (d − 1 − 1
d−1) when d is even and at most

2 + n
4 (d− 1) when d is odd.
However, this is only a bound for the expectation, whereas we need to get an

estimate that holds a.a.s. This can be done using a standard martingale argument
together with the fact that if we change the permutation π by a single transposition,
the number of brushes needed when cleaning along the Hamilton cycle changes by at
most O(d) (see, e.g., [3] for a similar argument). Alternatively, since in the random
pairing corresponding to G′ the number of brushes changes by at most O(1) if two
pairs are “switched,” [23, Theorem 2.19] immediately implies that a.a.s. the number
of brushes required does not deviate from the expectation by more than O(w(n)

√
n),

where w(n) is any function tending to infinity with n. We have thus proved the
following.

Theorem 4.4. Let G be a random d-regular graph on n vertices, where d ≥ 3.
Then, a.a.s., if d is even,

b(G) ≤ n

4

(
d− 1− 1

d− 1

)
(1 + o(1))

and if d is odd, then

b(G) ≤ n

4
(d− 1)(1 + o(1)).

Note that the numerical bounds obtained using the degree-greedy algorithm ap-
pearing in Table 1 are a little stronger than the general one obtained here.

We also note that the estimates in Theorem 4.4 can be further improved by
introducing greedy steps into the proof. Instead of simply cleaning along the cycle,
one may swap the order of cleaning vertices if such a swap will save a brush, for
example, if a vertex has more dirty edges than the next one around the cycle. We do
not elaborate on this since, although simple arguments like this will give improvements

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLEANING REGULAR GRAPHS WITH BRUSHES 249

that can be described for general d, it seems likely that, carrying the argument as far
as possible, one would arrive at the degree-greedy algorithm in any case.

4.7. Variants. We conclude with a few additional open problems.
Open Problem 4.5. What is the brush number for the binomial random graphs

G(n, p)? What is a lower/upper bound? How about other random graph models, for
example, models that give power law degree distribution or d-regular graphs generated
by the d-process?

It is not difficult to show that b(G) = (1 + o(1))pn2/4 for G ∈ G(n, p) and
p > ω(n)/n, where ω(n) is any function tending to infinity. Indeed, in order to
get an upper bound it is enough to use Theorem 3.7 since the number of edges
is well concentrated around p

(
n
2

)
. To get a lower bound, one can show that the

expected number of sets of size n/2� with less than (1 − 1/ω1/3(n))pn2/4 edges to
its complement is tending to zero as n tends to infinity. The problem of determining
the behavior of the brush number for sparser random graphs seems more difficult and
has been discussed in [20].

Another version of the cleaning process was introduced in [15]. In this version,
when a vertex is cleaned multiple brushes are allowed to traverse each dirty edge.
Thus, the brush number B(G) of this generalized version is at most the original one
b(G). As before, one can study the behavior of the degree-greedy algorithm to get
an asymptotically almost sure upper bound on the generalized brush number. It is
clear that there is no point to introduce more brushes in the initial configuration than
is required to continue the process (they can be always introduced later when there
is need for that). Therefore, the same number of brushes is required for the first
(d−1)/2�−1 phases in both original and generalized versions of the process. During
the phase (d− 1)/2� for d even, 2 extra brushes are needed to clean vertex of degree
d/2 + 1 in G[Dt], but vertices of degree d/2 are cleaned “for free.” Since no brush
“gets stuck” during this phase in the original model (exactly one brush traverses each
edge in the generalized one) and vertices in the last phases are cleaned “for free” (in
both models), the upper bounds of the brush numbers are exactly the same. The
situation is different when d is odd. During the phase (d− 1)/2 we can (and should)
move two brushes when a vertex of degree (d− 1)/2 is cleaned and try to save some
brushes, but the following is still open.

Open Problem 4.6.

• Is it true that for G ∈ Gn,d, d even, b(G)−B(G) = o(n) a.a.s.?
• Is it true that for G ∈ Gn,d, d odd, b(G) − B(G) = Θ(n) a.a.s.? How far

apart are they?

REFERENCES

[1] N. Alon, On the edge-expansion of graphs, Combin. Probab. Comput., 6 (1997), pp. 145–152.
[2] N. Alon and F.R.K. Chung, Explicit construction of linear sized tolerant networks, Discrete

Math., 72 (1988), pp. 15–19.
[3] N. Alon and G. Gutin, Properly colored Hamilton cycles in edge colored complete graphs,

Random Structures Algorithms, 11 (1997), pp. 179–186.
[4] N. Alon and V.D. Milman, λ1, isoperimetric inequalities for graphs and superconcentrators,

J. Combin. Theory Ser. B, 38 (1985), pp. 73–88.
[5] N. Alon and J.H. Spencer, The Probabilistic Method, Wiley, New York, 1992 (2nd ed., 2000).
[6] T. Biedl, T. Chan, Y. Ganjali, M. Hajiaghayo, and D. Wood, Balanced vertex–orderings

of graphs, Discrete Appl. Math., 148 (2005), pp. 27–48.
[7] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular

graphs, European J. Combin., 1 (1980), pp. 311–316.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

250 NOGA ALON, PAWE�L PRA�LAT, AND NICHOLAS WORMALD

[8] B. Bollobás, Random graphs, in Combinatorics, London Math. Soc. Lecture Note Ser. 52,
H.N.V. Temperley, ed., Cambridge University Press, Cambridge, 1981, pp. 80–102.

[9] B. Bollobás, The isoperimetric number of random regular graphs, European J. Combin., 9
(1984), pp. 241–244.

[10] J. Friedman, A proof of Alon’s second eigenvalue conjecture, Mem. Amer. Math. Soc., to
appear.

[11] S. Gaspers, M.E. Messinger, R. Nowakowski, and P. Pralat, Parallel cleaning of a network
with brushes, Discrete Appl. Math., submitted.

[12] S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bull. Amer.
Math. Soc. (N.S.), 43 (2006), pp. 439–561.

[13] J.H. Kim and N.C. Wormald, Random matchings which induce Hamilton cycles and Hamil-
tonian decompositions of random regular graphs, J. Combin. Theory Ser. B, 81 (2001),
pp. 20–44.

[14] T. �Luczak, Sparse random graphs with a given degree sequence, in Random Graphs, Vol. 2,
A. Frieze and T. �Luczak, eds., Wiley, New York, 1992, pp. 165–182.

[15] S. McKeil, Chip Firing Cleaning Processes, MSc thesis, Dalhousie University, Halifax, NS,
Canada, 2007.

[16] M.E. Messinger, R.J. Nowakowski, and P. Pra�lat, Cleaning a network with brushes, The-
oret. Comput. Sci., 399 (2008), pp. 191–205.

[17] M.E. Messinger, R.J. Nowakowski, P. Pra�lat, and N. Wormald, Cleaning random d-
regular graphs with brushes using a degree-greedy algorithm, in Combinatorial and Al-
gorithmic Aspects of Networking, Lecture Notes in Comput. Sci. 4852, Springer, Berlin,
Heidelberg, 2007, pp. 13–26.

[18] M.B. Monagan, K.O. Geddes, K.M. Heal, G. Labahn, S.M. Vorkoetter, J. McCarron,

and P. DeMarco, Maple 10 Programming Guide, Maplesoft, Waterloo ON, Canada, 2005.
[19] M. Molloy and B. Reed, The dominating number of a random cubic graph, Random Struc-

tures Algorithms, 7 (1995), pp. 209–221.
[20] P. Pra�lat, Cleaning random graphs with brushes, Australas. J. Combin., to appear.
[21] R.W. Robinson and N.C. Wormald, Almost all cubic graphs are Hamiltonian, Random Struc-

tures Algorithms, 3 (1992), pp. 117–125.
[22] N.C. Wormald, Analysis of greedy algorithms on graphs with bounded degrees, EuroComb ’01

(Barcelona), Discrete Math., 273 (2003), pp. 235–260.
[23] N.C. Wormald, Models of random regular graphs, in Surveys in Combinatorics, 1999, London

Math. Soc. Lecture Note Ser. 276, J.D. Lamb and D.A. Preece, eds., Cambridge University
Press, Cambridge, 1999, pp. 239–298.

[24] N.C. Wormald, The asymptotic connectivity of labelled regular graphs, J. Combin. Theory
Ser. B, 31 (1981), pp. 156–167.

[25] N.C. Wormald, The differential equation method for random graph processes and greedy al-
gorithms, in Lectures on Approximation and Randomized Algorithms, M. Karoński and
H.J. Prömel, eds., PWN, Warsaw, 1999, pp. 73–155.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 251–264

APPROXIMATING THE UNWEIGHTED k-SET COVER PROBLEM:
GREEDY MEETS LOCAL SEARCH∗

ASAF LEVIN†

Abstract. In the unweighted set cover problem we are given a set of elements E = {e1, e2, . . . , en}
and a collection F of subsets of E. The problem is to compute a subcollection SOL ⊆ F such that⋃

Sj∈SOL Sj = E and its size |SOL| is minimized. When |S| ≤ k for all S ∈ F , we obtain the

unweighted k-set cover problem. It is well known that the greedy algorithm is an Hk-approximation
algorithm for the unweighted k-set cover, where Hk =

∑k
i=1

1
i

is the kth harmonic number and that
this bound on the approximation ratio of the greedy algorithm is tight for all constant values of k.
Since the set cover problem is a fundamental problem, there is an ongoing research effort to improve
this approximation ratio using modifications of the greedy algorithm. The previous best improve-
ment of the greedy algorithm is an (Hk − 1

2
)-approximation algorithm. In this paper we present a

new (Hk − 196
390

)-approximation algorithm for k ≥ 4 that improves the previous best approximation
ratio for all values of k ≥ 4. Our algorithm is based on combining a local search during various stages
of the greedy algorithm.

Key words. approximation algorithms, set cover

AMS subject classifications. 68Q25, 68W25, 68W40

DOI. 10.1137/060655225

1. Introduction. In the weighted set cover problem we are given a set of
elements E = {e1, e2, . . . , en} and a collection F of subsets of E, where ∪S∈FS = E
and each S ∈ F has a positive cost cS . The goal is to compute a subcollection
SOL ⊆ F such that

⋃
S∈SOL S = E and its cost

∑
S∈SOL cS is minimized. Such a

subcollection of subsets is called a cover. When we consider instances of the weighted

set cover such that each Sj has at most k elements (|S| ≤ k for all S ∈ F), we obtain
the weighted k-set cover problem. The unweighted set cover problem and
the unweighted k-set cover problem are the special cases of the weighted set

cover and of the weighted k-set cover, respectively, where cS = 1 for all S ∈ F .
It is well known (see [3]) that a greedy algorithm is an Hk-approximation algo-

rithm for the weighted k-set cover, where Hk =
∑k

i=1
1
i is the kth harmonic number

and that this bound is tight even for the unweighted k-set cover problem (see, [13, 17]).
For unbounded values of k, Slav́ık [21] showed that the approximation ratio of the
greedy algorithm for the unweighted set cover problem is lnn− ln lnn+ Θ(1). Feige
[6] proved that unless NP ⊆ DTIME(npolylog n), the unweighted set cover problem
cannot be approximated within a factor (1− ε) lnn for any ε > 0. Raz and Safra [20]
proved that if P �= NP , then for some constant c, the unweighted set cover problem
cannot be approximated within a factor c logn. This result shows that the greedy algo-
rithm is an asymptotically best possible approximation algorithm for the weighted and
unweighted set cover problem (unless NP ⊆ DTIME(npolylog n)). The unweighted
k-set cover problem is known to be NP-complete [14] and MAX SNP-hard for all k ≥ 3
[4, 15, 18]. Another algorithm for the weighted set cover problem by Hochbaum [11]
has an approximation ratio that depends on the maximum number of subsets that

∗Received by the editors March 26, 2006; accepted for publication (in revised form) September 6,
2008; published electronically December 19, 2008.

http://www.siam.org/journals/sidma/23-1/65522.html
†Department of Statistics, The Hebrew University, 91905 Jerusalem, Israel (levinas@mscc.huji.

ac.il).

251

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

252 ASAF LEVIN

contain any given element (the local-ratio algorithm of Bar-Yehuda and Even [2] has
the same performance guarantee). See Paschos [19] for a survey on these results.

In spite of the above bad news, Goldschmidt, Hochbaum, and Yu [8] modified
the greedy algorithm for the unweighted k-set cover and showed that the resulting
algorithm has a performance guarantee of Hk − 1

6 . Halldórsson [9] presented an
algorithm based on a local search that has an approximation ratio of Hk − 1

3 for the
unweighted k-set cover and a (1.4 + ε)-approximation algorithm for the unweighted
3-set cover. Duh and Fürer [5] further improved this result and presented an (Hk− 1

2)-
approximation algorithm for the unweighted k-set cover. We will base our algorithm
on the algorithm of Duh and Fürer [5], and therefore we will review their algorithm
and results in section 2.2. All of these improvements [8, 9, 5] are based on running the
greedy algorithm until each new subset covers at most t new elements (where t = 2
in [8] and larger values of t in [9, 5]) and then switch to another algorithm.

Regarding approximation algorithms for the weighted k-set cover problem within
a factor better than Hk, a first improvement step was given by Fujito and Okumura
[7], who presented an (Hk − 1

12)-approximation algorithm for the k-set cover problem
where the cost of each subset is either 1 or 2. More recently, Hassin and Levin [10]
provided an (Hk− k−1

8k9)-approximation algorithm for the general weighted k-set cover
problem.

The maximum set packing problem is the following related problem: We
are given a set of elements E = {e1, e2, . . . , en} and a collection F of subsets of E,
where ∪S∈FS = E and the goal is to compute a maximum size set packing, i.e.,
a subcollection F ′⊆ F of disjoint subsets. The relation between the maximum set
packing problem and the unweighted set cover problem is that the fractional version of
the maximum set packing problem is the dual linear program of the fractional version
of the unweighted set cover problem. Hurkens and Schrijver [12] proved that a local-
search algorithm for the maximum set packing problem, where each subset in F has
at most k elements, is a (2

k − ε)-approximation algorithm. Therefore, this local-search
algorithm has a better performance guarantee than the greedy selection rule that
returns any maximal subcollection. The greedy selection rule has an approximation
ratio of 1

k .
Paper overview. In section 2 we review the greedy algorithm for the unweighted

minimum k-set cover problem and its analysis, the semilocal optimization algorithm
of [5], and then we present our improved algorithm. We analyze its performance
in section 3, i.e., we show in Theorem 12 that our improved algorithm is an (Hk −
196
390)-approximation algorithm for the unweighted k-set cover problem, where k ≥
4, improving the earlier (Hk − 1

2)-approximation algorithm of [5]. We conclude in
section 4 by discussing open questions.

2. Algorithms for the unweighted k-set cover problem. In subsection 2.1
we review the greedy algorithm for the unweighted minimum k-set cover problem and
its analysis. In subsection 2.2 we review the semilocal optimization algorithm of [5].
In subsection 2.3 we present our improved algorithm.

Given an input to the unweighted k-set cover problem, we let the extended input
be defined over the same set of elements where the collection of subsets of the extended
input is obtained from the input by including every subset of a subset in the input
(i.e., the extended input is the closure of the input under taking subsets). We note
that the extended input can be represented compactly by representing the maximal
(under inclusion) subsets. A solution to the extended input is easily transformed into
a solution for the original input by adding a superset which is included in the input

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATING THE SET COVER PROBLEM 253

of each subset in the solution. This mapping can be maintained while creating the
solution. For simplifying the presentation of the algorithms, we assume that they are
solving the extended input. We also assume that the optimal solution is with respect
to the extended input.

We start our study by stating a simplification lemma on the structure of the
optimal solution.

Lemma 1. Without loss of generality, we may assume that the optimal solution
to the (extended input of) a set cover instance satisfies that each element is covered
by exactly one subset of the optimum.

Proof. Let an optimal solution to the problem consist of a collection of sets S∗
j ,

j ∈ J∗, with ∪j∈J∗S∗
j = E. We now construct another optimal solution formed of

element-disjoint sets S′
j , where S′

j ⊆ S∗
j for all j ∈ J∗. To do that, we assign each

element e ∈ E to the smallest index set S∗
j , j ∈ J∗ that contains e, and, for all values

of j, we let S′
j be the set of elements assigned to S∗

j . In the extended input the sets
S′

j for all j belong to the collection F , and the claim follows.
We define a j-set to be a set with j elements. We fix an optimal solution OPT ,

and we say that a k-set is an optimal k-set if it is contained in OPT .
Given a partial cover C and an algorithm α, let costα(C) be the number of sets

used by Algorithm α applied on the elements left uncovered by C, and let costα,1(C)
be the number of 1-sets among those.

2.1. The greedy algorithm. In this subsection we review the greedy algorithm
for the unweighted k-set cover problem and the proof of its performance guarantee.

The greedy algorithm starts with an empty collection of subsets in the solution
and no element being covered. Then, it iterates the following procedure until all
elements are covered: Let wS be the number of currently uncovered elements in a
set S ∈ F , and the current ratio of S is rS = 1

wS
. Let S∗ be a set such that rS∗ is

minimized. The algorithm adds S∗ to the collection of subsets of the solution, defines
the elements of S∗ as covered, and assigns a price of rS∗ to all the elements that are
now covered but were uncovered prior to this iteration (i.e., the elements that were
first covered by S∗).

Johnson [13], Lovász [17], and Chvátal [3] showed that the greedy algorithm is
an Hk-approximation algorithm for the unweighted k-set cover.

Chvátal’s proof is the following: First, note that the cost of the greedy solution
equals the sum of prices assigned to the elements. Second, consider a set S that
belongs to an optimal solution OPT . Then, OPT pays 1 for S. Consider the elements
of S in the order in which they are covered by the greedy algorithm breaking ties
arbitrarily. When the algorithm covers the ith element of S, the algorithm could,
instead, choose S as a feasible set with a current ratio of 1

|S|−i+1 . Therefore, the price
assigned to the this element is at most 1

|S|−i+1 . It follows that the total price assigned
to the elements of S is at most

∑|S|
i=1

1
|S|−i+1 =

∑|S|
i′=1

1
i′ ≤ Hk, and therefore the

approximation ratio of the greedy algorithm is at most Hk.

2.2. The semilocal optimization algorithm. Duh and Fürer [5] suggested
the following procedure to approximate the unweighted 3-set cover problem. In a pure
local improvement step, we replace a number of sets with fewer sets to form a new cover
with a reduced cost. To define a semilocal step, they observed (see also [8]) that once
the 3-sets are selected, the remaining instance can be solved optimally in polynomial
time by reduction to maximum matching. Hence, to solve the unweighted 2-set cover
instance results after selecting the 3-sets, they invoke the following Algorithm A.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

254 ASAF LEVIN

Algorithm A for solving optimally unweighted 2-set cover instance.

1. Find a maximum matching in the following graph: there is a vertex for each
element, and an edge between two vertices if there is a 2-set consisting of
this pair of elements.

2. Return the set of 2-sets corresponding to the edges of the maximum match-
ing and the 1-sets of the uncovered elements (by the collection of 2-sets
which we found).

Thus a local change in the 3-sets allows any global changes in the 2-sets and 1-sets,
and such a change is called a semilocal change. They allowed the algorithm to remove
one 3-set and insert at most a pair of 3-sets if one of the following happens: either the
total cost is reduced, or the total cost remains the same and the number of 1-sets in
the resulting solution is reduced (thus the total cost is the primary objective, whereas
the number of 1-sets is a secondary objective). This results in the approximation
algorithm (Algorithm B below) for the unweighted k-set cover of [5], which is useful
mainly for k = 3.
Algorithm B for approximating unweighted k-set cover instance.

1. Greedily build a maximal collection C of disjoint sets, where each set in
the collection contains at least three elements.

2. While there are sets C ∈ C and C1, C2 /∈ C such that C′ = (C \ {C}) ∪
{C1, C2} is a collection of disjoint sets, where each set in the collection
contains at least three elements, and such that the following condition
holds:
costA(C′) + |C′| < costA(C) + |C| or (costA(C′) + |C′| = costA(C) + |C| and
costA,1(C′) < costA,1(C)).
Replace C by C′.

3. Apply Algorithm A on the remaining uncovered elements.

They showed that Algorithm B is a 4
3 -approximation algorithm for the unweighted

3-set cover problem. More precisely, the following proposition was proved in [5].
Proposition 2. Assume that an optimal solution for the unweighted 3-set cover

instance has b1 1-sets, b2 2-sets, and b3 3-sets. Then the solution that Algorithm
B returns costs at most b1 + b2 + 4

3b3 (i.e., costB(∅) ≤ b1 + b2 + 4
3b3). Moreover,

the number of 1-sets in the solution that the algorithm returns is at most b1 (i.e.,
costB,1(∅) ≤ b1).

In order to extend their result to a better algorithm for larger values of k, they
suggested the following Algorithm C.
Algorithm C for approximating unweighted k-set cover instance.

1. Greedy Phase. For j = k down to 6 do:
greedily choose a maximal collection of disjoint j-sets (each covering exactly
j new elements).

2. Restricted Phase. For j = 5 down to 4 do:
choose a maximal collection of disjoint j-sets (each covering exactly j new
elements) with the restriction that the choice of these j-sets does not in-
crease the number of 1-sets. That is, we add a j-set to the current collection
of disjoint j-sets C and create a new collection of disjoint j-sets C′ only if
costB,1(C) ≤ costB,1(C′).

3. Semilocal Optimization Phase. Run the semilocal optimization al-
gorithm (i.e., Algorithm B) on the remaining instance of the uncovered
elements.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATING THE SET COVER PROBLEM 255

Duh and Fürer proved that this algorithm is an (Hk − 1
2)-approximation, and

they also showed that this bound is tight for the semilocal optimization algorithm.

2.3. The improved algorithm. In this section we present our modification of
the semilocal optimization algorithm where we use a local-search algorithm during
the phase where each new set covers exactly four previously uncovered elements.
Algorithm D for approximating unweighted k-set cover instance—the

improved algorithm.

1. Greedy Phase. For j = k down to 6 do:
greedily choose a maximal collection of disjoint j-sets (each covering exactly
j new elements).

2. Restricted Phase. Choose a maximal collection of disjoint 5-sets (each
covering exactly five new elements) with the restriction that the choice of
these 5-sets does not increase the number of 1-sets. That is, we add a 5-set
to the current collection of disjoint 5-sets C and create a new collection of
disjoint 5-sets C′ only if costB,1(C) ≤ costB,1(C′).

3. Restricted Local-Search Phase.
(a) Choose a maximal collection of disjoint 4-sets (each covering exactly

four new elements) with the restriction that the choice of these 4-sets
does not increase the number of 1-sets. That is, we add a 4-set to the
current collection of disjoint 4-sets C and create a new collection of
disjoint 4-sets C′ only if costB,1(C) ≤ costB,1(C′).

(b) While there are 4-sets C ∈ C and C1, C2 /∈ C such that C′ = (C\{C})∪
{C1, C2} is a collection of disjoint 4-sets and such that costB,1(C′) ≤
costB,1(C), replace C by C′.

4. Semilocal Optimization Phase. Run the semilocal optimization al-
gorithm (i.e., Algorithm B) on the remaining instance of the uncovered
elements.

In Phase 3 we are using a local-search whose neighborhood is defined by removing
one 4-set and inserting at least a pair of 4-sets as long as the number of 1-sets in the
returned solution does not increase. The use of a local-search procedure is motivated
by the approximation algorithm of [12] for the maximum set packing problem. That
is, throughout the restricted phase (of Algorithm C), we try to maximize the number
of sets in the collection of disjoint subsets that we add for a fixed value of the index j.
Since a local search has proved to be superior heuristic for this task (with respect to
its approximation ratio for this set packing problem), we suggest to replace the greedy
construction for j = 4 in Algorithm C by the local-search approach. This improved
phase is the cornerstone on which our improved approximation ratio is based.

To establish the time complexity of Algorithm D, we first note that Algorithm
A is polynomial as it applies a maximum (cardinality) matching algorithm with time
complexity O(n3). Hence, Algorithm B is also a polynomial time algorithm, as each
iteration can be executed by trying all O(m3) triplets of sets and trying to increase the
collection C with these sets. Such a test (for a given triplet of sets) is done in O(n3) by
application of Algorithm A. Since the number of iterations of this loop of finding an
increased collection of sets is bounded by n/3, the total time complexity of Algorithm
B is O(m3n4), that is, polynomial in the input length. Now consider Algorithm D.
The time complexity of the greedy phase is O(mn) per value of j and there are at
most k−5 < n such values, and hence the greedy phase takes O(mn2). Regarding the
restricted phase, there are O(m) sets to be considered, and each of them is tested by
the application of Algorithm B, and hence this phase takes O(m4n4). The restricted

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

256 ASAF LEVIN

Fig. 1. A demonstration of the instance I′ for k = 5 in the proof of Lemma 4. Each circle
represents a new element, and each dashed oval represent a new k-set, which is included only in I′
and not in the copies of I.

local-search phase is also polynomial as the number of 4-sets is O(m), and each time
we try to increase the number of 4-sets in C, we try O(m3) triplet of 4-sets, and such
a check is carried by running Algorithm B. Since the number of such iterations is
bounded by n/4, we get time complexity of O(m6n5) for this phase. The remaining
part of the algorithm is a single execution of Algorithm B. Hence, the total time
complexity of Algorithm D is O(m6n5), that is, polynomial, and it returns a feasible
solution. Therefore, we establish the following lemma.

Lemma 3. For every value of k, Algorithm D returns a feasible solution in
polynomial time.

In the next section we analyze the performance guarantee of Algorithm D.

3. The analysis of Algorithm D. In this section we analyze the performance
guarantee of Algorithm D. We say that an element is an i-covered element if Algo-
rithm D covers it by an i-set. We consider an optimal solution OPT and bound the
performance guarantee of D. Recall that we assume that OPT is a partition of the
element set E. We now further characterize the structure of OPT .

Lemma 4. If k ≥ 5, then without loss of generality we can assume that each set
of OPT is a k-set. If k = 4, then without loss of generality we can assume that each
set of OPT is either a 3-set or a 4-set.

Proof. Assume that the claim does not hold on an instance I. We create a
new instance I ′ such that the optimal solution OPT ′ for I ′ costs k times the cost
of OPT , and the solution returned by D on I ′ costs more than k times the solution
returned by Algorithm D on I, and we will conclude that if there is a bad example
for the algorithm, then there is a bad example for the algorithm that shows the same
approximation ratio such that the property of the lemma holds.

To construct I ′ for k ≥ 5, we first take k disjoint copies of the instance I. Then, we
add new elements to the copies of the sets of OPT so that each set in this subcollection
is a k-set. Note that the number of the new elements is divisible by k. Last, we add
new disjoint k-sets covering these new elements. This is the new instance I ′ (see
Figure 1 for an illustration).

Clearly, the optimal solution OPT ′ for I ′ is a union of k copies of OPT where
we add the new elements to their corresponding set to make it a k-set. Hence, OPT ′

costs exactly k times the cost of OPT .
Now consider the execution of Algorithm D on the input I ′. We can assume that

the algorithm picks the new k-sets of the new elements in its first steps and then

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATING THE SET COVER PROBLEM 257

continue like it acts on I on each of the k copies of I. Therefore, the cost of the
solution returned by D on I ′ is strictly larger than k times the cost of the solution
returned by D on I.

Thus the ratio D(I′)
OPT ′ is larger than the ratio D(I)

OPT , where D(I ′) and D(I) denote
the cost of the solution returned by Algorithm D on instance I ′ and I, respectively. So
the approximation ratio of Algorithm D can be computed by looking only at instances
of the form of I ′, which satisfy the assumption of the lemma.

Now assume that k = 4. We apply a similar construction to the case of k ≥ 5,
with one difference. That is, we no longer add new elements to the copies of the 3-sets
of OPT , and we make sure that each 4-set of new elements that we add has at most
one new element from each set of OPT ′. Once again, the cost of OPT ′ is exactly k
times the cost of OPT . Now, the set of 4-sets of the new elements together with the
copies of the original 4-sets returned by the Restricted Local-Search Phase on each
copy of I, gives a feasible collection of 4-sets that cannot be extended. To see this last
claim, note that, by deleting one 4-set of the new elements, none of the 4-sets which
intersect it becomes disjoint to all other selected 4-sets. Hence, we can apply the same
argument as in the case of k ≥ 5. Therefore, the cost of the solution returned by D
on I ′ is strictly larger than k times the cost of the solution returned by D on I.

Thus the ratio D(I′)
OPT ′ is larger than the ratio D(I)

OPT , where D(I ′) and D(I) denote
the cost of the solution returned by Algorithm D on instance I ′ and I, respectively. So
the approximation ratio of Algorithm D can be computed by looking only at instances
of the form of I ′, which satisfy the assumption of the lemma.

3.1. Sibling sets. We consider special 2-sets and 3-sets that are named sibling
sets defined as follows (see [5] for introduction of this term): a sibling set is a 2-set
or a 3-set S chosen by Algorithm D during the semilocal optimization phase, which
intersects exactly two k-sets O1, O2 of OPT such that |S ∩O1| = 1 and S ∩O1 is the
last element which is covered by Algorithm D. If this condition holds for both O1 and
O2, this sibling set is called a special sibling set.

A sibling set is the result of the fact that the Semilocal Optimization Phase of
Algorithm D does not create a new singleton, and therefore if an optimal k-set has
k − 1 covered elements at the end of Restricted Local-Search Phase of Algorithm D
out of which at least one is either a 5-covered element or a 4-covered element, then
the last element belongs to at least a 2-set (and is not a singleton).

The element of a sibling set S which is the last uncovered element of an optimal k-
set, that is, the element of S∩O1, is called a primary element, and the other elements
of S are called secondary elements. An element of a sibling set is called a sibling
element. An element which is covered during phase 4 and is not a sibling element is
called a nonsibling element.

Lemma 5. If a k-set S of OPT has a primary element, then all its elements
which are covered during the Semilocal Optimization Phase are sibling elements.

Proof. Assume that e is a primary element in S which belong to a sibling set
S′, and there is a nonsibling element in S which is covered during the Semilocal
Optimization Phase. We note that Algorithm A could match e with its mates in S
which are not sibling elements, without creating new singletons. Hence, the secondary
elements of S′ could be used during the Restricted Phase or the Local-Search Phase.
Hence, S′ is not a sibling set.

3.2. Good and bad sets. We next partition the k-sets of OPT into bad sets
and good sets. Let S be an optimal k-set. If k ≥ 5, we say that S is a bad set if one of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

258 ASAF LEVIN

Fig. 2. A demonstration of bad sets in the case k = 5.

the following holds: Either at the end of Greedy Phase, S has exactly five uncovered
elements from which exactly one element is 5-covered, exactly one is 4-covered, and
none of the three remaining elements are sibling elements, or at the end of the Greedy
Phase, S has exactly five uncovered elements from which none of the elements of S
are 5-covered, exactly one 4-covered element, and exactly one element of S is a sibling
element. We refer to Figure 2 for an illustration of this definition of a bad set.

If k = 4, then S is a bad set if exactly one of its elements is a 4-covered element
and the other three elements are nonsibling elements. An optimal k-set that is not
bad is a good set.

We next show that the proportion of good sets in OPT is not negligible. Denote
by nb the number of bad sets in OPT and by ng the number of good sets in OPT .

Lemma 6. nb ≤ 12ng.
Proof. Consider a bad set S in OPT . At the beginning of phase 3, S has four

uncovered elements such that none of these belong to a sibling set. Since S is a bad
set, there is exactly one 4-covered element in S. Let S′ be the set intersecting S, which
is chosen by the algorithm in phase 3. If S′ intersects only bad sets of OPT , then
during phase 3 we could replace S′ by the bad sets it intersects, and such a change is
feasible because each such bad set has four elements that consist of a 4-set that we
could add to the solution after the removal of S′, without increasing the number of
singletons. Hence, there is a good set S′′ ∈ OPT such that S′′ ∩ S′ �= ∅.

A good set S ∈ OPT can intersect at most four sets that we choose during
phase 3. These four sets can intersects at most 12 other sets of OPT . These 12 sets
might be bad sets. Therefore, the claim follows.

3.3. The pricing mechanism. Consider an element e, the price assigned to e
which we denote by price(e), is defined as follows.

• If e is an i-covered element where i ≥ 4, then price(e) = 1
i .

• If e is a member of a special sibling set, then price(e) = 1
2 .

• If e is a primary element of a sibling set, then price(e) = 4
5 , and if e is a

secondary element, then price(e) = 1
5 .

• If e is a nonsibling element which is covered during phase 4, we assign its
prices according to the value of n(e), which denotes the number of nonsibling
elements in the k-set of OPT which covers e:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATING THE SET COVER PROBLEM 259

– If n(e) = 3, then price(e) = 4
9 .

– If n(e) = 2, then price(e) = 1
2 .

– If n(e) = 1 and at the end of the Greedy Phase there are at least two un-
covered elements in the optimal k-set which covers e, then price(e) = 1

2 .
– Otherwise, that is, if price(e) is not already set by the previous cases,

then price(e) = 1.
Note that if n(e) = 1 and at the end of the Greedy Phase there are at least two un-

covered elements in the optimal k-set which covers e, then the other uncovered element
at the end of the Greedy Phase is not a primary element of a nonspecial sibling set.

Lemma 7. The cost of the solution returned by Algorithm D is at most the total
price of all the elements.

Proof. We clearly assigned a total of a unit price for each selected set in phases 1,
2, and 3, and for sibling sets that the algorithm selects.

As for the other sets, we denote by b3(OPT) the number of k-sets of OPT , with
exactly three nonsibling elements, and we denote by b2(OPT) the number of k-sets
of OPT , with exactly two nonsibling elements. By Proposition 2, the number of
the nonsibling sets that the algorithm selects during phase 4 is at most 4

3 b3(OPT) +
b2(OPT), that is, the total price of the nonsibling elements.

3.4. Bounding the total price assigned to the elements of an optimal
k-set. For a set of items S, we denote by price(S) the total price assigned to the
elements of S.

Lemma 8. Assume that k ≥ 4. Let S be an optimal bad k-set. Then, price(S) ≤
ρb = Hk − 1

2 .
Proof. If k ≥ 5, then the jth covered element from S during the Greedy Phase

is assigned a price of at most 1
k−j+1 , the 5-covered element is assigned a price of 1

5

(if it exists), the sibling element is assigned a price of 1
5 (if it exists), the 4-covered

element is assigned a price of 1
4 , and each of the remaining three elements is assigned

a price of 4
9 . Hence, price(S) ≤∑k

i=6
1
i + 1

5 + 1
4 +3 4

9 = Hk− 1
2 = ρb. If k = 4, then S

has a single 4-covered element that pays a price of 1
4 , and each of the three remaining

elements is assigned a price of 4
9 . So again price(S) = Hk − 1

2 = ρb.
Before bounding the total price assigned to an optimal good k-set, we bound the

total price of the items covered during the Semilocal Optimization Phase of an optimal
k-set. These bounds will be used later in the upper bound proof of the total price
assigned to an optimal good k-set. We denote by Ng the number of the elements of
S that remain uncovered at the end of Greedy Phase. Note that Ng ≤ 5. We denote
by Nr (Nl) the number of the elements of S that are covered during the Restricted
Phase (the Restricted Local-search Phase). We denote by Ns the number of sibling
elements of S that are covered during the Semilocal Optimization Phase. We denote
by Nn the number of nonsibling elements of S that are covered during the Semilocal
Optimization Phase. Then, Ns +Nn = Ng− (Nr +Nl) is the number of elements of S
which are covered during the Semilocal Optimization Phase. Let S′ be the subset of
S consisting of the elements covered during the Semilocal Optimization Phase. The
following lemma bound price(S′) as a function of Ns +Nn = |S′|.

Lemma 9.

1. If Ns +Nn = 5, then price(S′) ≤ 26
15 .

2. If Ns +Nn = 4, then price(S′) ≤ 23
15 .

3. If Ns +Nn = 3, then price(S′) ≤ 4
3 .

4. If Ns +Nn = 2, then price(S′) ≤ 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

260 ASAF LEVIN

5. If Ns +Nn = 1 and Ng ≥ 2, then price(S′) ≤ 4
5 .

6. If Ns +Nn = 1 and Ng = 1, then price(S′) ≤ 1.
Proof. Assume that Ns + Nn = 5. Then, since S′ and each of its 4-subsets are

candidates to be added to the collection of disjoint 4-sets during the Restricted Local-
Search Phase and we choose not to add them, we conclude that at least two elements of
S′ are sibling elements, i.e., Ns ≥ 2. If one of the elements of S′ is a primary element,
then all other elements in S′ are secondary elements, and price(S′) = 4

5+ 1
5+ 1

5+ 1
5+ 1

5 <
26
15 . Otherwise, all sibling elements of S′ are secondary elements, and each of these
pays 1

5 .
• If Ns = 2, then each of the nonsibling element of S′ pays 4

9 , and hence
price(S′) = 3 · 4

9 + 2 · 1
5 = 26

15 .
• If Ns = 3, then each of the nonsibling element of S′ pays 1

2 , and hence
price(S′) = 2 · 1

2 + 3 · 1
5 <

26
15 .

• If Ns = 4, then the unique nonsibling element of S′ pays 1
2 , and hence

price(S′) = 1 · 1
2 + 4 · 1

5 <
26
15 .

• If Ns = 5, then price(S′) = 5 · 1
5 <

26
15 .

This completes the proof of part 1 of Lemma 9.
Next assume that Ns +Nn = 4. Then, since S′ is a candidate to be added to the

collection of disjoint 4-sets during the Restricted Local-Search Phase and we choose
not to add it, we conclude that at least one element of S′ is a sibling element, i.e.,
Ns ≥ 1. If one of the elements of S′ is a primary element, then all other elements
in S′ are secondary elements, and price(S′) = 4

5 + 3 · 1
5 <

23
15 . Otherwise, all sibling

elements of S′ are secondary elements, and each of these pays 1
5 .

• If Ns = 1, then each of the nonsibling element of S′ pays 4
9 , and hence

price(S′) = 3 · 4
9 + 1 · 1

5 = 23
15 .

• If Ns = 2, then each of the nonsibling element of S′ pays 1
2 , and hence

price(S′) = 2 · 1
2 + 2 · 1

5 <
23
15 .

• If Ns = 3, then the unique nonsibling element of S′ pays 1
2 , and hence

price(S′) = 1 · 1
2 + 3 · 1

5 <
23
15 .

• If Ns = 4, then price(S′) = 4 · 1
5 <

23
15 .

This completes the proof of part 2 of Lemma 9.
Next assume that Ns +Nn = 3. If one of the elements of S′ is a primary element,

then all other elements in S′ are secondary elements, and price(S′) = 4
5 + 2 · 1

5 <
4
3 .

Otherwise, all sibling elements of S′ are secondary elements, and each of these pays 1
5 .

• If Ns = 0, then each element of S′ pays 4
9 , and hence price(S′) = 3 · 4

9 = 4
3 .

• If Ns = 1, then each of the nonsibling element of S′ pays 1
2 , and hence

price(S′) = 2 · 1
2 + 1

5 <
4
3 .

• If Ns = 2, then the unique nonsibling element of S′ pays 1
2 , and hence

price(S′) = 1 · 1
2 + 2 · 1

5 <
4
3 .

• If Ns = 3, then price(S′) = 3 · 1
5 <

4
3 .

This completes the proof of part 3 of Lemma 9.
Next assume that Ns +Nn = 2. If one of the elements of S′ is a primary element,

then the other element in S′ is a secondary element, and price(S′) = 4
5 + 1

5 = 1.
Otherwise, all sibling elements of S′ are secondary elements, and each of these pays 1

5 .
• If Ns = 0, then each element of S′ pays 1

2 , and hence price(S′) = 2 · 1
2 = 1.

• If Ns = 1, then the unique nonsibling element of S′ pays 1
2 , and hence

price(S′) = 1 · 1
2 + 1 · 1

5 < 1.
• If Ns = 2, then price(S′) = 2 · 1

5 < 1.
This completes the proof of part 4 of Lemma 9.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATING THE SET COVER PROBLEM 261

Finally, we assume that Ns + Nn = 1. If Ng ≥ 2, then we did not assign this
element a unit price, and hence we assign it at most 4

5 , which is the maximum price of
an element excluding one. If Ng = 1, the claim is trivial as every element is assigned
at most a unit of price. This completes the proof of parts 5 and 6 of Lemma 9.

Lemma 10. If Ng = 5 and Nr ≤ 1 , then S has an element that pays exactly 1
5 .

Proof. By the maximality of the sets that we choose during the Restricted Phase,
we conclude that if Nr = 0, then S has a secondary element. In both cases, S has an
element that pays 1

5 .
Lemma 11. Assume that k ≥ 4. Let S be an optimal good k-set. Then,

price(S) ≤ ρg = Hk − 16
30 .

Proof. Our proof is based on a detailed case analysis. These cases are according
to the values of k (either four or at least five), Ng, Nr, Nl, and Ns +Nn.

First assume that k = 4. Then, the Greedy Phase and the Restricted Phase do
not select sets, and therefore Ng = 4 and Nr = 0.

• Assume thatNl = 4. Then, each element of S is covered during the Restricted
Local-Search Phase and pays a price of 1

4 . Therefore, price(S) = 1 < H4 −
16
30 = ρg.

• Assume that Nl = 3. Then, each element of S which is covered during
Restricted Local-Search Phase pays a price of 1

4 , and, by Lemma 9, the re-
maining element pays a price of at most 4

5 . Therefore, price(S) ≤ 3
4 + 4

5 =
93
60 = 125

60 − 32
60 = H4 − 16

30 = ρg.
• Assume that Nl = 2. Then, each element of S which is covered during

Restricted Local-Search Phase pays a price of 1
4 . By Lemma 9, the two

remaining elements pay a total price of at most 1. Thus, price(S) ≤ 3
2 < ρg.

• Assume that Nl = 1. Then, the element of S which is covered during Re-
stricted Local-Search Phase pays a price of 1

4 . Since S is a good set, it contains
at least one element that belongs to a sibling set that pays 1

5 (since Nl = 1,
it is not the primary element). The other two elements of S have a total
price of at most max{2 · 1

2 , 1 · 1
2 + 1 · 1

5 ,
4
5 + 1

5 , 2 · 1
5} = 1 (the arguments of

the maximum are according to the number of sibling elements). Therefore,
price(S) ≤ 1

4 + 1
5 + 1 = 87

60 <
93
60 = ρg.

• Assume that Nl = 0. By Lemma 9, price(S) ≤ 23
15 < ρg.

It remains to consider the case where k ≥ 5. First note that, by the greedy
selection rule during the greedy phase, we conclude that Ng ≤ 5. Moreover, the jth
covered element from S during the greedy phase (for 1 ≤ j ≤ k−5) is assigned a price
of at most 1

k−j+1 . So, the first k−5 elements which are covered by the algorithm pay
a total price of at most Hk −H5.

• Assume that Ng ≤ 2. Then, the k−4th, the k−3rd, and the k−2nd covered
elements from S are covered during the Greedy Phase and therefore assigned
a price of at most 1

6 for each. The last two elements of S are assigned a total
price of at most max{2 · 1

4 ,
4
5 + 1

4 , 1} = 21
20 (the arguments of the maximum

are according to the value of Nl). Therefore, price(S) ≤ Hk −H5 + 3
6 + 21

20 =
Hk −H5 + 31

20 = Hk − 137
60 + 93

60 = Hk − 44
60 < ρg.

• Assume that Ng = 3. Then, the k − 4th and the k − 3rd covered elements
from S are covered during the Greedy Phase and therefore assigned a price
of at most 1

6 for each.
– If Nr +Nl = 0, then the last three elements of S are covered during the

Semilocal Optimization Phase and, by Lemma 9, pay a total price of at
most 4

3 . Therefore, price(S) ≤ Hk − H5 + 2
6 + 4

3 = Hk − 137
60 + 5

3 =

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

262 ASAF LEVIN

Hk − 37
60 < ρg. Note that in the remaining cases (of Nr +Nl), it suffices

to show that the last three elements of S pay a total price of at most 4
3 .

– If Nr +Nl = 1, then the last two elements of S are covered during the
Semilocal Optimization Phase and, by Lemma 9, pay a total price of at
most 1. The k−2nd element of S is covered during either the Restricted
Phase or the Restricted Local-Search Phase, and so it pays a price of at
most 1

4 . Therefore, the last three elements of S pay a total price of at
most 5

4 <
4
3 , and again price(S) < ρg.

– If Nr +Nl = 2, then, by Lemma 9, the last uncovered element pays at
most 4

5 . The k−2nd and the k−1st covered elements from S are covered
during either the Restricted Phase or the Restricted Local-Search Phase,
and therefore each of these is assigned a price of at most 1

4 . Again,
the last three elements of S pay at most 4

5 + 2
4 < 4

3 , and therefore
price(S) < ρg.

– If Nr +Nl = 3, then each of the last three elements of S pays a price of
at most 1

4 , and, in total, they pay less than 4
3 . Therefore, price(S) < ρg.

• Assume that Ng = 4. Then, the k − 4th covered element from S is covered
during the Greedy Phase and therefore pays a price of at most 1

6 , and the
set of elements from S that are covered during the Greedy Phase pays a
total price of at most Hk − H5 + 1

6 . By Lemma 9, if Nl = Nr = 0, then
price(S) ≤ Hk − H5 + 1

6 + 23
15 = Hk − 137

60 + 102
60 < ρg. Otherwise, there

is at least one element which is covered during the Restricted Phase or the
Restricted Local-Search Phase, and hence it pays at most 1

4 . The other
three elements pay a total price of at most max{ 4

3 , 1 + 1
4 ,

4
5 + 2

4 ,
3
4} = 4

3 (the
arguments of the maximum are according to the value of Nl). Therefore,
price(S) ≤ Hk −H5 + 1

6 + 1
4 + 4

3 = Hk − 137
60 + 105

60 = Hk − 32
60 = ρg.

• Assume that Ng = 5. Then, the set of elements from S that are covered
during the Greedy Phase pays a total price of at most Hk −H5. Each of the
elements of S that is covered during Phase 3 pays a price of 1

4 .
– Assume that Nr = Nl = 0. By Lemma 9, price(S) ≤ Hk −H5 + 26

15 =
Hk − 137

60 + 104
60 = Hk − 33

60 < ρg.
– Assume that Nr = 1 and Nl = 0. The element of S that is covered

during the Restricted Phase pays a price of 1
5 . By Lemma 9, price(S) ≤

Hk −H5 + 1
5 + 23

15 = Hk − 33
60 < ρg.

– Assume that Nr ≥ 2. The elements of S that are covered during the
Restricted Phase pay a price of 1

5 each. The last three elements pay a
total price of at most max{ 4

3 ,
1
4 + 1, 2 · 1

4 + 4
5 , 3 · 1

4} = 4
3 (the arguments

of the maximum are according to the value of Ns + Nn). Therefore,
price(S) ≤ Hk −H5 + 2

5 + 4
3 = Hk − 33

60 < ρg.
– Assume that Nr ≤ 1 and Nl = 1. Since S is a good set, we conclude

that either Nr = 1 and S has an element that belongs to a sibling set, or
S has at least two elements that belong to sibling sets. The element of S
that is covered during the Restricted Phase (if it exists) pays a price of
1
5 , the element of S that is covered during the Restricted Local-Search
Phase pays a price of 1

4 , and each secondary element of S pays 1
5 . The

two last remaining elements have a total price of at most 1. Therefore,
price(S) ≤ Hk −H5 + 1

5 + 1
4 + 1

5 + 1 = Hk − 137
60 + 99

60 = Hk − 38
60 < ρg.

– Assume that Nr ≤ 1 and Nl = 2. By Lemma 10, S has an element
that pays 1

5 . The two remaining elements which are covered during the
Semilocal Optimization Phase pay a total price of at most 1. Therefore,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

APPROXIMATING THE SET COVER PROBLEM 263

price(S) ≤ Hk −H5 + 1
5 + 2

4 + 1 = Hk − 137
60 + 102

60 = Hk − 35
60 < ρg.

– Assume that Nr ≤ 1 and Nl = 3. By Lemma 10, S has an element
that pays 1

5 . By Lemma 9, the element which is covered during the
Semilocal Optimization Phase pays at most 4

5 . Therefore, price(S) ≤
Hk −H5 + 1

5 + 3
4 + 4

5 = Hk − 137
60 + 105

60 = Hk − 32
60 = ρg.

– Assume that Nr ≤ 1 and Nl = 4. By Lemma 10, S has an element that
pays 1

5 . Therefore, price(S) ≤ Hk − H5 + 1
5 + 4

4 = Hk − 137
60 + 72

60 =
Hk − 65

60 < ρg.

3.5. Proving the approximation ratio of Algorithm D.
Theorem 12. Algorithm D is an (Hk − 196

390)-approximation algorithm for the
unweighted k-set cover problem.

Proof. By Lemma 3, the algorithm returns a feasible solution in polynomial time.
It remains to establish its approximation ratio.

D ≤ ng · ρg + nb · ρb

= ng ·
(
Hk − 16

30

)
+ nb ·

(
Hk − 1

2

)

≤ (ng + nb) ·
[

1
13
·
(
Hk − 16

30

)
+

12
13
·
(
Hk − 1

2

)]

= OPT ·
[

1
13
·
(
Hk − 16

30

)
+

12
13
·
(
Hk − 1

2

)]

= OPT ·
(
Hk − 196

390

)
,

where the first inequality follows by Lemma 7, the first equation follows by Lemma
8 and Lemma 11, the second inequality follows by Lemma 6, the second equation
follows because the cost of OPT is exactly nb + ng, and the last equation follows by
simple algebra.

4. Concluding remarks. In this paper we addressed the fundamental problem
of the unweighted k-set cover problem and introduced an improvement over the pre-
viously best known algorithm for all values of k such that k ≥ 4. Although we obtain
a small improvement over the algorithm of Duh and Fürer [5], we think that our
analysis is not tight, and the approximation ratio of our algorithm can be improved.
Improving the analysis of our Algorithm D is left for future research.

In this paper we showed that incorporating a local-search procedure in various
stages of the greedy algorithm, instead of only where each set has at most three
uncovered elements, provides a better approximation ratio. We conjecture that incor-
porating local-search procedures in each greedy phase decreases the approximation
ratio further. Such an algorithm replaces the Greedy phase by the following phase.

Improved Phase. For j = k, k− 1, k− 2, . . . , 6 do: apply local-search to choose
an approximated maximum size collection of j-sets (each covering exactly j new ele-
ments).

It is easily noted that using the Improved Phase instead of the Greedy Phase
in Algorithm D does not harm the approximation ratio of the resulting algorithm.
We leave the analysis of this improved algorithm for future research. Following an
extended abstract version of this paper [16], Athanassopoulos, Caragiannis, and Kak-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

264 ASAF LEVIN

lamanis [1] showed that this improved step indeed improves the approximation ratio
of the resulting algorithm.

REFERENCES

[1] S. Athanassopoulos, I. Caragiannis, and C. Kaklamanis, Analysis of approximation algo-
rithms for k-set cover using factor-revealing linear programs, in Proceedings of FCT 2007,
Budapest, Hungary, 2007, pp. 52–63.

[2] R. Bar-Yehuda and S. Even, A linear time approximation algorithm for the weighted vertex
cover problem, J. Algorithms, 2 (1981), pp. 198–203.

[3] V. Chvátal, A greedy heuristic for the set-covering problem, Math. Oper. Res., 4 (1979),
pp. 233–235.

[4] P. Crescenzi and V. Kann, A Compendium of NP Optimization Problems, http://www.nada.
kth.se/theory/problemlist.html.

[5] R. Duh and M. Fürer, Approximation of k-set cover by semi local optimization, in Proceedings
of the 29th Annual ACM STOC 1997, El Paso, TX, 1997, pp. 256–264.

[6] U. Feige, A threshold of ln n for approximating set cover, J. ACM, 45 (1998), pp. 634–652.
[7] T. Fujito and T. Okumura, A modified greedy algorithm for the set cover problem with weights

1 and 2, in Proceedings of ISAAC 2001, Christchurch, New Zealand, 2001, pp. 670–681.
[8] O. Goldschmidt, D. S. Hochbaum, and G. Yu, A modified greedy heuristic for the set cover-

ing problem with improved worst case bound, Inform. Process. Lett., 48 (1993), pp. 305–310.
[9] M. M. Halldórsson, Approximating k set cover and complementary graph coloring, in Pro-

ceedings of IPCO 1996, Vancouver, BC, 1996, pp. 118–131.
[10] R. Hassin and A. Levin, A better-than-greedy approximation algorithm for the minimum set

cover problem, SIAM J. Comput., 35 (2005), pp. 189–200.
[11] D. S. Hochbaum, Approximation algorithms for the set covering and vertex cover problems,

SIAM J. Comput., 11 (1982), pp. 555–556.
[12] C. A. J. Hurkens and A. Schrijver, On the size of systems of sets every t of which have an

SDR, with an application to the worst-case ratio of heuristics for packing problems, SIAM
J. Discrete Math., 2 (1989), pp. 68–72.

[13] D. S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System
Sci., 9 (1974), pp. 256–278.

[14] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-
tations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85–103.

[15] S. Khanna, R. Motwani, M. Sudan, and U. V. Vazirani, On syntactic versus computational
views of approximability, SIAM J. Comput., 28 (1998), pp. 164–191.

[16] A. Levin, Approximating the unweighted k-set cover problem: Greedy meets local search, in
Proceedings of WAOA 2006, Zurich, 2006, pp. 290–301.

[17] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Math., 13 (1975),
pp. 383–390.

[18] C. H. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity
classes, J. Comput. System Sci., 43 (1991), pp. 425–440.

[19] V. T. Paschos, A survey of approximately optimal solutions to some covering and packing
problems, ACM Comput. Surveys, 29 (1997), pp. 171–209.

[20] R. Raz and S. Safra, A sub-constant error-probability low-degree test, and sub-constant error-
probability PCP characterization of NP, in Proceedings of the 29th Annual ACM STOC
1997, El Paso, TX, 1997, pp. 475–484.

[21] P. Slav́ık, A tight analysis of the greedy algorithm for set cover, J. Algorithms, 25 (1997),
pp. 237–254.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 265–277

ASYMPTOTIC BOUNDS ON THE INTEGRITY OF GRAPHS AND
SEPARATOR THEOREMS FOR GRAPHS∗

D. BENKO† , C. ERNST‡ , AND D. LANPHIER‡

Abstract. In this paper we study the integrity of certain graph families. These include planar
graphs, graphs with a given genus, graphs on the d-dimensional integer lattice Zd, and graphs that
have no Kh-minor. We give upper bounds for the integrity in terms of the order n of the graph. We
also give lower bounds for box-graphs in Z

d. As a consequence, the integrity of planar graphs is on
the order of n2/3, where 2/3 is the best possible exponent.

Key words. integrity, planar graphs, lattice graphs, separators

AMS subject classification. Primary, 57M25

DOI. 10.1137/070692698

1. Introduction. The integrity of a finite graph G is

I(G) = min
S⊂V (G)

(|S|+ τ(G \ S)
)
,

where τ(G \ S) denotes the size of the largest component of G \ S. The integrity can
be thought of as a measurement of connectivity of a graph. |S| measures the amount
of work needed to damage or disconnect a graph, while τ(G \ S) is a measure of how
much of the graph is still intact. The integrity is the sum of these two quantities
and was first introduced by Barefoot, Entringer, and Swart [4] inspired by the idea
to measure a computer network’s vulnerability.

Throughout this paper we assume that G is a graph with n vertices. It is easy to
see that for the complete graph Kn, we have I(Kn) = n, and there are examples of
simple, regular graphs with integrity of the order of nα for any 0 ≤ α ≤ 1. However,
the exact integrity of a given graph is difficult to compute. In fact, only for very
simple graph families is the exact integrity known, so even establishing upper bounds
for the integrity of large graph families is a worthwhile goal. See [3] and [8] for further
information about the integrity of graphs.

A graph H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges. An H-minor of G is a minor of G isomorphic to H . The genus
g of a graph G is the smallest genus of all surfaces (compact orientable 2-manifolds)
on which G can be properly embedded. In this paper we show that the integrity of
graphs with no Kh-minor is O(n2/3), where h ≥ 3 is fixed. We give explicit upper
bounds with particular attention to the case of planar graphs. The key property is
that such graphs possess separator theorems of the form found in [1, 2, 5, 6, 7, 9]; see
also section 2.

Our main results are Theorems 1.1, 1.2, 1.3, and 1.4 below.

∗Received by the editors May 22, 2007; accepted for publication (in revised form) May 17, 2008;
published electronically January 7, 2009. This work is partially supported by NSF grant DMS-
0712997.

http://www.siam.org/journals/sidma/23-1/69269.html
†University of South Alabama, Mobile, AL 36617 (dbenko@jaguar1.usouthal.edu).
‡Department of Mathematics, Western Kentucky University, Bowling Green, KY 42101 (claus.

ernst@wku.edu, dominic.lanphier@wku.edu).

265

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

266 D. BENKO, C. ERNST, AND D. LANPHIER

Theorem 1.1. Let G be a graph of order n with no Kh-minor for fixed h ≥ 3.
Then for n ≥ 119h3,

I(G) ≤ 10.9hn2/3 − 13.1h3/2n1/2.

Theorem 1.2. Let G be a planar graph of order n. Then for n ≥ 535,

I(G) ≤ 18n2/3 − 27.9n1/2.

Theorem 1.3. Let G be a graph of genus g and of order n. Then for n ≥
713(2g + 1),

I(G) ≤ 19.8(2g + 1)1/3n2/3 − 32.2(2g + 1)1/2n1/2.

It follows that

I(G) = O
(
n2/3

)
for the graph families in Theorems 1.1, 1.2, and 1.3. Theorem 1.5 below shows that
for planar graphs, 2/3 is the best possible exponent.

Let Z
d denote the lattice graph where vertices are the points in R

n with integer
coordinates, and vertices are adjacent if and only if their Euclidean distance is 1. A
subgraph of Z

d which forms a rectangular box whose sides are parallel to the axes
will be called a box-graph. The dimensions of a box-graph are the number of vertices
lying on the edges of the box. (So, each dimension is the length of an edge plus 1.)
The order of a box-graph is the product of its dimensions.

The theorem below provides a formula for calculating the integrity of a box-graph
up to a constant factor depending on the dimension d only.

Theorem 1.4. Let G be a box-graph in Z
d with dimensions a1, . . . , ad, where

a1 ≥ · · · ≥ ad and set m(G) = 2
√
a1 + 3

√
a1a2 + · · ·+ d+1

√
a1a2 . . . ad. Then

(1.1) cd ≤ I(G)
/(|V (G)|

m(G)

)
≤ Cd,

where the constants cd and Cd depend on d only.
Theorem 1.4 is equivalent to Lemma 4.2 in section 4 (the constants may differ).

For planar box-graphs, the proof of Lemma 4.2 gives the following result.
Theorem 1.5. Let G be a planar box-graph of order n with dimensions a1, a2,

and a1 ≥ a2 (so n = a1a2). If a2 ≥ 2
√
a1, then

0.00136n2/3 ≤ I(G) ≤ 5.22n2/3.

If a2 < 2
√
a1, then

0.00136
√
a1a2 ≤ I(G) ≤ 5.22

√
a1a2.

Another special case of Theorem 1.4 is the following.
Theorem 1.6. Let G be the box-graph in Z

d which forms a cube. Let “a” denote
the dimensions of the cube, so G has order n = ad. Then there exist constants cd and
Cd depending on d alone such that

cdn
d

d+1 ≤ I(G) ≤ Cdn
d

d+1 .

Theorem 1.4 is also demonstrated in the following example for “flat” prism box-
graphs.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRITY OF GRAPHS AND SEPARATOR THEOREMS 267

Example 1.7. Let G ⊂ Z
3 be a box-graph with dimensions a1, a2, a3 and assume

that b := a1 = a2 ≥ a3 =: a. In the notation of Lemma 4.2, A0 = 1, A1 =
√
b,

A2 = 3
√
b2, and A3 = 4

√
b2a. If b ≥ 4 and a < 2 3

√
b2, then, in Lemma 4.2, we have

N = 2. Now |V (G)|/A2 = ab2/
3
√
b2 = ab4/3, and so c∗dab

4/3 ≤ I(G) ≤ C∗
dab

4/3.

2. Separator theorems. For A ⊂ V (G), we denote by G[A] the induced sub-
graph of G. (This is a graph whose vertex set is A and where two vertices in G[A] are
connected by an edge if and only if they are connected by an edge in the graph G.)

Proposition 2.1. Let 0 < α ≤ 1 and 1 ≤ c. Let Gα(c) be a family of graphs
so that for any G ∈ Gα(c), there exists a vertex partition V (G) = A ∪ B ∪ C, where
|A|, |B| ≤ (2/3)|V (G)|, |C| ≤ c|V (G)|α, and no vertex in A is adjacent to a vertex
in B. Suppose further that if G ∈ Gα(c), then every subgraph of G is in Gα(c). Then
any G ∈ Gα(c) can be partitioned

V (G) = A′ ∪B′ ∪ C′,

where |A′|, |B′| ≤ (1/2)|V (G)|,
|C′| ≤ c

1− (2/3)α
|V (G)|α,

and no vertex in A′ is adjacent to a vertex in B′.
Proof. We follow the proof of Corollary 3 of [9]. We inductively define a sequence

of sets {Ai, Bi, Ci, Di} so that V (G) = Ai ∪ Bi ∪ Ci ∪Di is a vertex partition; there
are no edges between any of the sets Ai, Bi, and Di, and we have |Ai| ≤ |Bi| ≤
|Ai ∪ Ci ∪Di| and |Di| ≤ 2

3 |Di−1|.
Let A0 = B0 = C0 = ∅ and D0 = V (G). The properties above are clearly satisfied

for these sets. Assume that Ai−1, Bi−1, Ci−1, Di−1 have been defined satisfying the
above properties and further assume that Di−1 	= ∅. Applying the hypotheses on
Gα(c) to the graph G[Di−1], we have Di−1 = Ã ∪ B̃ ∪ C̃, where |Ã|, |B̃| ≤ 2

3 |Di−1|,
|C̃| ≤ c|Di−1|α, and no vertex in Ã is adjacent to a vertex in B̃. We can assume that
|Ã| ≤ |B̃|.

Let Ai be the smaller (in cardinality) of the sets Ai−1 ∪ Ã and Bi−1. Let Bi be
the other set. Let Ci = Ci−1 ∪ C̃, and let Di = B̃. Then

Ai ∪Bi ∪ Ci ∪Di = Ai−1 ∪ Ã ∪Bi−1 ∪Ci−1 ∪ C̃ ∪ B̃
= Ai−1 ∪Bi−1 ∪ Ci−1 ∪Di−1

= V (G).

Since no vertex in Ai−1 is adjacent to one in Bi−1 or B̃, then no vertex in Ai is
adjacent to one in Bi or Di. Similarly, no vertex in Bi is adjacent to one in Di.

Also, |Ai| ≤ |Bi| by our choice of Ai, and if Ai = Bi−1, then Bi = Ai−1 ∪ Ã and

|Ai ∪ Ci ∪Di| ≥
∣∣∣Bi−1 ∪ B̃

∣∣∣
≥
∣∣∣Ai−1 ∪ Ã

∣∣∣ = |Bi|.

If Ai = Ai−1 ∪ Ã, then Bi = Bi−1 and

|Ai ∪ Ci ∪Di| ≥ |Ai−1 ∪ Ci−1 ∪Di−1|
≥ |Bi−1| = |Bi|.

Also, |Di| = |B̃| ≤ 2
3 |Di−1| by the hypotheses. It follows that each term in this

sequence of subsets of V (G) satisfies all of the above properties.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

268 D. BENKO, C. ERNST, AND D. LANPHIER

As the vertex set of G is finite and |Di| is decreasing, then |Dk| = 0 for some k.
Thus for such k, we have V (G) = Ak ∪ Bk ∪ Ck, |Ak| ≤ |Bk| ≤ |Ak ∪ Ck|, and no
vertex in Ak is adjacent to one in Bk. Let A′ = Ak, B′ = Bk, and C′ = Ck. It follows
that |A′|, |B′| ≤ n/2. Now,

|Ci| = |Ci−1|+
∣∣∣C̃∣∣∣

≤ |Ci−1|+ c|Di−1|α.
As |D0| = n, then |Di| ≤ (2/3)in, so

|Ci| ≤ |Ci−1|+ c(2/3)(i−1)αnα.

As |Ci| ≤ c(2/3)(1−1)αnα + c(2/3)(2−1)αnα + · · ·+ c(2/3)(i−1)αnα, then

|C′| ≤
∞∑

i=0

(
2
3

)iα

cnα

=
c

1− (2/3)α
nα.

Theorem 2.2 (Alon, Seymour, Thomas (1990) [1]). Let G be a graph with n
vertices and no Kh-minor, for fixed h ≥ 3. Then there exists a partition V (G) =
A ∪ B ∪ C such that |A|, |B| ≤ 2n/3, |C| ≤ h3/2n1/2, and no vertex in A is adjacent
to a vertex in B.

A straightforward application of Proposition 2.1 and Theorem 2.2 gives the fol-
lowing.

Corollary 2.3. Let G be a graph with n vertices and no Kh-minor, for fixed
h ≥ 3. Then V (G) = A ∪ B ∪ C, where |A|, |B| ≤ n/2, |C| ≤ h3/2

1−
√

2/3
n1/2, and no

vertex in A is adjacent to a vertex in B.
The well-known separation theorem for planar graphs [9] was improved in [2] to

give the best known such result thus far. See also [6] for results on the decomposition
of planar graphs.

Theorem 2.4 (Alon, Seymour, Thomas (1994) [2]). Let G be a planar graph with
n vertices. Then there exists a partition V (G) = A∪B ∪C such that |A|, |B| ≤ 2n/3,
|C| ≤ 3

√
2/2 n1/2, and no vertex in A is adjacent to a vertex in B.

A straightforward application of Proposition 2.1 and Theorem 2.4 gives the fol-
lowing.

Corollary 2.5. Let G be a planar graph with n vertices. Then there exists a
partition V (G) = A ∪ B ∪ C such that |A|, |B| ≤ n/2, |C| ≤ 3

√
2

2(1−
√

2/3)
n1/2, and no

vertex in A is adjacent to a vertex in B.
The separation theorem for planar graphs in [9] was generalized in [7, 5] to graphs

with a fixed genus g. Below is the separator theorem from [5], which is slightly stronger
than the theorem in [7].

Theorem 2.6 (Djidjev (1985) [5]). Let G be a graph with n vertices and genus
g. Then there exists a partition V (G) = A ∪ B ∪ C such that |A|, |B| ≤ 2n/3,
|C| ≤√6(2g + 1)n, and no vertex in A is adjacent to a vertex in B.

A straightforward application of Proposition 2.1 and Theorem 2.6, together with
the observation that a subgraph of a graph of genus g has a genus ≤ g, gives the
following.

Corollary 2.7. Let G be a graph with n vertices and genus g. Then there exists

a partition V (G) = A ∪B ∪C such that |A|, |B| ≤ n/2, |C| ≤
√

6(2g+1)

1−
√

2/3
n1/2, and no

vertex in A is adjacent to a vertex in B.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRITY OF GRAPHS AND SEPARATOR THEOREMS 269

3. Upper bounds on the integrity of graphs. In this section we give upper
bounds for the integrity of certain graphs, which have a separator theorem of the type
given in Corollaries 2.3, 2.5, and 2.7.

Theorem 3.1. Let 0 ≤ α < 1 and 1 ≤ c. Let Gα(c) be a family of graphs so
that for any G ∈ Gα(c), with |V (G)| = n, there exists a partition V (G) = A ∪B ∪ C
such that |A|, |B| ≤ n/2, |C| ≤ cnα, and no vertex in A is adjacent to a vertex in B.
Further, assume that if G ∈ Gα(c), then every subgraph of G is in Gα(c). Then for
any G ∈ Gα(c) and n ≥ (2c)1/(1−α), we have

I(G) ≤ an 1
2−α − bnα,

where

a = c
1

2−α 2−
1−α
2−α

(
1 +

1
1− 2−(1−α)

)

and

b =
c

21−α − 1
.

Note that 1
2−α > α for 0 ≤ α < 1.

Proof. LetG ∈ Gα(c), with |V (G)| = n. Then V (G) = A∪B∪C by the hypothesis.
By removing the set of vertices C, we divide G into components G[A] and G[B], each
of which has no more than n/2 vertices. This directly gives the estimate

I(G) ≤ n

2
+ cnα.

Now we apply the separator theorem to each of the subgraphs G[A] and G[B]. Thus

A = A1 ∪B1 ∪ C1,

where |A1|, |B1| ≤ n/4, and |C1| ≤ c(n/2)α and similarly for B = A2 ∪ B2 ∪ C2. By
removing the vertices in C1 and C2, we decompose G into 4 components, each with
no more than n/4 vertices. It follows that

I(G) ≤ n

4
+ |C|+ |C1|+ |C2|

≤ n

4
+ cnα + 2c

(n
2

)α

.

Continuing in this way, we apply the separator theorem successively � times (where
� is a nonnegative integer to be specified later). At each step, we remove vertices
to separate each of 2i components already obtained with a set of vertices of size no
more than c(n/2i)α. After i steps, we have decomposed G into 2i components, each
containing no more than n/2i vertices. At the ith-step we would remove no more
than 2i−1c(n/2i−1)α vertices.

It follows that for any nonnegative integer �, we have the estimate

I(G) ≤ n

2�
+

�−1∑
i=0

c2i
(n

2i

)α

(3.1)

= n+
�−1∑
i=0

(
c2i
(n

2i

)α

− n

2i+1

)
.(3.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

270 D. BENKO, C. ERNST, AND D. LANPHIER

Now we set a value for �. Define

� = max

(
0, 1 +

[
log2

(
n1−α

2c

) 1
2−α

])
.

(This value of � minimizes (3.2). This follows from the fact that

c2i
(n

2i

)α

− n

2i+1
≤ 0

if and only if i ≤ log2(
n1−α

2c)1/(2−α).)
Since n ≥ (2c)1/(1−α) implies 1 ≤ n1−α/(2c), we get

� = 1 +

[
log2

(
n1−α

2c

) 1
2−α

]
(3.3)

= 1 + log2

(
n1−α

2c

) 1
2−α

− log2(1/δ),(3.4)

where log2(1/δ) ∈ [0, 1) is the fractional part of the second term in (3.3). Thus

2� = 2
(
n1−α

2c

) 1
2−α

δ for some δ ∈
(

1
2
, 1
]
.

Substituting this expression into the right-hand side of the estimate

I(G) ≤ n

2�
+

�−1∑
i=0

c2i
(n

2i

)α

=
n

2�
+ cnα (21−α)� − 1

21−α − 1
,

we get

I(G) ≤ (cn)
1

2−α 2−
1−α
2−α δ−1 +

(cn)
1

2−α 2
(1−α)2

2−α

21−α − 1
δ1−α − c

21−α − 1
nα.

Let f(δ) denote the right-hand side of the above inequality. Straightforward calcula-
tions show that limδ→0+ f(δ) = limδ→+∞ f(δ) = +∞, and the only critical point of
f(δ) on (0,+∞) is

δ =
(

1− 2−(1−α)

1− α
) 1

2−α

.

Furthermore, this critical point is in (1/2, 1] for any α ∈ [0, 1). It follows that

sup
δ∈(1

2 ,1]

f(δ) = max
(
f

(
1
2

)
, f(1)

)
.

It is easy to verify that, in fact, f(1/2) = f(1). Hence

I(G) ≤ f(1) = (cn)
1

2−α 2−
1−α
2−α

(
1 +

1
1− 2−(1−α)

)
− c

21−α − 1
nα.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRITY OF GRAPHS AND SEPARATOR THEOREMS 271

Example 3.2. Let G be a graph which is the union of finitely many paths, and let
n = |V (G)|. Theorem 3.1 now implies (with α = 0 and c = 1) that I(G) ≤ 3

2

√
2n− 1.

Note that this bound is quite sharp, as for the path Pn of length n, we have I(Pn) =
�2√n+ 1� − 2 and 3

2

√
2 ≈ 2.121. As paths have the maximum integrity of trees of

order n, see Lemma 5 from [10], we get I(G) ≤ 3
2

√
2n− 1 for G a tree.

Proof of Theorem 1.1. Let G be a graph with n vertices and no Kh-minor. Set
c = h3/2

1−
√

2/3
and α = 0.5. Using Corollary 2.3 and Theorem 3.1, we get that for

n ≥ 119h3, we have

I(G) ≤ 10.9hn2/3 − 13.1h3/2n1/2.

Proof of Theorem 1.2. Let G be a planar graph with n vertices. Set c = 3
√

2

2(1−
√

2/3)

and α = 0.5. Using Corollary 2.5 and Theorem 3.1 we get that for n ≥ 535, we have

I(G) ≤ 18n2/3 − 27.9n1/2.

Proof of Theorem 1.3. Let G be a graph with n vertices and genus at most g.

Define c =
√

6(2g+1)

1−
√

2/3
and α = 0.5. Using Corollary 2.7 and Theorem 3.1, we gain that

for n ≥ 713(2g + 1), we have

I(G) ≤ 19.8(2g + 1)1/3n2/3 − 32.2(2g + 1)1/2n1/2.

4. Rectangular boxes in the lattice graph Z
d. Let d be a positive integer.

Recall that a subgraph G of Z
d, which forms a rectangular box that is parallel to the

axes, is called a box-graph. We say that G has dimensions a1, . . . , ad if a1 ≥ · · · ≥ ad,
ai ∈ N, and G contains all vertices (x1, . . . , xd), where xi ∈ Z and 0 ≤ xi < ai for all
i. Let md denote the number of vertices on a smallest hyperface of a box-graph G.
Then md = Πd

i=2ai. In the case of d = 1, we define m1 = 1.
The following lemma asserts the (seemingly obvious) statement that if we delete

a set of vertices S from a box-graph G and |S| is small, then G\S will contain a large
component.

Lemma 4.1. Let G be a box-graph in Z
d. For any ε ∈ (0, 1), there exists cd ∈ (0, 1)

such that if S ⊂ G and |S| ≤ cdmd, then there exists a component K of G \ S such
that |K| ≥ (1− ε)|V (G)|.

Proof. The proof is by induction on the dimension d. We observe that the lemma
is true for d = 1, since |S| ≤ c1m1, with c1 ∈ (0, 1) implies S = ∅.

Let d ≥ 2 and assume that our statement is true for d − 1. Let cd be a small
number (which we specify later). Let a1 be the largest dimension of the box-graph
G, and let e be an “edge” of the box consisting of a1 vertices lying on a line. (Here
the word “edge” is used as in geometry, not in graph theory.) Set u = a1.

Consider the u cross sections of G which are orthogonal to e. Observe that, by
the choice of e, each such cross section consists of md vertices. Denote by H the
set of those cross sections which have at most

√
cdmd/u vertices from S. Note that

|S| ≤ cdmd implies that there are less than
√
cdu cross sections not in H, and therefore

|H| > (1−√cd)u. Let R ∈ H. We regard R as a (d− 1) dimensional box-graph with
|R| = md vertices. Let md−1 denote the minimal number of vertices on any of the
(d− 2) dimensional faces of R.

Let C ∈ (0, 1), which we specify later. Note that, by the definition of u, we
have md/u ≤ md−1 (which is true even for d = 2), thus |S ∩ R| ≤ √cdmd−1. By

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

272 D. BENKO, C. ERNST, AND D. LANPHIER

R

K
d-1
(R)

e

l(P)

Fig. 4.1. A schematic representation of a box-graph, with a cross section R and the component
Kd−1(R). Lines of the type l(P) connect many such components from different cross sections.

the induction hypotheses, if cd is small enough, then for any R ∈ H, there exists a
component Kd−1(R) of R \ S such that

(4.1) |Kd−1(R)| ≥ Cmd.

For an illustration, see Figure 4.1. Our goal is to construct the desired component
K of G \ S as a union of certain components Kd−1(R) to yield the desired size.

For a vertex P ∈ V (G), let l(P) denote those vertices of G which are on the line
passing through P and parallel to e. Let

G′ := {P ∈ V (G) | l(P) ∩ S = ∅}
and T ′ := T ∩ G′, where T is an arbitrary fixed cross section of G orthogonal to e.
Let

J := ∪R∈H(Kd−1(R) ∩G′).

Since

|Kd−1(R) ∩G′| ≥ |Kd−1(R)| − |S| ≥ (C − cd)md,

we have |J | > (1−√cd)u(C − cd)md. J may not be a connected subset of G \ S. To
obtain a connected subset of J , we proceed as follows: |T ′| ≤ md implies that there
exists P ∈ T ′ such that |l(P) ∩ J | > (1−√cd)u(C − cd). Thus the line segment l(P)
connects more than (1 −√cd)u(C − cd) of the sets Kd−1(R) (R ∈ H). Hence, there
exists a component K of G \ S such that

|K| > (1−√cd)u(C − cd)Cmd = (1−√cd)(C − cd)C|V (G)|.
To complete the proof, we choose C ∈ (0, 1) to be so close to 1 and then cd to be so
close to 0 such that (4.1) holds for any R ∈ H and

(1−√cd)(C − cd)C ≥ 1− ε.
Proof of Theorem 1.4. We show that Theorem 1.4 follows from the following

lemma.
Lemma 4.2. Let G be a box-graph in Z

d, with dimensions a1, . . . , ad, where
a1 ≥ · · · ≥ ad. Let A0 = 1 and Am = (a1 . . . am)1/(m+1) for m ∈ {1, . . . , d}, and let

N :=
{
m ∈ {0, . . . , d− 1}

∣∣∣ am+1 < 2Am

}
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRITY OF GRAPHS AND SEPARATOR THEOREMS 273

If N is nonempty, then let N := minN , otherwise let N := d. Then

(4.2) c∗d
|V (G)|
AN

≤ I(G) ≤ C∗
d

|V (G)|
AN

,

where the constants c∗d and C∗
d depend on d only.

Intuitively, we can explain (4.2) as follows. The sides am, m ≥ N+1 are too small
relative to the bigger sides, and this means that the box is flat in dimensions N +
1, . . . , d and basically, it has N “real dimensions.” In the formula (4.2), aN+1, . . . , ad

will be on the first power (in |V (G)|/AN), whereas the powers of the first N “real
dimensions” a1, . . . , aN will be less than one. The first N dimensions a1, . . . , aN have
to be cut by hyperplanes to achieve the integrity bound.

We now show that (4.2) is equivalent to (1.1). By the definition of N , we have
am+1 ≥ 2Am for m = 0, 1, . . . , N − 1, and if N < d, we also have aN+1 < 2AN .

Note that am+1 ≥ 2Am = 2(a1 . . . am)1/(m+1) implies a1 . . . am+1 ≥ 2
(a1 . . . am)1+1/(m+1), and so we have (a1 . . . am+1)1/(m+2) ≥ bm(a1 · · · am)1/(m+1),
where bm = 21/(m+2) > 1. Thus Am+1 ≥ Am holds for m = 0, 1, . . . , N − 1.

Also, aN+1< 2AN = 2(a1 . . . aN)1/(N+1) implies a1+1/(N+1)
N+1 < 2(a1 . . . aN+1)1/(N+1),

so aN+2 ≤ aN+1 < 2(a1 . . . aN+1)1/(N+2). Continuing in this way, we get that
am+1 < 2(a1 . . . am)1/(m+1) holds for m = N, . . . , d − 1. As in the previous para-
graph, this implies that Am+1 < bmAm holds for m = N, . . . , d− 1.

We conclude that bd−1bd−2 . . . bNAN ≥ Am for all m = 0, . . . , d. Here

bd−1bd−2 . . . bN ≤ 21/2+1/3+···+1/(d+1) ≤ 2d,

and so

|V (G)|
2d2AN

≤ |V (G)|
A1 + · · ·+Ad

≤ |V (G)|
AN

,

establishing the equivalence of (4.2) and (1.1).
Proof of Lemma 4.2. First we prove the lower bound in (4.2). We can assume that

1 ≤ N (otherwise a1 < 2A0, and so 1 = a1 = · · · = ad and G is a single vertex). Then
we have 2 ≤ a1. By definition, when N 	= ∅, we have aN+1 < 2AN and aN ≥ 2AN−1,
whereas when N = ∅, we have aN ≥ 2AN−1 (and N = d). Note that this implies

aN = aN
(a1 . . . aN)

1
N+1

(a1 . . . aN)
1

N+1
=

a
1− 1

N+1
N

(a1 . . . aN−1)
1

N+1
AN

=
a

N
N+1
N(

(a1 . . . aN−1)
1
N

) N
N+1

AN =
(

aN

AN−1

) N
N+1

AN

≥ 2
N

N+1AN ≥
√

2AN .

So [ai

AN
] (i = 1, . . . , N) are positive integers.

Let ki ∈ {0, . . . , [ai

AN
]} (i = 1, . . . , N) and consider the box-graph

B(k1, . . . , kN) :=
{
x1 ∈ Z : [k1AN] < x1 ≤ min([(k1 + 1)AN], a1)

}
× · · · ×

{
xN ∈ Z : [kNAN] < xN ≤ min([(kN + 1)AN], aN)

}
×
{
xN+1 ∈ Z : 0 < xN+1 ≤ aN+1

}
× · · · ×

{
xd ∈ Z : 0 < xd ≤ ad

}
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

274 D. BENKO, C. ERNST, AND D. LANPHIER

which, for simplicity, we call a box. When ki = [ai

AN
] holds for at least one i ∈

{0, . . . , N}, we call B(k1, . . . , kN) a truncated box (it may even be an empty set), and
otherwise we call it a full box. Clearly, the B(k1, . . . , kN) are disjoint sets, and their
union is V (G). Since AN − 1 < [(ki + 1)AN] − [kiAN] < AN + 1, any of the first N
dimensions of a full box is an integer in the interval (AN − 1, AN +1). The remaining
dimensions of a full box are aN+1, . . . , ad.

The number of full boxes is
∏N

i=1[
ai

AN
]. Since AN ≤ ai/

√
2 (i = 1, . . . , N), we

have

AN =
N∏

i=1

ai

AN
≥

N∏
i=1

[
ai

AN

]

≥
N∏

i=1

(
ai

AN
− 1
)
≥
∏N

i=1

(
ai − 1√

2
ai

)
AN

N

≥
(

1− 1√
2

)d

AN .(4.3)

Let M denote the maximum dimension (i.e., maximal number of vertices on an
edge parallel to a coordinate axis) of any of the full boxes. When N 	= ∅, using the
estimate 2AN > AN + 1 for the first N dimensions and 2AN > aN+1 ≥ · · · ≥ ad for
the rest of the dimensions, we get 2AN > M . When N = ∅, using 2AN > AN + 1
(and N = d), we get again 2AN > M . The minimal number md of vertices on any
hyperface of an arbitrary full box is at least

md ≥ (AN − 1)NaN+1 . . . ad

M
>

(AN − 1)NaN+1 . . . ad

2AN

≥ 1
2

(
1− 1

d+1
√

2

)d

AN−1
N aN+1 . . . ad,

where we used that the number of vertices in a full box is at least

(4.4) (AN − 1)NaN+1 . . . ad

and

1− 1
AN
≥ 1− 1

d+1
√

2
.

The last inequality follows from AN ≥ d+1
√

2.
Now let S ⊂ V (G) be arbitrary. Let 0 < ε < 1 be arbitrary, and let cd be the

number given in the statement of Lemma 4.1.
Case 1. If there exists a full box B such that

(4.5) |S ∩B| ≤ cd 1
2

(
1− 1

d+1
√

2

)d

AN−1
N aN+1 . . . ad ≤ cdmd,

then, by Lemma 4.1 (and (4.4)), we have

(4.6) I(G) ≥ (1− ε)(AN − 1)NaN+1 . . . ad ≥ (1 − ε)
(

1− 1
d+1
√

2

)d

AN
NaN+1 . . . ad.

Case 2. If

(4.7) |S ∩B| > cd
1
2

(
1− 1

d+1
√

2

)d

AN−1
N aN+1 . . . ad

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRITY OF GRAPHS AND SEPARATOR THEOREMS 275

for any full box B, then, by (4.3),

I(G) ≥ |S| > (number of full boxes) · cd 1
2

(
1− 1

d+1
√

2

)d

AN−1
N aN+1 . . . ad

≥
(

1− 1√
2

)d

cd
1
2

(
1− 1

d+1
√

2

)d

AN
NaN+1 . . . ad.(4.8)

Since AN
NaN+1 . . . ad = (

∏d
i=1 ai)/AN = |V (G)|/AN , (4.6) and (4.8) establish the

lower bound at (4.2).
To prove the upper bound at (4.2), intersect G with hyperplanes to define the

boxes in the first half of the proof. More precisely, let

H1 :=
{

[k1AN] : k1 = 1, . . . ,
[
a1

AN

]}
× {1, . . . , a2} × · · · × {1, . . . , ad} ,

H2 := {1, . . . , a1} ×
{

[k2AN] : k2 = 1, . . . ,
[
a2

AN

]}
×{1, . . . , a3} × · · · × {1, . . . , ad} ,

...

HN := {1, . . . , a1} × · · · × {1, . . . , ad−1} ×
{

[kNAN] : kN = 1, . . . ,
[
aN

AN

]}
,

and let S := ∪N
i=1Hi. Now,

|S| ≤
N∑

i=1

|Hi| =
N∑

i=1

[
ai

AN

] |V (G)|
ai

≤ d |V (G)|
AN

.

We have seen that any of the first N dimensions of a full box is an integer less
than AN + 1, and the next dimensions are aN+1, . . . , ad. Note that this is also true
for the truncated boxes (which easily follows from [([ai

AN
]+1)AN] ≥ ai, i = 1, . . . , N).

So any box (and hence any component of G \ S) has at most (AN + 1)NaN+1 . . . ad

vertices. These lead to

I(G) ≤ d |V (G)|
AN

+ (AN + 1)NaN+1 . . . ad

≤ d |V (G)|
AN

+
(

1 +
1

d+1
√

2

)d

AN
NaN+1 . . . ad ≤

(
d+

(
1 +

1
d+1
√

2

)d
)
|V (G)|
AN

,(4.9)

where we also used

1 +
1
AN
≤ 1 +

1
d+1
√

2
.

It is possible to give values to the constants c∗d and C∗
d in Lemma 4.2. For example,

below we consider the case d = 2. (Note that one can certainly find better constants
for the upper and lower bounds if one considers a proof that applies to the special
case d = 2 directly.)

Proof of Theorem 1.5. Let d = 2. First we give concrete values for the constants
in Lemma 4.1. Let ε ∈ (0, 1). Since in the proof of Lemma 4.1 we have that c1 ∈ (0, 1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

276 D. BENKO, C. ERNST, AND D. LANPHIER

may be chosen arbitrarily and that C can be as close to one as we wish, c2 ∈ (0, 1)
can be any number satisfying

(1−√c2)(1− c2) > 1− ε.
Furthermore, we want to choose ε and c2 to get about the same lower bounds in (4.6)
and (4.8). Thus we desire

1− ε ≈ 1
2
c2

(
1− 1√

2

)2

.

Set ε = 0.968 and c2 = 0.754. Now, (4.6) and (4.8) give c∗2 = 0.00136. Together with
the upper bound from (4.9), we have

(4.10) 0.00136
|V (G)|
AN

≤ I(G) ≤ 5.22
|V (G)|
AN

.

(This holds even in the case when N = 0.)
Now in Lemma 4.2, we have A0 = 1, A1 =

√
a1, and A2 = 3

√
a1a2. Note that if

a1 < 2A0 = 2, then necessarily a1 = a2 = 1, and the claim of Theorem 1.5 is satisfied.
So we may assume that a1 ≥ 2A0.

If a2 ≥ 2A1 = 2
√
a1, then N = 2 in Lemma 4.2, and so (4.2) leads to

0.00136n2/3 ≤ I(G) ≤ 5.22n2/3.

If a2 < 2A1 = 2
√
a1, then N = 1 in Lemma 4.2, and so (4.2) leads to

0.00136
√
a1a2 ≤ I(G) ≤ 5.22

√
a1a2.

Note that the above inequality gives I(G) = O(
√
n) in the degenerate cases when

a2 = O(1). This is consistent with the known integrity of a path (a2 = 1); see [3].
Proof of Theorem 1.6. Let G ⊂ Z

d be a cube graph whose dimensions are of size
a. Note that the inequality am+1 < 2Am in Lemma 4.2 now simplifies to a < 2m+1.
Thus, for a ≥ 2m+1, we have N = ∅, and so N = d. Since |V (G)|/Ad = ad/ad/(d+1) =
ad2/(d+1) = |V (G)|d/(d+1), Lemma 4.2 gives

c∗d|V (G)|d/(d+1) ≤ I(G) ≤ C∗
d |V (G)|d/(d+1),

which holds even in the case a < 2m+1 if we redefine the values of the constants c∗d
and C∗

d .

REFERENCES

[1] N. Alon, P. Seymour, and R. Thomas, A separator theorem for nonplanar graphs, J. Amer.
Math. Soc., 3 (1990), pp. 801–808.

[2] N. Alon, P. Seymour, and R. Thomas, Planar separators, SIAM J. Discrete Math., 7 (1994),
pp. 184–193.

[3] K.S. Bagga, L.W. Beineke, W.D. Goddard, M.J. Lipman, and R.E. Pippert, A survey of
integrity, Discrete Appl. Math., 37/38 (1992), pp. 13–28.

[4] C.A. Barefoot, R. Entringer, and H. Swart, Vulnerability in graphs—A comparative sur-
vey, J. Combin. Math. Combin. Comput., 1 (1987), pp. 12–22.

[5] H.N. Djidjev, A separator theorem for graphs of fixed genus, Serdica Math. J., 11 (1985),
pp. 319–329.

[6] F.V. Fomin and D.M. Thilikos, New upper bounds on the decomposability of planar graphs,
J. Graph Theory, 51 (2006), pp. 53–81.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRITY OF GRAPHS AND SEPARATOR THEOREMS 277

[7] J.R. Gilbert, J.P. Hutchinson, and R.E. Tarjan, A separator theorem for graphs of bounded
genus, J. Algorithms, 5 (1984), pp. 391–407.

[8] W. Goddard and H. Swart, Integrity in graphs: bounds and basics, J. Combin. Math. Com-
bin. Comput., 7 (1990), pp. 139–151.

[9] R.J. Lipton and R.E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math.,
36 (1979), pp. 177–189.

[10] A. Vince, The integrity of a cubic graph, Discrete Appl. Math., 140 (2004), pp. 223–239.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 278–287

CAN A GRAPH HAVE DISTINCT REGULAR PARTITIONS?∗

NOGA ALON† , ASAF SHAPIRA‡ , AND URI STAV§

Abstract. The regularity lemma of Szemerédi gives a concise approximate description of a graph
via a so-called regular partition of its vertex set. In this paper we address the following problem: Can
a graph have two “distinct” regular partitions? It turns out that (as observed by several researchers)
for the standard notion of a regular partition, one can construct a graph that has very distinct regular
partitions. On the other hand, we show that for the stronger notion of a regular partition that has
been recently studied, all such regular partitions of the same graph must be very “similar.” En
route, we also give a short argument for deriving a recent variant of the regularity lemma obtained
independently by Rödl and Schacht and by Lovász and Szegedy from a previously known variant of
the regularity lemma due to Alon et al. in 2000. The proof also provides a deterministic polynomial
time algorithm for finding such partitions.

Key words. regularity lemma, algorithm, isomorphic

AMS subject classifications. 68R01, 05D99

DOI. 10.1137/070695952

1. Introduction. We start with some of the basic definitions of regularity and
state the regularity lemmas that we refer to in this paper. For a comprehensive survey
on the regularity lemma, the reader is referred to [7]. For a set of vertices A ⊆ V , we
denote by E(A) the set of edges of the graph induced by A in G, and by e(A) the size
of E(A). Similarly, if A ⊆ V and B ⊆ V are two vertex sets, then E(A,B) stands for
the set of edges of G connecting vertices in A and B, and e(A,B) denotes the number
of ordered pairs (a, b) such that a ∈ A, b ∈ B, and ab is an edge of G. Note that if A
and B are disjoint, then this is simply the number of edges of G that connect a vertex
of A with a vertex of B, that is, e(A,B) = |E(A,B)|. The edge density of the pair
(A,B) is defined as d(A,B) = e(A,B)/|A||B|. When several graphs on the same set
of vertices are involved, we write dG(A,B) to specify the graph to which we refer.

Definition 1.1 (ε-regular pair). A pair (A,B) is ε-regular, if for any two subsets
A′ ⊆ A and B′ ⊆ B, satisfying |A′| ≥ ε|A| and |B′| ≥ ε|B|, the inequality |d(A′, B′)−
d(A,B)| ≤ ε holds.

A partition A = {Vi : 1 ≤ i ≤ k} of the vertex set of a graph is called an
equipartition if |Vi| and |Vj | differ by no more than 1 for all 1 ≤ i < j ≤ k (so, in
particular, each Vi has one of two possible sizes). For the sake of brevity, we will
henceforth use the term partition to denote an equipartition. We call the number of
sets in a partition (k above) the order of the partition.

∗Received by the editors June 30, 2007; accepted for publication (in revised form) July 10, 2008;
published electronically January 7, 2009. A preliminary version of this paper appeared in the Pro-
ceedings of the 13th International Computing and Combinatorics Conference (COCOON 2007), pp.
428–438.

http://www.siam.org/journals/sidma/23-1/69595.html
†Schools of Mathematics and Computer Science, Raymond and Beverly Sackler Faculty of Exact

Sciences, Tel Aviv University, Tel Aviv 69978, Israel (nogaa@tau.ac.il). This author’s research was
supported in part by a grant from the Israel Science Foundation, by the Hermann Minkowski Minerva
Center for Geometry at Tel Aviv University, and by a USA-Israeli BSF grant.

‡Microsoft Research, One Microsoft Way, Redmond, WA 98052 (asafico@tau.ac.il).
§School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv

University, Tel Aviv 69978, Israel (uristav@tau.ac.il).

278

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CAN A GRAPH HAVE DISTINCT REGULAR PARTITIONS? 279

Definition 1.2 (ε-regular partition). A partition V = {Vi : 1 ≤ i ≤ k} of V (G)
for which all but at most ε

(
k
2

)
of the pairs (Vi, Vj) are ε-regular is called an ε-regular

partition of V (G).
The regularity lemma of Szemerédi can be formulated as follows.
Lemma 1.3 (see [14]). For every m and ε > 0 there exists an integer T =

T1.3(m, ε) with the following property: Any graph G on n ≥ T vertices has an ε-
regular partition V = {Vi : 1 ≤ i ≤ k} with m ≤ k ≤ T .

The main drawback of Szemerédi’s regularity lemma is that the bounds on the
integer T , and hence on the order of V , have an enormous dependency on 1/ε. The cur-
rent bounds are towers of exponents of height O(1/ε5). This means that the regularity
measure (ε in Lemma 1.3) is very large compared to the inverse of the order of the
partition (k in Lemma 1.3). In some cases, however, we would like the regularity mea-
sure between the pairs to have some (strong) relation to the order of the partition.
This leads to the following definition.

Definition 1.4 (f -regular partition). For a function f : N→ (0, 1), a partition
V = {Vi : 1 ≤ i ≤ k} of V (G) is said to be f -regular if all pairs (Vi, Vj), 1 ≤ i <
j ≤ k, are f(k)-regular.

Note that, as opposed to Definition 1.2, in the above definition the order of the
partition and the regularity measure between the sets of the partition go “hand in
hand” via the function f . One can (more or less) rephrase Lemma 1.3 as saying
that every graph has a (log∗(k))−1/5-regular partition.1 Furthermore, Gowers [5]
showed that this is close to being tight. Therefore, one cannot guarantee that a
general graph has an f -regular partition for a function f approaching zero faster than
roughly 1/ log∗(k). One should thus look for certain variants of this notion and still
be able to show that any graph has a similar partition.

A step in this direction was first taken by Alon et al. [2] who proved a stronger
variant of the regularity lemma. See Lemma 2.3 for the precise statement. The
following is yet another variant of the regularity lemma that was recently proved
independently by Rödl and Schacht [11] (where it is called “the regular approximation
lemma”) and by Lovász [9] (implicitly following a result of Lovász and Szegedy in [10]).
This lemma does not guarantee that for any f we can find an f -regular partition of
any given graph. Rather, it shows that any graph is “close” to a graph that has an
f -regular partition.

Theorem 1 (see [11], [9]). For every m, ε > 0 and nonincreasing function
f : N → (0, 1), there is an integer T = T1(f, ε,m) so that given a graph G with at
least T vertices, one can add-to/remove-from G at most εn2 edges and thus get a
graph G′ that has an f -regular partition of order k for some k with m ≤ k ≤ T .

Our first result in this paper is a new short proof of the above theorem. The proof
is a simple application of the variant of the regularity lemma of [2] mentioned above.
Basing the proof on this method provides both explicit bounds and a polynomial time
algorithm for finding the partition and the necessary modifications. Section 2 consists
of the proof of Theorem 1, and in section 3 we describe a deterministic polynomial
time algorithm for finding a regular partition and a set of modifications that are
guaranteed by this theorem.

We now turn to the second result of this paper. In many cases, one applies the
regularity lemma on a graph G to get an ε-regular partition V = {Vi : 1 ≤ i ≤ k}

1This is not accurate because Definition 1.4 requires all pairs to be f(k)-regular, while Lemma 1.3
guarantees that only most pairs are regular.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

280 NOGA ALON, ASAF SHAPIRA, AND URI STAV

and then defines a weighted complete graph on k vertices {1, . . . , k}, in which the
weight of the edge connecting vertices (i, j) is d(Vi, Vj). This relatively small weighted
graph, sometimes called the regularity-graph (or reduced graph) of G, carries a lot of
information on G. For example, it can be used to approximately count the number of
copies of any fixed small graph in G, and to approximate the size of the maximum-cut
of G. A natural question, which was suggested to us by Sudan [13], is how different
can two regularity-graphs of the same graph be? We turn to define what it means for
two regularity graphs, or equivalently for two regular partitions, to be ε-isomorphic.

Definition 1.5 (ε-isomorphic). We say that two partitions U = {Ui : 1 ≤
i ≤ k} and V = {Vi : 1 ≤ i ≤ k} of a graph G are ε-isomorphic if there is a
permutation σ : [k] → [k], such that for all but at most ε

(
k
2

)
pairs 1 ≤ i < j ≤ k, we

have |d(Ui, Uj)− d(Vσ(i), Vσ(j))| ≤ ε.
We first show that if one considers the standard notion of an ε-regular partitions

(as in Definition 1.2), then ε-regular partitions of the same graph are not necessarily
similar. In fact, as the following theorem shows, even f(k)-regular partitions of the
same graph, where f(k) = 1/kδ, are not necessarily similar. A variant of this theorem
has been proved by Lovász [9].

Theorem 2. Let f(k) = 1/k1/4. For infinitely many k and for every n > n2(k)
there is a graph G = (V,E) on n vertices with two f -regular partitions of order k that
are not 1

4 -isomorphic.
The proof of Theorem 2 provides explicit examples. We note that an inexplicit

probabilistic proof shows that the assertion of the theorem holds even for f(k) =
Θ(log1/3 k

k1/3). See section 4 for more details.
Using the terminology of Definition 1.2, the above theorem and its proof can be

restated as saying that for any (small) ε > 0 and all large enough n > n0(ε), there
exists an n vertex graph that has two ε-regular partitions of order ε−4, which are not
1
4 -similar. Therefore, ε-regular partitions of the same graph may be very far from
isomorphic.

Recall now that Theorem 1 guarantees that for any function f , any graph can be
slightly modified in a way that the new graph admits an f -regular partition. As the
following theorem shows, whenever f(k) < 1/2k2 all of the regular partitions of the
new graph must be close to isomorphic.

Theorem 3. Let f(k) be any function satisfying f(k) ≤ min{1/2k2, 1
8ε}, and

suppose U and V are two f -regular partitions of some graph G on n ≥ 8k
ε vertices.

Then U and V are ε-isomorphic.
This theorem illustrates the power of f -regular partitions, showing that (for

f(k) < 1/2k2) they enjoy properties that do not hold for usual regular partitions.
Observe that the above results imply that when, e.g., f(k) = ω(log1/3 k

k1/3), then two
f -regular partitions of the same graph are not necessarily similar, whereas whenever
f(k) < 1/2k2 they are. It may be interesting to find a tight threshold for f that
guarantees ε-isomorphism between f -regular partitions of the same graph. It should
also be interesting to find a similar threshold assuring that partitions of two close
graphs are similar.

2. Proof of Theorem 1. In this section we show how to derive Theorem 1 from
a variant of the regularity lemma due to Alon et al. [2]. Before we get to the proof
we observe the following three simple facts. First, a standard probabilistic argument
shows that for every δ and η, and for every large enough n > n0(δ), there exists a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CAN A GRAPH HAVE DISTINCT REGULAR PARTITIONS? 281

δ-regular pair (A,B) with |A| = |B| = n and d(A,B) = η.2 The additional two facts
we need are given in the following two claims, where we use the notation x = y± ε to
denote the fact that y − ε ≤ x ≤ y + ε.

Claim 2.1. Let δ and γ be fixed positive reals, and let n > n0(δ, γ) be a large
enough integer. Suppose (A,B) is a δ-regular pair satisfying d(A,B) = η ± γ and
|A| = |B| = n. Then, one can add or remove at most 2γn2 edges from (A,B) and
thus turn it into a 3δ-regular pair satisfying d(A,B) = η ± δ.

Proof. Let us assume that d(A,B) = η + γ. The general case where η − γ ≤
d(A,B) ≤ η + γ is similar. Suppose we delete each of the edges connecting A and B
with probability γ

η+γ . Clearly the expected value of d(A,B) after these modifications
is η and, assuming n is large enough, we get from a standard application of Chernoff’s
bound that the probability that the new density deviates from η by more than δ is at
most 1

4 . Also, the expected number of edges removed is γn2 and again, if n is large
enough, the probability that we removed more than 2γn2 edges is at most 1

4 . Consider
now two subsets A′ ⊆ A and B′ ⊂ B, each of size δn. As (A,B) was initially δ-regular,
we initially had d(A′, B′) = (η + γ) ± δ. As each edge is removed with a probability
of γ

η+γ , the expected value of d(A′, B′) after these modifications is η ± δη
η+γ = η ± δ.

By Chernoff’s bound, we get that for large enough n for every such pair (A′, B′) the
probability that d(A′, B′) deviates from η± δ by more than δ is bounded by 2−4n. As
there are less than 22n choices for (A′, B′), we get that with a probability of at least
3
4 all pairs (A′, B′) have density η± 2δ. To recap, we get that with a probability of at
least 1

4 we made at most 2γn2 modifications, d(A,B) = η± δ and d(A′, B′) = η± 2δ,
implying that (A,B) is 3δ-regular.

Claim 2.2. Let (A,B) be a pair of vertex sets with |A| = |B| = n. Suppose A and
B are partitioned into subsets A1, . . . , Al and B1, . . . , Bl such that all pairs (Ai, Bj)
are 1

4δ
2-regular and satisfy d(Ai, Bj) = d(A,B) ± 1

4δ. Then (A,B) is δ-regular.
Proof. Assume, towards a contradiction, that there are two subsets A′ ⊆ A and

B′ ⊆ B of size at least δn each, such that |d(A′, B′)− d(A,B)| > δ. By averaging, we
may assume, without loss of generality, that |A′| = |B′| = δn.

Set A′
i = A′ ∩Ai and B′

i = B′ ∩Bi. The number of pairs (a ∈ A′, b ∈ B′), where
a ∈ A′

i, b ∈ B′
j , and either |B′

j | < 1
4δ

2|Bj | or |A′
i| < 1

4δ
2|Ai| is bounded by 1

2δ
3n2.

Therefore, the possible contribution of such pairs to d(A′, B′) is bounded by 1
2δ.

Consider now the pairs (A′
i, B

′
j) satisfying |B′

j | ≥ 1
4δ

2|Bj | and |A′
i| ≥ 1

4δ
2|Ai|.

As (Ai, Bj) is 1
4δ

2-regular we have d(A′
i, B

′
j) = d(Ai, Bj) ± 1

4δ. As d(Ai, Bj) =
d(A,B) ± 1

4δ, we conclude that d(A′
i, B

′
j) = d(A,B) ± 1

2δ. As the pairs discussed
in the preceding paragraph can change d(A′, B′) by at most 1

2δ, we conclude that
d(A′, B′) = d(A,B) ± δ, showing a contradiction as needed.

The following is the strengthened version of the regularity lemma, due to Alon
et al. [2], from which we will deduce Theorem 1.

Lemma 2.3 (see [2]). For every integer m and function f : N → (0, 1) there
exists an integer T = T2.3(m, f) with the following property: If G is a graph with
n ≥ T vertices, then there exists a partition A = {Vi : 1 ≤ i ≤ k} and a refinement
B = {Vi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ l} of A that satisfy the following:

1. |A| = k ≥ m but |B| = kl ≤ T .
2. For all 1 ≤ i < i′ ≤ k and for all 1 ≤ j, j′ ≤ l, but at most f(k)l2 of them,

the pair (Vi,j , Vi′,j′) is f(k)-regular.

2Here and throughout the rest of this paper, we say that d(A, B) = η if |e(A, B)− η|A||B| | ≤ 1.
This avoids rounding problems arising from the fact that η|A||B| may be nonintegral.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

282 NOGA ALON, ASAF SHAPIRA, AND URI STAV

3. All 1 ≤ i < i′ ≤ k, but at most f(0)
(
k
2

)
of them, are such that for all

1 ≤ j, j′ ≤ l, but at most f(0)l2 of them, |d(Vi, Vi′) − d(Vi,j , Vi′,j′)| < f(0)
holds.

Proof of Theorem 1. Given a graph G, an integer m, a real ε, and some function
f : N 	→ (0, 1) as an input to Theorem 1, let us apply Lemma 2.3 with the function
f ′(k) = min{f2(k)/12, ε/8} and with m′ = m. By Lemma 2.3, if G has more than
T = T2.3(m′, f ′) vertices, then G has two partitions A = {Vi : 1 ≤ i ≤ k} and
B = {Vi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ l} satisfying the three assertions of the lemma. We
claim that we can make less than εn2 modifications in a way that all pairs (Vi, Vj)
will become f(k)-regular.

We start by considering the pairs (Vi,j , Vi′,j′), with i < i′, which are not f ′(k)-
regular. Every such pair is simply replaced by an f ′(k)-regular bipartite graph of
density d(Vi,j , Vi′,j′). Such a pair exists by the discussion at the beginning of this
section. The number of edge modifications needed for each such pair is at most
(n/kl)2, and by the second assertion of Lemma 2.3 we get that the total number of
modifications we make at this stage over all pairs (Vi, Vj) is bounded by

(
k
2

) · f ′(k)l2 ·
(n/kl)2 ≤ ε

8n
2.

We now consider the pairs (Vi, Vi′) that do not satisfy the third assertion of
Lemma 2.3, that is, those for which there are more than f ′(0)l2 pairs 1 ≤ j, j′ ≤ l
satisfying |d(Vi, Vi′) − d(Vi,j , Vi′,j′)| ≥ f ′(0). For every such pair (Vi, Vi′) we sim-
ply remove all edges connecting Vi and Vi′ . As by the third assertion there are at
most f ′(0)

(
k
2

)
< ε

8k
2 such pairs, the total number of edge modifications we make is

bounded by ε
8n

2.
We finally consider the pairs (Vi, Vi′) that satisfy the third assertion of Lemma 2.3.

Let us denote d = d(Vi, Vi′). We start with pairs (Vi,j , Vi′,j′) satisfying |d − d(Vi,j ,
Vi′,j′)| ≥ f ′(0). Each such pair is replaced with an f ′(k)-regular pair of density
d. As there are at most f ′(0)l2 ≤ ε

8 l
2 such pairs in each pair (Vi, Vj), the total

number of modifications made in the whole graph due to such pairs is bounded by
ε
8n

2. Let us now consider the pairs (Vi,j , Vi′,j′) satisfying |d − d(Vi,j , Vi′,j′)| ≤ f ′(0).
If d(Vi,j , Vi′,j′) = d ± f ′(k), then we do nothing. Otherwise, we apply Claim 2.1 on
(Vi,j , Vi′,j′) with η = d, γ = |d− d(Vi,j , Vi′,j′)|, and δ = f ′(k). Note that here we are
guaranteed to have γ ≤ f ′(0) ≤ 1

8ε. Claim 2.1 guarantees that we can make at most
2γ(n/kl)2 ≤ 1

4ε(n/kl)
2 modifications and thus turn (Vi,j , Vi′,j′) into a 3f ′(k)-regular

pair with density d± f ′(k). The total number of modifications over the entire graph
is bounded by ε

4n
2.

To conclude, the overall number of modifications we have made in the above
stages is less than εn2, as needed. Moreover, at this stage all of the pairs (Vi,j , Vi′,j′)
satisfy |d(Vi,j , Vi′,j′) − d(Vi, Vi′)| ≤ f ′(k) ≤ 1

4f(k)2 and they are all 1
4f

2(k)-regular.
Therefore, by Claim 2.2 all pairs (Vi, Vj) are f(k)-regular, as needed.

3. Deterministic algorithmic version of Theorem 1. As mentioned before,
we show that it is also possible to obtain an algorithmic version of Theorem 1. Here is
a rough sketch, following the proof of Theorem 1 step by step. As described in [2], one
can obtain the partition of Lemma 2.3 in polynomial time. In order to find the mod-
ifications that make it f -regular, the random graphs can be replaced by appropriate
pseudorandom bipartite graphs. The last ingredient we need is an algorithm for find-
ing the modifications to a bipartite graph (A,B) that are guaranteed by Claim 2.1.
The algorithm we describe here combines the use of conditional probabilities (see,
e.g., [3]) with a certain local condition that ensures regularity. We first describe such
a condition.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CAN A GRAPH HAVE DISTINCT REGULAR PARTITIONS? 283

Given a bipartite graph on a pair of vertex sets (A,B) we denote by dC4(A,B)
the density of four-cycles in (A,B), namely, the number of copies of C4 divided by(|A|

2

)(|B|
2

)
. A pair (A,B) is said to be ε-quad-regular if dC4(A,B) = d4(A,B)±ε. This

local condition indeed ensures ε-regularity, as detailed in the following lemma. The
proof of the lemma appears in [6] and is based on the results of [1].

Lemma 3.1 (see [6]). Let (A,B) be a bipartite graph on A and B where |A| =
|B| = n and δ > 0. Then we have the following:

1. If (A,B) is 1
4δ

10-quad-regular, then it is δ-regular.
2. If (A,B) is δ-regular, then it is 8δ-quad-regular.

We shall design a deterministic algorithm for the following slightly weaker version
of Claim 2.1.

Claim 3.2. There is a deterministic polynomial time algorithm that, given a
1

200δ
20-regular pair (A,B) with n vertices in each part (with n large enough) and

d(A,B) = η ± γ, modifies up to 2γn2 edges and thus turns the bipartite graph into a
2δ-regular pair with edge density d′(A,B) = η ± δ.

Note that the polynomial loss in the regularity measure with respect to Claim 2.1
can be evened by modifying the definition of f ′ in the proof of Theorem 1 so that
f ′(k) = min{f40(k)/1600, ε/8}. Hence Claim 3.2 indeed implies an algorithm for
finding the modifications and partition guaranteed by Theorem 1.

Proof of Claim 3.2. Assume d(A,B) = η+γ and γ > δ. The case d(A,B) = η−γ
can be treated similarly.

Consider an arbitrary ordering of the edges of (A,B) and a random process in
which each edge is deleted independently with probability γ

η+γ . We first consider this
setting and later show that a sequence of deterministic choices of the deletions can be
applied so that the resulting graph satisfies the desired properties.

Define the indicator random variable Xi, 1 ≤ i ≤ t = ηn2, for the event of not
deleting the ith edge. Denote the number of four cycles in (A,B) by s = dC4(A,B)

(
n
2

)2
and arbitrarily index them by 1, . . . , s. For every C4 in (A,B) define the indicator
Yi, 1 ≤ i ≤ s, for the event of its survival (i.e., none of its edges being deleted).
Also let X =

∑t
i=1Xi and Y =

∑s
i=1 Yi, which account for the numbers of edges

and four-cycles, respectively, at the end of this process. Now define the following
conditional expectations for i = 0, 1, . . . , t, where the expectation is taken over the
random independent choice of Xi described above:
(1)
fi(x1, . . . , xi) = EXi+1,...,Xt

[
n4(X − ηn2)2 + (Y − η4(n

2)
2)2 | X1 = x1, . . . , Xi = xi

]
.

We first obtain an upper bound on f0. Since X ∼ B((η + γ)n2, η
η+γ), hence

E[(X − ηn2)2] = V (X) = O(n2) and thus the first term in the expression for f0 is
O(n6). The expectation of the second term is

E[(Y − η4(n
2)

2)2] = E[Y 2]− 2E[Y]η4(n
2)

2 + η8(n
2)

4.

For the linear term we have E[Y] =
∑s

i=1 E[Yi] = s(η
η+γ)4. As for the quadratic

term, for any pair 1 ≤ i < j ≤ s of four-cycles which share no common edge, the
corresponding Yi and Yj are independent and hence E[YiYj] = (η

η+γ)8. There are only
O(n6) nondisjoint pairs of C4s, thus E[Y 2] = E[

∑
1≤i,j≤s YiYj] = s2(η

η+γ)8 ± O(n6).

By Lemma 3.1, dC4(A,B) = (η + γ)4 ± 1
25δ

20 and so s = ((η + γ)4 ± 1
25δ

20)
(

n
2

)2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

284 NOGA ALON, ASAF SHAPIRA, AND URI STAV

Therefore, we conclude that

E[(Y − η4(n
2)

2)2] = s2(η
η+γ)8 ±O(n6)− 2s(η

η+γ)4η4(n
2)

2 + η8(n
2)

4

≤ 1
5δ

20(n
2)

4 +O(n6).

This implies that, altogether, for a large enough n, f0 ≤ 1
4δ

20
(
n
2

)4.
Each fi(x1, . . . , xi) is a convex combination of fi+1(x1, . . . , xi, 0) and fi+1(x1, . . . ,

xi, 1). Thus, for some choice xi+1 for Xi+1, we get that fi+1(x1, . . . , xi+1) ≤ fi

(x1, . . . , xi). Therefore, choosing an xi+1 that minimizes fi+1 sequentially for i =
0, . . . , t − 1 results in an assignment of (x1, . . . , xt) such that ft(x1, . . . , xt) ≤ f0 ≤
1
4δ

20
(
n
2

)4. In order to apply this process, one needs to be able to efficiently compute
fi. But this is straightforward, since for any partial assignment of values to the Xis,
the mutual distribution of any pair Yi, Yj can be calculated in time O(1). Therefore,
since there are at most O(n8) pairs of four-cycles, computing the expected value of
the sum in (1) requires O(n8) operations. Repeating this for each edge accumulates
to O(n10).3

To complete the proof of the claim, we only need to show that the modifications
we obtained above, namely such that (x1, . . . , xt) satisfy ft(x1, . . . , xt) ≤ 1

4δ
20
(
n
2

)4,
are guaranteed to satisfy the conditions of the claim. Indeed, in this case, each of the
two addends which sum up to ft are bounded by 1

4δ
20
(
n
2

)4. By the first addend, the
new edge density d′ is d′ = η ± 1

2δ
10. Thus, with much room to spare, the conditions

on the edge density and the number of modifications are fulfilled. Note that it also
follows that d′4 = η4±3δ10 (e.g., whenever δ < 1

4), and the second addend implies that
the new four-cycles density is η4 ± 1

2δ
10 = d′4 ± 4δ10. By Lemma 3.1 the pair is now

41/5δ-regular, and hence the modified graph attains all of the desired properties.
Remark. Another possible proof of Claim 3.2 can be obtained by using an ap-

propriate eightwise independent space for finding (x1, . . . , xt) such that ft attains at
most its expected value.

4. Isomorphism of regular partitions. In this section we prove Theorems 2
and 3. In order to simplify the presentation, we omit all floor and ceiling signs
whenever these are not crucial. We start with the proof of Theorem 2. The basic
ingredient of the construction is a pseudorandom graph which satisfies the following
conditions.

Lemma 4.1. Let k be a square of an odd prime power, then there exists a graph
F = (V,E) on |V | = k vertices such that we have the following:

1. F is �k/2�-regular, and hence d(V, V) = �k/2�
k ,

2. for any pair of vertex sets A and B, if |A| ≥ k 3
4 and |B| ≥ k 3

4 , then d(A,B) =
d(V, V)± k− 1

4 .
Proof. We use some known pseudorandom graphs as follows; see the survey [8] for

further definitions and details. An (n, d, λ)-graph is a d-regular graph on n vertices,
all of whose eigenvalues, except the first one, are at most λ in their absolute values. It
is well known that if λ is much smaller than d, then such graphs have strong pseudo-
random properties. In particular, (see, e.g., [3, Chapter 9]), in this case for any two
sets of vertices A and B of G: d(A,B) = d

n ± λ(|A||B|)− 1
2 . Thus, it is easy to verify

that a (k, �k
2 �,
√
k)-graph would satisfy the assertions of the lemma.

3Note that each edge affects only at most O(n6) pairs of four-cycles, thus the complexity can
easily be reduced to O(n8), and, in fact, the complexity can be further reduced by a more careful
implementation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CAN A GRAPH HAVE DISTINCT REGULAR PARTITIONS? 285

There are many known explicit constructions of (n, d, λ)-graphs. Specifically, we
use the graph constructed by Delsarte and Goethals and by Turyn (see [8]). In this
graph the vertex set V (G) consists of all elements of the two-dimensional vector space
over GF (q), where q is a prime power, so G has k = q2 vertices. To define the edges
of G, we fix a set L of q+1

2 lines through the origin. Two vertices x and y of the graph
G are adjacent if x − y is parallel to a line in L. It is easy to check that this graph
is (q+1)(q−1)

2 = q2−1
2 -regular. Moreover, because it is a strongly regular graph, one

can compute its eigenvalues precisely and show that besides the first one they all are
either − q+1

2 or q−1
2 . Therefore, indeed, we obtain an (k, �k

2 �, λ)-graph with λ <
√
k

as necessary.
Proof of Theorem 2. We construct our example as follows. Pick a graph F on k

vertices V (F) = {1, . . . , k} which satisfies the conditions of Lemma 4.1. Suppose n ≥
k2. The graph on n vertices G will be an n

k blow-up of F : every vertex of F is replaced
by an independent set of size n

k , and each edge is replaced by a complete bipartite
graph connecting the corresponding independent sets. Every nonedge corresponds to
an empty bipartite graph between the parts. Let U = {Ui : 1 ≤ i ≤ k} be the
partition of V (G) where Ui is an independent set which corresponds to the vertex i
in F . It follows from the construction that for any 1 ≤ i < j ≤ k the edge density of
(Ui, Uj) is either 0 or 1, and (Ui, Uj) is ε-regular for any ε > 0. The second partition V
is generated by arbitrarily splitting every Ui into k equal-sized setsWi,t, 1 ≤ t ≤ k, and
setting Vt =

⋃k
i=1Wi,t. Note that for any 1 ≤ i < j ≤ k the edge density dG(Vi, Vj)

is exactly dF (V (F), V (F)). Yet by Lemma 4.1, dF (V (F), V (F)) = 2e(F)
k2 = �k/2�

k ,
which for k ≥ 2 is strictly between 1

4 and 3
4 . Hence U and V are not 1

4 -similar, as
|d(Ui, Uj)− d(Vi′ , Vj′)| > 1

4 for all pairs i < j and i′ < j′.
Thus, we complete the proof of the theorem by showing that all pairs (Vi, Vj) are

k−
1
4 -regular. Suppose, towards a contradiction and without loss of generality, that

there are subsets A ⊆ V1 and B ⊆ V2 such that |A| ≥ k−
1
4 |V1|, |B| ≥ k−

1
4 |V2|, and

|d(A,B) − d(V1, V2)| > k−
1
4 .

For any 1 ≤ i ≤ k we denote Ai = A ∩ Wi,1 and Bi = B ∩ Wi,2. For any
vertex x ∈ A, let the fractional degree of x with respect to B be defined by dB(x) =
e({x}, B)/|B|. Note that d(A,B) = 1

|A|Σx∈AdB(x) and that if x1 and x2 come from
the same Wi,1, then dB(x1) = dB(x2). Therefore, d(A,B) is a convex combination

d(A,B) =
k∑

i=1

|Ai|
|A| dB(xi)

of (at most) k possible fractional degrees of vertices in A, where for 1 ≤ i ≤ k, xi is
an arbitrary member of Wi,1.

First, assume that d(A,B) > d(V1, V2) + k−
1
4 . We sort the vertices of A by their

fractional degrees with respect to B, and consider a subset Â of V1 which consists of
the union of the k

3
4 sets Wi,1 which have the highest fractional degrees with respect

to B. Since |A| > k−
1
4 |V1| = |Â|, it follows that d(Â, B) ≥ d(A,B). Similarly,

by considering the fractional degrees of the vertices of B with respect to the new
subset Â, we may obtain a subset B̂ of V2 such that d(Â, B̂) ≥ d(Â, B) ≥ d(A,B) >
d(V1, V2) + k−

1
4 . It also follows that both Â and B̂ are unions of sets Wi,1 and

Wi,2, respectively. Thus, the edge density d(Â, B̂) is exactly the edge density of
the corresponding vertex sets in F (both of size k

3
4). By Lemma 4.1, we get that

d(Â, B̂) ≤ dF (V (F), V (F))+ k−
1
4 = dG(V1, V2)+ k−

1
4 , which leads to a contradiction

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

286 NOGA ALON, ASAF SHAPIRA, AND URI STAV

and completes the proof of Theorem 2. The case where d(A,B) < d(V1, V2) − k− 1
4

can be treated similarly.
Remark. By using the random graph G(k, 1

2) one could establish an inexplicit
probabilistic proof for an analog of Lemma 4.1. The proof applies standard Chernoff
bounds on the number of edges between any pair of small vertex sets. This extends
the result for any k > 2 and with a stronger regularity constraint. Repeating the
proof of Theorem 2 with such a graph F implies that Theorem 2 holds even for
f(k) = Θ(log1/3 k

k1/3).
We conclude this section with the proof of Theorem 3.
Proof of Theorem 3. First assume that n, the number of vertices in the graph G,

is divisible by k, and consider two f -regular partitions U = {Ui : 1 ≤ i ≤ k} and
V = {Vi : 1 ≤ i ≤ k} of order k. Let Wi,j denote Vi ∩ Uj. Consider a matrix A

where Ai,j = |Wi,j |
|Vi| is the fraction of vertices of Vi in Uj, and note that A is doubly

stochastic, that is, the sum of entries in each column and row is precisely 1. A well-
known (and easy) theorem of Birkhoff [4] guarantees that A is a convex combination
of (less than) k2 permutation matrices. In other words, there are k2 permutations
σ1, . . . , σk2 of the elements {1, . . . , k}, and k2 reals 0 ≤ λ1, . . . , λk2 ≤ 1 such that∑

t λt = 1 and A =
∑

t λtAσt , where Aσ is the permutation matrix corresponding to
σ. Let λp be the largest of these k2 coefficients. Clearly, λp ≥ 1/k2, and observe that
as A is a convex combination of the matrices Aσt , this means that for every 1 ≤ i ≤ k
we have |Wi,σp(i)| ≥ 1

k2 |Vi| and similarly |Wi,σp(i)| ≥ 1
k2 |Uσp(i)|. As both V and U are

assumed to be f(k)-regular and f(k) < min{1/k2, ε/4}, this guarantees that for all
1 ≤ i < j ≤ k we have

|d(Vi, Vj)− d(Uσp(i), Uσp(j))|

≤ |d(Vi, Vj)− d(Wi,σp(i),Wj,σp(j))|+ |d(Wi,σp(i),Wj,σp(j))− d(Uσp(i), Uσp(j))| ≤ ε

2
,

completing the proof for this case.
We now justify our assumption that n is divisible by k: if this is not the case, we

add (n mod k) < k isolated vertices to G and denote the new graph by G′. Now,
consider partitions U ′ and V ′ of G′, in which all sets have the same size �n

k �, by
adding at most one isolated vertex to each cluster in U and V . Since U and V are
f(k)-regular, it is not difficult to verify that U ′ and V ′ are min{1/k2, ε/4}-regular.
Applying the above argument on G′ with U ′ and V ′, we get that U ′ and V ′ are 1

2ε-
isomorphic. However, for any 1 ≤ i < j ≤ k the edge densities d(Vi, Vj) and d(V ′

i , V
′
j)

differ by at most 2
|V ′

i | ≤
2k
n ≤ 1

4ε, and the same holds for U and U ′. Therefore, we
conclude that the partitions U and V of the original graph G are ε-isomorphic.

Acknowledgments. We would like to thank Madhu Sudan for a conversation
that initiated this study, and Laci Lovász for fruitful discussions. We would also like
to thank the anonymous referee for helpful comments.

REFERENCES

[1] N. Alon, R. A. Duke, H. Lefmann, V. Rödl, and R. Yuster, The algorithmic aspects of
the regularity lemma, J. Algorithms, 16 (1994), pp. 80–109.

[2] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy, Efficient testing of large graphs,
Combinatorica, 20 (2000), pp. 451–476.

[3] N. Alon and J. H. Spencer, The Probabilistic Method, 2nd ed., John Wiley & Sons, New
York, 2000.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CAN A GRAPH HAVE DISTINCT REGULAR PARTITIONS? 287

[4] G. Birkhoff, Three observations on linear algebra, Univ. Nac. Tucumán. Rev. Ser. A, 5 (1946),
pp. 147–151.

[5] T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, Geom. Funct.
Anal., 7 (1997), pp. 322–337.

[6] Y. Kohayakawa, V. Rödl, and J. Skokan, Hypergraphs, quasi-randomness, and conditions
for regularity, J. Combin. Theory Ser. A, 97 (2002), pp. 307–352.

[7] J. Komlós and M. Simonovits, Szemerédi’s regularity lemma and its applications in graph
theory, in Combinatorics, Paul Erdös is Eighty, Vol. II, D. Miklós, V. T. Sós, and T. Szönyi,
eds., János Bolyai Math. Soc., Budapest, 1996, pp. 295–352.

[8] M. Krivelevich and B. Sudakov, Pseudo-random graphs, in More Sets, Graphs and Numbers,
E. Györi, G. O. H. Katona, and L. Lovász, eds., Bolyai Soc. Math. Stud. 15, Springer,
Berlin, 2006, pp. 199–262.

[9] L. Lovász, private communication, 2006.
[10] L. Lovász and B. Szegedy, Szemerédi’s lemma for the analyst, Geom. Funct. Anal., 17 (2007),

pp. 252–270.
[11] V. Rödl and M. Schacht, Regular partitions of hypergraphs: Counting lemmas, Combin.

Probab. Comput., 16 (2007), pp. 887–901.
[12] V. Rödl and M. Schacht, Regular partitions of hypergraphs: Regularity lemmas, Combin.

Probab. Comput., 16 (2007), pp. 833–885.
[13] M. Sudan, private communication, 2005.
[14] E. Szemerédi, Regular partitions of graphs, in Problèmes Combinatories et Théorie des Graphes

(Colloq. Internat. CNRS, Univ. Orsay, Orsay, France, 1976), J. C. Bermond, J. C. Fournier,
M. Las Vergnas, and D. Sotteau, eds., Colloq. Internat. CNRS 260, CNRS, Paris, 1978,
pp. 399–401.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 288–299

COLORING RANDOM INTERSECTION GRAPHS AND COMPLEX
NETWORKS∗

MICHAEL BEHRISCH† , ANUSCH TARAZ‡ , AND MICHAEL UECKERDT†

Abstract. We study the evolution of the chromatic number of a random intersection graph and
show that, in a certain range of parameters, these random graphs can be colored optimally with high
probability using different greedy algorithms. Experiments on real network data confirm the positive
theoretical predictions and suggest that heuristics for the clique and the chromatic number can work
hand in hand proving mutual optimality.

Key words. coloring, intersection graph, random graph, complex network

AMS subject classifications. 05C15, 05C80, 05C85

DOI. 10.1137/050647153

1. Introduction and results. The classical random graph model, introduced
by Erdős and Rényi in the early 1960s, considers a fixed set of n vertices and edges
that exist with a certain probability, p = p(n), independently from each other. It
was shown to be inappropriate for describing real-world networks because it lacks
certain features of those such as a scale-free degree distribution and the emergence of
local clusters. One of the underlying reasons that are responsible for this mismatch
is precisely the independence of the edges, in other words the missing transitivity: if
vertices x and y exhibit a relationship of some kind in a real-world network and so do
vertices y and z, then this suggests a connection between vertices x and z, too.

Intersection graphs. Suppose that we have a vertex set V and another set W .
An intersection graph is a graph with vertex set V , where we assign to each vertex v a
subset Wv ⊆W and connect two vertices v, v′ by an edge if and only if their assigned
sets Wv and Wv′ have nonempty intersection.

We call the ground set W from which the assigned sets are chosen universal
feature set and its elements features. If feature w ∈ Wv, then we say that feature w
is assigned to vertex v or simply that v has w. The set Wv is called the feature set of
v. For a specified w ∈W , let Vw be the set of vertices v that have feature w. We call
Vw a feature clique, since it obviously induces a clique in the intersection graph. As
usual, Γ(v) denotes the set of neighbors of v, i.e., the set of vertices in V that have
features with v in common.

Well-studied examples for intersection graphs are interval graphs on the real line.
In this paper, however, we will only consider finite sets. Obviously, every graph is an
intersection graph (simply pick an individual feature assigned only to the two vertices
of every edge), but the fewer features we have, the more apparent the structure of the
shared features inside the graph becomes.

∗Received by the editors December 8, 2005; accepted for publication (in revised form) August 18,
2008; published electronically January 7, 2009. This work was supported in part by the DFG research
center Matheon in Berlin.

http://www.siam.org/journals/sidma/23-1/64715.html
†Institut für Informatik, Humboldt-Universität zu Berlin, 10099 Berlin, Germany (behrisch@

informatik.hu-berlin.de, ueckerdt@informatik.hu-berlin).
‡Zentrum Mathematik, Technische Universität München, 80290 München, Germany (taraz@ma.

tum.de).

288

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COLORING INTERSECTION GRAPHS 289

Random intersection graphs. A random intersection graph on n vertices with
a universal feature set W of size m is a random graph with vertex set [n] where each
vertex gets assigned a random set of features by choosing each feature independently
with probability p. A sample of this probability space is denoted by Gn,m,p. We
consider now, and in the following, m := nα, and will usually distinguish two cases:
α > 1 and 0 < α < 1. If the probability of Gn,m,p having a property A tends to
1 with n tending to infinity, then we say that Gn,m,p has property A asymptotically
almost surely (a.a.s.).

It is sometimes convenient to look at the random intersection graph as a random
bipartite graph with bipartition (V,W) and edges occurring between the two classes
independently with probability p. Such a graph will be called a generator.

Several aspects of random intersection graphs have been studied before. Karoński,
Scheinerman, and Singer-Cohen [11] study subgraph appearance in this model. Fill,
Scheinerman, and Singer-Cohen [5] investigate the equivalence of Gn,m,p to Gn,p, and
Stark [14] analyzes its vertex degree distribution. Behrisch and Taraz [3] show how to
reconstruct the feature structure when only the random intersection graph is given as
input. A study of the component evolution is given by Behrisch in [2]. Some results
concerning connectivity and cliques can be found in Singer [13]. Extensions to the
model are proposed by Godehardt and Jaworski in [7], who modify the distribution of
the sizes of the feature cliques. The practical relevance of random intersection graphs
is studied by Newman, Strogatz, and Watts in [12] and by Guillaume and Latapy
in [9].

The aim of this paper is to investigate the evolution of the chromatic number of
Gn,m,p. As usual, denote by χ(G) the chromatic number of G and by ω(G) the size
of the largest clique in G. The computation of these two fundamental parameters
is long known to be NP-hard. Our main results are that for a random intersection
graph G = Gn,m,p, where m and p lie in a certain range. Asymptotically almost
surely, χ(G) and ω(G) can be computed efficiently by simple coloring heuristics and
actually coincide.

Theorem 1. Let m := nα with α > 0 fixed and p �
√

1
nm . Then Gn,m,p can

a.a.s. be colored optimally in linear time and χ(Gn,m,p) = ω(Gn,m,p).
Theorem 2. Let m := nα with 0 < α < 1 fixed and p� 1

m ln n . Then Gn,m,p can
a.a.s. be colored optimally in linear time. Moreover, for np > ln4 n we have a.a.s.

χ(Gn,m,p) = ω(Gn,m,p) = (1 + o(1))np.

Note that in principle one could also state in Theorem 1 that for np > ln4 n
we have a.a.s. χ(Gn,m,p) = ω(Gn,m,p) = (1 + o(1))np, but this is redundant since

np > ln4 n and p�
√

1
nm together imply α < 1 and thus the two theorems overlap in

this case. Figure 1 gives an overview about the parameter ranges where our theorems
apply together with some basic properties of random intersection graphs.

Applications. We have tested our coloring heuristics on real-world networks
from application areas such as the internet, cooperation graphs, and protein databases.
Although we cannot prove that those networks can be modelled well with random
intersection graphs having parameters in the range covered by our theorems, the
heuristics described could color those graphs optimally in many cases—see section 4
for details. Still the question of, why one should try to color complex networks re-
mains. Of course, knowledge of the chromatic number gives important structural in-
formation of a general nature, but while, for instance, the clique number is practically

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

290 MICHAEL BEHRISCH, ANUSCH TARAZ, AND MICHAEL UECKERDT

n−1

n−0.5

n−1.5

0.5 1.0 1.50
α

completechordal (Theorem 1)

no edges

p

GreedySL optimal (Theorem 2)

Fig. 1. Ranges for p and α where we color optimally.

meaningful—the size of the largest cluster in the network—the chromatic number
seems to be of less immediate use.1

There is, however, one important application of the chromatic number, and this is
exactly the clique number. Suppose we have a heuristic that tries to find the maximal
size of a clique. If we also have a heuristic that tries to determine the minimum
number of colors, and both of the proposed numbers coincide (or are at least very
close to each other), then this proves that both numbers have already reached (near-)
optimal values. This is precisely what we did in our experiments: we applied different
heuristics discussed in an earlier paper [3] to find large cliques (and good clique covers)
in the networks. At the same time, we tried to find good colorings of real-world
networks using the greedy algorithms discussed in this paper. The results showed
that, just as predicted for intersection graphs by Theorems 1 and 2, the proposed
chromatic number and clique number indeed coincide in many cases.

In a way this is very reminiscent of the theory of perfect graphs. In fact, Gn,m,p

with m and p as in Theorem 1 is a.a.s. perfect, and we can thus use some of the perfect
graph methodology to give a short proof of the theorem. For parameters m and p
as in Theorem 2—although χ(Gn,m,p) = ω(Gn,m,p) a.a.s.—Gn,m,p is not perfect and
hence a different coloring strategy has to be used for this case.

1One possible application, not to be taken too seriously, could be to distribute film-stars to a
minimum number of hotels (color classes) in such a way that costars of the same movie are not put
in the same hotel, just to avoid trouble.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COLORING INTERSECTION GRAPHS 291

This paper is organized as follows. After a short section containing some auxiliary
tools, we will prove Theorems 1 and 2 in sections 3.1 and 3.2, respectively. Our
coloring experiments can be found in section 4, and a brief outlook concludes this
paper.

2. Auxiliary lemmas. The following estimates are used without proof:

1− ab ≤ (1− a)b ≤ 1− ab

2
for 0 ≤ a ≤ 1, ab < 1.(1)

Let X be a nonnegative random variable with expectation μ = E [X]. As a special
case of Markov’s inequality the first moment method states that

(2) P [X ≥ 1] ≤ μ.

If X is binomially distributed random variable (n trials, each with probability p), then
μ = np, and we shall use the following variants of Chernoff’s inequality (see section 2
in [10]):

P [X ≥ μ+ t] ≤ exp
(
− t2

2(μ+ t/3)

)
for t ≥ 0,(3)

P [X ≤ μ− t] ≤ exp
(
− t

2

2μ

)
for t ≥ 0,(4)

P [X ≥ t] ≤ exp (−t) for t ≥ 7μ.(5)

We first show that the probability that there is a feature clique in Gn,m,p which
deviates much from its expected size is exponentially small.

Lemma 3. Let Xw := |Vw| be the random variable counting the number of vertices
of a fixed feature w in a random intersection graph Gn,m,p with m := nα and α < 1.
Then

P

[
∃w ∈ W : |Xw − pn| > (pn)

3
4

]
≤ m exp

(
− (pn)

1
2

3

)
.

Proof. The number of vertices chosen by a feature is a binomially distributed
variable. Its deviation from its expected value can therefore be bounded by Chernoff
inequalities (3) and (4). First, let w be fixed:

P

[
Xw > pn+ (pn)

3
4

]
≤ exp

(
− (pn)

3
2

2(pn+ (pn)
3
4 /3)

)
≤ 1

2
exp

(
− (pn)

1
2

3

)
,

P

[
Xw < pn− (pn)

3
4

]
≤ exp

(
− (pn)

3
2

2pn

)
≤ 1

2
exp

(
− (pn)

1
2

3

)
.

By linearity of expectation (summing over all possible w) and Markov’s inequality,
the previous equation implies that

P

[
∃w ∈W : |Xw − pn| > (pn)

3
4

]
≤ m exp

(
− (pn)

1
2

3

)
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

292 MICHAEL BEHRISCH, ANUSCH TARAZ, AND MICHAEL UECKERDT

Since we are mostly interested in small feature sets, we need only an upper bound
on their size.

Lemma 4. Let Xv := |Wv| be the random variable counting the number of features
for a fixed vertex v in a random intersection graph Gn,m,p with m := nα and α < 1.
Then, for pm ≤ 3 lnn

P [∃v ∈ V : Xv > 21 lnn] ≤ 1
n20

.

Proof. Very similar to the previous lemma, we have for a fixed vertex v, and for
pm ≤ 3 lnn

P [Xv > 21 lnn]
(5)

≤ exp(−21 lnn) =
1
n21

.

Again summing over all vertices v yields the statement of the lemma.

3. Proofs. In the following two subsections we describe two simple and well-
known deterministic algorithms that find a proper coloring of a given input graph
G = (V,E) in linear time. Both algorithms are greedy heuristics: they color the
vertices in a prescribed order and assign to each vertex the smallest color that has
not been used for any of its neighbors which are already colored. Thus the main task
is to prove the following: if the input graph G is a random intersection graph Gn,m,p

with parameters n, m, and p as given in Theorems 1 and 2, then these algorithms will
a.a.s. produce a coloring with (at most) ω(G) different colors. Hence the coloring is
optimal and χ(G) = ω(G), as required.

The additional claim in Theorem 2, that a.a.s. ω(G) is of order np, will follow
from the fact that the largest clique is a feature clique, which according to Lemma 3
is of that order.

3.1. Perfect elimination scheme. The aim of this subsection is to prove The-
orem 1. Here is the basic idea of our coloring algorithm. We first try to order the
vertices of the graph as xn, . . . , x1 in such a way that for every vertex xi the “remain-
ing neighborhood” Γ(xi) ∩ {xi−1, . . . , x1} induces a clique in G. Having established
this ordering, we greedily color the vertices in (reverse) order x1, . . . , xn. Observe
that this implies that vertices which are contained in many different cliques, e.g.,
those that have many features, will be colored relatively early.

Such an ordering is called a perfect elimination scheme, in short PES. Tarjan
and Yannakakis [15] proved that, if a graph has a PES, then a so-called maximum
cardinality search will produce a PES in linear time. If the graph doesn’t have a PES,
then the procedure returns an arbitrary ordering. This leads to the following greedy
coloring heuristic:

Algorithm 1.

Input: Graph G = (V,E) on n vertices
Output: Coloring of G
GreedyColorPES(G)
(1) A := ∅
(2) for i := 1 to n
(3) choose xi ∈ V \A such that |Γ(xi) ∩A| is maximal
(4) A := A+ xi

(5) for i := 1 to n
(6) color xi with the smallest color not occurring in Γ(xi)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COLORING INTERSECTION GRAPHS 293

The following three crucial facts have been known for a long time:
1. A graph G has a PES (and it can be found in linear time and as described

previously) if and only if G is chordal, i.e., it does not contain an induced
cycle with more than three vertices [15],

2. Chordal graphs are perfect [4, Chapter 5.5]; thus, in particular, χ(G) = ω(G).
3. If a PES exists for G, then, using it as described previously, the greedy

coloring procedure colors G optimally.
The last observation is a folklore result and obviously true: if the set of the already
colored neighbors of every vertex xi forms a clique when xi is colored, then whenever
a vertex xi needs a new color k, we have just found a clique of size k, and hence k
colors are really needed to color the graph.

Now all that remains is to prove that Gn,m,p is chordal for the given parameters
n, m, and p, which will be done in the following lemma.

Lemma 5. Let m := nα for α > 0 fixed and p �
√

1
nm . Then Gn,m,p is a.a.s.

chordal.
Proof. Let G = Gn,m,p be a random intersection graph and B = (V ∪W,EB) a

bipartite generator of G. By definition, G is chordal if and only if it does not contain
an induced cycle of length at least four. Suppose that v1, . . . , vk form an induced cycle
Ck in G. Then there must exist features w1, . . . , wk such that wi is a feature of both
vi and vi+1 for all i ∈ [k− 1], and wk is a feature for both vk and v1. Moreover, all of
the wi are distinct, since otherwise the cycle wouldn’t be induced. This yields a cycle
v1, w1, v2, w2, . . . , vk, wk in the generator B. The probability for such a cycle in B can
obviously be bounded from above by p2k, and multiplying this with the number of
possibilities to choose v1, . . . , vk and w1, . . . , wk we get

P [G contains an induced Ck] ≤ nkmkp2k = (nmp2)k.

The probability of G being not chordal is now bounded by

P [G is not chordal] ≤
min(n,m)∑

k=4

P [G contains an induced Ck]

≤
min(n,m)∑

k=4

(nmp2)k

≤
∞∑

k=0

(nmp2)k − 1 =
1

1− nmp2
− 1,

which tends to 0 for n tending to infinity because nmp2 tends to 0.

A second moment calculation (see Singer [13]) shows that p =
√

1
nm is in fact

the threshold function for the appearance of induced cycles of fixed length k ≥ 4 in

random intersection graphs. Thus for p�
√

1
nm these graphs are a.a.s. not chordal.

3.2. Smallest last heuristic. The aim of this subsection is to prove Theo-
rem 2. Again we employ a greedy strategy but this time the precomputed order-
ing x1, . . . , xn of the vertices is slightly different. Suppose we have already selected
xn, . . . , xi+1. Then among the remaining vertices xi is the vertex with the smallest
number of neighbors (among the remaining vertices). More precisely we have the
following algorithm.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

294 MICHAEL BEHRISCH, ANUSCH TARAZ, AND MICHAEL UECKERDT

Algorithm 2.

Input: Graph G = (V,E) on n vertices
Output: Coloring of G
GreedyColorSmallestLast(G)
(1) A := V
(2) for i := n downto 1
(3) choose xi ∈ A such that |Γ(xi) ∩A| is minimal
(4) A := A− xi

(5) for i := 1 to n
(6) color xi with the smallest color not occurring in Γ(xi)

As there may be more than one such ordering, we denote by χSL(G) the maximum
number of colors that GreedyColorSmallestLast(G) uses for an input graph G.
It is well known [4, Chapter 5.2] that the number of colors used by the algorithm is
always bounded from above by the maximal minimum degree of all subgraphs of G,
plus one:

(6) χSL(G) ≤ 1 + max
H⊆G

δ(H).

From this we derive the following simple proposition.
Proposition 6. If G is a graph such that

(7) every vertex v has less than ω(G) neighbors of degree at least ω(G),

then

χSL(G) = ω(G) = χ(G).

Proof. We claim that (7) implies that

(8) 1 + max
H⊆G

δ(H) ≤ ω(G).

Suppose for a contradiction that there exists a subgraph H with 1 + δ(H) > ω(G).
Let v be a vertex of minimal degree in H , i.e., dH(v) = δ(H) ≥ ω(G). Then for all
neighbors w of v in H we have

dG(w) ≥ dH(w) ≥ dH(v) = δ(H) ≥ ω(G),

and since there are dG(v) ≥ dH(v) = δ(H) ≥ ω(G) neighbors of v in G, this contra-
dicts the property in (7), which proves the claim in (8).

Now we are done, since

χ(G) ≤ χSL(G)
(6)

≤ 1 + max
H⊆G

δ(H)
(8)

≤ ω(G) ≤ χ(G).

Let us move back to intersection graphs. In the following we call a vertex v rich
if it has at least two features. Obviously, the only way that a vertex can have degree
at least ω(G) is if it is rich. Hence we have the following corollary.

Corollary 7. Suppose that G is an intersection graph such that every vertex
has less than ω(G) rich neighbors. Then

χSL(G) = ω(G) = χ(G).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COLORING INTERSECTION GRAPHS 295

In order to prove that in our random intersection graph the condition of the
above corollary is a.a.s. satisfied, we first obtain an upper bound on the number of
rich vertices in each feature clique.

Lemma 8. Let m = nα for 0 < α < 1 fixed, p ≥ 10 ln2 n
n , and t ≥ 0. Denote by

ωf the size of a largest feature clique in Gn,m,p. Then in a random intersection graph
Gn,m,p, the probability that there exists a feature clique C with more than ωfmp + t
rich vertices is at most

m exp
(
− t2

2ωfmp+ 2t/3

)
.

Proof. Let C ⊆ V denote an arbitrary feature clique in G. For v ∈ C we denote
by XC,v the random variable which is 1 whenever v is rich and 0 otherwise. Then

P [XC,v = 1] = 1− (1− p)m−1
(1)

≤ 1− (1− (m− 1)p) ≤ mp.
Let XC :=

∑
v∈C XC,v count the rich vertices in C. For the expectation of XC we

have

E [XC] =
∑
v∈C

P [XC,v = 1] ≤ ωfmp.

Using the Chernoff bound, we get

P [XC ≥ ωfmp+ t] ≤ P [XC ≥ E [XC] + t]

(3)

≤ exp
(
− t2

2E [XC] + 2t/3

)
≤ exp

(
− t2

2ωfmp+ 2t/3

)
.

Of course the events XC ≥ ωfmp + t are not independent of each other for
overlapping feature cliques C, but, using linearity of expectation and the Markov
inequality (2), we can bound the probability of existence of a feature clique with too
many rich vertices by the expression in the lemma.

Proof of Theorem 2. We want to apply Corollary 7 and, hence, need to show that
in G = Gn,m,p every vertex has less than ω(G) rich neighbors. Recall that m := nα

with 0 < α < 1 fixed and p � 1
m ln n . First, observe that we can assume that pn >

ln4 n, since otherwise p would be so small that we could apply Theorem 1 instead. Set

t := max(3 lnn,
√
nmp2 lnn),

and consider an arbitrary small ε > 0. We shall make use of the following two technical
observations (involving t) that will be verified later:

21 lnn((1 + ε)nmp2 + t) ≤ (1 − ε)np,(9)

m exp
(
− t2

2(1 + ε)nmp2 + 2t/3

)
≤ nα−1.(10)

Again denote by ωf the size of a largest feature clique in G = Gn,m,p and con-
sider the following events that have already been discussed in Lemmas 3, 4, and 8,
respectively:

A: for all w ∈ W : ||Vw| − pn| < εpn,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

296 MICHAEL BEHRISCH, ANUSCH TARAZ, AND MICHAEL UECKERDT

B: for all v ∈ V : |Wv| ≤ 21 lnn,
C: every feature clique C has at most ωfmp+ t rich vertices.

Let Yv be the number of rich neighbors of a vertex v. Then Yv is bounded from
above by the number of feature cliques containing v, multiplied with the number of
rich vertices per feature clique, and we can then compare this to the size of a feature
clique, which is a lower bound for ω(G). So if all of the events A,B, C hold, then

(11) Yv ≤ 21 lnn ((1 + ε)pn mp+ t)
(9)

≤ (1 − ε)np (A)
< ωf − 1 < ω(G),

which would immediately prove (most of) the statements in Theorem 2 because of
Corollary 7. To prove that ω(G) = (1 + o(1))np, note that by the estimate in (11)
there is no vertex v with ωf − 1 rich neighbors, and hence there exists no clique of
size ωf containing only rich vertices. In turn, this implies that ω(G) = ωf , since a
clique which is not (subset of) a feature clique contains only rich vertices, and we are
done because ωf = (1 + o(1))np by property A.

Let us complete the proof by showing that a.a.s. all of the events A,B, C hold.
Obviously

P [A∩ B ∩ C] = 1−P
[Ā]−P

[A ∩ B̄]−P
[A ∩ B ∩ C̄] ≥ 1−P

[Ā]−P
[B̄]−P

[A ∩ C̄],
so it suffices to check that all of the probabilities P

[Ā],P [B̄],P [A ∩ C̄] tend to zero.
For the first two probabilities, this is immediately implied by Lemma 3 (which ap-
plies because of m < n and pn > ln4 n) and Lemma 4, respectively. For the latter
probability it follows from Lemma 8 and observing that

P
[Ā ∩ C] ≤ m exp

(
− t2

2(1 + ε)pn mp+ 2t/3

)
(10)

≤ nα−1,

which does tend to zero, since α < 1.
Thus all that remains is to check the two technical observations (9) and (10).

Considering (9), we distinguish two cases. For
√
nmp2 > 3 we have

21 lnn((1 + ε)nmp2 +
√
nmp2 lnn) ≤ 40nmp2 lnn+ 21

√
nmp2 ln2 n

= np(40mp lnn+ 21
√
m/n ln2 n),

which is smaller than (1 − ε)np because of mp� 1
ln n and α < 1.

And for
√
nmp2 ≤ 3

21 lnn((1 + ε)nmp2 + 3 lnn) ≤ 40nmp2 lnn+ 63 ln2 n

≤ 360 ln3 n+ 63 ln2 n,

which is smaller than (1 − ε)np because of ln3 n
n � p.

Considering (10), we distinguish two cases again. For
√
nmp2 > 3 we have

m exp

(
− nmp2 ln2 n

2(1 + ε)nmp2 + 2
3

√
nmp2 lnn

)
≤ m exp

(
−nmp

2 ln2 n

nmp2 lnn

)

= m exp (− lnn) = nα−1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COLORING INTERSECTION GRAPHS 297

and for
√
nmp2 ≤ 3

m exp
(
− 9 ln2 n

2(1 + ε)nmp2 + 2
33 lnn

)
≤ m exp

(
− 9 ln2 n

100 + 2 lnn

)

≤ m exp (− lnn) = nα−1.

4. Experiments. We have tested our algorithms on eight real-world networks
from different application areas. The first five graphs are the same as in [9]. “Internet”
describes part of the internet computer network, “Web” is the link graph of a complex
website, “Authors” denotes a coauthoring graph, “Actors” denotes a costarship graph
of actors as found in the internet movie database, and “Proteins” is an interaction
graph of proteins. For details, see [9] and [1]. The “Mercator” graph is a graph of
the internet at router level taken from [8]. Moreover, “DIP” stands for “Dictionary of
Interfaces in Proteins” and is a similarity graph of protein parts (vertices are protein
interfaces that are adjacent if they are similar) studied in [6]. “Drugs” is the result
of a search for “relatives” of 13 substances in a database of 2000 drugs, where an
edge connects a pair of drugs which are relatives to the same test substance. Details
concerning this network are described in [16].

Table 1

Statistics on the performance of the algorithms on eight real-world networks.

Internet Web Authors Actors Proteins
n 75885 325729 16400 392340 2113
|E| 357317 1090108 29552 15038083 2203

Greedyχ 22 155 11 294 6
GreedyPESχ 21 156 8 294 6
GreedySLχ 20 155 8 294 6
largest clique 20 155 8 294 6
core size 996 1367 0 2647 0

Mercator DIP Drugs
n 284805 5119 2000
|E| 449246 14434 163969

Greedyχ 38 42 381
GreedyPESχ 33 42 381
GreedySLχ 33 42 381
largest clique 13 42 381
core size 1453 0 432

In Table 1 Greedyχ, GreedyPESχ, and GreedySLχ denote the number of colors
needed by a greedy coloring procedure that colors the vertices in the natural order
(in which they were read), in a PES ordering (cf. Algorithm 1), and in a smallest
last ordering (cf. Algorithm 2), respectively. Table 1 also states the size of the largest
clique we were able to find in the graphs using the clique cover algorithm described
in [3]. Obviously, the difference between the proposed number of colors and the
proposed size of a largest clique is an upper bound of the distance of either number
to the optimal value.

The results show that the coloring algorithms seem to perform well on real-world
graphs. In all but one case we were able to color the graph optimally using the
heuristic described in Algorithm 2.

We also performed an additional test to obtain some indication as to how difficult
it really is to optimally color these particular input graphs. For this, we determined

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

298 MICHAEL BEHRISCH, ANUSCH TARAZ, AND MICHAEL UECKERDT

the so-called k-core by repeatedly removing all vertices with degree smaller than k,
where we set k as the size of the largest known clique. If the k-core were very small
or of a simple structure for which one could easily find a k-coloring, then it would be
trivial to extend this coloring to a valid and thus optimal k-coloring of the whole graph
by reattaching the vertices in reverse order. (Note that this procedure is essentially
identical to Algorithm 2, except that it is forced to stop when it realizes that all
remaining vertices x ∈ A satisfy |Γ(x) ∩A| ≥ k.) However, as shown in Table 1, in
many cases the size of the k-core is substantially larger than that of the largest known
clique.

Finally, we remark that the large difference between the proposed coloring number
and the proposed clique number for the Mercator test set is not so much a failure of
the coloring algorithms. Instead, it seems mainly due to the fact that the clique cover
algorithm, originally designed in [3] with the aim to find a good clique cover, cannot
find a large clique on this instance—a simple enumeration method applied to the 52-
core of the graph (k = 52 gives the last nonempty k-core; it has 81 vertices) identified
a clique of size 27.

5. Outlook. For the ranges not covered by Theorems 1 and 2, the chromatic
number seems to be more difficult to estimate. From the aforementioned result by

Singer [13], it is clear that those graphs are no longer chordal for p �
√

1
nm while

the results on the clique cover [3] suggest that the feature cliques stay the dominant
structural element up to p < min{ 1

5m
− 2

3 , n
8m2 }.

In higher ranges, the approximation of the chromatic number by the size of the
largest feature clique will not be very good. Using a different approach [17], we tried
to establish a better lower bound via the independence number. Since the chromatic
number of any graph is at least as high as the number of vertices divided by the size
of a largest independent set, we obtain a lower bound on the chromatic number which
beats the size of the largest feature clique, as the following result shows.

Theorem 9 (see [17]). Let ε > 0 be fixed, and let m := nα with α > 0 fixed

and lnn
m � p �

√
ln n
m . Then a.a.s. the random intersection graph Gn,m,p has no

independent set of size

(2 + ε)
lnn
mp2

,

which implies that

χ(Gn,m,p) ≥ p2mn

(2 + ε) lnn
� pn.

Lower bounds on the independence number (which match the upper bounds by
a logarithmic factor) can also be found in [17].

REFERENCES

[1] R. Albert, H. Jeong, and A.-L. Barabási, Database of Self-Organized Networks, http://
www.nd.edu/networks/database/index.html.

[2] M. Behrisch, Component evolution in random intersection graphs, Electron J. Combin., 14
(2007), pp. 12.

[3] M. Behrisch and A. Taraz, Efficiently covering complex networks with cliques of similar
vertices, Theoret. Comput. Sci., 355 (2006), pp. 37–47.

[4] R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COLORING INTERSECTION GRAPHS 299

[5] J. A. Fill, E. R. Scheinerman, and K. B. Singer-Cohen, Random intersection graphs when
m = ω(n): An equivalence theorem relating the evolution of the G(n, m, p) and G(n, p)
models, Random Structures Algorithms, 16 (2000), pp. 156–176.

[6] C. Frömmel, C. Gille, A. Goede, C. Gröpl, S. Hougardy, T. Nierhoff, R. Preissner,

and M. Thimm, Accelerating screening of 3D protein data with a graph theoretical ap-
proach, Bioinformatics, 19 (2003), pp. 2442–2447.

[7] E. Godehardt and J. Jaworski, Two models of random intersection graphs and their appli-
cations, Electron. Notes Discrete Math. 10, Elsevier, Amsterdam, 2001.

[8] R. Govindan and H. Tangmunarunkit, SCAN+Lucent Internet Map From the ISI, http://
www.isi.edu/div7/scan/mercator/maps.html, 1999.

[9] J.-L. Guillaume and M. Latapy, Bipartite structure of all complex networks, Inform. Process.
Lett., 90 (2004), pp. 215–221.

[10] S. Janson, T. �Luczak, and A. Ruciński, Random Graphs, John Wiley & Sons, New York,
2000.

[11] M. Karoński, E. R. Scheinerman, and K. B. Singer-Cohen, On random intersection graphs:
The subgraph problem, Combin. Probab. Comput., 8 (1999), pp. 131–159.

[12] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with arbitrary degree
distributions and their applications, Phys. Rev. E, 64 (2001), 026118.

[13] K. B. Singer, Random Intersection Graphs, Ph.D. thesis, Johns Hopkins University, Baltimore,
MD, 1995.

[14] D. Stark, The vertex degree distribution of random intersection graphs, Random Structures
Algorithms, 24 (2004), pp. 249–258.

[15] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput.,
13 (1984), pp. 566–579.

[16] M. Thimm, A. Goede, S. Hougardy, and R. Preissner, Comparison of 2D similarity and
3D superposition. Application to searching a conformational drug database, J. Chem. Inf.
Comp. Sci., 44 (2004), pp. 1816–1822.

[17] M. Ueckerdt, Färben von zufälligen Schnittgraphen, Diploma thesis, Humboldt-Universität
zu Berlin, Berlin, Germany, 2005.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 300–318

CENTERS FOR RANDOM WALKS ON TREES∗

ANDREW BEVERIDGE†

Abstract. We consider two distinct centers which arise in measuring how quickly a random walk
on a tree mixes. Lovász and Winkler [Efficient stopping rules for Markov chains, in Proceedings of
the 27th ACM Symposium on the Theory of Computing, 1995, pp. 76–82] point out that stopping
rules which “look where they are going” (rather than simply walking a fixed number of steps) can
achieve a desired distribution exactly and efficiently. Considering an optimal stopping rule that
reflects some aspect of mixing, we can use the expected length of this rule as a mixing measure.
On trees, a number of these mixing measures identify particular nodes with central properties. In
this context, we study a variety of natural notions of centrality. Each of these criteria identifies the
barycenter of the tree as the “average” center and the newly defined focus as the “extremal” center.

Key words. Markov chain, random walk, stopping rule, tree, barycenter

AMS subject classifications. 60510, 60G40, 05C05

DOI. 10.1137/070687402

1. Introduction. What node is most central with respect to a random walk on
a tree G = (V,E)? We define P = {pij} to be the matrix of transition probabilities,
so pij = 1/d(i) if ij ∈ E and pij = 0 otherwise. Let the hitting time H(i, j) be
the expected time for a random walk starting at node i to get to node j. A natural
definition for centrality is to require that the target node j minimize this hitting
time for an appropriately chosen starting node i. We consider two natural choices for
this starting node. First, we identify the “average” center c by drawing i from the
stationary distribution π:∑

i∈V

πiH(i, c) = min
j∈V

∑
i∈V

πiH(i, j).(1)

Next, we choose the worst possible starting node for each target j. Let j′ be a j-
pessimal node satisfying H(j′, j) = maxi∈V H(i, j). A target node a achieving

H(a′, a) = min
j∈V

H(j′, j) = min
j∈V

max
i∈V

H(i, j)(2)

is the “extremal” center of the tree.
There are two classical centers for trees. A node achieving mini∈V maxj∈V d(i, j),

where d(i, j) is the length of the unique path between i and j, is the center of the
tree G (or bicenter if there are two adjacent nodes achieving this minimum). In other
words, the distance to the furthest node from the center is minimal among all nodes
of the tree G. This node does not appear to have any central properties with respect
to random walks.

The barycenter is the node (or two adjacent nodes) achieving mini∈V

∑
j∈V d(i, j).

A barycenter minimizes the total distance to all other nodes. The following propo-
sition reveals that the barycenter is the “average” center of the tree with respect to

∗Received by the editors April 4, 2007; accepted for publication (in revised form) September 3,
2008; published electronically January 7, 2009.

http://www.siam.org/journals/sidma/23-1/68740.html
†Department of Mathematics and Computer Science, Macalester College, Saint Paul, MN 55105

(abeverid@macalester.edu). This author’s research was supported in part by NSA Young Investigator
Grant H98230-08-1-0064.

300

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CENTERS FOR RANDOM WALKS ON TREES 301

random walks. If u, v are adjacent nodes, then let Vu:v be the set of nodes in the sub-
tree rooted at u after the removal of the edge uv. This notation is meant to emphasize
that nodes in Vu:v are closer to u than to v. For any S ⊂ V and any distribution τ ,
let τ(S) =

∑
k∈S τk. For an undirected graph, Coppersmith, Tetali, and Winkler [5]

define the central node to be a node c for which H(i, c) ≤ H(c, i) for every node i.
The following equivalence has been known to the authors of [5].

Proposition 1. Let G = (V,E) be a tree. The following statements for a node
c are equivalent.

(a) The node c is a barycenter of the tree.
(b) The node c satisfies H(i, c) ≤ H(c, i) for every node i.
(c)

∑
k∈V πkH(k, c) = mini∈V

∑
k∈V πkH(k, i).

(d) For every node i adjacent to c, π(Vi:c) =
∑

k∈Vi:c
πk ≤ 1/2.

We introduce the term focus to denote the “extremal” center of the tree. There
are two types: primary foci and secondary foci.

Definition. LetG be a tree. If a ∈ V satisfiesH(a′, a) = minj∈V maxi∈V H(i, j),
then a is a primary focus of G. When all of the a-pessimal nodes are contained in
a single subtree G′ ⊂ G\{a}, the unique a-neighbor b in G′ is also a focus of G. If
H(b′, b) = H(a′, a), then b is a primary focus. If H(b′, b) < H(a′, a), then b is a
secondary focus of G.

Proposition 2. Every tree G either has one focus or has two adjacent foci.
When G has a single focus, we say that G is focal. When G has two adjacent foci,

we say that G is bifocal. A bifocal tree may have two primary foci or it may have
one primary focus and one secondary focus. For a bifocal tree G with adjacent foci
a, b, we will see that a has central properties for nodes in Va:b and that b has central
properties for nodes in Vb:a.

We consider some examples of foci for trees. Let Pn denote the path of length n
on vertices v0, v1, . . . , vn. It is well known that

H(vi, vj) =

{
j2 − i2 i ≤ j,

(n− j)2 − (n− i)2 i > j.
(3)

A vi-pessimal node must be the furthest leaf from vi. The node that achieves
minvi∈Pn H(v′i, vi) is the center of the path, so the unique focus of P2k is vk and
the foci of P2k+1 are vk and vk+1. In the latter case, both nodes are primary foci
since H(v′k, vk) = H(v2k+1, vk) = (k + 1)2 = H(v0, vk+1) = H(v′k+1, vk+1).

Let Br,s denote the broom graph consisting of a star with r leaves u1, u2, . . . , ur

centered at node c, along with a path of length s on nodes c = v0, v1, . . . , vs. Simple
calculations (using formula (11) in section 2) for B4k,4k show that node vk is the
primary focus with H(v′k, vk) = H(u1, vk−1) = 9k2 + 1 and that vk−1 is the sec-
ondary focus with H(v′k−1, vk−1) = H(v4k, vk−1) = (3k + 1)2. Moreover, this broom
graph shows that the center, barycenter, and foci of the tree are distinct notions.
Indeed, additional calculations show that the nodes v2k, v2k+1 are centers of B4k,4k

and the barycenter is c = v0. These three types of centers are pairwise separated by
distance Θ(k).

Having defined the average and extremal centers, we consider a variety of criteria
for centrality with respect to random walks on trees. The barycenter satisfies each
“average” criterion and one of the foci of the tree (or both) satisfies each “extremal”
criterion. Many of these criteria concern exact mixing measures defined via lengths
of stopping rules.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

302 ANDREW BEVERIDGE

Given an initial node i and a target distribution τ , we can follow an optimal
stopping rule (see section 2 for a precise definition) to halt a random walk starting at
i so that the distribution of the final node is exactly τ . Denote the expected length of
this optimal rule by H(i, τ). A number of parameterless mixing measures defined via
stopping rules have been introduced and studied in [1], [2], [3], [9], [10]. Among the
most important measures are the mixing time Tmix = maxi∈V H(i, π) and the reset
time Treset =

∑
i∈V πiH(i, π). We interpret Tmix as the pessimal mixing time and

Treset as the average mixing time.
Since the barycenter is so closely related to average mixing, a natural question is

how H(c, π) compares with Treset.
Proposition 3. H(c, π) ≤ 2Treset, where c is a barycenter of the tree. This bound

is tight for a star K1,k with k ≥ 2.
H(c, π) may be considerably smaller than Treset. Indeed, consider a rooted m-ary

tree of depth r. By symmetry its root c is the unique barycenter and the unique focus.
Theorem 4. If G is an m-ary tree of depth r rooted at node c, then

H(c, π) =
(m+ 1)(mr + 1)
(m− 1)(mr − 1)

r − m2 + 6m+ 1
2(m− 1)2

(4)

and

Treset =
2mr+1 − rm2 − 2m+ r

(m− 1)2
.(5)

Holding m fixed and letting r →∞, mixing from the root takes Θ(r) steps while
average mixing takes Θ(mr−1) steps. The exact mixing result of (4) is complementary
to the following approximate mixing result for m-ary trees due to Diaconis and Fill
(Example 4.60 in [6]). If σt is the distribution achieved by walking t steps from the
root c, then for fixed m, as r → ∞, the total variational distance ‖σt − π‖ becomes
small after m+1

m−1r + αr1/2 steps for a large constant α.
We now turn our attention to the extremal center. Our analysis of the foci relies

heavily on stopping rules. We provide a definition for the foci of a distribution τ (which
is actually a generalization of the definition of the foci of a tree; see Proposition 6).
For any target distribution τ we associate one node or two adjacent nodes that are
central with respect to stopping rules from singleton distributions to τ .

Definition. A node i is a focus of the distribution τ when H(i, τ) < 1 +∑
j∈V pijH(j, τ).

The left-hand side of this equation is the expected length of an optimal rule. The
right-hand side of the equation is the expected length of the rule “take one step from
i (according to the transition probabilities P = {pij}) and then follow an optimal
rule starting from this neighbor node to τ .” The τ -foci are the nodes for which this
composite rule is not optimal.

For example, consider the path P2 on nodes v0, v1, v2 and take our target to be
π = (1/4, 1/2, 1/4). We first consider an optimal stopping rule from the center to π.
Let Γ1(v1, π) be the rule “with probability 1/2 take one step to a random neighbor,
otherwise stay put.” The expected length E(Γ1(v1, π)) = 1/2 and (13) in the next
section shows that this rule is an optimal rule from v1 to π. Now consider the rule
Γ2(v1, π): “take one step and then follow an optimal rule to π.” This rule is not
optimal since E(Γ2(v1, π)) > 1 > 1/2.

Finally, consider the rule Γ(v0, π) from v0 to π: “take one step and then follow the
optimal rule Γ1(v1, π).” This turns out to be an optimal rule with E(Γ(v0, π)) = 3/2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CENTERS FOR RANDOM WALKS ON TREES 303

The analogous rule from v2 to π is also optimal. Therefore, according to the previous
definition, the center v1 is the unique focus for P2. An analogous argument shows
that the two internal nodes of P4 are the foci for π. A similar phenomenon holds for
an arbitrary tree.

Theorem 5. Every distribution τ on a tree has either one focus or two adjacent
foci. If τ has a unique focus u, then H(i, τ) = H(i, u) + H(u, τ) for all i. If τ
has two foci u, v, then for i ∈ Vu:v, H(i, τ) = H(i, u) + H(u, τ) and for i ∈ Vv:u,
H(i, τ) = H(i, v) +H(v, τ).

The key observation of this theorem is that for any node i, the rule “walk from
i to the nearest τ -focus and then follow an optimal rule from that focus to τ” is an
optimal rule from i to τ . In other words, the foci of τ are central with respect to all
walks from nodes to τ .

Naturally, the foci of the tree coincide with the foci of π.
Proposition 6. The foci of the tree G are the foci of the distribution π.
This proposition shows that the focus of a distribution is indeed a generalization

of the focus of the tree.
Another important mixing measure is the forget time Tforget = minτ maxi∈V

H(i, τ), where the minimum is taken over all target distributions. We interpret this
quantity as the minimum expected time to “forget” the node we started from by
following an optimal rule to some distribution. In spite of its rather unorthodox
definition, the forget time is intimately connected to the mixing time and the reset
time. For an undirected graph, we have the nontrivial equality Treset = Tforget (see
[10]), which are within a factor of 4 of Tmix (see [2]).

For any graph, Lovász and Winkler [10] show that there is a unique distribution
μ achieving the forget time. This distribution μ is central in an extremal sense: μ
minimizes the expected length of a rule starting from the worst possible node. For a
tree, μ is concentrated on the foci of G:

Proposition 7. If the node a is the unique focus of G = (V,E), then μ is the
singleton distribution on the focus a. If the adjacent nodes a and b are the foci of G,
then

μi =

⎧⎪⎨
⎪⎩

1
2|E| (H(b′, b)−H(a′, b)), i = a,

1
2|E| (H(a′, a)−H(b′, a)), i = b,

0 otherwise,

where H(i′, i) = maxj∈V H(j, i).
Another mixing measure with central properties is Tbestmix = mini∈V H(i, π). The

node achieving Tbestmix is the best possible starting node for achieving the stationary
distribution. This formulation is dual in some sense to that of (1). As expected, the
foci of the tree are central for this extremal problem.

Theorem 8. The quantity Tbestmix = mini∈V H(i, π) is achieved by a focus of
the tree. Specifically, if H(a′, b) < H(b′, a), then node a uniquely achieves Tbestmix; if
H(a′, b) > H(b′, a), then node b uniquely achieves Tbestmix; and if H(a′, b) = H(b′, a),
then Tbestmix is achieved by both a and b.

The broom graphs B2,2, B2,3, and B4,3 in Figure 1 show that all three possibilities
do occur.

Consider another mixing measure similar to the forget time. The start-independent
time of a distribution σ is Tsi(σ) = minτ

∑
i∈V σiH(i, τ), where the minimum is taken

over all target distributions. For a walk started from σ, Tsi(σ) is the minimum ex-
pected time to obtain a sample (from some distribution) that is independent of the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

304 ANDREW BEVERIDGE

� � �

�

�

�
��

�
��
a b a′

b′

(a)

� � � �

�

�

�
��

�
��
b a

a′

b′

(b)

� � � �

�

�

�

�

�
�
��

�
�
��

�
��

�
��

ba

b′

a′

(c)

Fig. 1. Trees with different foci achieving Tbestmix. (a) H(a′, b) = H(b′, a) so Tbestmix =
H(a, π) = H(b, π). (b) H(a′, b) < H(b′, a) so Tbestmix = H(a, π). (c) H(a′, b) > H(b′, a) so
Tbestmix = H(b, π).

initial node of the walk (which was drawn from σ). We may interpret Tsi(σ) as the
fastest way to “forget” that we started our walk from a node drawn from σ. A natural
choice for our initial distribution is the stationary distribution. For a tree, the target
distribution achieving Tsi(π) is central in an average sense and indeed the optimal
target is concentrated on the barycenter.

Proposition 9. If c is a barycenter of the tree G, then

Tsi(π) = min
τ

∑
k∈V

πkH(k, τ) =
∑
k∈V

πkH(k, c) = H(π, c).

We define the start-independent time of a graph to be Tsi = maxσ Tsi(σ), where
the maximum is taken over all initial distributions. For a tree, the target distribution
achieving Tsi is central in an extremal sense, and indeed Tsi can be achieved by taking
either focus as a target. Furthermore, Tsi = Tforget.

Theorem 10. For a tree G, we have Tsi = Tforget. Moreover, if G has a unique
focus a, then there exists a distribution φ such that Tsi = H(φ, a). If G has two foci
a and b, then there exists a distribution φ such that Tsi = H(φ, a) = H(φ, b).

It is an open question as to how Tsi(π) and Tsi compare to the other mixing
measures for general graphs.

2. Preliminaries.

2.1. Random walks. Given an undirected, connected graph G = (V,E), a
random walk on G is a sequence of nodes (w0, w1, . . . , wt, . . .) such that the node wt

at time t is chosen uniformly from the neighbors of wt−1. For nonbipartite G, as
t tends to infinity the distribution of the node wt tends to the so-called stationary
distribution π, where πi = d(i)/2|E| and d(i) is the degree of i. For bipartite G,
we have convergence if we consider a “lazy walk” in which at each step we stay at
the current node with probability 1/2. For simplicity of exposition we will consider
nonlazy walks (laziness simply doubles the expected length of our walks).

For two nodes i, j, the hitting time H(i, j) is the expected length of a walk from
i to j. The expected number of steps before a walk started at i returns to i is

Ret(i) =
1
πi
.(6)

For any undirected graphG, Coppersmith, Tetali, and Winkler [5] define a central
node c of G to be a node which satisfies H(i, c) ≤ H(c, i) for all i. The existence of
such a node for an undirected graph follows from their cycle reversing identity

H(i, j) +H(j, k) +H(k, i) = H(i, k) +H(k, j) +H(j, i).(7)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CENTERS FOR RANDOM WALKS ON TREES 305

The “random target identity” (cf. [8, equation (3.3)]) states that
∑

j∈V πjH(i, j) is
independent of the initial node i. Multiplying (7) by πk, summing over all k, and
using this identity gives∑

k∈V

πkH(k, i) +H(i, j) =
∑
k∈V

πkH(k, j) +H(j, i)(8)

for any nodes i, j.

2.2. Hitting times for trees. Random walks on trees have been extensively
studied (cf. [4], [7], [11], [12]). We give a hitting time formula for trees that is
equivalent to those found in [4], [7], and [11]. For adjacent nodes i and j,

H(i, j) =
∑

k∈Vi:j

d(k) = 2|E|
∑

k∈Vi:j

πk = 2|E|π(Vi:j).(9)

Indeed, let G′ be the induced subtree on the nodes Vi:j ∪ {j}. Let d′(k) be the G′-
degree of k and HG′(i, j) be the hitting time from i to j for this graph. By (6),
H(i, j) = HG′(i, j) = RetG′(j)− 1 =

∑
k∈G′ d′(k)− 1 =

∑
k∈Vi:j

d(k).
If i and j are neighbors, then (9) immediately gives

H(i, j) +H(j, i) = 2|E|.(10)

Furthermore, we can determine a hitting time formula for the general case. Define
�(i, k; j) = 1

2 (d(i, j) + d(k, j) − d(i, k)) by the length of the intersection of the (i, j)-
path and the (k, j)-path. This function is symmetric in i, and k and is zero if and
only if i = j, k = j, or the nodes i and k are in different connected components of
G \ {j}. Assume d(i, j) = r, and the (i, j)-path is given by (i = i0, i1, i2, . . . , ir = j).
Using (9) and �(i, k; j) yields

H(i, j) =
r−1∑
t=0

H(it, it+1) =
∑
k∈V

�(i, k; j)d(k).(11)

Indeed, we can use formula (11) to recover formula (3) for hitting times on the path.

2.3. Stopping rules. We briefly summarize some results of Lovász and Winkler
[9]. Let V ∗ be the space of finite walks on V , i.e., the set of finite strings w =
(w0, w1, w2, . . . , wt), wi ∈ V and wi adjacent to wi−1. For a given initial distribution
σ, the probability of w being the walk after t steps is

Pr(w) = σw0

t−1∏
i=0

pwiwi+1 .

A stopping rule Γ is a map from V ∗ to [0, 1] such that Γ(w) is the probability of
continuing given that w is the walk so far observed. We assume that with probability
1 the rule stops the walk in a finite number of steps.

Given another distribution τ on V , the access time H(σ, τ) is the minimum ex-
pected length of a stopping rule Γ that produces τ when started at σ. We say Γ is
optimal if it achieves this minimum. For example, in the case that σ = τ are both
singleton distributions on the node i, the rule “take no steps” is an optimal stopping
rule with expected length 0, while the rule “walk until you return to i” is a nonoptimal
stopping rule with expected length Ret(i).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

306 ANDREW BEVERIDGE

Optimal stopping rules exist for any pair σ, τ of distributions, and the access time
H(σ, τ) has many useful algebraic properties. When σ and τ are concentrated on nodes
i and j, respectively (we write σ = i, τ = j), then the access time H(i, j) is the hitting
time from i to j. Clearly, H(σ, j) =

∑
i∈V σiH(i, j) and H(σ, τ) ≤ ∑i∈V σiH(i, τ).

The latter inequality is usually strict for nonsingleton distributions. For example,
0 = H(π, π) <

∑
k∈V πkH(k, π) = Treset.

Given a stopping rule Γ from σ to τ , the exit frequency xi(Γ) is the expected
number of times the walk leaves node i before halting. Exit frequencies partition the
expected length of the walk: E(Γ) =

∑
k∈V xk(Γ). Exit frequencies are fundamental

to virtually all access time results. A key observation, due to Pitman [13], is the
“conservation equation” ∑

i∈V

pijxi(Γ)− xj(Γ) = τj − σj .(12)

It follows that the exit frequencies for two rules from σ to τ differ by Kπi where K is
the difference between the expected lengths of these rules. Hence the distributions σ
and τ uniquely determine the exit frequencies for an optimal stopping rule between
them, and we denote these optimal exit frequencies by xi(σ, τ). Moreover,

Γ is an optimal stopping rule ⇐⇒ ∃k ∈ V, xk(Γ) = 0.(13)

Otherwise a rule with exit frequencies xk(Γ)− πk mini∈V (xi(Γ)/πi) will have strictly
smaller expected length while also satisfying (12). (See [9] for multiple ways to con-
struct stopping rules from a given set of desired exit frequencies.) When xk(Γ) = 0,
we call the node k a (σ, τ)-halting state, or simply a halting state when the initial and
target distributions are clear. The presence of a halting state is the single most useful
criterion for determining whether a given rule is optimal. Note that an optimal rule
may have multiple halting states, but we need only identify one such state to ensure
that a rule is optimal.

Any three distributions σ, τ , and ρ satisfy the “triangle inequality”

H(σ, ρ) ≤ H(σ, τ) +H(τ, ρ).(14)

The right-hand side of this equation is the expected length of the composite rule
that first follows an optimal stopping rule from σ to τ and then follows an optimal
stopping rule from τ to ρ. The exit frequency for node k of this composite rule
is xk(σ, τ) + xk(τ, ρ). We have equality in (14) if and only if this composite rule
is optimal. In particular, there must be some node k such that xk(σ, τ) = 0 and
xk(τ, ρ) = 0. Considering the case where ρ is a singleton distribution, H(σ, j) ≤
H(σ, τ) +H(τ, j) for any node j and equality holds if and only if j is a halting state
for an optimal rule from σ to τ . Hence

H(σ, τ) = max
j∈V

(H(σ, j) −H(τ, j)).(15)

In the special case σ = i and τ = π, we have a particularly nice characterization due
to the combination of (8) and (15):

j is an (i, π)-halting state⇐⇒ H(j, i) = max
k∈V

H(k, i).(16)

Let j = i′ denote such an i-pessimal node. We can reformulate this observation as

H(i, π) = H(i′, i)−H(π, i).(17)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CENTERS FOR RANDOM WALKS ON TREES 307

2.3.1. Example: Mixing walks on P3. We describe some optimal stopping
rules from singleton distributions on P3 = (v0, v1, v2, v3) to π = (1/6, 1/3, 1/3, 1/6).
First, we construct an optimal mixing rule Γ(v0, π). By (13), a rule is optimal when
it has a halting state. Equation (16) identifies v3 as the unique halting state. Let
Γ(v0, π) be the rule “choose a target node according to π and walk to that node.” Since
v3 is never exited by this rule, Γ(v0, π) is optimal with expected length H(v0, π) =
|Γ(v0, π)| = 1

6H(v0, v0) + 1
3H(v0, v1) + 1

3H(v0, v2) + 1
6H(v0, v3) = 19/6 by (3).

We now consider starting at the node v1. Equation (13) again identifies v3 as the
unique halting state. For this starting node, choosing our target ahead of time does
not result in an optimal rule: there is a nonzero chance of reaching v3 before reaching
v0 (so v3 would not be a halting state). Instead our heuristic is to try to stop as
quickly as possible. The rule Γ(v1, π) is: “at t = 0, take a step with probability 2/3
(and otherwise halt the walk for good). If the walk is still active at t = 1, then we
are at either v0 or v2. If we are at v2, then halt the walk. If we are at v0, then stop
with probability 1/2, and otherwise keep walking until you reach v3.” Let us describe
the behavior of this rule. At time t = 0, our distribution is (0, 1, 0, 0). At time t = 1,
our distribution is (1/3, 1/3, 1/3, 0). Note that at time t = 1 our walk continues to be
active only when we are at v0. In this case we halt (with probability 1/2) or continue
walking (with probability 1/2) until we reach v3. When the rule finally terminates,
our distribution is (1/6, 1/3, 1/3, 1/6) and v3 is a halting state. The expected length
of this optimal rule is H(v1, π) = |Γ(v1, π)| = 2

3 + 1
6H(v0, v3) = 13/6.

Finally, we consider another optimal (v0, π)-rule. Let Γ′(v0, π) be the rule “take
one step and then follow Γ(v1, π).” Clearly, |Γ′(v0, π)| = 1 + |Γ(v1, π)| = 19/6 =
H(v0, π), and indeed v3 is a halting state for this composite rule. Interestingly, both
of the rules Γ(v0, π) and Γ(v1, π) are optimal but are clearly distinct: Γ′(v0, π) always
exits v0 at t = 0 while Γ(v0, π) halts at t = 0 with probability 1/6.

2.4. Mixing measures. Stopping rules provide a number of parameterless mix-
ing measures. We define the mixing time Tmix to be the expected length of an opti-
mal mixing rule starting from the worst initial node: Tmix = maxi∈V H(i, π). A node
achieving this maximum is called mixing pessimal. The forget time Tforget is the small-
est t such that there exists a distribution μ such that for every starting node, the ex-
pected time to attain μ via an optimal rule is at most t: Tforget = minτ maxi∈V H(i, τ).
Theorem 4 (and the subsequent remark) in [10] establishes that the forget time is at-
tained by a unique distribution given by

μi = πi

⎛
⎝1 +

∑
j∈V

pijH(j, π)−H(i, π)

⎞
⎠ .(18)

Furthermore, if a node is mixing pessimal, then it is also pessimal for μ, and every
mixing pessimal node is a halting state for an optimal rule from μ to π.

The reset time Treset =
∑

i∈V πiH(i, π) can be viewed as an average mixing time.
Theorem 1 in [10] establishes the remarkable equality

Tforget = Treset(19)

for a random walk on an undirected graph. Moreover, for an undirected graph we
have Treset ≤ Tmix ≤ 4Treset (see [2, Corollary 8] and its subsequent remarks).

2.5. Start-independence. The following independence condition arises in ap-
plications of random walks. Let Γ be a stopping rule from σ to τ , and let w0, w1, . . . , wT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

308 ANDREW BEVERIDGE

be a walk halted by Γ at time T . The support of σ, denoted Sσ, is the set of nodes
i such that σi > 0. We associate a conditional distribution τ (i) to each i ∈ Sσ given
by τ

(i)
k = Pr{wT = k|w0 = i}. In other words, τ (i)

k is the probability that Γ stops
the walk at k given that the walk started at i (which was drawn from σ). Clearly,∑

i∈Sσ
σiτ

(i) = τ , and we call the set {τ (i)}i∈Sσ the Γ-decomposition of τ .
The rule Γ is start-independent if τ (i) = τ for all i ∈ Sσ. The node at which

a start-independent rule halts is independent of the initial node. Start-independent
rules always exist: the rule “draw w0 from σ and walk optimally from w0 to τ” is a
start-independent rule of expected length

∑
i∈V σiH(i, τ).

While start-independent rules are rarely optimal (for example, take σ = τ), they
arise naturally in applications requiring multiple independent samples from the sta-
tionary distribution of some state space. We obtain these samples by following an
optimal mixing rule, accepting the current state, and then starting a new optimal
mixing walk from this state. In this setting, Treset is the expected length of a min-
imal start-independent rule from π to π. (See [3] for an extremal result concerning
start-independent rules whose initial and target distributions are identical.)

We define the start-independent time of a distribution σ to be the minimum
expected length of a start-independent rule with initial distribution σ:

Tsi(σ) = min
τ

∑
i∈V

σiH(i, τ).

A quantity of natural interest is Tsi(π), the start-independent time for the stationary
distribution. We would also like to determine the extremal behavior of Tsi(σ). The
start-independent time of any singleton distribution is zero, so only the maximum
case is nontrivial. We define the start-independent time of the graph to be

Tsi = max
σ

Tsi(σ) = max
σ

min
τ

∑
i∈V

σiH(i, τ).

3. The average and extremal centers. We begin with our characterization
of the barycenter of the tree.

Proof of Proposition 1. The equivalence of (b) and (c) follows from (8): H(i, c) ≤
H(c, i) for all i if and only if

∑
k∈V πkH(k, c) ≤∑k∈V πkH(k, i) for all i.

We show that (c) and (d) are equivalent. Assume π(Vi:c) ≤ 1/2 for every node
i adjacent to c. For j ∈ Vi:c, H(j, c) ≤ d(j, c)

∑
k∈Vi:c

d(k) ≤ d(c, j)
∑

k∈Vc:j
d(k) ≤

H(c, j) by (11); therefore c is the central node. Now assume that c is the central
node and that π(Vi:c) > 1/2. Then H(i, c) =

∑
k∈Vi:c

d(k) >
∑

k∈Vc:i
d(k) = H(c, i), a

contradiction. If π(Vi:c) = 1/2 for some neighbor i of c, then i is also a central node.
Finally, we prove the equivalence of (a) and (d). For any adjacent nodes i and j,

we have ∑
k∈V

d(k, i) =
∑
k∈V

d(k, j)− |Vi:j |+ |Vj:i|(20)

and

π(Vi:j) =
∑

k∈Vi:j

πk =
2|Vi:j | − 1

2|E| .(21)

The node j has a neighbor i with π(Vi:j) > 1/2 > π(Vj:i) if and only if |Vi:j | > |Vj:i|
(by (21)) if and only if

∑
k∈V d(k, i) <

∑
k∈V d(k, j) (by (20)) if and only if j is not

the barycenter.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CENTERS FOR RANDOM WALKS ON TREES 309

Proof of Proposition 2. We divide the proof into two cases, depending on whether
G has a focus a such that multiple subtrees of G\{a} contain an a-pessimal node.

Case 1. Let a′ and a′′ be a-pessimal nodes contained in different subtrees of
G\{a}. Any node u = a is separated by a from at least one of a′, a′′. Without loss of
generality, assume that a is on the unique (a′, u)-path. Then H(u′, u) ≥ H(a′, u) =
H(a′, a) + H(a, u) > H(a′, a) and therefore u is not a focus of the tree. Hence a is
the unique focus of G.

Case 2. Suppose that a is a focus of G with all a-pessimal nodes in a single
component of G\{a}. Let b be the unique neighbor of a in this component. By
definition, b is a focus of G and H(b′, b) ≥ H(a′, a). For any node u ∈ Va:b, H(u′, u) ≥
H(a′, u) = H(a′, a) + H(a, u) > H(a′, a), so u ∈ Va:b is not a focus of G. The b-
pessimal node b′ must lie in Va:b. Indeed, for any node w ∈ Vb:a, H(w, b) < H(w, a) ≤
H(a′, a) ≤ H(b′, b). Similarly a′ ∈ Vb:a. Now, considering v ∈ Vb:a\{b} we have
H(v′, v) ≥ H(b′, v) = H(b′, b) + H(b, v) > H(b′, b) ≥ H(a′, a); therefore v is not a
focus of G.

The following corollary is immediate from the proof.
Corollary 11. If G is focal with unique focus a, then there are multiple subtrees

of G\{a} containing a-pessimal nodes. If G is bifocal with foci a, b, then each a-
pessimal node is contained in Vb:a and each b-pessimal node is contained in Va:b.

The barycenter is the average center for random walks on trees, so it is natural
to compare H(c, π) and Treset = Tforget. Mixing from the barycenter never takes more
than twice as long as the average mixing time.

Proof of Proposition 3. Let u be the unique neighbor of c on the path from c
to a c-pessimal node c′. By Proposition 1, π(Vc:u) ≥ 1/2. For any node i ∈ Vc:u we
have H(i, π) = H(i, c) + H(c, π). Indeed, c′ ∈ Vu:c will also be i-pessimal and the
composite rule corresponding to the right-hand side preserves c′ as a halting state.
Therefore (16) guarantees that this rule is optimal. Therefore

Treset ≥
∑

i∈Vc:u

πiH(i, π) =
∑

i∈Vc:u

πi (H(i, c) +H(c, π)) ≥ π(Vc:u)H(c, π) ≥ 1
2
H(c, π).

For a star, we have H(c, π) = 1/2 and Treset = Tforget = 1, so this bound is tight.
There are trees for which H(c, π) > Treset. Consider a broom graph B4k,4k with

path nodes (c = v0, v1, . . . , v4k). Some simple calculations using (11) show that vk

and vk−1 are the foci of B4k,4k. The forget time (and hence the reset time by (19))
is Tforget = H(v4k, μ) < H(v4k, vk−1) = (3k + 1)2. Using (11) and (17), the expected
time to mix from the barycenter is H(c, π) = H(c, c′)−H(π, c′) = (64k2−1)/6 which
is strictly greater than (3k + 1)2 for k ≥ 4. Of course, (64k2 − 1)/6 < 2(3k)2 =
2H(v4k, vk) < 2Tforget as stipulated by Proposition 3.

On the other hand, H(c, π) may be markedly smaller than the forget time (and
hence the reset time) of the tree. Consider an m-ary tree of depth r with root c. Of
course c is the center, the barycenter, and the focus of this tree. We adopt the following
notation: Sk = {i|d(i, c) = k} is the set of all nodes at level k. Let c = i0, i1, . . . , ir be
a path from c to a leaf ir. The expected behavior of the walk at a node only depends
on the level of the node, so we may use ik as a representative for all nodes in Sk. A
node is halting for this mixing walk if and only if it lies in Sr. We explicitly calculate
H(c, π) = H(ir, c) − H(π, c) as per (17). Counting the degrees levelwise, the total

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

310 ANDREW BEVERIDGE

number of edges in an m-ary tree of depth r is

1
2

(
m+ (m+ 1)

r−1∑
k=1

mk +mr

)
=
m(mr − 1)
m− 1

.

Proof of Theorem 4. We start by showing that

H(ir, ir−s) =
2ms+1 − sm2 − 2m+ s

(m− 1)2
.(22)

Let G′ be the connected component of G\{ir−s} containing ir. We partition V (G′)∪
{ir−s} into sets Tk = {j|�(ir, j; ir−s) = k} so that

H(ir, ir−s) =
s∑

k=1

k
∑
j∈Tk

d(j)

by (11). We have Ts = {ir} and for 1 ≤ k ≤ s − 1, Tk consists of the node ir−s+k

connected to m− 1 copies of m-ary trees of depth s− k − 1. Hence,

∑
j∈Tk

d(j) = (m+ 1) + (m− 1)
(

1 +
2m(ms−k−1 − 1)

m− 1

)
= 2ms−k

for 1 ≤ k ≤ s− 1 so that

H(ir, ir−s) = s+
s−1∑
k=1

k(2ms−k) = s+ 2
s−1∑
j=1

(s− j)mj

= s+ 2s
s−1∑
j=1

mj − 2
s−1∑
j=1

jmj =
2ms+1 − sm2 − 2m+ s

(m− 1)2
.

By (17),

H(c, π) = H(ir, c)−H(π, c) = H(ir, c)−
∑
j∈V

πjH(j, c) = H(ir, c)−
r∑

k=0

π(Sk)H(ik, c)

=
r∑

k=0

π(Sk) ((H(ir, ik) +H(ik, c))−H(ik, c)) =
r∑

k=0

π(Sk)H(ir, ik)

=
m− 1

2m(mr − 1)

(
mH(ir, i0) +

r−1∑
k=1

mk(m+ 1)H(ir, ir−(r−k)) +mrH(ir, ir)

)
.

Use formula (22) and simplify the result (we omit the details) to get the mixing result
of (4).

We can now quickly determine the reset time of an m-ary tree. As per (19),
Treset = Tforget. By symmetry, the root is the unique focus of the m-ary tree and
Tforget = H(ir, i0). Formula (22) for s = r gives (5). For completeness, we note
that Tmix = H(ir, π) = H(ir, i0) +H(i0, π) = Tforget + H(c, π) = Treset + H(c, π) =
Θ(mr−1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CENTERS FOR RANDOM WALKS ON TREES 311

4. The foci of a distribution. Recall that the node k is (i, τ)-halting when
xk(i, τ) = 0. Two nodes i, j have a common halting state for τ when there exists a node
k such that xk(i, τ) = 0 and xk(j, τ) = 0. A focus of a distribution τ on the tree G is a
node u for which the rule “take one step from u and then follow an optimal rule from
this random neighbor of u to τ” is not optimal, i.e., H(u, τ) < 1 +

∑
i∈V puiH(i, τ).

This is equivalent to saying that there is no node that is simultaneously τ -halting for
u and all of its neighbors.

For example, the focus for the singleton distribution τ = u is the node u. Con-
sidering mixing walks, (16) states that k is a π-halting state for i if and only if
H(k, i) = maxj∈V H(j, i) = H(i′, i). Hence for a path of even length the unique cen-
ter is the only π-focus, and for a path of odd length, the two central nodes are the
π-foci. Also, the center of a star graph is the only π-focus.

We now prove Theorem 5, which states that for any tree G, every τ has one focus
or two adjacent foci. Fixing τ , let i∗ denote a halting state for an optimal stopping
rule from i to τ .

Lemma 12. When i∗ is an (i, τ)-halting state, then i∗ is a (j, τ)-halting state
whenever j and i∗ are in different subtrees of G\{i}.

Proof. We are guaranteed that i is on the unique (j, i∗)-path. Consider the
composite rule “walk from j until you reach i and then follow an optimal rule from i
to τ .” The kth exit frequency of this composite rule is xk(j, i)+xk(i, τ). In particular,
xi∗(j, i) + xi∗(i, τ) = 0, therefore i∗ is a halting state. By (13) this composite rule is
therefore optimal: H(j, τ) = H(j, i) +H(i, τ).

Lemma 13. If (j1, . . . , i1, i2, . . . , j2) is a path in the tree G, then the nodes j1, j2
cannot each be τ-halting states for both of the nodes i1, i2.

Proof. Assume the conclusion is false. Equation (15) yields H(ik, τ) = H(ik, j1)−
H(τ, j1) = H(ik, j2) − H(τ, j2) for k = 1, 2; therefore −H(i2, i1) = H(i1, j1) −
H(i2, j1) = H(i1, τ) − H(i2, τ) = H(i1, j2) − H(i2, j2) = H(i1, i2), a contradic-
tion.

Proof of Theorem 5. The case when τ is a singleton is trivial, therefore assume τ
is not a singleton.

Case 1. There exists an edge uv such that u and v do not share a halting state
for τ . Note that u∗ ∈ Vv:u and v∗ ∈ Vu:v. Consider a set of optimal rules from
the singletons to τ. Lemma 12 ensures that each node in Vu:v has exactly the same
τ -halting states and the nodes in Vv:u all have the same τ -halting states. Therefore
no node in V \{u, v} can be a focus for τ .

We claim that u is a focus of τ . Indeed, we show that the composite rule Γ from
u to τ given by “take one step and then follow an optimal rule from that node to τ” is
not optimal by proving that xk(Γ) > 0 for all k ∈ V . Clearly u is not a halting state
for Γ. If u is a leaf, then after our first step, we must be at v. Since every (v, τ)-halting
state is contained in Vu:v = {u}, we must have xk(Γ) > 0 for all k ∈ V . When u is
not a leaf, let i ∈ Vu:v be a neighbor of u. Then xk(Γ) ≥ 1

d(u) (xk(v, τ) + xk(i, τ)) > 0.
Indeed, after our first step from u, we are now at each of v, i with probability 1/d(u).
Lemma 13 ensures that no node is simultaneously halting for both v and u. Lemma 12
states that i has the same halting states as u. Combining these observations yields
xk(v, τ) + xk(i, τ) > 0 for every node k. Γ is not optimal by (13), and therefore u is
a focus of τ . By a similar proof, v is also a focus of τ .

Case 2. Every neighboring pair of nodes shares a τ -halting state. Since τ is not
a singleton, there exists a path of the form (u∗, . . . , i, u, . . . , i∗) where u∗ is a halting
state for u but not for i, and u separates i from all of its τ -halting states. If u is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

312 ANDREW BEVERIDGE

not a focus, then the neighbors of u have a common halting state j∗. Let j = i be
the neighbor of u on the (u, j∗)-path. The path (u∗, . . . , u, j, . . . , j∗) is of the form
forbidden by Claim 3, a contradiction. Therefore u must be a focus and unique.
Indeed, u shares a τ -halting state with each of its neighbors, therefore u must have a
halting state in at least two components of G\{u}. If there was another focus v, then
this would again imply the existence of a path forbidden by Lemma 13.

Proof of Proposition 6. Case 1. G is bifocal with foci a, b. By Corollary 11,
a′ ∈ Vb:a, b′ ∈ Va:b, and by (16), xa′(a, π) = 0 and xb′(b, π) = 0. The argument is now
identical to case 1 in the proof of Theorem 5 with τ = π, u = a, u∗ = a′, v = b, v∗ = b′.

Case 2. G is focal with focus a. Corollary 11 states that at least two subtrees
of G\{a} contain a-pessimal nodes. By (16), these nodes are (a, π)-halting states.
Lemma 12 now ensures that every neighboring pair of nodes share a π-halting state,
therefore a is the only potential π-focus. From this point, the argument is identical
to the end of case 2 in the proof of Theorem 5 with τ = π and u = a.

Proof of Proposition 7. By (18), when i is not a focus of π we have μi = 0, If G
is focal, then μ is the singleton distribution on a. For G bifocal, rewrite (18) as

μi = πi

⎛
⎝1 +

∑
j∈V

pij(H(j, π)−H(i, π))

⎞
⎠ .

When i ∈ Va:b is a neighbor of a, Theorem 5 shows that H(i, π)−H(a, π) = H(i, a).
Equation (9) gives

∑
i∈Va:b

pai(H(i, π)−H(a, π)) =
∑

i∈Va:b

paiH(i, a) =
1

d(a)
(H(a, b)− d(a)).

Considering the final neighbor b, (17) and (8) give

H(b, π)−H(a, π) = H(b′, b)−H(π, b)−H(a′, a) +H(π, a)

= H(b′, a) +H(a, b)−H(a′, b)−H(b, a) +H(π, a)−H(π, b)

= H(b′, a)−H(a′, b).

Thus our formula for μa becomes

μa =
d(a)
2|E|

[
1 +

1
d(a)

(H(a, b)− d(a) +H(b′, a)−H(a′, b))
]

=
1

2|E| (H(a, b) +H(b′, a)−H(a′, b)) =
1

2|E| (H(b′, b)−H(a′, b)) .

We can calculate μb directly as above, or use μb = 1− μa and (10).
Corollary 14. For a focal tree, Tforget = H(a′, a). For a bifocal tree,

Tforget = H(a′, μ) = H(b′, μ)

=
1

2|E|(H(a, b)H(b, a) +H(a, b)H(a′, b) +H(b, a)H(b′, a)).

Proof. Since a′ and b′ are mixing pessimal, Tforget = H(a′, μ) = H(b′, μ) and the
first statement is obvious. If G is bifocal, then the following stopping rule is optimal

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CENTERS FOR RANDOM WALKS ON TREES 313

from a′ to μ: walk until you hit b, then stop with probability μb, and walk to a with
probability μa. Hence, H(a′, μ) = H(a′, b) + μaH(b, a) and

Tforget = H(a′, b) +
H(b, a)
2|E| (H(b′, b)−H(a′, b)).

Equation (10) completes the proof.
Proof of Theorem 8. We quickly narrow our search down to the foci of the tree.

Recall that a stopping rule is optimal if and only if it has a halting state. Lovász and
Winkler [10] show that every mixing pessimal node is a halting state for an optimal
rule from μ to π. Hence on a tree, both a′ and b′ are halting states for an optimal
rule from μ to π. Therefore, for any node i, the rule “follow an optimal rule from i
to the forget distribution μ and then follow an optimal rule from μ to π” has either
a′ or b′ as a halting state. This rule is optimal and H(i, π) = H(i, μ) +H(μ, π). We
may minimize H(i, μ) rather than H(i, π), which is clearly minimized by a focus of
the tree.

If G has a unique focus, then there is nothing to prove. Assume that G is bifocal
with primary focus a and secondary focus b. Then

H(a, μ)−H(b, μ) = μbH(a, b)−μaH(b, a) =
1

2|E|(H(a′, b)−H(b′, a))(H(a, b)+H(b, a)).

Thus H(a, μ) ≥ H(b, μ) if and only if H(a′, b) ≥ H(b′, a).

5. Start-independent times. Start-independent stopping rules also identify
central nodes: we now prove Proposition 9 and Theorem 10, which show that the
target distributions achieving Tsi(π) and Tsi are concentrated on a barycenter and the
foci of the tree, respectively. The following lemma restricts our attention to singleton
targets.

Lemma 15. Let σ and τ be distributions on the tree G. If τ has only one focus,
then denote this node by u. Otherwise, let the foci u, v of τ satisfy σ(Vu:v)π(Vu:v) ≥
σ(Vv:u)π(Vv:u). Then∑

k∈V

σkH(k, τ) ≥
∑
k∈V

σkH(k, u) = H(σ, u).

Proof. If u is the only focus for τ , then
∑

k∈V σkH(k, τ) =
∑

k∈V σk(H(k, u) +
H(u, τ)) ≥∑k∈V σkH(k, u). If τ has two foci with σ(Vu:v)π(Vu:v) ≥ σ(Vv:u)π(Vv:u),
then (9) implies that σ(Vu:v)H(u, v) ≥ σ(Vv:u)H(v, u). By Theorem 5,∑
k∈V

σkH(k, τ) =
∑

k∈Vu:v

σk(H(k, u) +H(u, τ)) +
∑

k∈Vv:u

σk(H(k, v) +H(v, τ))

=
∑

k∈Vu:v

σkH(k, u) +
∑

k∈Vv:u

σkH(k, v) + σ(Vu:v)H(u, τ) + σ(Vv:u)H(v, τ)

=
∑
k∈V

σkH(k, u)− σ(Vv:u)H(v, u) + σ(Vu:v)H(u, τ) + σ(Vv:u)H(v, τ).

For any rule from u to τ , we must step from u to Vv:u with probability τ(Vv:u)
before halting, hence H(u, τ) ≥ τ(Vv:u)H(u, v). Likewise, H(v, τ) ≥ τ(Vu:v)H(v, u).
Therefore

σ(Vu:v)H(u, τ) + σ(Vv:u)H(v, τ) ≥ σ(Vu:v)τ(Vv:u)H(u, v) + σ(Vv:u)τ(Vu:v)H(v, u)

≥ σ(Vv:u)H(v, u)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

314 ANDREW BEVERIDGE

so
∑

k∈V σkH(k, τ) ≥∑k∈V σkH(k, u).
Proof of Proposition 9. Taking σ = π in Lemma 15, a singleton target achieves

Tsi(π). Proposition 1 shows that Tsi(π) = mini∈V

∑
k∈V πkH(k, i) = mini∈V H(π, i) =

H(π, c).
Obviously, Tsi(π) ≤ Treset and, in fact, Tsi(π) can be arbitrarily small in compar-

ison. Consider the tree consisting of a path of length 2k with k4 leaves connected
to the central node c. The focus, center, and barycenter of G are all located at c;
therefore the forget distribution is concentrated on this central node. Tforget = k2

while H(π, c) becomes arbitrarily close to 1/2 for large k.
On the other hand, Theorem 10 states that the forget time and the start-inde-

pendent time of a tree are identical. The theorem is clearly true for the path on
two nodes, so we restrict our proof to trees on three or more nodes. We make the
important observation that Tsi need not be achieved by a unique pair of distributions.
For example, consider a star graph with n leaves. Clearly, Tsi ≤ 1 since we may always
choose the central node c as our target. For any distribution σ concentrated on the
leaf set such that σi ≤ (2n− 1)/2n for every node i, we have Tsi = minj∈V H(σ, j) =
H(σ, c) = 1.

We prove Theorem 10 by constructing a particular initial distribution φ concen-
trated on two leaves such that minj∈V H(φ, j) = Tsi. Once we have identified such a
φ, we show that we may choose the target node to be a focus of G.

Lemma 16. Given a distribution σ, the node u satisfies H(σ, u) = minj∈V H(σ, j)
if and only if for each neighbor v of u,

σ(Vv:u)H(v, u) ≤ σ(Vu:v)H(u, v)(23)

or, equivalently,

σ(Vv:u) ≤ H(u, v)
2|E| and σ(Vv:u) ≥ H(v, u)

2|E| .(24)

We have equality if and only if H(σ, u) = H(σ, v) so that v is also a best target for σ.
Furthermore, at most one neighbor of u can satisfy (23) with equality.

Proof. For any neighbor v of u,

H(σ, v) =
∑

k∈Vu:v

σkH(k, u) + σ(Vu:v)H(u, v) +
∑

k∈Vv:u

σkH(k, v).

We have σ(Vv:u)H(v, u) ≤ σ(Vu:v)H(u, v) if and only if

H(σ, v) ≥
∑

k∈Vv:u

σkH(k, u) + σ(Vv:u)H(v, u) +
∑

k∈Vv:u

σkH(k, v) = H(σ, u).

Furthermore, equality holds in the first if and only if equality holds in the second. We
find the equivalence of (23) and (24) by rewriting σ(Vv:u)H(v, u) ≤ σ(Vu:v)H(u, v) =
(1− σ(Vv:u))H(u, v), solving for σ(Vv:u) and then using (10).

Now suppose that we have equality in (24) for two distinct u-neighbors v, w. Then

1 ≥ σ(Vv:u) + σ(Vw:u) =
1

2|E| (H(u, v) +H(u,w)) >
1

2|E| (H(u, v) +H(v, u)) = 1,

a contradiction (where the inequality follows from (9)).
We employ the following terminology for the remainder of this section. Let φ be

a distribution, let Sφ = {v|φv > 0} ⊂ V , and let u be a node such that H(φ, u) =

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CENTERS FOR RANDOM WALKS ON TREES 315

minj∈V H(φ, j) = Tsi. Let v1, v2, . . . , vd(u) be the neighbors of u, and let wi ∈ Vvi:u be
a leaf such that H(wi, u) = maxj∈Vvi:u

H(j, u) for 1 ≤ i ≤ d(u).
Proof of Theorem 10. We first prove the result for stars K1,k, k ≥ 0. When

k = 0 the result is trivial. Suppose that G = K1,1 is the path on vertices u, v. Then
maxσ minj H(σ, j) = maxσ min{σu, σv} = 1/2. This value is achieved uniquely by
taking σ = (1/2, 1/2) and taking either node as the target.

Suppose that G is the star K1,k, k ≥ 2 with center c. When φ is divided
evenly between two leaves u, v, then minj H(φ, j) = H(φ, c) = 1. We now show
that minj H(σ, j) ≥ 1 for any distribution σ. Note that minj H(σ, j) ≤ H(σ, c) =
1−σc ≤ 1. So assume that a leaf w is the best target for σ. By Lemma 16, σ(Vc:w) ≤
H(w, c)/2|E| = 1/2k. In order to maximize H(σ,w) we must set σw = (2k − 1)/2k
and σv = 1/2k for some leaf v = w. In this case H(σ,w) = 1

2kH(v, w) = 1. Therefore
maxσ minj H(σ, j) = 1 for every star.

Now assume that G is a tree on four or more vertices and that G is not a star.
Let

∑
i∈V φiH(i, u) = Tsi.

Claim 1. The node u is not a leaf.
Assume that u is a leaf, and let v be its unique neighbor. Using (24), our best

choice for the initial distribution is φu = 1/2|E| and φu′ = 1 − φu. In this case,
H(φ, u) = H(φ, v) by Lemma 16, therefore v is also a minimizing target. We note
that since G is not a star, H(u′, v) > 1. Lemma 16 also guarantees that the remaining
v-neighbors have a strict equality in (23). Therefore we can shift some weight from u
to u′ while still keeping v as the optimal target. Specifically, there exists some ε > 0
such that the distribution φ′ defined by φ′u = φu − ε, φ′u′ = φu′ + ε, and φ′i = 0
otherwise satisfies φ′(Vw:v)H(w, v) < φ′(Vv:w)H(v, w) for every v-neighbor w. This
ensures that v is the unique optimal target, while H(φ′, v) > H(φ, v) = H(φ, u), a
contradiction. Here the strict inequality follows from the fact that H(u′, v) > 1.

Claim 2. Sφ intersects more than one component of G\{u}.
Assume that Sφ intersects exactly one of Vv1:u, Vv2:u, . . . , Vvd(u):u.

Case 1. φu = 0. We may assume Sφ ⊂ Vv1:u. But H(φ, v1) < H(φ, u), contra-
dicting minj∈V H(φ, j) = H(φ, u).

Case 2. φu = 0. We may assume Sφ ⊂ Vv1:u ∪ {u}. By Lemma 16 we have
φ(Vv1 :u)H(v1, u) ≤ φ(Vu:v1)H(u, v1) = φuH(i, v1). If we have equality here, then we
may take v1 as our target, proving the claim. If we have strict inequality, then there
exists ε > 0 such that the distribution φ′ defined by φ′u = φu − ε, φ′v1

= φv1 + ε, and
φ′i = φi otherwise satisfies φ′(Vv1 :u)H(v1, u) < φ′(Vu:v1)H(u, v1). Lemma 16 shows
that mini∈V H(φ′, i) = H(φ′, u), while H(φ′, u) > H(φ, u) = Tsi, a contradiction.

Claim 3. φ may be chosen so that Sφ ⊂ {w1, w2, . . . , wd(u)}.
Assume instead that Sφ ⊂ {w1, w2, . . . , wd(u)}.
Case 1. φu = 0. Let φ′ be the distribution given by φ′wi

= φ(Vvi:u) for 1 ≤
i ≤ d(u) and zero elsewhere. Lemma 16 and H(φ, u) = mini∈V H(φ, i) imply that
H(φ′, u) = mini∈V H(φ′, i) as well. Clearly, H(φ′, u) ≥ H(φ, u), therefore we may use
φ′ in place of φ.

Case 2. φu = 0. By an argument analogous to case 1, we may choose φ so that
Sφ ⊂ {u,w1, w2, . . . , wd(u)}. Suppose that φ(Vu:vi)H(u, vi) = φ(Vvi :u)H(vi, u) for
some i. We may take vi as our target node in lieu of u by Lemma 16. Since vi is an
optimal target, Claim 1 ensures that vi is not a leaf, therefore φvi = 0 and we have
reduced ourselves to case 1.

If φ(Vu:vi)H(u, vi) > φ(Vvi :u)H(vi, u) for 1 ≤ i ≤ d(u), then there exists ε >
0 such that the distribution φ′ given by φ′u = φu − ε, φ′w1

= φw1 + ε, and φ′i =

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

316 ANDREW BEVERIDGE

φi otherwise satisfies φ′(Vvi:u)H(vi, u) < φ′(Vu:vi)H(u, vi) for 1 ≤ i ≤ d(u). By
Lemma 16, mini∈V H(φ′, i) = H(φ′, u) > H(φ, u), a contradiction.

Claim 4. φmay be chosen to be concentrated on two leaves in {w1, w2, . . . , wd(u)}.
Case 1. φ(Vu:vi)H(u, vi) = φ(Vvi:u)H(vi, u) for some i. By Lemma 16, H(φ, u) =

H(φ, vi). Notice that φ is supported in two components of G\{vi}, therefore using
the proof of Claim 3 we may define a new distribution φ′ concentrated on two leaves
such that mink∈V H(φ′, k) = H(φ′, vi) ≥ H(φ, vi) = H(φ, u) = Tsi.

Case 2. φ(Vu:vi)H(u, vi) > φ(Vvi :u)H(vi, u) for all i. We show by induction that
there exists a distribution φ′ supported on two leaves such that mini∈V H(φ′, i) ≥
H(φ, u). The base case |Sφ| = 2 is trivial. Assume that if |Sφ| = k−1, then there exists
a φ′ concentrated on two leaves satisfying minj∈V

∑
i∈V φ

′
iH(i, j) =

∑
i∈V φ

′
iH(i, u) =∑

i∈V φiH(i, u) = Tsi.
Considering |Sφ| = k ≤ d(u), order Sφ = {w1, w2, . . . , wk} so that H(w1, u) ≥

H(w2, u) ≥ · · · ≥ H(wk, u). There exists ε > 0 such that the distribution φ∗ defined
by φ∗w1

= φw1 + ε, φ∗wk
= φwk

− ε, and φ∗i = φi otherwise satisfies φ∗(Vvi:u)H(vi, u) <
φ∗(Vu:vi)H(u, vi) for all i. If H(w1, u) > H(wk, u), then by Lemma 16, mini∈V H
(φ∗, i) = H(φ∗, u) > H(φ, u) = Tsi, a contradiction.

Otherwise, we have H(wi, u) = H(wj , u) for 1 ≤ i, j ≤ k. If there exists 0 <
ε < φwk

such that φ∗(Vu:vk
)H(u, vk) = φ∗(Vvk :u)H(vk, u), then we have H(φ∗, vk) =

H(φ∗, u) = H(φ, u) = Tsi. Hence we may take φ∗ as our starting distribution and
vk as our target node. The support of φ∗ is contained in two connected com-
ponents of V \{vk}, and so the proof of Claim 3 shows that there exists a dis-
tribution φ′ supported on two leaves such that Tsi = mini∈V H(φ′, i). Finally, if
φ∗(Vu:vk

)H(u, vk) > φ∗(Vvk:u)H(vk, u) for all 0 ≤ ε ≤ φwk
, then by taking ε = φwk

we have a distribution supported on k− 1 leaves such that mini∈V H(φ∗, i) = Tsi and
we are done by induction.

Claim 5. φ may be chosen so that Sφ is concentrated on two leaves w1 and w2

such that H(w1, u) ≥ H(w2, u) and the target node u is a focus of G. If the tree G is
focal, then φ is concentrated on two u-pessimal leaves. If the tree G is bifocal, then
w1 is u-pessimal, v1 is the other focus of G, and w2 is v1-pessimal. In this case, φ is
given by φw1 = π(Vu:v1), φw2 = π(Vv1 :u), and H(φ, v1) = H(φ, u) = Tsi.

By Claim 4, we may assume that φ is concentrated on leaves w1 ∈ Vv1:u and
w2 ∈ Vv2:u where H(w1, u) ≥ H(w2, u). In order to maximize the access time, the
distribution φ must weight w1 as much as possible while still keeping u as the
best target node. By Lemma 16, we must have φw1H(v1, u) ≤ φw2H(u, v1) and
φw2H(v2, u) ≤ φw1H(u, v2). By (9) this is equivalent to{

φw1π(Vv1 :u) ≤ φw2π(Vu:v1),

φw2π(Vv2 :u) ≤ φw1π(Vu:v2),
(25)

and the optimal choice is φw1 = π(Vu:v1) and φw2 = π(Vv1 :u). Note that this choice
results in

H(φ, v1) = H(φ, u)(26)

by Lemma 16.
The node w1 is u-pessimal. Indeed by Claim 3, H(w1, u) = maxi∈Vv1:u H(i, u).

Therefore if H(w1, u) < H(u′, u), then a u-pessimal node u′ must lie in one of Vvi:u,
2 ≤ i ≤ d(u). Since H(w2, u) ≤ H(w1, u), w2 cannot be u-pessimal, therefore con-
sider the distribution φ′ given by φ′w1

= φw1 , φ′u′ = φw2 , and φ′i = 0 otherwise.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CENTERS FOR RANDOM WALKS ON TREES 317

Vv1:u1Vv1:u

Vv1:u ∩ Vv1:u1

v1
u = u2u1

u3ud(v)

w1 w2

Vu:v1Vu1:v1

Vu3:v1
Vud(v):v1

Fig. 2. The tree decomposition in Claim 5 of the proof of Theorem 10.

This distribution φ′ satisfies the inequalities analogous to (25) so mini∈V H(φ′, i) =
H(φ′, u) > H(φ, u) = Tsi, a contradiction. By a similar argument, w2 must satisfy
H(w2, u) = maxi∈Vu:v1

H(i, u).
If u is the unique focus of G, then w2 must also be u-pessimal. If u is a focus of

a bifocal G, then v1 must be the other focus of G and w2 is v1-pessimal. If u is not a
focus, then the foci of G must be on the unique path between u and the u-pessimal
node w1. Hence w1 is v1-pessimal and H(w1, v1) ≥ H(w2, v1). By (26) we may take
v1 as our target node instead of u. If H(w1, v1) = H(w2, v1), then v1 must be the
unique focus of G since w1 is a v1-pessimal node, and Tsi = H(φ, v1) as required.

Assume for the sake of contradiction that u is not a focus of G and H(w1, v1) >
H(w2, v1). Let u1, u2, . . . , ud(v1) be the neighbors of v1, with w1 ∈ Vu1:v1 and w2 ∈
Vu2:v1 . This ordering ensures that u = u2. Consider the distribution φ′ given by
φ′w1

= π(Vv1:u1), φ′w2
= π(Vu1 :v1), and φ′i = 0 otherwise. By Lemma 16, H(φ′, v1) =

mini∈V H(φ′, i) and

H(φ′, v1) = π(Vv1,u1)H(w1, v1) + π(Vu1:v1)H(w2, v1)

= (π(Vu:v1) + π(Vv1 :u ∩ Vv1:u1))H(w1, v1) + π(Vu1 :v1)H(w2, v1)

> π(Vu:v1)H(w1, v1) + (π(Vv1 :u ∩ Vv1:u1) + π(Vu1 :v1))H(w2, v1)

= π(Vu:v1)H(w1, v1) + π(Vv1 :u)H(w2, v1)

= H(φ, v1) = H(φ, u) = Tsi,

where the second and fourth equalities follow from the decomposition of the tree (as
seen in Figure 2), and the inequality is due to H(w1, v1) > H(w2, v2). The resulting
inequality H(φ′, v1) > Tsi is a contradiction, therefore u must be a focus of G.

Completion of proof. If G has a single focus a, then by Claim 5 we may take φ
to be concentrated on two a-pessimal leaves in different components of G\{a} and
Tsi = H(φ, a) = H(a′, a) = Tforget by Corollary 14. If G is bifocal with foci a and b,
then by Claim 5 we may take φ to be concentrated on an a-pessimal node a′ and a
b-pessimal node b′. Also, Tsi = H(φ, a) = H(φ, b) by (26). Finally,

Tsi = (μa + μb)Tsi = μaH(φ, a) + μbH(φ, b)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

318 ANDREW BEVERIDGE

= φa′(μaH(a′, a) + μbH(a′, b)) + φb′(μaH(b′, a) + μbH(b′, b))

= φa′H(a′, μ) + φb′H(b′, μ) = (φa′ + φb′)Tforget = Tforget

by Proposition 7.

Acknowledgments. The author would like to thank László Lovász for many
insightful conversations, Peter Winkler for his helpful comments, and the anonymous
referees for their suggested improvements to the exposition.

REFERENCES

[1] D. Aldous, Some inequalities for reversible Markov chains, J. London Math. Soc. (2), 25
(1982), pp. 564–576.

[2] D. Aldous, L. Lovász, and P. Winkler, Mixing times for uniformly ergodic Markov chains,
Stochastic Process. Appl., 71 (1997), pp. 165–185.

[3] A. Beveridge and L. Lovász, Random walks and the regeneration time, J. Graph Theory, 29
(1998), pp. 57–62.

[4] G. Brightwell and P. Winkler, Extremal cover times for random walks on trees, J. Graph
Theory, 14 (1990), pp. 547–554.

[5] D. Coppersmith, P. Tetali, and P. Winkler, Collisions among random walks on a graph,
SIAM J. Discrete Math., 6 (1993), pp. 363–374.

[6] P. Diaconis and J. A. Fill, Strong stationary times via a new form of duality, Ann. Probab.,
18 (1990), pp. 1483–1522.

[7] I. Dumitriu, P. Tetali, and P. Winkler, On playing golf with two balls, SIAM J. Discrete
Math., 16 (2003), pp. 604–615.

[8] L. Lovász, Random walks on graphs: A survey, in Combinatorics, Paul Erdős is Eighty, Vol. II,
D. Miklós, V. T. Sós, and T. Szőnyi, eds., J. Bolyai Math. Soc., Budapest, 1996, pp. 353–
397.

[9] L. Lovász and P. Winkler, Efficient stopping rules for Markov chains, in Proceedings of the
27th ACM Symposium on the Theory of Computing, ACM, New York, 1995, pp. 76–82.

[10] L. Lovász and P. Winkler, Reversal of Markov chains and the forget time, Combin., Probab.
Comput., 7 (1998), pp. 189–204.

[11] J. W. Moon, Random walks on random trees, J. Austral. Math. Soc., 15 (1973), pp. 42–53.
[12] L. H. Pearce, Random walks on trees, Discrete Math., 30 (1980), pp. 269–276.
[13] J. W. Pitman, Occupation measures for Markov chains, Advances in Appl. Probability, 9

(1977), pp. 69–86.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 319–332

A COMBINATORIAL CHARACTERIZATION OF COXETER
GROUPS∗

MARIO MARIETTI†

Abstract. In this paper we give a purely combinatorial characterization of Coxeter groups
in terms of their partial order structure under Bruhat order. The result is based on the recently
introduced concept of special matching and is achieved by proving an analogue of Tits’ word theorem.
As a consequence of the proof of our main result, we obtain a result about shellability.

Key words. Coxeter groups, Bruhat order, special matchings

AMS subject classifications. 20F55, 05E15

DOI. 10.1137/070695034

1. Introduction. Coxeter group theory derives much of its appeal from its in-
teractions with several areas of mathematics such as algebra, combinatorics, and
geometry (see, e.g., [1], [7], [14], [15]). In Coxeter group theory, a crucial role is
played by Bruhat order. It arises not only in the Bruhat decomposition (this mo-
tivates the terminology although it would be more appropriate to call it Chevalley
order) but also in many other contexts such as in connection with inclusions among
Schubert varieties, with the Verma modules of a complex semisimple Lie algebra, and
in Kazhdan–Lusztig theory.

The problem of characterizing Coxeter groups among the groups generated by
involutions and the problem of characterizing the Bruhat order among the partial
orders on a fixed Coxeter group have been studied intensively and solved (see, e.g.,
[1], [7], [10], [11], [13], [15], [18]). In this paper we solve the problem of giving
a characterization of Coxeter groups partially ordered by Bruhat order among all
possible partially ordered sets (or posets for short). In other words, we give a necessary
and sufficient condition for an abstract poset to be isomorphic to a Coxeter group
partially ordered by Bruhat order (Theorem 4.2). This result is proved by studying
the combinatorics of words in the alphabet of special matchings and, in particular,
giving a combinatorial version of Tits’ word theorem. As a consequence of our main
result, we describe the combinatorial relation between (strong) Bruhat order and weak
Bruhat order, and we can prove that certain labelings arising from words of special
matchings are CL-labelings (chain lexicographical labelings). Hence it follows that
certain posets studied in [17] are shellable.

The paper is organized as follows. In section 2, we recall some basic definitions
and results that are needed in what follows. In section 3, we study the combinatorics
of words in the alphabet of special matchings on a class of posets called zircons. In
particular, we can introduce (reduced) expressions, exchange condition and subword
property also in the context of zircons. In section 4, using the results in section 3, we
prove a combinatorial version of Tits’ word theorem for words of special matchings,
and we give the main result of the paper, namely, a characterization of Coxeter groups
partially ordered by Bruhat order. Furthermore, we characterize the Bruhat order

∗Received by the editors June 21, 2007; accepted for publication (in revised form) September 9,
2008; published electronically January 7, 2009.

http://www.siam.org/journals/sidma/23-1/69503.html
†Dipartimento di Matematica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma,

Italy (marietti@mat.uniroma1.it).

319

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

320 MARIO MARIETTI

among all partial orders on W as the unique order for which the multiplication by
a fixed generator gives rise to a special matching. As a corollary, we describe a
combinatorial way to obtain the weak Bruhat order from the Bruhat order and vice
versa. In section 5, we give a result about shellability of zircons.

2. Notation and background. This section reviews the background material
on posets, Coxeter systems, and special matchings that is needed in the rest of this
paper. We refer the reader to [1], [15], and [16] for a more detailed treatment. We
write “:=” if we are defining the left-hand side by the right-hand side. We let N :=
{0, 1, 2, 3, . . .}, and for a, b ∈ N we let [a, b] := {a, a + 1, a + 2, . . . , b} and [a] :=
{1, 2, . . . , a}. The cardinality of a set A will be denoted by |A|.

Let P be a poset. An element x ∈ P is maximal (respectively, minimal) if there
is no element y ∈ P \ {x} such that x ≤ y (respectively, y ≤ x). We say that P has
a bottom element 0̂ if there exists an element 0̂ ∈ P satisfying 0̂ ≤ x for all x ∈ P .
Similarly, P has a top element 1̂ if there exists an element 1̂ ∈ P satisfying x ≤ 1̂ for
all x ∈ P . If x ≤ y, we define the (closed) interval [x, y] = {z ∈ P : x ≤ z ≤ y}
and the open interval (x, y) = {z ∈ P : x < z < y}. If every interval of P is finite,
then P is called a locally finite poset. We say that x is covered by y if x < y and
[x, y] = {x, y}, and we write x � y or y � x. If P has a 0̂, then an element x ∈ P
is an atom of P if 0̂ � x. A chain of P is a totally ordered subset of P . A chain c
with top element y and bottom element x is saturated if it is a maximal chain of the
interval [x, y]. A poset P is ranked if there exists a (rank) function ρ : P → N such
that ρ(y) = ρ(x) + 1 whenever x � y. A poset P is pure of length �(P) = n if all
maximal chains are of the same length n. A poset P with bottom element 0̂ is graded
if every interval [0̂, x] is pure. A poset P is a Boolean algebra if it is isomorphic to
the poset of all subsets of a certain set S, partially ordered by inclusion.

A standard way of depicting a poset P is by its Hasse diagram. This is the
digraph with P as node set and having an upward-directed edge from x to y if and
only if x�y. We say that P is connected if its Hasse diagram is connected as a graph.
A morphism of posets is a map φ : P → Q from the poset P to the poset Q which
is order-preserving, namely, such that x ≤ y in P implies φ(x) ≤ φ(y) in Q for all
x, y ∈ P . Two posets P and Q are isomorphic if there exists an order-preserving
bijection φ : P → Q whose inverse is also order-preserving. In this case φ is an
isomorphism of posets.

We follow [1] for undefined Coxeter groups notation and terminology. Given a
Coxeter system (W,S), we denote by (m(s, t))s,t∈S the Coxeter matrix of W . Given
w ∈W , we denote by l(w) the length of w, we call any product of l(w) elements of S
which represents w a reduced expression for w, and we let

DR(w) := {s ∈ S : l(ws) < l(w)} = DL(w−1),
DL(w) := {s ∈ S : l(sw) < l(w)} = DR(w−1).

We call DR(w) and DL(w), respectively, the right and the left descent set of w. We
denote by e the identity of W , and we let T := {wsw−1 : w ∈ W, s ∈ S} be the set
of reflections of W .

The following property, known as the exchange condition, characterizes the Cox-
eter groups among the groups generated by involutions.

Theorem 2.1. Let w ∈ W , and let s1s2 . . . sr be a reduced expression for w.
Let s ∈ S be such that l(ws) < l(w). Then there exists a unique i ∈ [r] such that
ws = s1s2 . . . ŝi . . . sr (where ŝi means that si has been deleted). Furthermore, the
positive integer i is such that si+1si+2 . . . srs is reduced, while sisi+1 . . . srs is not.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A COMBINATORIAL CHARACTERIZATION OF COXETER GROUPS 321

We now recall a result due to Tits [19] that is needed in what follows. Given
s, t ∈ S such that m(s, t) < ∞, let αs,t = stst . . . with exactly m(s, t) letters. Two
expressions are said to be linked by a braid move (respectively, a nil move) if it is
possible to obtain the first from the second by changing a factor αs,t to a factor αt,s

(respectively, by deleting a factor ss).
Theorem 2.2 (Tits’ word theorem). Let w ∈ W . Then any expression for w

(not necessarily reduced) is linked to any reduced expression for w by a finite sequence
of braid and nil moves.

The Coxeter group W is partially ordered by (strong) Bruhat order. Given u, v ∈
W , u ≤ v if and only if there exist r ∈ N and t1, . . . , tr ∈ T such that tr . . . t1 u = v
and l(ti . . . t1u) > l(ti−1 . . . t1u) for i = 1, . . . , r. It is well known that W , partially
ordered by Bruhat order, is a graded poset having l as its rank function. There is a
well-known characterization of Bruhat order on a Coxeter group in terms of reduced
expressions (usually referred to as the subword property). By a subword of a word
s1s2 . . . sq we mean a word of the form si1si2 . . . sik

, where 1 ≤ i1 < · · · < ik ≤ q.
Theorem 2.3. Let u, v ∈W . Then the following are equivalent:
1. u ≤ v;
2. every reduced expression for v has a subword that is a reduced expression for
u;

3. there exists a reduced expression for v which has a subword that is a reduced
expression for u.

Another partial order structure on the Coxeter group W is given by the (weak)
Bruhat order that we denote by ≤w. Given u, v ∈W , u ≤w v if and only if there exist
r ∈ N and s1, . . . , sr ∈ S such that sr . . . s1 u = v and l(si . . . s1u) > l(si−1 . . . s1u) for
i = 1, . . . , r. A characterization of the poset (W,≤w) has been given by Eriksson [12].

Theorem 2.4. For any Coxeter group (W,S) with Coxeter matrix (m(s, t))s,t∈S ,
there exists a unique poset P (up to isomorphism) such that

1. P has a bottom element 0̂;
2. P has |S| atoms;
3. P admits a labeling of the edges of its Hasse diagram with labels in S satisfying

the following:
– no two edges incident to the same element of P have the same label;
– if there are two edges going upwards from an element p ∈ P with labels
s and t, then they are the first edges of two upward-going paths from p
of length m(s, t) labeled alternatingly s and t. If m(s, t) <∞, then these
paths end in the same element; while if m(s, t) = ∞, the paths go on
forever.

Such a poset P is isomorphic to (W,≤w).
Recall that a matching of a graph G = (V,E) is an involution M : V → V such

that {M(v), v} ∈ E for all v ∈ V . Let P be a poset. A matching M of the Hasse
diagram of P is a special matching of P if

u� v =⇒M(u) ≤M(v)

for all u, v ∈ P such that M(u) �= v.
For the reader’s convenience, we collect the following two results. The first one

appears in [9], while the second one follows easily by Lemma 4.2 of [8].
Lemma 2.5. Let P be a locally finite ranked poset, M be a special matching of

P , and u, v ∈ P , u ≤ v, be such that M(u) � u and M(v) � v. Then M restricts to a
special matching of [u, v].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

322 MARIO MARIETTI

Lemma 2.6 (lifting lemma for special matchings). Let M be a special matching
of a locally finite ranked poset P , and let u, v ∈ P , u ≤ v. Then

1. if M(v) � v and M(u) � u, then M(u) ≤M(v);
2. if M(v) � v and M(u) � u, then M(u) ≤M(v);
3. if M(v) � v and M(u) � u, then M(u) ≤ v and u ≤M(v).

Given an element w ∈ P , we say that M is a special matching of w if M is a
special matching of the subposet {x ∈ P : x ≤ w}. We denote the set of all special
matchings of w by SMw. Recall from [17] the following definition.

Definition 2.7. We say that a locally finite ranked poset Z is a zircon if SMw

is nonempty for all w ∈ Z, w not minimal.
Note that the set SMZ of all special matchings of the entire zircon Z may happen

to be empty.
The following assertions are proved in [17].
Theorem 2.8. Any zircon is a disjoint union of graded posets (its connected

components). Any connected zircon is a Eulerian poset. Any interval of length 3 in a
zircon is a k-crown. Any interval of length 2 is a square (namely, it has 4 elements).

All Coxeter groups partially ordered by Bruhat order are connected zircons. In
fact, let (W,S) be any Coxeter system. Then W is a locally finite ranked poset with
the length function as rank function. Fix w ∈ W \ {e} and s ∈ DR(w). Then the
involution ρs : [e, w] → [e, w] defined by ρs(u) = us for all u ∈ [e, w] is a special
matching of w. Similarly, if s ∈ DL(w), the involution λs : [e, w] → [e, w] defined by
λs(u) = su for all u ∈ [e, w] is a special matching of w.

3. Words and special matchings in zircons. In this section we show that the
special matchings of a zircon play the role that Coxeter generators play in Coxeter
group theory. Throughout this section, we let Z be a connected zircon with rank
function ρ (by Theorem 2.8 no generality is lost), and we let SM(Z) = ∪z∈ZSMz.

Definition 3.1. For any z ∈ Z, we say that a word M1 . . .Mρ in the alphabet
SM(Z) is an expression of special matchings for z if Mi . . .Mρ(z) is defined for all
i ∈ [ρ] and M1 . . .Mρ(z) = 0̂ (or, equivalently, if Mi . . .M1(0̂) is defined for all i ∈ [ρ]
and Mρ . . .M1(0̂) = z). Furthermore, we say that the expression M1 . . .Mρ for z is
reduced if ρ = ρ(z).

Note that if M1 . . .Mρ is a reduced expression for z, then, for all i ∈ [ρ],

MiMi+1 . . .Mρ(z) �Mi+1 . . .Mρ(z),

and Mi restricts to a special matching of Mi+1 . . .Mρ(z) by Lemma 2.5. Then we
can associate to any reduced expression for z a regular sequence of special matchings
for z in the sense of section 9 of [9]. It is sometimes useful to consider the chain
associated to a reduced expression M1 . . .Mρ for an element v. This is the chain
(v0, . . . , vρ) where vi := Mi+1 . . .Mρ(v) = Mi . . .M1(0̂) for i = 0, . . . , ρ. For example,
consider the zircon in Figure 1 and its special matchingsM , N , and O. The expression
MONM is a reduced expression of special matchings for v4 with (v0, v1, v2, v3, v4) as
the associated chain.

Remark. Let w be an element in a Coxeter group W , and let s1 . . . s� be an
expression (respectively, a reduced expression) for w in the Coxeter group terminol-
ogy. Then λs�

. . . λs1 and ρs1 . . . ρs�
are both expressions (respectively, both reduced

expressions) of special matchings for w (see the remark at the end of section 2 for the
notation). Thus, the concept of (reduced) expressions of special matchings in zircons
is a generalization of that of (reduced) expressions in Coxeter group theory.

The proof of the following result is similar to the proof of the corresponding result
for regular sequences in Coxeter groups (Lemma 9.2 of [9]) and is therefore omitted.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A COMBINATORIAL CHARACTERIZATION OF COXETER GROUPS 323

M
N
O

v0

v1

v2

v3

v4

Fig. 1. MONM is a reduced expression of special matchings.

By a subword of a word M1M2 . . .Mr we mean a word of the form Mi1Mi2 . . .Mik
,

where 1 ≤ i1 < · · · < ik ≤ r.
Lemma 3.2. Let z ∈ Z, and let M1 . . .Mρ be a reduced expression of special

matchings for z. Then the composition Mik
. . .Mi1(0̂) is defined for any subword

Mi1 . . .Mik
of M1 . . .Mρ and Mik

. . .Mi1(0̂) ≤ z.
Proposition 3.3. Let u, v ∈ Z, u� v, and let M1 . . .Mρ be a reduced expression

for v. Then there exists a unique i ∈ [ρ] such that u = MρMρ−1 . . .Mi . . .Mρ−1Mρ(v).
Furthermore,

i = max{k ∈ [ρ] : Mk . . .Mρ−1Mρ(u) ≥Mk+1 . . .Mρ−1Mρ(u)}.
Proof. To prove the existence part, we prove that the assertion holds for i =

max{k ∈ [ρ] : Mk . . .Mρ−1Mρ(u) ≥ Mk+1 . . .Mρ−1Mρ(u)}. We proceed by induction
on the rank ρ of v, the assertion being clear if ρ = 1.

So suppose ρ > 1. If Mρ(v) = u, then i = ρ, and we are done. Otherwise, by the
definition of a special matching, Mρ(u) � u and Mρ(u) �Mρ(v). As M1 . . .Mρ−1 is
a reduced expression for Mρ(v), by the induction hypothesis, we have that Mρ(v) =
Mρ−1Mρ−2 . . .Mi′ . . .Mρ−2Mρ−2(Mρ(u)), where

i′ = max{k ∈ [ρ− 1] : Mk . . .Mρ−1(Mρ(u)) ≥Mk+1 . . .Mρ−1(Mρ(u))}.
Clearly i′ = i and then v = MρMρ−1 . . .Mi . . .Mρ−1Mρ(u) since the special matchings
are involutions. So we are done.

Let us prove the uniqueness part. By contradiction, suppose that, for some k �= i,
u = MρMρ−1 . . .Mk . . .Mρ−1Mρ(v). Then k < i because MρMρ−1 . . .Mk . . .Mρ−1

Mρ(u) has rank < ρ(v) for all k > i. Since we have proved that u = MρMρ−1 . . .Mi . . .
Mρ−1Mρ(v), it follows that

Mi+1 . . .Mρ−1Mρ(v) = Mi−1 . . .Mk+1MkMk+1 . . .Mi−1MiMi+1 . . .Mρ−1Mρ(v).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

324 MARIO MARIETTI

Hence we have

Mk+1 . . .Mi−1Mi+1 . . .Mρ−1Mρ(v) = Mk . . .Mi−1MiMi+1 . . .Mρ−1Mρ(v).

This is impossible since either the left-hand side is not defined or its rank is greater
than the rank of the right-hand side.

Remark. Let (W,S) be a Coxeter system, v ∈ W , and let s1 . . . sr be a reduced
expression for v in the Coxeter group terminology. It is a well-known fact that {t ∈
T : l(tv) < l(v)} = {s1s2 . . . si . . . s2s1 : i ∈ [r]}. Hence the Bruhat order on W
is actually defined as the transitive closure of the covering relations of the form in
Proposition 3.3 in the case where the expression M1 . . .Mρ comes from a reduced
expression in the Coxeter group terminology.

The following results are the generalizations of Theorems 2.1 and 2.3 to arbitrary
zircons.

Theorem 3.4 (exchange condition for zircons). Let v ∈ Z, and let M1 . . .Mρ be
a reduced expression for v. Then, for all u� v, there exists a unique i ∈ [ρ] such that
M1 . . . M̂i . . .Mρ (Mi deleted) is a reduced expression for u. Furthermore,

i = max{k ∈ [ρ] : Mk . . .Mρ−1Mρ(u) ≥Mk+1 . . .Mρ−1Mρ(u)}.

Proof. By Proposition 3.3, u = MρMρ−1 . . .Mi . . .Mρ−1Mρ(v), and hence we have
M1 . . . M̂i . . .Mρ(u) = M1 . . .Mρ(v) = 0̂ since the special matchings are involutions.

The uniqueness part also follows by Proposition 3.3.
Theorem 3.5 (subword property for zircons). Let u, v ∈ Z. Then the following

are equivalent:
1. u ≤ v;
2. every reduced expression for v has a subword that is a reduced expression for
u;

3. there exists a reduced expression for v which has a subword that is a reduced
expression for u.

Proof. Let us first show that item 1 implies item 2. We proceed by induction on
ρ := ρ(v), the statement being trivial for ρ = 1. So assume that ρ > 1, and fix a
reduced expression M1 . . .Mρ for v. Clearly M1 . . .Mρ−1 is a reduced expression for
Mρ(v). If Mρ(u) � u, then, by Lemma 2.6, Mρ(u) ≤ Mρ(v). So by induction there
exist 1 ≤ i1 < · · · < ik ≤ ρ − 1 such that Mi1 . . .Mik

is a reduced expression for
Mρ(u), and hence Mi1 . . .Mik

Mρ is a reduced expression for u. If Mρ(u) � u, then,
by Lemma 2.6, u ≤Mρ(v), and we again conclude by induction.

Clearly item 2 implies item 3.
To prove that item 3 implies item 1 we proceed by induction on ρ := ρ(v), the

claim being clear if ρ = 1. Let M1 . . .Mρ be a reduced expression for v, and suppose
that Mi1 . . .Mik

is a reduced expression for u. In particular, u = Mik
. . .Mi1(0̂). If

ik �= ρ, then Mi1 . . .Mik
is a subword of M1 . . .Mρ−1, which is a reduced expression

for Mρ(v). Hence, by our induction hypothesis, u ≤ Mρ(v) < v, and we are done.
Suppose now that ik = ρ. Clearly Mi1 . . .Mik−1 is both a subword of M1 . . .Mρ−1 and
a reduced expression for Mρ(u). Then, by our induction hypothesis, Mρ(u) ≤Mρ(v),
and hence, by Lemma 2.6, we get the assertion.

The next result shows that, given u ≤ v ∈ Z and a reduced expression for v, there
are two canonical ways of choosing a subword of this reduced expression which is a
reduced expression for u.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A COMBINATORIAL CHARACTERIZATION OF COXETER GROUPS 325

Lemma 3.6. Let v ∈ Z, M = M1 . . .Mρ be a reduced expression for v, and
(v0, . . . , vρ) be the chain associated to M. Then, for all u ≤ v, u not minimal, we
have

1. {j ∈ [ρ] : Mj(u) is defined and Mj(u) � u} �= ∅;
2. Mk(u) � u, where k := min{j ∈ [ρ] : vj ≥ u}.

Proof of item 1. We proceed by induction on ρ, the claim being clear if ρ = 1.
Assume ρ > 1, and consider the special matching Mρ of v. Clearly Mρ(u) is defined
since u ≤ v. If Mρ(u) � u, then we are done. Otherwise, by Lemma 2.6, u ≤
Mρ(v), and we can conclude by induction sinceM1 . . .Mρ−1 is a reduced expression for
Mρ(v).

Proof of item 2. Clearly Mk(u) is defined since u ≤ vk. By contradiction, suppose
that Mk(u) � u. Then, by Lemma 2.6, u ≤ Mk(vk) = vk−1. This contradicts the
minimality of k.

After Lemma 3.6, given v ∈ Z and a reduced expression M = M1 . . .Mρ for it,
we let

maxu = max{j ∈ [ρ] : Mj(u) is defined and Mj(u) � u},
minu = min{j ∈ [ρ] : vj ≥ u},

for all u ≤ v, u not minimal. We say that Mmaxu
and Mminu

are, respectively, the
maximal special matching and the minimal special matching of u according to M.
The following result is an immediate consequence of Lemma 3.6.

Corollary 3.7. Let v ∈ Z, ρ := ρ(v), and M1 . . .Mρ be a reduced expression for
v. Then there are two canonical injective maps imax, imin : [0̂, v]→ {subwords of M1 . . .
Mρ} sending u to its unique reduced expression made of, respectively, maximal and
minimal special matchings. In particular, |[0̂, v]| ≤ 2ρ and {z ∈ [0̂, v] : ρ(z) = k} ≤(

ρ
k

)
.
Remark. The inequalities in Corollary 3.7 are sharp (see the Boolean algebra).

4. Main results. In this section we give a characterization for an abstract poset
to be isomorphic to a Coxeter group partially ordered by Bruhat order. The class of
zircons is much larger than the class of posets isomorphic to a Coxeter group. The
poset in Figure 1 is the simplest zircon with a top element which is not isomorphic
to a Bruhat interval in any Coxeter group. More generally, by Theorem 3.2 of [9],
a poset P which does not avoid K3,2 cannot be a Bruhat interval (P avoids K3,2 if
there are no elements a1, a2, a3, b1, b2 ∈ P , all distinct, such that either ai � bj for
all i ∈ [3], j ∈ [2], or ai � bj for all i ∈ [3], j ∈ [2]). The zircon in Figure 2 has
the distinguishing characteristic of admitting only one special matching of the entire
poset. This cannot happen for a nontrivial interval [e, w] in a Coxeter group W since
any element w ∈ W of length > 1 has at least one left descent and one right descent
which give rise to two different special matchings.

The main step in proving the main result of this work is the following theorem,
whose proof uses the results in the previous section and which gives a combinatorial
version of Tits’ word theorem for a certain class of zircons. Given two special match-
ings M,N of a poset P , we denote by 〈M,N〉 the subgroup of the symmetric group
on P generated by M and N .

Theorem 4.1. Let P be a graded poset such that there exists a set R of special
matchings of P satisfying the following:

1. for all z ∈ P \ {0̂}, there exists R ∈ R such that R(z) � z;
2. for all R,R′ ∈ R, all orbits under the action of 〈R,R′〉 have the same cardi-

nality (possibly ∞).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

326 MARIO MARIETTI

Fig. 2. A zircon with only one special matching.

Then P is a zircon, and given any expression of special matchings in R and any
reduced expression of special matchings in R, they are expressions for the same ele-
ment if and only if one can reach the second from the first by a finite sequence of the
following moves:

• braid move: replace · · ·RR′R︸ ︷︷ ︸
m(R,R′)

with · · ·R′RR′︸ ︷︷ ︸
m(R,R′)

for some R,R′ ∈ R, where

2m(R,R′) is the common cardinality of all orbits under the action of 〈R,R′〉;
• nil move: replace RR with the empty word for some R ∈ R.

Proof. Let us show that P is a zircon. By property 1 and Lemma 2.5, SMw is
nonempty for all w ∈ P . We still have to prove that P is locally finite. Let us proceed
by contradiction. So let w ∈ P be minimal such that [0̂, w] has infinite cardinality,
and let ρ be the rank of w. Hence

{j ∈ [ρ] : there are an infinite number of elements of rank j in [0̂, w]} �= ∅.
This set contains ρ−1 since otherwise there would be an element of rank < ρ covering
an infinite number of elements, which contradicts the minimality of w. By property 1
there exists R ∈ R such that R(w)�w. Then, by the definition of a special matching,
R(w) covers R(v) for all v�w, v �= R(w). But these are infinitely many, and we again
conclude by contradiction.

Let us prove the second statement. By property 2 and by the fact that special
matchings are involutions, the “if” part is clear. To prove the “only if” part, we
first assume that the two expressions are both reduced expressions for z ∈ Z and we
proceed by induction on the rank ρ(z) of z. So let R1R2 . . . Rρ(z) and T1T2 . . . Tρ(z) be
two reduced expressions for z, and let R := Rρ(z), T := Tρ(z). If R = T , the assertion
follows by induction considering the two reduced expressions R1R2 . . . Rρ(z)−1 and
T1T2 . . . Tρ(z)−1. If R �= T , z is the top element of its orbit under the action of
〈R, T 〉. Let x be the bottom element of this orbit, and let Rc1Rc2 . . . Rcρ(x) be a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A COMBINATORIAL CHARACTERIZATION OF COXETER GROUPS 327

reduced expression for x of special matchings in R. Then Rc1Rc2 . . . Rcρ(x) · · ·RTR︸ ︷︷ ︸
m(R,T)

is

a reduced expression for z of special matchings in R. So, by the induction hypothesis,
we have that R1R2 . . . Rρ(z) is linked by braid moves to Rc1Rc2 . . . Rcρ(x) · · ·RTR︸ ︷︷ ︸

m(R,T)

,

which is linked to Rc1Rc2 . . . Rcρ(x) · · ·TRT︸ ︷︷ ︸
m(R,T)

, which, again by the induction hypothesis,

is linked to T1T2 . . . Tρ(z). So we are done.
Suppose now that R1R2 . . . Rk is not reduced, and let i be such that R1R2 . . . Ri is

reduced while R1R2 . . . RiRi+1 is not. Consider x := Ri . . . R1(0̂). Then there exists a
reduced expression for x ending with Ri+1. By what we have already proved, this ex-
pression is linked to R1R2 . . . Ri by a sequence of braid moves. Hence R1R2 . . . RiRi+1

is linked to a reduced expression of length i−1 by a sequence of braid moves and a nil
move. By iterating this proceeding, we have that R1R2 . . . Rk is linked to a reduced
expression for z by a sequence of braid and nil moves. Then we get the assertion by
what we have already proved.

Remark. Any set R of special matchings of P satisfying properties 1 and 2 must
be in bijection with the set of atoms of P . In fact, for all s� 0̂, there exists a unique
Rs ∈ R such that Rs(s) = 0̂. The existence is given by property 1 and the uniqueness
follows by property 2 since if R,R′ ∈ R coincide on an element, they must coincide
everywhere.

We can now prove the main result of this work.
Theorem 4.2. A graded poset P is isomorphic to a Coxeter group W partially

ordered by Bruhat order if and only if there exists a set R of special matchings of P
such that

1. for all z ∈ P \ {0̂}, there exists R ∈ R such that R(z) � z;
2. for all R,R′ ∈ R, all orbits under the action of 〈R,R′〉 have the same cardi-

nality (possibly ∞).
Proof. Given a Coxeter system (W,S), let R be the set of all special matchings of

W given by left multiplication by a generator. Then W endowed with the structure of
a poset given by Bruhat order is a graded poset, and it is easy to show that properties
1 and 2 are satisfied.

Conversely, let P be a graded poset with rank function ρ, R be a set of special
matchings of P satisfying properties 1 and 2 and S be the set of atoms of P . For all
s ∈ S, let Rs be the unique special matching in R such that Rs(s) = 0̂ (see the above
remark). Consider the Coxeter system (W,S) with Coxeter matrix (m(s, t))t,s∈S ,
where m(s, t) := m(Rs, Rt) is equal to the common cardinality of all orbits under
the action of 〈Rs, Rt〉 divided by 2. By iteration of property 1, every element in P
admits at least one (reduced) expression of special matchings in R. We define a map
Φ : P →W in the following way. If z ∈ P admits the expression Rs1Rs2 . . . Rsh

, then
Φ(z) = s1s2 . . . sh. By Theorems 2.2, 2.3, 3.5, and 4.1, the map Φ is well defined,
bijective, and order-preserving (as well as the inverse).

Theorem 4.2 gives a characterization of the Coxeter group W partially ordered
by Bruhat order among all posets. The following result gives a characterization of the
Bruhat order among all partial orders on the set W .

Theorem 4.3. Let (W,S) be a Coxeter system. The Bruhat order provides the
unique partial order structure on W for which the identity e is the bottom element and
the multiplication on the left (equivalently, on the right) by s is a special matching for
every s ∈ S.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

328 MARIO MARIETTI

Proof. For the symmetry of the problem, we prove only the left version of the
statement. Let (W,≤′) be a partial order structure on W for which the multiplication
on the left by s is a special matching for every s ∈ S, and denote by �′ and �′ its
covering relations.

Suppose that {(x, y) : x � y, x ��′y} �= ∅. Let x � y be of minimal rank in that
set, and let s1 . . . sn be a reduced expression for y. It is well known that there exists
a unique r ∈ [n] such that s1 . . . sr−1srsr−1 . . . s1y = x. Let u := sr+1 . . . sn. Then
sru�u, sr−1u�u, sr−1sru�sru. Hence, since the multiplication on the left by sr−1 is a
special matching, we have sr−1sru�sr−1u. Now, considering sr−1sru�sr−1u and the
special matching given by multiplication on the left by sr−2, we obtain sr−2sr−1sru�

sr−2sr−1u. By iteration, we have s1y = s2 . . . sr−1sru� s2 . . . sr−1u = s1x, and hence
s1y�′ s1x by the minimality of the pair (x, y). Now, since the multiplication by s1 is
a special matching of (W,≤′), it must be y �′ x. Hence {(x, y) : x� y, x ��′y} = ∅.

Suppose now that {(x, y) : x �′ y, x ��y} �= ∅. Let x �′ y be of minimal rank in
that set, and let s ∈ DL(y) (that is, sy�y). By what we have already proved, sy�′ y.
Since the multiplication by s is a special matching of (W,≤′), sx�′x and sx�′ sy. By
the minimality of (x, y), we have sx� x and sx� sy. But, since the multiplication by
s is a special matching of (W,≤), it must be x� y. Hence {(x, y) : x�′ y, x ��y} = ∅,
and we get the assertion.

We end this section giving a corollary of Theorems 4.2 and 4.3 which shows how
to reconstruct the weak Bruhat order from the (strong) Bruhat order and vice versa.

Let (W,S) be a Coxeter system, and let ≤ and ≤w denote, respectively, the
(strong) Bruhat order and the weak Bruhat order. Given a poset (P,) isomorphic
to (W,≤), for every set R of special matchings of (P,) satisfying the properties as in
Theorem 4.2, we define another partial order R on P as follows. For all x y ∈ P ,
y covers x in (P,R) if and only if there exists R ∈ R such that R(x) = y. On the
other hand, given a poset (P,) isomorphic to (W,≤w), for every labeling L of the
Hasse diagram of (P,) satifying the properties as in Theorem 2.4, we define another
partial order L on P as follows. For all s ∈ S, let Ms : P → P be the map sending
x to y if and only if L({x, y}) = s. Then set L to be the unique partial order on
P such that Ms is a special matching for all s ∈ S. The existence of L is given
by the poset (W,≤) identifying the elements of W with the elements of P via the
poset isomorphism chosen according to the labeling L; the uniqueness part follows by
Theorem 4.3. Now the following result follows by Theorem 4.2 (and by the definition
of the poset isomorphism Φ appearing in its proof).

Corollary 4.4. Let (W,S) be a Coxeter system, and let ≤ and ≤w denote,
respectively, the (strong) Bruhat order and the weak Bruhat order.

1. Given a poset (P,) isomorphic to (W,≤), the poset (P,R) is isomorphic
to (W,≤w) for all R.

2. Given a poset (P,) isomorphic to (W,≤w), the poset (P,L) is isomorphic
to (W,≤) for all L.

5. Shellability for zircons. In this section we show how the results in section 3
imply that certain posets are CL-shellable (chain lexicographically shellable) in the
sense of Björner and Wachs [6]. For several applications of CL-shellability, we refer
the reader to [2], [3], [4].

Let P be a graded poset with 1̂. Let M be the set of maximal chains of P and
E := {(c, x, y)|c ∈ M, x, y ∈ c, x � y}. A chain-edge labeling of P is a map λ : E → Z
such that if two maximal chains coincide along their last d edges, then their labels also
coincide along these edges: if c := 0̂ = z0�z1�· · ·�zk = 1̂, c′ := 0̂ = z′0�z

′
1�· · ·�z′k =

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A COMBINATORIAL CHARACTERIZATION OF COXETER GROUPS 329

M
N
O

0̂

x

y

Fig. 3. NMOM is not a B-regular expression.

1̂, and zh = z′h for all h ∈ [k − d, k], then λ(c, zh, zh+1) = λ(c′, z′h, z
′
h+1) for all

h ∈ [k − d, k − 1]. For all maximal chains c := 0̂ = z0 � z1 � · · · � zk = 1̂, we let
λ(c) := λ(c, zk−1, zk)λ(c, zk−2, zk−1) . . . λ(c, z0, z1).

A rooted interval with root r is a pair ([x, y], r), where x ≤ y ∈ P and r is a
maximal chain in [y, 1̂]. If c is any maximal chain of [x, y], then c ∪ r is a maximal
chain of [x, 1̂]. Let λ be a chain-edge labeling of P . Once fixed the root r, by the
definition of chain-edge labelings, λ restricts to a chain-edge labeling on [x, y] since
every maximal chain of P containing c∪ r induces the same labeling on c. We denote
the restriction map simply by λr when the interval [x, y] is clear from the context.

A chain-edge labeling λ is said to be a CL-labeling if for every rooted interval
([x, y], r) in P

(i) there is a unique maximal chain c in [x, y] such that λr(c) is increasing and
(ii) for all other maximal chains c′ in [x, y], λr(c) < λr(c′) in the lexicographical

order.
A graded poset P is said to be CL-shellable if every interval of P admits a CL-labeling.

Now let Z be a zircon, x ≤ y ∈ Z, and M1M2 . . .Mρ(y) be a reduced expression
of special matchings for y. We describe a chain-edge labeling λ on the interval [x, y]
depending on the reduced expression M1M2 . . .Mρ(y). Let k := ρ(y) − ρ(x) and
c := x = z0 � z1 � · · · � zk = y be a maximal chain of [x, y]. By Theorem 3.4,
zk−1 admits a unique reduced expression which is obtainable from M1M2 . . .Mρ(y)

deleting one letter Mi. Let λ(c, zk−1, y) := i. Now consider the reduced expression
M1 . . . M̂i . . .Mρ (Mi deleted) for zk−1, and apply Theorem 3.4 to zk−2 � zk−1. If i′

is such that the expression obtained from M1M2 . . .Mρ(y) by deleting both Mi and
Mi′ is a reduced expression for zk−2, then let λ(c, zk−2, zk−1) := i′. By iterating this
procedure, we obtain a map λ which is evidently a chain-edge labeling.

In general, λ is not a CL-labeling. Consider the zircon in Figure 3 and the map
λ induced on the interval [x, y] by the reduced expression NMOM for y. There is no
chain c such that λ{y}(c) is increasing since the two chains are labeled 41 and 21.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

330 MARIO MARIETTI

We need the following definition appearing in [9, Definition 10.1] in the context
of Coxeter groups.

Definition 5.1. We say that a reduced expression M1M2 . . .Mρ(y) of special
matchings for y is B-regular if

Mi(x) �= Mi+1Mi+2 . . .Mi+k . . .Mi+2Mi+1(x)

for all i ∈ [ρ(y)], k ∈ [ρ(y)− i], and for all x ∈ [0̂, y] for which both sides are defined.
We say that a zircon Z is B-regular if every y ∈ Z admits a reduced expression of

special matchings whose reduced subwords are B-regular. The expression in Figure 3
is not B-regular since M(0̂) = OMO(0̂). Nevertheless, the zircon which is depicted
is B-regular, a reduced expression for the top element whose reduced subwords are
B-regular being the one in Figure 1.

Thanks to the results in the previous sections, we can prove the following result.
Corollary 5.2. Every B-regular zircon Z is a CL-shellable poset.
Proof. Let ρ be the rank function of Z, and consider an interval [x, y] in Z.

Let M1M2 . . .Mρ(y) be a reduced expression for y whose reduced subwords are B-
regular, and let λ be the chain-edge labeling induced by it. By our assumption on
M1M2 . . .Mρ(y), no generality is lost if we verify (i) and (ii) only for the trivial rooted
interval ([x, y], {y}) instead of considering all rooted intervals in [x, y].

To show that two distinct maximal chains in [x, y] cannot both have increasing
labels, we proceed by contradiction. Let [x, y] be of minimal rank k := ρ(y) − ρ(x)
among the intervals that admit two distinct maximal chains with increasing labels.
Let c and c′ be two distinct maximal chains of [x, y] both with increasing labels
λ(c) = (i1, i2, . . . , ik) and λ(c′) = (i′1, i

′
2, . . . , i

′
k). Assume that ik ≤ i′k. The ele-

ment x admits the reduced expression M1M2 . . . M̂i1 . . . M̂ik
. . .Mρ(y). If ik < i′k,

then Mρ(y)Mρ(y)−1 . . .Mi′k+1Mi′kMi′k+1 . . .Mρ(y)−1Mρ(y)(x) < x, but this is a contra-
diction since Mρ(y)Mρ(y)−1 . . .Mi′

k
+1Mi′

k
Mi′

k
+1 . . .Mρ(y)−1Mρ(y)(x) ∈ c′. If ik = i′k,

the contradiction stems from the minimality of the interval [x, y] since the element
Mρ(y)Mρ(y)−1 . . .Mik+1Mik

Mik+1 . . .Mρ(y)−1Mρ(y)(x) belongs to ∈ c ∩ c′.
It remains to prove that there exists a maximal chain c with increasing labels

and that λ(c) < λ(c′) in the lexicographical order for any other maximal chain c′. By
Theorem 3.4, we can construct the chain c := x = z0 � z1 � · · · zk = y in the following
way. Every coatom of y in [x, y] admits a reduced expression which is obtained from
M1M2 . . .Mρ(y) by deleting one letter. Among these elements, let zk−1 be the coatom
whose reduced expression is obtained deleting the letter Mi with i minimal. Now
repeat the procedure considering the reduced expression M1M2 . . . M̂i . . .Mρ(y) for
zk−1 together with the coatoms of zk−1 in [x, zk−1] and so on. By construction, λ(c) <
λ(c′) in the lexicographical order for any other maximal chain c′. We need to show that
λ(c) = (i1, i2, . . . , ik) is increasing. Suppose by contradiction that it is not, and let r be
such that ir > ir+1. This means that our procedure fails to give a chain with increasing
labels in the rank 2 interval [x′, y′], where x′ := M1M2 . . . M̂i1 . . . M̂ir+1 . . .Mρ(y)
(with r + 1 letters deleted) and y′ := M1M2 . . . M̂i1 . . . M̂ir−1 . . .Mρ(y) (with r − 1
letters deleted). So it remains to prove that the assertion holds for the rank 2 intervals.

From now on assume that ρ(y)− ρ(x) = 2, and recall from Theorem 2.8 that the
interval [x, y] is a square. Let (i, j) be lexicographically minimal among the ordered
pairs (h, k) such that M1M2 · · · M̂h . . . M̂k . . .Mρ(y) is a reduced expression for x. Let
u := Mρ(y)Mρ(y)−1 . . . M̂i . . .M1(0̂). We claim that u ∈ [x, y]. By Theorem 3.5, u < y,
and u > x follows if we show that the expression M1M2 . . . M̂i . . .Mρ(y) is reduced.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A COMBINATORIAL CHARACTERIZATION OF COXETER GROUPS 331

v4v4v4v4

v1 v1v1v1

1 1

2

2

2

2

33

3
3

4 4

Fig. 4. The CL-labeling on [v1, v4] induced by MONM .

Clearly M1M2 . . . M̂i . . .Mj−1 is reduced. Let v := Mj−1Mj−2 . . . M̂i . . .M1(0̂). If
Mj(v) � v, then by Theorem 3.4 there exists r ∈ [j − 1] such that

Mj(v) = MjMj−1 . . . M̂i . . .M1(0̂) = Mj−1 . . . M̂r . . . M̂i . . .M1(0̂)

(note that r can be < i). Hence v = MjMj−1 . . . M̂r . . . M̂i . . .M1(0̂), and the expres-
sion M1M2 . . . M̂i . . . M̂r . . .Mρ(y) for x is reduced. This contradicts the minimality
of (i, j).

Then Mj(v) � v, and M1M2 · · · M̂i . . .Mj is reduced. We have Mj(v) �= Mj+1(v)
since the expressionM1M2 . . .Mρ(y) is B-regular. By the definition of a special match-
ing, Mj+1Mj(v)�Mj(v) and Mj+1Mj(v)�Mj+1(v) since Mj+1(v)�v, and so also the
expression M1M2 . . . M̂i . . .Mj+1 is reduced. Similarly, Mj+1Mj(v) �= Mj+2Mj+1(v)
since the expressionM1M2 . . .Mρ(y) is B-regular. HenceMj+2Mj+1Mj(v)�Mj+1Mj(v)
and Mj+2Mj+1Mj(v) �Mj+2Mj+1(v). Hence M1M2 . . . M̂i . . .Mj+1 is reduced. By
iteration, M1M2 . . . M̂i . . .Mρ(y) is reduced, and we get the claim.

From the claim, it follows that c = x � u � y and that λ(c) = (i, j). Since i < j,
λ(c) is increasing. This completes the proof.

Every Coxeter group is a B-regular zircon since the expressions of special match-
ings coming from reduced expressions in the sense of Coxeter group theory are B-
regular (see the first remark in section 3). Corollary 5.2 is inspired by, and gener-
alizes, the analogous result for Coxeter groups which has been proven by Björner
and Wachs [5]. Here special matchings play the role that Coxeter generators play in
Björner–Wachs’ proof.

Example. Consider the B-regular zircon in Figure 1, its interval [v1, v4], and the
reduced expression MONM of special matchings for v4. All reduced subwords of
MONM are B-regular. The induced CL-labeling λ on [v1, v4] is as in Figure 4.

REFERENCES

[1] A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Grad. Texts in Math. 231,
Springer, New York, 2005.

[2] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc.,
1 (1980), pp. 159–183.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

332 MARIO MARIETTI

[3] A. Björner, Posets, regular CW complexes and Bruhat order, European J. Combin., 5 (1984),
pp. 7–16.

[4] A. Björner, A. Garsia, and R.P. Stanley, An introduction to Cohen-Macaulay partially
ordered sets, in Ordered Sets, Reidel, Dordrecht/Boston, 1982, pp. 583–615.

[5] A. Björner and M. Wachs, Bruhat order of Coxeter groups and shellability, Adv. Math., 43
(1982), pp. 87–100.

[6] A. Björner and M. Wachs, On lexicographically shellable posets, Trans. Amer. Math. Soc.,
277 (1983), pp. 323–341.

[7] N. Bourbaki, Groupes et Algèbres de Lie, Chs. 4–6, Hermann, Paris, 1968.
[8] F. Brenti, The intersection cohomology of Schubert varieties is a combinatorial invariant,

European J. Combin., 25 (2004), pp. 1151–1167.
[9] F. Brenti, F. Caselli, and M. Marietti, Special matchings and Kazhdan-Lusztig polynomi-

als, Adv. Math., 202 (2006), pp. 555–601.
[10] V.V. Doedhar, Some characterizations of Bruhat ordering on a Coxeter group and determi-

nation of the relative Möbius function, Invent. Math., 39 (1977), pp. 187–198.
[11] V.V. Doedhar, Some characterizations of Coxeter groups, Enseign. Math., 32 (1986), pp. 111–

120.
[12] K. Eriksson, Polygon posets and the weak order of Coxeter groups, J. Algebraic Combin., 4

(1995), pp. 233–252.
[13] D.M. Goldschmidt, Abstract reflections and Coxetere groups, Trans. Amer. Math. Soc., 67

(1977), pp. 209–214.
[14] H. Hiller, Geometry of Coxeter Groups, Res. Notes Math. 54, Pitman Advanced Publishing

Program, Boston, 1982.
[15] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math. 29,

Cambridge University Press, Cambridge, 1990.
[16] M. Marietti, Kazhdan-Lusztig Theory: Boolean Elements, Special Matchings and Combina-

torial Invariance, Ph.D. thesis, Università degli Studi di Roma La Sapienza, Roma, Italy,
2003.

[17] M. Marietti, Algebraic and combinatorial properties of zircons, J. Algebraic Combin., 26
(2007), pp. 363–382.

[18] H. Matsumoto, Générateurs et relations des groupes de Weyl généralisés, C. R. Acad. Sci.
Paris, 258 (1964), pp. 3419–3422.

[19] J. Tits, Le problème des mots dans les groupes de Coxeter, in Symposia Mathematica, Vol. 1,
Academic Press, London, 1969, pp. 175–185.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 333–343

ON CUSICK’S METHOD AND VALUE SETS OF CERTAIN
POLYNOMIALS OVER FINITE FIELDS∗

PETRI ROSENDAHL†

Abstract. In this paper, we consider Cusick’s method to find the number of values of the

polynomials fa(x) = xa (x+1)2
k−1, when x ∈ GF (22k). We will prove that under certain conditions

fa(x) and f2−a(x) have the same number of values. We will also prove a conjecture due to Cusick.

Key words. finite fields, value sets, cross-correlation functions, Niho type decimations

AMS subject classifications. 11T06, 11T23, 94B15, 94A55

DOI. 10.1137/050626570

1. Introduction. We will denote the finite field with pn elements by GF (pn),
and its multiplicative group is denoted by GF (pn)×. In this paper p = 2 except
in section 2.3. We will assume that the reader has a basic knowledge of finite fields.
Especially, the reader should be familiar with the trace function tr: GF (pn)→ GF (p),

tr(x) = x+ xp + xp2
+ · · ·+ xpn−1

,

and the canonical additive character χ : GF (pn)→ C
×, which is defined by

χ(x) = ζtr(x),

where ζ = e2πi/p.
We will also assume that the reader is familiar with the cross-correlation function

between two m-sequences; this essentially amounts to the theory of the character sum

Cd(y) =
∑

x∈GF (pn)

χ(yx+ xd).

In the following, n will always be even, say n = 2k. The conjugate of an element
y ∈ GF (pn) over GF (pk) will be denoted by y, i.e.,

y = ypk

.

The group of
(
pk + 1

)
st roots of unity in GF (pn) will be denoted by S, that is,

S = {x ∈ GF (pn) | xx = 1}.

The conjugation operation has many properties similar to the usual complex
conjugation. For example, we have x+ y = x+ y and xy = x y for all x, y ∈ GF (pn).
We also have x = x for x ∈ GF (pk) and x = x−1 for x ∈ S.

In this paper we will study the value sets

V (fa) = {fa(x) | x ∈ GF (2n)}
∗Received by the editors March 11, 2005; accepted for publication (in revised form) September 15,

2008; published electronically January 7, 2009.
http://www.siam.org/journals/sidma/23-1/62657.html

†Department of Mathematics, University of Turku, 20014 Turku, Finland (perosen@utu.fi).

333

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

334 PETRI ROSENDAHL

of the polynomials of the form

fa(x) = xa (x+ 1)2
k−1

.

The study of the value sets of the polynomials fa(x) was originated by Cusick in
[2], and this paper is a continuation of Cusick’s studies. We will formulate Cusick’s
approach in its general setting. Furthermore, we will prove that exponents a and
a − 2 will give value sets of the same cardinality. Lastly, we prove a conjecture due
to Cusick.

The fact that the cardinality of a value set can be counted is interesting in itself.
This is because, in general, apart from the case of permutation polynomials, there
are very few results on the value sets of polynomials over finite fields. Moreover, the
polynomials of the above form are of special interest because of their connection to
cross-correlation functions; see [2]. Also, in [3] it was shown that for a = 1 the number
of values of fa(x) attains a bound due to Wan [12].

An integer (or a decimation or an exponent) d satisfying

d ≡ 1 (mod pk − 1),

is said to be of Niho type. Also, the corresponding power functions x �→ xd in GF (pn)
and cross-correlation functions of the m-sequences of period pn − 1 are said to be of
Niho type.

Power functions and cross-correlation functions corresponding to Niho-type ex-
ponents have attained a lot of interest in the past few years. First, in [8] a family
of four-valued cross-correlation functions of m-sequences was found. Second, in [1]
it was proven that Niho-type cross-correlation functions have at least four different
values. Third, in [7] the equation (x+ 1)d = xd + 1 was studied for Niho type d; this
is of use in finding the distribution of values of cross-correlation functions and weight
distributions of certain cyclic codes. Lastly, we mention that properties of Niho-type
power functions were exploited in the construction of bent functions in [5].

2. Cusick’s method.

2.1. Value sets and cross-correlation functions. In this section we review
the main method used in [2]. Cusick uses this approach ad hoc; here we have tried to
formulate this method in a more general setting. We restrict ourselves to the binary
case. We will give an example of the nonbinary case in section 2.3.

First of all, let

fa(x) = xa (x+ 1)2
k−1

,

where a is an arbitrary integer. Clearly, if a ≡ b (mod 2n − 1), then fa(x) and fb(x)
represent the same polynomial functions in GF (2n). As usual, we consider x−1 and
x2n−2 as the same functions and therefore always fa(0) = 0.

We wish to find |V (fa)|, i.e., the number of values of fa, when x ∈ GF (2n), where
n = 2k.

To begin with, we give the following two lemmas. Recall that

S = {x ∈ GF (22k) | xx = 1},

where x = x2k

.
Lemma 2.1. Assume gcd(a, 2k − 1) = 1. Then fa(γ) ∈ S if and only if γ ∈

S \ {1}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON CUSIK’S METHOD AND VALUE SETS 335

Proof. Clearly, (γ + 1)2
k−1 ∈ S for all γ �= 1. Therefore, if γ ∈ S \ {1}, then

obviously fa(γ) ∈ S. So assume γa (γ + 1)2
k−1 ∈ S. Then also γa ∈ S since S

is a subgroup of GF (22k)× and (γ + 1)2
k−1 ∈ S. Thus γa(2k+1) = 1. We have

γ2k+1 ∈ GF (2k)×, and because by assumption the equation xa = 1 has a unique
solution in GF (2k)×, we must have γ2k+1 = 1.

We will also need the following fact, which is also noted in [2].
Lemma 2.2. If β ∈ S \ {1}, then

fa(β) = βa−1.

Proof. The claim follows easily from the fact that for β ∈ S \{1} we have ββ = 1,
and therefore

β (β + 1)2
k−1 =

β
(
β + 1

)
(β + 1)

=
(1 + β)
(β + 1)

= 1.

Note that the lemma is valid in fields of odd characteristic also, when S \ {1} is
changed to S \ {−1}.

From now on we will assume that gcd(a, 2n − 1) = 1. Since n = 2k this implies
gcd(a, 2k − 1) = 1.

Cusick’s method is as follows. Assume that we know the number of y ∈ GF (22k)
such that the equation

(2.1) xa + yxa−1 + yx+ 1 = 0

has a solution x ∈ S.
Let β ∈ S be a solution to (2.1), and define γ by y = βγ. For a moment we

assume that y �∈ S, and then we have γ �= 1. Then (note that β = 1/β)

βa + γβa + γ + 1 = 0,

so we have that

βa = (γ + 1)2
k−1

.

Therefore

(2.2) ya = γa (γ + 1)2
k−1

,

that is, ya ∈ V (fa).
Conversely, let γ �= 1 be given, and define y by

ya = γa (γ + 1)2
k−1

.

Furthermore, let β ∈ S be given by

βa = (γ + 1)2
k−1

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

336 PETRI ROSENDAHL

The assumption gcd(a, 22k − 1) = 1 now implies y = γβ. Therefore

βa + yβa−1 + yβ + 1 = (γ + 1)βa + (γ + 1)

= (1 + γ)2
k

+ (γ + 1)

= 0,

i.e., β is a solution to (2.1).
Because of Lemma 2.1, we have now established a one-to-one correspondence

between the sets

{y ∈ GF (2n) | y �∈ S, (2.1) has a solution in S}
and

{x ∈ V (fa) | x �∈ S}.
We still have to consider for which x ∈ S we have x ∈ V (fa).
Lemma 2.2 implies that fa(S) consists of the 0 and the elements βa−1, where

β ∈ S \ {1}. Therefore,

|fa(S)| = 2k + 1,

if gcd
(
a− 1, 2k + 1

)
= 1. If gcd

(
a− 1, 2k + 1

)
> 1, then we have

|fa(S)| = 2k + 1
gcd(a− 1, 2k + 1)

+ 1.

All in all, we have the following theorem. Note that if y ∈ S, then (2.1) always
has a solution in S, since in this case the equation factors as(

xa−1 + y
)
(x+ y) .

Note also thatfa(0) = 0 has to be taken into account.
Theorem 2.3. Denote by N the number of y ∈ GF (2n) such that (2.1) has a

solution in S. Moreover, assume that gcd(a, 2n − 1) = 1. Then

|V (fa)| = N − 2k − 2 + |fa(S)|.
Hence, if gcd

(
a− 1, 2k + 1

)
= 1, then we have

|V (fa)| = N − 1,

and if gcd
(
a− 1, 2k + 1

)
> 1, then we have

|V (fa)| = N − 2k − 1 +
2k + 1

gcd(a− 1, 2k + 1)
.

We still have to study (2.1). The following classic theorem will be crucial.
Theorem 2.4 (Niho’s theorem). Assume that d is of Niho type, and define s by

d = (pk − 1) · s+ 1. Then, as y ranges over GF (pn), the values of the character sum

(2.3)
∑

x∈GF (pn)

χ
(
yx+ xd

)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON CUSIK’S METHOD AND VALUE SETS 337

are exactly the same as the values

(N(y)− 1) · pk,

where N(y) is the number of x ∈ S such that

(2.4) x2s−1 + yxs + yxs−1 + 1 = 0.

This theorem was proved by Niho in his thesis [9] for p = 2. Proofs for this can
be found also, e.g., in [4], [2], and [10]. The generalization for all primes p is from the
author; see [10, 11].

It is noted in [8] (see also [4]) that if gcd(t, pk +1) = 1, then xt may be substituted
in place of x in (2.4). This may give a more tractable equation.

We will now show how (2.4) can be transformed into the form (2.1). Assume that
gcd(s− 1, 2k + 1) = 1 so t = (s − 1)−1 (mod 2k + 1) exists. Then we can substitute
xt in place of x in (2.4) to get

(2.5) xt+2 + yxt+1 + yx+ 1 = 0.

Note that this equation is of the form (2.1) (for a = t+ 2).
On the other hand, assuming that gcd(a− 2, 2k + 1) = 1, from (2.4) we get (2.1)

by substituting xs−1 for x, where s is defined by (a− 2)−1 = s− 1 (mod 2k + 1).
The previous remarks give the connection between the character sum (2.3) and

the equation (2.1). That is, when d = (2k − 1) · s + 1 and gcd(s − 1, 2k + 1) = 1,
then the nonnegative values of the sum (2.3) are connected to the values of fa, where
a = (s− 1)−1 + 2 via Theorem 2.3.

For later use, we note the following:

gcd(d, 2k + 1) = gcd(t+ 2, 2k + 1) = gcd(2s− 1, 2k + 1),

where d, s, and t are as above. We have assumed that gcd(d, 2n − 1) = 1, and this
is always the case in the context of cross-correlation functions of m-sequences. In
section 3, we treat a case where gcd(d, 2n − 1) > 1.

2.2. Equivalence of certain exponents. The results in [2] on the cardinalities
of value sets seem to come in pairs. More precisely, the cardinalities of value sets of
fa and f2−a seem to be the same assuming certain conditions on greatest common
divisors. In the following we will see that this indeed is the case.

Assume that gcd(d, 2n − 1) = 1 and consider the character sums

(2.6)
∑

x∈GF (2n)

χ
(
yx+ xd

)

and

(2.7)
∑

x∈GF (2n)

χ
(
x+ yxd

)
.

It is fairly easy to see that the values and distribution of values are exactly the
same for both sums (however, it is not true that they always have the same value for
the same y). More precisely,∑

x∈GF (2n)

χ
(
x+ yxd

)
=

∑
z∈GF (2n)

χ
(
bz + zd

)
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

338 PETRI ROSENDAHL

where b = y−1/d. One may think of the previous sums as values of cross-correlation
functions of m-sequences tr(αi) and tr(αdi), i = 0, 1, 2, . . . , and then y corresponds
to a cyclic shift of one of the sequences. Obviously, when y ranges over GF (2n)× it
does not matter which one of the sequences is shifted.1

Assume that d is of Niho type, i.e., d = (2k − 1) · s + 1, and assume also that
gcd(d, 2n−1) = 1. The proof of Niho’s theorem can be imitated for sum

∑
χ(x+yxd)

assuming, of course, that d is of Niho type. So while the sum (2.6) leads to

(2.8) x2s−1 + yxs + yxs−1 + 1 = 0,

the sum (2.7) leads to

(2.9) yx2s−1 + xs + xs−1 + y = 0,

and in both equations we are interested in the number of roots in S.
As the values and their distribution are the same for both sums, we must have

that (2.8) and (2.9) have identical patterns of solutions. More precisely, for each i the
numbers

Ni = |{y ∈ GF (2n) | (2.8) has exactly i solutions in S}|

and

N ′
i = |{y ∈ GF (2n) | (2.9) has exactly i solutions in S}|,

are the same.
Assume that gcd(s − 1, 2k + 1) = 1 so t = (s − 1)−1 (mod 2k + 1) exists. Then

we can substitute xt in place of x in (2.8) and (2.9) to get

xt+2 + yxt+1 + yx+ 1 = 0,(2.10)

yxt+2 + xt+1 + x+ y = 0,(2.11)

Recall that N is the number of y ∈ GF (2n) such that (2.1) has a solution in S. We
have N = 2n − N0. As we have seen, the number N (and hence the number N0)
determines the number of values of fa, where a = t+ 2.

Respectively, assume that y �∈ S and that β ∈ S is a solution to (2.11), and define
γ by y = β−1γ. Then from (2.11) we get

βa−2 = (γ + 1)2
k−1

,

and therefore

y2−a = γ2−a (γ + 1)2
k−1

,

which says that y2−a ∈ V (f2−a).
Conversely, if γ �= 1 is given, then we may define y using the previous equation,

and proceed similarly as with the case of (2.8). Of course, to make the correspondence
between the images y2−a and (2.11) with a solution one to one, we have to assume
that gcd(a− 2, 2n − 1) = 1.

1The case y = 0 is trivial.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON CUSIK’S METHOD AND VALUE SETS 339

Also the number of values of fa and f2−a in S are the same, because fa restricted
to S \ {1} is xa−1 and f2−a restricted to S \ {1} is x1−a; see Lemmas 2.1 and 2.2.

We formulate these observations as a theorem. Note that the given conditions
guarantee that the substitution of x by xt can be made, since we necessarily have
gcd

(
a− 2, 2k + 1

)
= 1 also.

Theorem 2.5. Assume that gcd (a, 2n − 1) = gcd (2− a, 2n − 1) = 1. Then

|V (fa)| = |V (f2−a)|.
Remark 2.6. There are also some more or less trivially equivalent pairs of expo-

nents, which are obtained by a change of the variable. For example, substituting x−1

for x in xa (x+ 1)2
k−1 gives the polynomial x−a−2k+1 (x+ 1)2

k−1. This must have a
value set of the same size, since x �→ x−1 is one to one (using convention 0−1 = 0).

2.3. A nonbinary case. We have considered here the case p = 2 only, but some
results make sense also in the case of odd characteristic. However, much less is known
about Niho-type cross-correlation functions of nonbinary m-sequences. On the other
hand, the methods presented in Cusick’s paper [2] and here may give some information
on the cross-correlation functions themselves. We will assume p > 2 throughout this
section.

In [3] the number of values of f(x) = x (x+ 1)q−1 in any finite extension of GF (q)
was found. For the extension GF (q2) this was done in a different way in [2]; the proof
also applies word for word in the case p > 2.

We treat here the case

f(x) = x3 (x+ 1)pk−1
.

This corresponds to a cross-correlation function (character sum
∑
χ
(
yx+ xd

)
) of

m-sequences which differ by the decimation d = 2 · pk − 1. Unfortunately, this d is
the only Niho-type decimation for which the cross-correlation problem is completely
solved. This is done in Theorem 4.13 of [6], from which the next lemma follows.

Lemma 2.7. Let n = 2k, and assume that pk �≡ 2 (mod 3). Then the number of
y ∈ GF (pn) such that the equation

(2.12) x3 + yx2 + yx+ 1 = 0

has a solution x ∈ S is

N =
1
3
(
2 · p2k + pk

)
.

Theorem 2.8. Assume that pk �≡ 2 (mod 3). The number of values of f(x) =
x3 (x+ 1)pk−1 in GF (p2k) is

1
6
(
4p2k − pk − 3

)
.

Proof. We give a sketch of the proof only, since it is essentially same as in the
binary case.

First, f(x) ∈ S if and only if x ∈ S. Second, a one-to-one correspondence between
the elements y such that (2.12) has a solution in S and the values f(x) such that x �∈ S
can be found by substituting y = γβ, with β ∈ S a solution to (2.12). Finally, one
has to consider the values of f(x) in S. This is easily done since f(x) = x2 when
restricted to S \ {−1}. Note that for p > 2 we have that f(x) = f(−x) implies that
f(x) takes on half of the values in S.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

340 PETRI ROSENDAHL

3. A proof of Cusick’s conjecture. Theorem 3.3 was conjectured in [2]. The
crucial difference here is that when k is odd, we then have that gcd(d, 2n − 1) = 3,
for d in the character sum (2.3) which leads to desired equation. Therefore d is not
a decimation corresponding to a cross-correlation function of m-sequences, and we
cannot directly apply results on these. However, the proof of Niho’s theorem does not
involve the condition gcd(d, 2n − 1) = 1 and we can still exploit the equation.

We will prove Theorem 3.1, which is a stronger result than Theorem 3.3. Theo-
rem 3.1 is conjectured in [2] as Conjecture 1.

Let k be odd,

d = 2k+1 − 1,

and consider the character sums

(3.1) Δd(y) =
∑

x∈GF (2n)

χ
(
x+ yxd

)

and

(3.2) Δ′
d(y) =

∑
x∈GF (2n)

χ
(
yx+ xd

)
.

Theorem 3.1. The values of the character sum (3.1) are as follows:

−2k occurs 1
3

(
22k − 2k − 2

)
times ,

0 occurs 22k−1 − 2k−1 + 1 times ,
2k occurs 2k times ,

2k+1 occurs 1
3

(
22k−1 − 2k−1 − 1

)
times ,

and the values of the sum (3.2) are as follows:

−2k occurs 1
3

(
22k − 2k − 2

)
times ,

0 occurs 22k−1 − 2k−1 + 2 times ,
2k occurs 2k − 2 times ,

2k+1 occurs 1
3

(
22k−1 − 2k−1 + 2

)
times .

Proof. We treat the case of the sum (3.2) first. We have d = 2 · (2k − 1
)
+ 1. By

Niho’s theorem, the values of the sum (3.2) are

(N(y)− 1) · 2k,

where N(y) is the number of x ∈ S such that

(3.3) x3 + yx2 + yx+ 1 = 0.

Let Ni be the number of y ∈ GF (2n) such that (3.3) has exactly i distinct solutions
in S. We will first find the number N2.

Clearly, if two solutions of (3.3) are in S, then the third solution is also. Hence
(3.3) can have exactly two solutions in S if and only if the corresponding polynomial
has a double root and another root. The usual derivative argument shows that x2 = y,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON CUSIK’S METHOD AND VALUE SETS 341

and substituting this into (3.3) we get yy = 1, i.e., necessarily y ∈ S. Then (3.3)
splits as (

x2 + y
)
(x+ y) = 0.

This has two distinct roots (namely
√
y and y) in S when y �∈ GF (4). Thus we have

shown N2 = 2k − 2.
Second, we will need the following facts:
(i)
∑
Ni = 2n,

(ii)
∑

y∈GF (2n) Δ′
d(y) = 2n,

(iii)
∑

y∈GF (2n) Δ′
d(y)

2 = 22n.
The fact (i) follows from the number of equations of the form (3.3). The equations
(ii) and (iii) are well-known power sum identities, and are valid despite the fact
gcd (d, 2n − 1) > 1. We now have the following system of linear equations:

N2 = 2k − 2,

N0 +N1 +N2 +N3 = 22k,

−2kN0 + 2kN2 + 2k+1N3 = 22k,

22kN0 + 22kN2 + 22k+2N3 = 24k.

The claimed distribution for the sum (3.2) can now be calculated easily by solving
the system.

We now turn to consider the sum (3.2). This time the values of the sum are

(N(y)− 1) · 2k,

where N(y) is the number of x ∈ S such that

(3.4) yx3 + x2 + x+ y = 0.

As above, the derivative argument shows that if (3.4) has exactly two solutions in S,
then necessarily y ∈ S. In this case (3.4) splits as(

yx2 + 1
)
(x+ y) = 0.

Solutions to this are x = y and x =
√
y−1. These are distinct when y �= 1.

Let N ′
i be the number of y ∈ GF (2n) such that (3.4) has exactly i solutions in S.

We have shown that N ′
2 = 2k. In addition, we have (i) and (ii) above. However, (iii)

now has the form ∑
y∈GF (2n)

Δ′
d(y)

2 = 22n − 2n+1.

This is a special case of Lemma 3.2 below.
The rest of the proof is identical with the case of the sum Δ′

d.
To fill the remaining gap, we still have to prove the following lemma.
Lemma 3.2. For all n, we have

∑
y∈GF (2n)

⎛
⎝ ∑

x∈GF (2n)

χ
(
x+ yxd

)⎞⎠
2

= 22n − 2n · (r − 1),

where r = gcd (d, 2n − 1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

342 PETRI ROSENDAHL

Proof. Unless otherwise stated, the range of the variables x, y, z, and α below is
GF (2n); we only denote the restrictions when needed. We have

∑
y

(∑
x

χ
(
x+ yxd

))2

=
∑

y

(∑
x,z

χ
(
x+ z + yxd + yzd

))

=
∑
x,z

χ (x+ z)
∑

y

χ
(
y
(
xd + zd

))

= 2n ·
∑

xd=zd

χ (x+ z)

= 2n ·
⎛
⎝1 +

∑
x �=0

∑
αd=1

χ (x+ αx)

⎞
⎠

= 2n ·
(

1− r +
∑

x

∑
αd=1

χ ((1 + α)x)

)

= 2n · (1− r + 2n) ,

which is what we wanted to show.
Theorem 3.1 together with the details given by Cusick now implies the following

theorem, which is stated as Conjecture 2 in [2].
Theorem 3.3. For odd k we have

V (f−1) =
1
3
(22k+1 + 2k − 1).

This theorem is closely related to Conjecture 4 of [2], which is still an open
problem.

REFERENCES

[1] P. Charpin, Cyclic codes with few weights and Niho exponents, J. Combin. Theory Ser. A, 108
(2004), pp. 247–259.

[2] T. W. Cusick, Value sets of some polynomials over finite fields GF(22m), SIAM J. Comput.,
27 (1998), pp. 120–131.

[3] T. W. Cusick and P. Müller, Wan’s bound for value sets of polynomials, in Finite Fields
and Applications (Glasgow, 1995), London Math. Soc. Lecture Note Ser. 233, Cambridge
University Press, Cambridge, UK, 1996, pp. 69–72.

[4] H. Dobbertin, P. Felke, T. Helleseth, and P. Rosendahl, Niho type cross-correlation
functions via Dickson polynomials and Kloosterman sums, IEEE Trans. Inform. Theory,
52 (2006), pp. 613–627.

[5] H. Dobbertin, G. Leander, A. Canteaut, C. Carlet, P. Felke, and P. Gaborit, Con-
struction of bent functions via Niho power functions, J. Combin. Theory Ser. A, 113 (2006),
pp. 779–798.

[6] T. Helleseth, Some results about the cross-correlation function between two maximal linear
sequences, Discrete Math., 16 (1976), pp. 209–232.

[7] T. Helleseth, J. Lahtonen, and P. Rosendahl, On Niho type cross-correlation functions of
m-sequences, Finite Fields Appl., 13 (2007), pp. 305–317.

[8] T. Helleseth and P. Rosendahl, New pairs of m-sequences with 4-level cross-correlation,
Finite Fields Appl., 11 (2005), pp. 674–683.

[9] Y. Niho, Multivalued Cross-Correlation Functions Between Two Maximal Linear Recursive
Sequences, Ph.D. thesis, University or Southern California, Los Angeles, CA, 1972.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON CUSIK’S METHOD AND VALUE SETS 343

[10] P. Rosendahl, Niho Type Cross-Correlation Functions and Related Equations, Ph.D. thesis,
University of Turku, 2004, Turku, Finland; available online at http://www.tucs.fi/.

[11] P. Rosendahl, A generalization of Niho’s theorem, Des. Codes Cryptogr., 38 (2006), pp. 331–
336.

[12] D. Q. Wan, A p-adic lifting lemma and its applications to permutation polynomials, in Finite
Fields, Coding Theory, and Advances in Communications and Computing (Las Vegas, NV,
1991), Lecture Notes in Pure and Appl. Math. 141, Dekker, New York, 1993, pp. 209–216.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 344–348

MATCHINGS AND NONRAINBOW COLORINGS∗

ZDENĚK DVOŘÁK† , STANISLAV JENDROL’‡, DANIEL KRÁL’†, AND GYULA PAP§

Abstract. We show that the maximum number of colors that can be used in a vertex coloring
of a cubic 3-connected plane graph G that avoids a face with vertices of mutually distinct colors (a
rainbow face) is equal to n

2
+ µ∗ − 2, where n is the number of vertices of G and µ∗ is the size of the

maximum matching of the dual graph G∗.

Key words. plane graphs, face-constrained coloring, nonrainbow coloring

AMS subject classification. 05C15

DOI. 10.1137/060675927

1. Introduction. Colorings of embedded graphs with face-constraints have re-
cently drawn the attention of several groups of researchers. The very first question
that comes to one’s mind in this area is the following.

Question 1. What is the minimal number of colors needed to color an embedded
graph in such a way that each of its faces is incident with vertices of at least two
different colors; i.e., there is no monochromatic face?

This problem can be found in the work of Zykov [23] who studied the notion
of planar hypergraphs and was further explored by Kündgen and Ramamurthi [16]
for hypergraphs arising from graphs embedded in surfaces of higher genera. As an
example of results obtained in this area, let us mention that every graph embedded on
a surface of genus ε has a coloring with O(3

√
ε) colors [5] that avoids a monochromatic

face.
An opposite type of question, motivated by results of anti-Ramsey theory, is the

following.
Question 2. What is the maximal number χf (G) of colors that can be used in

a coloring of an embedded graph G with no rainbow face; i.e., a face with vertices of
mutually distinct colors?

In our further considerations, we call a vertex coloring of G with no rainbow face
a nonrainbow coloring of G. Notice that, unlike in the case of ordinary colorings, the
goal in this scenario is to maximize the number of used colors. Though it may take
some time to digest the concept, the setting is so natural that it has recently appeared
independently in papers of Ramamurthi and West [20] and of Negami [17] (see also
[1, 2, 18] for some even earlier results of this favor). In fact, Negami addressed the
following extremal-type question (equivalent to Question 2).

∗Received by the editors November 26, 2006; accepted for publication (in revised form) Septem-
ber 15, 2008; published electronically January 7, 2009.

http://www.siam.org/journals/sidma/23-1/67592.html
†Institute for Theoretical Computer Science (ITI), Faculty of Mathematics and Physics, Charles

University, Malostranské náměst́ı 25, 118 00 Prague 1, Czech Republic (rakdver@kam.mff.cuni.cz,
kral@kam.mff.cuni.cz). The Institute for Theoretical Computer Science is supported as project
1M0545 by Czech Ministry of Education.

‡Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slo-
vakia (stanislav.jendrol@upjs.sk). This author’s work was supported by the Slovak Research and
Development Agency under the contract APVV-0007-07.

§MTA-ELTE Egerváry Research Group (EGRES), Dept. of Operations Research, Eötvös Univer-
sity, Pázmány P. s. 1/C, Budapest, Hungary H-1117 (gyuszko@cs.elte.hu). This author’s research
was supported by OTKA grant K60802.

344

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATCHINGS AND NONRAINBOW COLORINGS 345

Question 3. What is the smallest number k(G) of colors such that every vertex-
coloring of an embedded graph G with k(G) colors contains a rainbow face?

It is not hard to see that χf (G) = k(G)− 1 and the results obtained in either of
the scenarios translate smoothly to the other one.

We now briefly survey results obtained in the direction of Questions 2 and 3 for
planar graphs. Ramamurthi and West [21] noticed that every plane graph G has a
nonrainbow coloring with at least α(G) + 1 colors where α(G) is the independence
number (stability) of G. In particular, every plane graph G of order n has a coloring
with at least

⌈
n
4

⌉
+ 1 colors by the Four Color Theorem. Also, Grötzsch’s theorem

[9, 22] implies that every triangle-free plane graph has a nonrainbow coloring with⌈
n
3

⌉
+ 1 colors. It was conjectured in [21] that this bound can be improved to

⌈
n
2

⌉
+

1. Partial results on this conjecture were obtained in [14] and the conjecture has
eventually been proven in [12]. More generally, Jungić, Král’, and Škrekovski [12]
proved that every planar graph of order n with girth g ≥ 5 has a nonrainbow coloring
with at least

⌈
g−3
g−2n − g−7

2(g−2)

⌉
colors if g is odd, and

⌈
g−3
g−2n − g−6

2(g−2)

⌉
colors if g is

even. All of these bounds are the best possible.
Complementary to the lower bounds on χf (G) presented in the previous para-

graph, there are also results on upper bounds on χf (G). Negami [17] investigated non-
rainbow colorings of plane triangulations G and showed that α(G) + 1 ≤ χf (G) ≤
2α(G). In [6], it was shown that χf (G) ≤ ⌊7n−8

9

⌋
for n-vertex 3-connected plane

graphsG, χf (G) ≤ ⌊5n−6
8

⌋
if n �≡ 3 (mod 8), and χf (G) ≤ ⌊5n−6

8

⌋−1 if n ≡ 3 (mod 8)
for 4-connected plane graphs G, and χf (G) ≤ ⌊

43
100n− 19

25

⌋
for 5-connected plane

graphs G. The bounds for 3- and 4-connected graphs are the best possible.
Besides results on nonrainbow colorings of graphs with no short cycles and non-

trivially connected plane graphs, there are also results on specific families on plane
graphs, e.g., the numbers χf (G) were also determined for all semiregular polyhe-
dra [11].

Let us mention that there are also results on mixed types of colorings in which we
require that there is neither a monochromatic nor a rainbow face, e.g., [4, 13, 15]. For
instance, it is known that each plane graph with at least five vertices has a coloring
with two colors as well as a coloring with three colors that avoid both monochromatic
and rainbow faces [3, 19].

The quantity χf (G) is also related to several parameters of the dual graph of G.
In particular, n

2 + μ∗ − 2 ≤ χf (G) ≤ n− α∗ for connected cubic plane graphs G [10],
where α∗ is the independence number of the dual graph G∗ of G and μ∗ is the size
of the largest matching of G∗. In fact, it was conjectured that the first inequality is
always an equality if G is 3-connected.

Conjecture 1. The maximum number of colors used in a nonrainbow coloring
of a cubic 3-connected plane graph G is related to the size of a maximum matching of
its dual as follows:

χf (G) =
n

2
+ μ∗ − 2.

We prove this conjecture. In our view, the fact that χf (G) only depends on the
size of the largest matching of G∗ in this specific case is quite surprising and deserves
further investigation in a more general setting.

At the end of this paper, we briefly discuss generalizations and extensions of our
results to cubic plane graph that need not be 3-connected. In particular, we show
that the assumption that G is 3-connected cannot be relaxed.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

346 Z. DVOŘÁK, S. JENDROL’, D. KRÁL’, AND G. PAP

2. Proof. If G is a plane graph, then G∗ = (V ∗, E∗) denotes its plane dual and
�∗ denotes the minimum size of an edge cover in G∗, i.e., the minimum size of a set
of edges such that each vertex is incident with an edge in the set. Gallai’s theorem
relates the size of a maximum matching and the minimum edge-cover.

Theorem 1 (see Gallai [7, 8]). Let H be a graph without isolated vertices, μ the
size of the maximum matching of H, and ρ the size of the minimum edge cover. The
sum μ+ ρ is equal to the number of vertices of H.

By Euler’s formula and Theorem 1, it holds that n
2 + μ∗ − 2 = n − �∗ for a 3-

regular planar graph. Thus we prove the following theorem equivalent to the statement
asserted in Conjecture 1.

Theorem 2. The maximum number of colors in a nonrainbow coloring of a cubic
3-connected planar graph G = (V,E) is equal to n− �∗.

Proof. The easy part is to see that there is a nonrainbow coloring of that many
colors. Let EC ⊆ E be the set of edges that corresponds to a minimum edge cover in
G∗. The coloring is defined such that two vertices in V receive the same color if and
only if they are in the same component of (V,Ec).

To prove the converse, we will rely on the min-max formula for edge cover, saying
that the minimum size of an edge cover in a graph G′ = (V ′, E′) without isolated
vertices is equal to the maximum of

∑
i

⌈
1
2 |Ki|

⌉
, where the maximum is taken over a

vertex set K ⊆ V ′, and Ki denotes the vertex sets of the components of G′[K]. This,
for G∗, implies that

(1) �∗ =
∑

i

⌈
1
2
|Fi|
⌉
,

where, for some F ⊆ V ∗, Fi are the components of G∗[F]. Let V (Fi) denote the
union of the boundaries of the faces in Fi, which is a subset of V . The sets V (Fi) are
disjoint. Hence, it suffices to prove for every nonrainbow coloring and every i that
the number of colors appearing in V (Fi) is no more than |V (Fi)| −

⌈
1
2 |Fi|

⌉
. Fix an

index i. Let A1, A2, . . . , Ak ⊆ V (Fi) denote the color-classes appearing in V (Fi). We
will prove that k ≤ |V (Fi)| −

⌈
1
2 |Fi|

⌉
, which thus concludes our proof.

We say that a color-class Aj claims a face, if the boundary of that face contains
at least two vertices in Aj . Let Zj ⊆ Fi denote the set of faces in Fi that are claimed
by Aj . Now consider the graph H = (Aj , Qj), where Qj = {afbf : f ∈ Zj}, where
af , bf are two distinct vertices in Aj ∩ f (for every face f ∈ Zj choose one such pair
of vertices). Hence, G is cubic, implying that H is subcubic. Thus

(2) |Qj| ≤
⌊

3
2
|Aj |

⌋
.

Moreover, if |Aj | = 1, then |Qj | = 0, and if |Aj | = 2, then |Qj | ≤ 2 (since G is 3-
connected). By considering these inequalities, and inequality (2) in case of |Aj | ≥ 3,
we get that |Zj | = |Qj | ≤ 2(|Aj | − 1); i.e.,

(3) |Aj | − 1 ≥
⌈

1
2
|Zj |

⌉
.

Thus

(4) k = |V (Fi)| −
∑

(|Aj | − 1) ≤ |V (Fi)| −
∑⌈

1
2
|Zj |

⌉
≤ |V (Fi)| −

⌈
1
2
|Fi|
⌉
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATCHINGS AND NONRAINBOW COLORINGS 347

v0 u1 v1

v′0 u′1 v′1

a b a′ b′
v0

v′0

u1

u′1

v1

v′1

u2

u′2

v2

v′2

a b a′ b′

v0

v′0

u1

u′1

v1

v′1

u2

u′2

v2

v′2

u3

u′3

v3

v′3

a b a′ b′

v0

v′0

u1

u′1

v1

v′1

u2

u′2

v2

v′2

u3

u′3

v3

v′3

u4

u′4

v4

v′4

a b a′ b′

Fig. 1. The graphs G1, G2, G3, and G4.

where the last inequality follows from |Fi| ≤
∑ |Zj | and the fact that the function

f(x) =
⌈

x
2

⌉
is superadditive over the natural numbers.

Note that, as we discuss in section 4, the quantity χf (G) can be computed in
polynomial time for 3-connected cubic plane graphs.

3. 2-connected cubic graphs. We first describe a construction of cubic 2-
connected plane graphs G�, � ≥ 0, which are our example graphs, given with a
specific embedding into the plane. Start with two paths v0u1v1u2v2 . . . u�v� and
v′0u

′
1v

′
1u

′
2v

′
2 . . . u

′
�v

′
� and add the edges uiu

′
i for i = 1, . . . , �. Next, add an edge ab

and join both a and b to both v0 and v′0. At the other ends of the paths, add an edge
a′b′ and join both a′ and b′ to v� and v′�. Finally, add the edges viv

′
i, i = 1, . . . , �−1, in

such a way that they are drawn in the outer face. The graphs G1, G2, G3, and G4 can
be found in Figure 1. Observe that the graph G� is a 2-connected cubic graph with
n = 4�+ 6 vertices and f = 2�+ 5 faces. Also observe that the maximum matching
of the dual graph G∗

� has size �+ 2.
Theorem 3. For every integer m, there exists a 2-connected cubic plane graph

with n vertices such that

χf (G) >
n

2
+ μ∗ − 2 +m.

Proof. Consider a graph G� for � = 3m+1 and color the following pairs of vertices
with the same color (distinct pairs with distinct colors): a and b; a′ and b′; ui and
u′i for i = 1, 4, . . . , �; and vi and v′i for i = 2, 5, . . . , � − 2. Each of the remaining
vertices gets a unique color. This way we construct a nonrainbow coloring of G with
4�+ 6− (2m+ 3) = 10m+ 7 colors. Hence, we have the following:

χf (G)− n

2
− μ∗ + 2 ≥ 10m+ 7− (6m+ 5)− (3m+ 3) + 2 = m+ 1.

The statement of the lemma now follows.

4. Concluding remarks. The statement of Theorem 2 cannot be extended to
all cubic plane graphs without any further assumptions. Since the size of the maximum
matching in a graph can be computed in polynomial time, it is possible to determine
χf (G) for 3-connected cubic plane graphs in polynomial time. For bridgeless cubic
plane graphs which need not be 3-connected, it seems natural to consider a dynamic
programming approach based on the structure of cuts of sizes one and two in the
graph G. Such an algorithm can utilize the following generalization of Theorem 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

348 Z. DVOŘÁK, S. JENDROL’, D. KRÁL’, AND G. PAP

Theorem 4. If G is a plane 3-connected cubic graph and F a subset of its faces,
then

χF
f (G) = n+ μ∗ − |F |,

where χF
f (G) is the maximum number of colors that can be used in a coloring such

that no face of F is rainbow, and μ∗ is the size of a maximum matching of G∗[F].
Though we believed that this approach should have led to a polynomial-time

algorithm for determining χf (G) of all cubic graphs, we were not able to obtain such
an algorithm; we suspect the problem could be NP-complete.

REFERENCES

[1] J. L. Arocha, J. Bracho, and V. Neumann-Lara, On the minimum size of tight hypergraphs,
J. Graph Theory, 16 (1992), pp. 319–326.

[2] J. L. Arocha, J. Bracho, and V. Neumann-Lara, Tight and untight triangulated surfaces,
J. Combin. Theory Ser. B, 63 (1995), pp. 185–199.

[3] A. A. Diwan, Disconnected 2-factors in planar cubic bridgeless graphs, J. Combin. Theory
Ser. B, 84 (2002), pp. 249–259.

[4] Z. Dvořák and D. Král’, On planar mixed hypergraphs, Electron. J. Combin., 8 (2001) p. R35.
[5] Z. Dvořák, D. Král’, and R. Škrekovski, Coloring face hypergraphs on surfaces, European

J. Combin., 26 (2005), pp. 95–110.
[6] Z. Dvořák, D. Král’, and R. Škrekovski, Non-rainbow colorings of 3-, 4-, and 5-connected

plane graphs, submitted.
[7] T. Gallai, Maximum-minimum Sätze über graphen, Acta Math. Acad. Sci. Hungar., 9 (1958),

pp. 395–434.
[8] T. Gallai, Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest. Eötvös Sect.

Math., 2 (1959), pp. 133–138.
[9] H. Grötzsch, Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-

Luther-Universität, Halle, Wittenberg, Math.-Nat. Reihe, 8 (1959), pp. 109–120.
[10] S. Jendrol’, Rainbowness of cubic polyhedral graphs, Discrete Math., 306 (2006), pp. 3321–

3326.
[11] S. Jendrol’ and Š. Schrötter, On rainbowness of semiregular polyhedra, Czechoslovak Math.

J., 58 (2008), pp. 359–380.
[12] V. Jungić, D. Král’, and R. Škrekovski, Coloring of plane graphs with no rainbow faces,

Combinatorica, 26 (2006), pp. 169–182.
[13] D. Kobler and A. Kündgen, Gaps in the chromatic spectrum of face-constrained plane graphs,

Electron. J. Combin., 8 (2001), p. N3.
[14] D. Král’, On maximum face-constrained coloring of plane graphs with no short face cycles,

Discrete Math., 277 (2004), pp. 301–307.
[15] A. Kündgen, E. Mendelsohn, and V. Voloshin, Colouring planar mixed hypergraphs, Elec-

tron. J. Combin., 7 (2000), p. R60.
[16] A. Kündgen and R. Ramamurthi, Coloring face-hypergraphs of graphs on surfaces, J. Combin.

Theory Ser. B, 85 (2002), pp. 307–337.
[17] S. Negami, Looseness ranges of triangulations on closed surfaces, Discrete Math., 303 (2005),

pp. 167–174.
[18] S. Negami and T. Midorikawa, Loosely-tightness of triangulations of closed surfaces, Sci.

Rep. Yokohama Nat. Univ., Sect. I, Math. Phys. Chem., 43 (1996), pp. 25–41.
[19] J. G. Penaud, Une propriété de bicoloration des hypergraphes planaires, in Colloque sur la

Théorie des Graphes, Cahiers Centre Études Recherche Opér., 17 (1975), pp. 345–349.
[20] R. Ramamurthi and D. B. West, Maximum Face-Constrained Coloring of Plane Graphs,

Electronic Notes Discrete Math. 11, Elsevier, Amsterdam, 2002.
[21] R. Ramamurthi and D. B. West, Maximum face-constrained coloring of plane graphs, Dis-

crete Math., 274 (2004), pp. 233–240.
[22] C. Thomassen, Grötzsch’s 3-color theorem, J. Combin. Theory Ser. B, 62 (1994), pp. 268–279.
[23] A. A. Zykov, Hypergraphs, Uspekhi Mat. Nauk, 29 (1974), pp. 89–154.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 349–368

GRAPH SEARCHING IN A CRIME WAVE∗

DAVID RICHERBY† AND DIMITRIOS M. THILIKOS‡

Abstract. We define helicopter cops and robber games with multiple robbers, extending previous
research, which considered only the pursuit of a single robber. Our model is defined for robbers that
are visible (their position in the graph is known to the cops) and active (they can move at any
point in the game) but is easily adapted to other variants of the single-robber game that have been
considered in the literature. We show that the game with many robbers is nonmonotone: that is, fewer
cops are needed if the robbers are allowed to reoccupy positions that were previously unavailable to
them. As the moves of the cops depend on the position of the visible robbers, strategies for such
games should be interactive, but the game becomes, in a sense, less interactive as the initial number
of robbers increases. We prove that the main parameter emerging from the game, which we denote
mvams(G, r), captures a hierarchy of parameters between proper pathwidth and proper treewidth,
and we completely characterize it for trees, extending analogous existing characterizations of the
pathwidth of trees. Moreover, we prove an upper bound for mvams(G, r) on general graphs and
show that this bound is reached by an infinite class of graphs. On the other hand, if we consider
the robbers to be invisible and lazy, the resulting parameters collapse in all cases to either proper
pathwidth or proper treewidth, giving a further case where the classical equivalence between visible,
active robbers and invisible, lazy robbers does not hold.

Key words. graph searching, treewidth, pathwidth

AMS subject classifications. 05C83, 05C85

DOI. 10.1137/070705398

1. Introduction. During recent decades, the problem of searching a graph has
attracted much attention not only because of its purely graph-theoretic interest but
also for its numerous applications in modeling problems in communication networks
(for related surveys, see [1, 2]). In general, graph searching problems are described
in terms of a game played between a team of cops and a robber, whom the cops
attempt to capture by moving systematically through the graph. We wish to know the
minimum number of cops required to catch the robber, subject to various constraints
on their behavior and that of the robber. Several versions of the game have been
examined, differing, for example, in whether the cops know the position of the robber,
whether the robber can move at will or only when disturbed by a cop, and how the
cops can move through the graph.

One of the main models of graph searching, known as the helicopter cops and
robber game, was introduced by Seymour and Thomas [11]. In this model, the robber
occupies a vertex of a graph and is active in the sense that he may move at every
round of the game along any path of any length whose vertices are not guarded by
the cops. On the other hand, the cops are not constrained to stay within the graph
and can be placed on or removed from vertices of the graph, as if flying by helicopter.

∗Received by the editors October 15, 2007; accepted for publication (in revised form) September
29, 2008; published electronically January 7, 2009. This research carried out while the first author
was a post-doc of the Graduate Program in Logic, Algorithms, and Computation (μ

∏
λ∀) at the

Department of Mathematics, National and Kapodistrian University of Athens.
http://www.siam.org/journals/sidma/23-1/70539.html

†School of Computing, University of Leeds, Leeds, LS2 9JT, UK (richerby@comp.leeds.ac.uk).
This author was funded by the European Social Fund and Greek National Resources (EΠEAEK II)
PYTHAGORAS II.

‡Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupo-
lis, GR-15784 Athens, Greece (sedthilk@math.uoa.gr).

349

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

350 DAVID RICHERBY AND DIMITRIOS M. THILIKOS

A crucial feature of this game is that the robber is visible: the cops have complete
knowledge of his current position. Victory for the cops is declared when a cop lands on
the vertex occupied by the robber and the robber cannot make any move to escape.
Since the cops base their moves on the current position of the robber, the strategy they
use is interactive. In [11], Seymour and Thomas proved that the minimum number
of cops guaranteed to be able to win the game is one greater than the treewidth
of the graph on which it is played. The proof of this result includes a proof of the
monotonicity of the game, i.e., that the cops do not become weaker when their moves
are restricted to those that monotonically decrease the portion of the graph available
to the robber.

Variants of the above game were considered in [6], where now the robber is a lazy
fugitive who moves only when a cop lands on the vertex he occupies. However, to
compensate, the robber is now invisible: his position is unknown to the cops. Notice
that in this game, the cops’ strategy is predetermined and can be given in advance.
Games defined with this characteristic are described as fugitive games in order to
stress the invisibility of the robber. This second version is equivalent to the Seymour–
Thomas game in the sense that, for any graph, the two games require the same number
of cops [6]. It follows easily from [6] (see also [3]) that, when the fugitive is active and
invisible, the number of cops required to ensure his capture is one greater than the
pathwidth of the graph—another graph parameter of equal importance to treewidth.

This paper intends to examine, and also unify, the above models under the natural
extension where the graph contains many robbers rather than just one. This is the first
time that multiple robbers have been considered in graph searching, and we believe
that our results will motivate such a study for other models as well.

We describe our model for graph searching using the most general setting of mixed
searching, proposed by Bienstock and Seymour [3] and also examined in [12, 13, 14,
15]. In this model, each move of the cops consists either of a placement or removal (as
before) or of sliding a cop along an edge of the graph. This may reduce by one the
number of cops required to search a graph, but, as observed in [3], the version without
sliding can be reduced to a mixed search by replacing each edge in the graph with two
parallel edges (or a triangle involving a new vertex). Moreover, apart from being more
general, including sliding in our model makes the presentation of our results cleaner.

It is not obvious how to generalize the concept of monotonicity to the setting
with many robbers. Now, each robber has his own individual free space, leading to
the question of whether monotonicity should be defined individually or collectively.
We give three natural definitions and show them to be equivalent.

Monotonicity is crucial in the multiple-robber case. If we do not require mono-
tonicity, we can catch any number r of visible, active robbers one at a time by re-
peating the strategy to catch a single robber, without requiring any additional cops.
However, when we restrict our attention to monotone strategies, the number of cops
required, which we denote mvams(G, r) (for monotone, visible, active, mixed search
number against r robbers), can be greater than the nonmonotone case and depends on
the number of robbers. In particular, mvams(G, 1) is just the mixed search number
for a single visible active robber. This, in turn, is equal to the parameter of proper
treewidth defined in [5,12]. On the other hand, if n is the number of vertices in G, then
mvams(G,n) is equal to the mixed search number for a single invisible active rob-
ber which, in turn, corresponds to the parameter of proper pathwidth defined in [14].
Moreover, we show that mvams(G, r) can, for appropriate values of r, take all inter-
mediate values between proper treewidth and proper pathwidth. As our main result,
we give the exact value of mvams(G, r) on trees and an upper bound for general

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH SEARCHING IN A CRIME WAVE 351

graphs:

mvams(T, r) = min {ppw(T), �log r�+ 1} (for any tree T),
mvams(G, r) ≤ min {ppw(G),ptw(G) · (�log r�+ 1)} (for any graph G),

where ppw(G) and ptw(G) denote, respectively, the proper pathwidth and proper
treewidth of the graph G.

Our result for trees is based on a complete characterization of mvams(T, r) on
trees and extends the analogous characterizations for pathwidth and proper pathwidth
given in [13] and [7], respectively.

Our results can be seen as showing that the number of robbers tunes the amount
of interactivity in search strategies, spanning all intermediate levels from pathwidth
(fully predetermined) to treewidth (fully interactive). A rather different way of defin-
ing this tuning was given by Fomin, Fraigniaud, and Nisse, who considered a single
active robber but restricted the number of rounds at which the cops can ask for the
robber’s position [8].

A natural question is whether the same variation of values can be achieved in the
setting of invisible but lazy fugitives defined in [6], given that a single invisible lazy
fugitive is equivalent to a single visible active robber. However, in the case of multiple
robbers, being lazy and invisible is not the same as being active and invisible. Here, we
can define laziness as meaning either that a robber may move only when the cops land
on his vertex or that all robbers may move together when a cop lands on any single
robber. For either definition of laziness, with or without monotonicity, the hierarchy
collapses, and, in a graph of order n, any number of robbers is equivalent to either a
single robber or n robbers. Thus, the multiple-robber setting is degenerate for games
with predetermined strategies, which supports our decision to consider the interactive
strategies generated by the visible, active setting. Note that this is not the first case
where invisibility cannot be exchanged for laziness: Hunter and Kreutzer have shown
that the symmetry breaks, even for one robber, when the games are defined on directed
graphs [10].

The remainder of the present paper is organized as follows. Our graph searching
model is defined in detail in section 2. In section 3, we show the equivalence of three
reasonable definitions of monotonicity and explore the role of monotonicity in the
game. To relate our hierarchy of parameters to the well-known parameters of proper
pathwidth and proper treewidth, we make a brief detour through the theory of games
with an invisible robber in section 4, where we also show that the case of multiple in-
visible robbers collapses to already-studied cases. In section 5, we give upper bounds
for the number of cops required to catch r robbers in trees and in general graphs,
and, in section 6, we show that the upper bound for trees is, in fact, an exact char-
acterization of the number of cops needed. We also show that the upper bound for
general graphs is reached by an infinite class of graphs. Several consequences and open
problems emerging from our results are presented in section 7.

2. The searching model. All graphs considered in this paper are finite, simple,
and, unless otherwise stated, undirected.

In a helicopter search game with many visible robbers, the opponents are a group
of k cops and a group of r robbers, who occupy vertices of the graph. The goal of
the cops is to capture all of the robbers. At all times, the cops and robbers have full
information about each other’s location and may use this information to decide their
next move. Initially, there are no cops in the graph, but, at all times, any robber who
has not been captured is on some vertex.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

352 DAVID RICHERBY AND DIMITRIOS M. THILIKOS

A play of the game consists of a sequence of rounds, with each round consisting
of three parts, as follows.

Announcement. The cops announce their intended move to the robbers. One cop
moves in each round, by one of the following operations.

• Placement of a cop on a vertex v, not currently occupied by a cop. The move
is denoted by place(v).
• Removal of a cop from an occupied vertex v, denoted by remove(v).
• Sliding of a cop from the one endpoint u of an edge {u, v} to the other, which

is initially not occupied by a cop. The move is denoted by slide(u→ v).

Avoidance. Each robber who has not yet been captured can move with infinite
speed to any vertex reachable from his current position by a path not blocked by cops,
as long as this vertex will not be occupied by a cop once the cops’ current move has
been realized. The robbers are “active” in the sense that any robber may move in the
graph at any move of the game, as long as he has an unblocked path to move along.

If the announced move is a placement to or removal from some vertex, that vertex
is not considered to be blocked for the purposes of the robbers’ movement in the round.
If the announced move is slide(u → v), the edge uv is considered to be blocked for
this round but the vertices u and v are not.

Realization. The cops carry out the announced action.
A robber is captured if the cops announce that they will move (by placement or

sliding) to the vertex he occupies and there is no way for him to move to another
vertex.

To formalize the game, we will use a string R ∈ (V (G) ∪ {∗})r to denote the
positions of the r robbers in the graph. In particular, the ith character of R is either
the vertex occupied by the ith robber or “∗” in the case that the ith robber has been
captured. We write V (R) for the set of characters in R, other than ∗. Since, at any
time, there is at most one cop on any vertex, we may represent the position of the
cops as a set S ∈ V (G)[≤k].

A play of the game on a graph is an infinite sequence of positions

P = S0,R0, S1,R1, . . . ,

where, for each i, the transition from having the cops at Si and robbers at Ri to the
cops at Si+1 and robbers at Ri+1 is a valid move of the game, as described above.
Specifically, the sequence S0, S1, . . . has the properties that

• S0 = ∅;
• S1 = {v} for some vertex v—the first move is place(v); and
• for consecutive sets Si and Si+1, one of the following holds:

– Si+1 − Si = {v}—the move is place(v),
– Si − Si+1 = {v}—the move is remove(v),
– Si+1
Si = {u, v} ∈ E(G)—the move is slide(u→ v), where Si−Si+1 =
{u} and Si+1 − Si = {v}.

We call such a sequence of cop positions consistent.
Given two consecutive sets Si and Si+1 of a consistent sequence, we say that a

path P of G is (Si, Si+1)-avoiding if its internal vertices avoid Si∩Si+1, its last vertex
is not in Si+1, and, in the case that |e| = 2, its edges avoid the edge e = Si+1
Si.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH SEARCHING IN A CRIME WAVE 353

Given that the location of the robbers at the ith step is Ri = [a1 . . . ar], we define
the set of free locations for the jth robber after step i as F j

i+1 = ∅ if aj = ∗ and,
otherwise,

F j
i+1 =

{
y ∈ V (G) − Si+1 | G contains an (Si, Si+1)-avoiding (aj , y)-path

}
.

As a response to the ith move of the cops, the robbers can choose their new location
to be any string Ri+1 = [a′1 . . . a

′
r] such that for j ∈ {1, . . . , r}, a′j = ∗ if F j

i+1 = ∅ and
a′j ∈ F j

i+1 otherwise. (In particular, note that, if aj = ∗, then a′j = ∗ also.)
We set F0 = V (G), and for i ≥ 1, we define Fi =

⋃
j∈{1,...,r} F

j
i . We say that the

sequence F0, F1, . . . is the sequence of free positions for the robbers. If, for every i ≥ 0,
Fi+1 ⊆ Fi, we say that P is a monotone play. (Other definitions of monotonicity are
considered in section 3 and shown to be equivalent to this definition in the sense that
they lead to the same graph parameter.)

A play P = S0,R0, S1,R1, . . . is winning (for the cops) if V (Ri) = ∅ for some
i ≥ 0; that is, all the robbers are eventually captured. The essential part of a winning
play is the subsequence S0,R0, . . . , S�,R�, where � is minimal such that V (R�) = ∅.

According to our description of the game, any move of the cops may depend on
the current position of the cops and robbers in the graph. A search strategy of cost k
against r robbers or, more succinctly, a (k, r)-strategy is a function

μ : V (G)[≤k] × (V (G) ∪ {∗})r → V (G)[≤k],

whose inputs are the position S of the cops and the positions R of the robbers and
whose output is S′, the new position of the cops, such that, for all S and R, the sets S
and S′ obey the restrictions given in the definition of consistency for sequences. That
is, there is a single move which transforms the cop position S to S′.

Note that, when we define strategies, we will not define the action of the cops in
positions that can never occur when the strategy is executed. Thus, we give only a
partial function. Formally, the strategy is any total extension of this partial function,
assigning arbitrary moves to the cops in situations that do not occur in any play in
which the cops follow the given partial strategy.

A play with respect to a (k, r)-strategy μ, or a μ-play, is any play S0,R0, S1,R1, . . .
where Si+1 = μ(Si,Ri) for all i ≥ 0. A strategy μ is said to be monotone if all μ-plays
are monotone and winning if all μ-plays are winning.

We define the nonmonotone and monotone visible active mixed search number,
respectively, of a graph G as follows:

vams(G, r) = min
{
k | there is a winning (k, r)-strategy on G

}
,

mvams(G, r) = min
{
k | there is a monotone winning (k, r)-strategy on G

}
.

To describe a search strategy as even a partial function is often rather cumber-
some. Instead, we will frequently describe a search strategy as a search program Π
that makes move decisions depending only on the current position of the cops and
robbers, without reference to previous positions in the search. Thus, we can extract a
strategy from a search program and vice versa. We call a search program monotone or
winning if the corresponding search function is. The program receives the information
on the positions of the robbers by calling a routine robbers positions().

As an example we give program 1, a monotone winning search program for one
cop against one robber in a tree T . Notice that, at each step, the robber must choose

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

354 DAVID RICHERBY AND DIMITRIOS M. THILIKOS

Search program 1. Π(T, 1) to capture one robber in a tree T .

place(v) where v is any vertex of T .
Let R← robbers positions().
Let T ′ ← T .
While V (R) �= ∅,

Let T ′ be the connected component of T − v containing V (R)
and let w be the (unique) vertex of T ′ adjacent to v.

slide(v→ w).
Let v ← w.
Let R← robbers positions().

remove(v).

his position in the connected component T ′ where he resides, excluding the vertex w
that is the target of the cop’s move. At each round, the set of free positions of the
robber becomes strictly smaller, ensuring both monotonicity and the eventual capture
of the robber.

We may also represent a winning (k, r)-strategy μ as a finite tree. Let Tμ be the
least labeled, rooted, directed tree with the following properties. (By “least,” we mean
that no proper subtree of Tμ can be labeled to meet our requirements. Note that there
may be more than one vertex or edge with any given label and that, when we speak
of a path in Tμ, we mean a maximal directed path from the root to a leaf. We could
also represent nonwinning strategies as infinite trees in a similar way, but we need
only representations of winning strategies.)

• Every edge is directed away from the root.
• Every vertex is labeled with a set S ∈ V (G)[≤k], and every edge is labeled

with a string R ∈ (V (G) ∪ {∗})r.
• The essential part of every μ-play in G labels some path in Tμ.

Notice that, according to the above, the root of Tμ is labeled by the empty set,
corresponding to the position of the cops at the beginning of any μ-play.

Our manipulation of tree representations of strategies will often lead us to con-
struct trees that do not represent strategies because they are defective in some way.
Allowing such trees makes several of our proofs more straightforward. Here, we de-
scribe the defects that may arise and show how to repair them.

Nondeterminism. A vertex v labeled S might have distinct outgoing edges vv′ and
vv′′ with the same label R but with v′ and v′′ having labels S′ and S′′ (where S′ and
S′′ are not necessarily distinct). Thus, with the cops in position S and the robbers at
R, the cops can win by moving to either S′ or S′′. Hence, we may delete the subtree
rooted at v′′.

Null moves. A vertex v labeled S might have a child v′ also labeled S. This
corresponds to the cops deciding to do nothing for a move. Since the robbers may
move anywhere in their free space, allowing them to make two consecutive moves
while the cops stay still gives them no extra power. Hence, we may delete the vertex
v′ and, for every child w of v′, where the edge v′w is labeled R, add an edge vw, also
labeled R.

Inconsistency. There may be distinct vertices v and w, both labeled S, with
outgoing edges vv′ and ww′, respectively, that have the same label R but with v′ and
w′ having distinct labels S′ and S′′, respectively. As in the case of nondeterminism,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH SEARCHING IN A CRIME WAVE 355

this means that the cops have a choice of ways to win from the position (S,R). We
may replace the subtree rooted at w′ with a copy of the subtree rooted at v′.

Repeated application of these operations will yield a tree that properly corre-
sponds to a winning strategy. Further, the resulting strategy uses no more cops than
were deployed in the original defective tree and is monotone if and only if every play
in the defective tree was monotone.

Note, in particular, that the discussion above of inconsistent trees justifies our
decision to define strategies as functions:

μ : V (G)[≤k] × (V (G) ∪ {∗})r → V (G)[≤k].

Such strategies are known as positional or memoryless strategies: they determine the
move of the cops solely from the current position in the game. One could define a
general strategy to be a function that chooses the moves based on the full history of
the game, i.e., a function

M :
(
V (G)[≤k] × (V (G) ∪ {∗})r

)[<ω] → V (G)[≤k].

The tree associated with such a strategy may be inconsistent: for example, the move
made in a position with two cops on the graph may depend on which of the cops was
last to move. However, given the tree associated with a general winning strategy M ,
we can produce a winning strategy μ that uses the same number of cops and that is
monotone if M is. We summarize the above observations with the following.

Proposition 1. There is a winning (k, r)-strategy μ for a graph G if and only
if there is a winning general (k, r)-strategy M for G. Further, μ may be chosen to be
monotone if M is monotone.

In program 1, the moves of the cops depend only on the knowledge of which
component of the tree contains the robber and not on the precise vertex he occupies.
With an eye to the situation with more than one robber, we can say that the move
of the cops from position S depends only on the knowledge of how many robbers are
in each component of T − S.

In fact, the cops do not lose any strength if their information is restricted in this
way. For this, given an S ∈ V (G)[≤k] and R,R′ ∈ (V (G)∪{∗})r, we say that R ≡S R′

if every component of G − S that contains m robbers in R also contains m robbers
in R′ (where G − S is the graph that results from deleting the vertices in S from
G). Notice that ≡S is an equivalence relation. We call a (k, r)-strategy smooth if, for
every R,R′ ∈ (V (G) ∪ {∗})r where R ≡S R′, we have μ(S,R) = μ(S,R′). That is,
the cops’ moves depend only on the number of robbers in each component of G − S
and not on their locations within these components.

Lemma 2. There is a winning (k, r)-strategy in G if and only if there is a smooth
winning (k, r)-strategy in G.

Proof. Let μ be a winning (k, r)-strategy in G. For each S ∈ V (G)[≤k], let AS

be the set of ≡S-equivalence classes of robber positions. For each A ∈ AS we select
an arbitrary representative RA,S. Now, define a strategy μ′ by putting μ′(S,R) =
μ(S,RA,S) whenever R ≡S RA,S.

It is clear that μ′ is smooth; it remains to show that it is winning. Let P ′ =
S′

0,R
′
0, S

′
1,R

′
1, . . . be any μ′-play. From the definition of μ′, there is a μ-play P =

S′
0,R0, S

′
1,R1, . . . such that, for all i ≥ 0, Ri ≡Si R′

i. Since the possible moves of
each robber depend on his free space and not on his precise position in the graph, any
move by the cops that captures a robber in P must also capture a robber in P ′. P is
a winning play, so P ′, and hence μ′, must also be winning.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

356 DAVID RICHERBY AND DIMITRIOS M. THILIKOS

Note that the strategies referred to when considering smoothness are not neces-
sarily monotone but that, in the above proof, μ′ is monotone if μ is.

Finally, in this section, we show that the parameters we have defined are closed
under taking minors. Recall that G is a minor of H (written G � H) if G can
be constructed from H by a sequence of vertex deletions, edge deletions, and edge
contractions, where an edge contraction is the deletion of two adjacent vertices u and
v in H , followed by the addition of a new vertex w adjacent to all former neighbors
of the deleted vertices.

Proposition 3. If G � H, then, for any r, mvams(G, r) ≤mvams(H, r).
Proof. Let μ be a smooth, monotone, winning (k, r)-strategy for H , and let Tμ be

the tree representing μ. We may assume that G is formed from H by deleting a single
isolated vertex or deleting or contracting a single edge, since deletion of a nonisolated
vertex may be achieved by first deleting all its edges.

Suppose G = H − v for some x ∈ V (H). Since x is isolated in H , any move of
the cops involving x must be either a placement or a removal. Let T ′

μ be the tree
that results from deleting x from every vertex label in Tμ and replacing x with ∗ in
every edge label. Clearly, T ′

μ is a (possibly defective) tree corresponding to a monotone
(k, r)-strategy for G.

Suppose G = H−e for some edge e = xy ∈ E(H). The only alterations we need to
make to Tμ are to deal with slides along the now-deleted edge. Suppose v ∈ V (Tμ) is
labeled S and sends an edge labeled R1 to vertex v1, labeled S′, such that S
S′ = e.
Let R1, . . . ,R� enumerate the ≡S-equivalence class of R1. By smoothness, v also has
children v2, . . . , v� such that the edge vvi is labeled Ri and vi is labeled S′ for each
i ∈ {2, . . . , �}. We may assume, without loss of generality, that x ∈ S, i.e., that the
slide is from x to y. By monotonicity, the only neighbor of x in H that can be in the
robbers’ free space is y. Therefore, in G, no neighbor of x is in the robbers’ free space,
and we can replace the slide x → y with a removal from x followed by a placement
to y. For each i ∈ {1, . . . , �}, add a new vertex wi, labeled S − x, and an edge vwi,
labeled Ri. For each j ∈ {1, . . . , �}, make a copy of the subtree of Tμ rooted at vj ,
and add an edge labeled Rj from wi to the root of the jth copy.

Finally, suppose G is the result of contracting the edge xy in H to give a new
vertex which we denote vxy. To construct a (possibly defective) strategy tree for G,
it suffices to substitute vxy for both x and y in all vertex and edge labels in Tμ. A
robber on vxy in G can reach any vertex reachable by a robber on x or y in H . The
effect for the cops is as follows:

• place(x) becomes a null move if there was already a cop on y and, if not,
becomes place(vxy);
• slide(x→ y) becomes a null move;
• for z �= y, slide(x → z) becomes place(z) if there is a cop on y and, if not,

becomes slide(vxy → z);
• for z �= y, slide(z → x) becomes remove(z) if there is a cop on y and, if not,

becomes slide(z → vxy);
• remove(x) becomes a null move if there is a cop on y and, if not, becomes

remove(vxy).

The cases for moves involving y are symmetric.

3. Variants of monotonicity. In the previous section, we defined the concept
of monotonicity for plays and strategies. These definitions are natural extensions of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH SEARCHING IN A CRIME WAVE 357

the case with only one robber but are not the only ones. In this section, we consider
two further natural definitions of monotonicity, which turn out to be equivalent to
our first definition, and we begin an investigation of the cost of monotonicity.

Let P = S0,R0, S1,R1, . . . be a μ-play. We say that P is pointwise monotone if,
for each j ∈ {1, . . . , r} and each i ≥ 0, F j

i+1 ⊆ F j
i ; i.e., no single robber’s set of free

positions ever increases. Also, we say that P is cop-monotone if, for each v ∈ V (G),
the set

sP(v) = {i | v ∈ Si and V (Ri) �= ∅}

is an interval of N—that is, once the cops have left a vertex, they never return to
it as long as there are robbers in the graph. Observe that any cop-monotone μ-play
must be a winning μ-play because plays are infinite and G is not, so the cops must
eventually revisit a vertex if the robbers live forever. We say that a (k, r)-strategy μ
is monotone according to one of the above definitions if all μ-plays are.

Lemma 4. Let G be a graph, and let k and r be positive integers. The following
are equivalent:

1. there is a monotone winning (k, r)-strategy in G;
2. there is a pointwise-monotone winning (k, r)-strategy in G;
3. there is a cop-monotone (k, r)-strategy in G.

Proof. (2)⇒ (1) follows trivially from the definitions.

(3)⇒ (2). Let μ be a cop-monotone strategy, and suppose that, for some μ-play
P = S0,R0, S1,R1, . . . , there is a step, say, from Si to Si+1, where the free space of
the jth robber (1 ≤ j ≤ r) increases, i.e., that F j

i+1 ⊃ F j
i . It follows that there must

have been a cop removed or slid from some vertex v ∈ ∂G(F j
i), the set of vertices in

V (G) − F j
i that are adjacent to at least one vertex in F j

i . There is a μ-play P ′ that
follows P until Si+1 and in which the jth robber moves to the newly vacated vertex
v and stays there at all subsequent moves. But now, this robber cannot be caught
unless v is revisited, contradicting the assumed cop-monotonicity of μ.

For (1)⇒ (3), the idea is that the cops never need to visit a vertex that is not in the
robbers’ free space because such a move can never decrease the free space. Therefore,
the move does not contribute to the capture of the robbers and can safely be omitted.
Thus, every move made by the cops may be assumed to be a removal, a placement, or a
slide into the robbers’ free space and, since the free space is monotonically decreasing,
each such move must be the first time the target vertex has been visited.

Formally, let μ be a monotone winning strategy which we may assume, by Lemma
2, to be smooth. Let E be the set of the essential parts of all μ-plays. For any μ-play
P ∈ E , let c(P) be the number of vertices revisited by the cops (i.e., the number of
vertices v for which sP(v) is not an interval), and let c(μ) =

∑
P∈E c(P). c(μ) is well

defined, as E is finite; further, c(μ) = 0 if and only if μ is cop-monotone.
Suppose μ is not cop-monotone. We construct a (k, r)-strategy μ′ with c(μ′) <

c(μ). Repeated applications of this transformation will yield the desired cop-monotone
strategy.

Let P = S0,R0, S1,R1, . . . be a non–cop-monotone μ-play, and let vi+1 be a
vertex that is revisited for the first time in the step from Si to Si+1. This means that
Si+1 − Si = {vi+1}—the move is a placement or a slide. Let H be the union of the
connected components of G−Si that intersect V (Ri), and let S∗ = ∂GH . Notice that
S∗ ⊆ Si since, otherwise, P is not monotone.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

358 DAVID RICHERBY AND DIMITRIOS M. THILIKOS

We cannot have vi+1 ∈ V (H) since, by monotonicity, none of the vertices in H
has yet been visited. We cannot have vi+1 ∈ S∗ as there are already cops on every
vertex of S∗, so these vertices cannot be the target of a placement or a slide. Further,
if the move is a slide, from the single vertex vi ∈ Si − Si+1, then vi /∈ S∗: suppose
vi ∈ S∗; since vi+1 /∈ H , vi becomes part of the robbers’ free space, contradicting the
monotonicity of μ.

Let T0 = Si and, for j ≥ 0, let Tj+1 = μ(Tj ,Ri). Let h be minimal such that
Th+1 ∩ V (H) �= ∅. Thus, T1 = Si+1 and Th is the first move at which the cops will
play into the robbers’ free space if the robbers stand still. Notice that, in any μ-
play that includes the position Si,Ri, the positions T1, . . . , Th will follow because, by
smoothness, the moves of the cops depend only on the free space of the robbers, which
does not change during the quoted sequence (indeed, this remains true if we replace
Ri with any R ≡Si Ri). As before, the monotonicity of μ implies that S∗ ⊆ Tj for
j ∈ {0, . . . , h}.

We now define μ′. The idea is to replace the sequence T0, . . . , Th with a new
sequence of moves that performs the least number of removals and placements to
move the cops from T0 to Th but omits the move to vi+1. Since none of these moves is
in H , the robbers’ free space remains the same and monotonicity is preserved. Toward
this end, let T0 − Th = {x1, . . . , xp} and Th − T0 − {vi+1} = {y1, . . . , yq}. For any
R ≡Si Ri, set

μ′(T0,R) = T0 − {x1},
μ′(T0 − {x1},R) = T0 − {x1, x2}

...
μ′(T0 − {x1, . . . , xp−1},R) = T0 − {x1, . . . , xp} .

Writing T ′ for T0 − {x1, . . . , xp}, set

μ′(T ′,R) = T ′ ∪ {y1},
μ′(T ′ ∪ {y1},R) = T ′ ∪ {y1, y2}

...
μ′(T ′ ∪ {y1, . . . , yq−1},R) = T ′ ∪ {y1, . . . , yq} .

Note that T ′ ∪ {y1, . . . , yq} = Th − {vi+1}, and observe that the placements and
removals defined above do not involve placement to the vertex vi+1. Also, any vertex
that is revisited in the new chain of moves would have been revisited anyway if the
old chain of moves had been made. However, so far, the new chain does not revisit
vi+1, which was revisited in the old chain. To guarantee that vi+1 is not revisited in
any future sequence of moves, we set μ′(S − {vi+1},R) = μ(S,R) − {vi+1} for any
S ⊆ V (H) ∪ Th and any R where V (R) ⊆ V (H). Otherwise, put μ′(S,R) = μ(S,R).
We now have c(μ′) < c(μ), as required.

We have shown the natural definitions of monotonicity to be equivalent, but is
monotonicity important? Suppose we have r robbers in a tree T . We can modify
program 1 so that, instead of letting T ′ be any component containing a robber, we set
T ′ to be the component containing the ith robber, where i is minimal among those
robbers who have not yet been caught; see program 2. This gives a program that
catches the first robber (and any other robbers foolish enough to follow him), then

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH SEARCHING IN A CRIME WAVE 359

Search program 2. Π(T, r) to capture r robbers in a tree T .

place(v), where v is any vertex of T .
Let R = [u1 . . . ur]← robbers positions().
Let T ′ ← T .
While V (R) ∩ V (T ′) �= ∅,

Let i be minimal such that ui �= ∗.
Let T ′ be the connected component of T − v containing ui,

and let w be the (unique) vertex of T ′ adjacent to v.
slide(v→ w).
Let v ← w.
Let R← robbers positions().

remove(v).

the second, and so on. There are two things to notice about this program: first, it is
not monotone; second, it is winning against any number of robbers, without needing
any more cops.

The same technique can be applied to transform any search program for one
robber (on an arbitrary collection of graphs) into a nonmonotone program for any
number of robbers. On the other hand, it is clear that monotonically searching for
r > 1 robbers requires at least as many cops as does monotonically searching for a
single robber. We summarize these observations in the following lemma.

Lemma 5. For any graph G and positive integer r,

vams(G, r) = vams(G, 1),
mvams(G, r) ≥mvams(G, 1) .

Thus, allowing nonmonotone strategies may make it easier to search for many
robbers. This raises the question of what the cost of requiring monotonicity is when
facing a crime wave. Given a graph G and r ≥ 1, what is the ratio below?

mvams(G, r)
mvams(G, 1)

.

In sections 5 and 6, we give a full answer for trees and an upper bound for general
graphs. We postpone this until we have established some necessary results in the next
section.

4. Invisible robbers. In this section we give brief descriptions of two game
variants where the robbers are invisible and the cops must, therefore, determine their
moves without reference to the robbers’ position. In one of the variants we consider,
the robber is active; in the other, he is lazy. Recall that an active robber can move
at each round of the game, but a lazy robber may move only when a cop moves onto
the vertex he occupies.

In both cases, as the robbers are now invisible, the game is no longer interactive
and the cops’ moves may be given in advance as a “predetermined” strategy. Thus,
we define a k-strategy for k cops to be any consistent sequence S = S0, S1, . . . of sets
in V (G)[≤k].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

360 DAVID RICHERBY AND DIMITRIOS M. THILIKOS

Given such a strategy, we define the free space of an invisible, active robber to be
the sequence

F0 = V (G),
Fi+1 = {y ∈ V (G) − Si+1 | there is an (Si, Si+1)-avoiding

(x, y)-path for some x ∈ Fi} .

We say that S is monotone if Fi+1 ⊆ Fi for all i ≥ 0 and S is winning if Fi = ∅ for
some i ≥ 1. Since the game is not interactive, we do not explicitly define plays, which
will not feature in our analysis.

The nonmonotone and monotone invisible active mixed search number of a graph
G are defined as follows:

iams(G) = min {k | there exists a winning k-strategy on G},
miams(G) = min {k | there exists a monotone winning k-strategy on G}.

It is known that iams(G) = miams(G) [3]; that is, when searching for an in-
visible, active robber, insisting that the cops win the game monotonically does not
increase the number of cops required. We also observe that searching for an active,
invisible robber in a n-vertex graph G is equivalent to searching for n visible, ac-
tive robbers. Intuitively, an invisible robber could be anywhere within his free space,
while, with n robbers, there are plays in which every vertex of the free space really
does contain a robber.

Lemma 6. For any graph G of order n, miams(G) = mvams(G,n).
Proof. We prove first that miams(G) ≤mvams(G,n). Suppose we have a mono-

tone winning (k, n)-strategy μ for the cops. Consider a μ-play P = S0,R0, S1,R1, . . .
where, for all i ≥ 0, V (Ri) = Fi. Such a play exists, since V (R0) = F0 = V (G) and,
by definition of Fi+1, it is possible for the robbers occupying the vertices Fi to move to
the vertices in Fi+1. Notice, now, that the sequence S0, S1, . . . is a winning monotone
k-strategy against an invisible, active robber.

For the converse, let S = S0, S1, . . . be a monotone winning k-strategy against
one invisible, active robber. We define a (k, n)-strategy μ by putting μ(Si,R) = Si+1

for any i ≥ 0 and any R ∈ (V (G)∪{∗})n with V (R) ⊆ Fi+1. Any μ-play is monotone
and winning because, no matter what moves the robbers make, V (Ri) ⊆ Fi for all i
and the sequence F0, F1, . . . diminishes monotonically to the empty set.

The case of an invisible, lazy robber is similar to the active case but with the
difference that now, if the cops are at S and the robber at vertex v, then, when the
cops move to S′, the robber must stay at v unless v ∈ S′, in which case he can move
along any (S, S′)-avoiding path in the graph, as before. Thus, the robber moves only
when a cop lands on his vertex.

We define free space, k-strategies, monotonicity, and winning against a lazy, invis-
ible robber in the same way as in the active case and write milms(G) and ilms(G) for
the corresponding monotone and nonmonotone, invisible, lazy, mixed search number,
respectively.

Lemma 7. For any graph G, milms(G) = mvams(G, 1).
Proof. We prove first that milms(G) ≤mvams(G, 1). Suppose we have a mono-

tone winning (k, 1)-strategy μ for G, and let E be the set of the essential parts of all
μ-plays. We can construct a monotone winning k-strategy against one invisible, lazy
robber by taking an arbitrary concatenation of all of the sequences in E .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH SEARCHING IN A CRIME WAVE 361

We now show that mvams(G, 1) ≤ milms(G). Let S = S0, S1, . . . be a mono-
tone winning k-strategy against one invisible, lazy robber. We will describe a search
program against a visible, active robber. The first move is to place a cop on the vertex
in S1. Suppose that, at some stage, the cops occupy the vertices of some set S (not
necessarily a set in S). Let H be the connected component of G−S that contains the
robber, and let S∗ = ∂GH .

Now, let i be minimal such that Si contains a vertex in H . We remove any cops
that may be in S−Si−1 and then play the move m that transforms Si−1 to Si which,
by definition of i, is not a removal. It is clear that we can play this move if it is a
placement. If it is a slide, it must, by construction, be from a vertex in S∗. S must
contain S∗ by definition and, since S is a monotone strategy, Si−1 must also contain
S∗: m is the first attack on H and the robber would be able to escape from that
component if its boundary were not guarded.

This establishes that we have a monotone strategy. To see that it is winning,
observe that, at each step, the robber’s free space is decreased by at least one vertex
(the target of m) so must, eventually, become empty.

We define the proper pathwidth of a graph G to be ppw(G), the least k for which
G � Kk × P for some path P . (That is, G � G′ for the graph G′ formed from P
by replacing the vertices with disjoint copies of Kk and adding a matching between
the vertices of cliques corresponding to vertices adjacent in P .) Similarly, define the
proper treewidth of a graph G as ptw(G), the least k for which G � Kk × T for some
tree T . It can be shown that miams(G) = ppw(G) and milms(G) = ptw(G) (see,
e.g., [9, 12]).

Corollary 8. For any graph G and any positive integer r,

ptw(G) ≤mvams(G, r) ≤ ppw(G).

Proof. The proof is immediate from Lemmas 6 and 7 and the observation that,
for any graph G of order n and any r > n, mvams(G, r) = mvams(G,n), since the
robbers can never occupy more than n distinct vertices.

We could also consider multiple invisible robbers. We will not define the relevant
games formally, but the informal remarks that follow should convince the reader that
it would not be worth the effort to do so.

In the case of invisible, active robbers, it is clear that miams(G, r) = miams(G)
for any r ≥ 1; essentially, no graph parameter defined through mixed search can
ever be bigger than proper pathwidth. For invisible, lazy robbers, we must consider
the conditions under which the robbers may move. The simplest scenario is that
each robber may move only when a cop lands on the vertex he occupies. Define
the nonmonotone and monotone, invisible, lazy mixed search number of a graph G
to be, respectively, ilms(G, r) and milms(G, r), the least k such that there is a
winning (respectively, monotone winning) k-strategy against r invisible, lazy robbers.
In this case, it is not hard to see that ilms(G, r) = ilms(G, 1) (because, as usual,
we can iterate the strategy for one robber to catch r robbers) and milms(G, r) =
milms(G, 1) (the strategy used to prove Lemma 7 works as well for r ≥ 1 lazy
robbers as for one).

On the other hand, suppose that, when a cop lands on a vertex occupied by any
robber, this fact is communicated to all the robbers, who may all move. Define the
nonmonotone and monotone, invisible, communicating, lazy mixed search numbers of
a graph G to be, respectively, iclms(G, r) and miclms(G, r), the least k such that
there is a winning (respectively, monotone winning) k-strategy against r invisible,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

362 DAVID RICHERBY AND DIMITRIOS M. THILIKOS

Search program 3. Π(T, v, r) to capture r robbers in a tree T monotonically.

place(v)
Let R← robbers positions().
While V (R) �= ∅,

Let T1, . . . , T� be the connected components of T − v
containing at least one and at most � r

2� robbers.
For i ∈ {1, . . . , �},

Choose any vertex vi ∈ V (Ti).
Let ri be the number of robbers in Ti.
Call Π(Ti, vi, ri).

Let R← robbers positions().
if V (R) ∩ V (T) �= ∅ (i.e., robbers remain in T), then

Let T ′ be the unique connected component of T − v where
V (R) ⊆ V (T ′), and let w be the vertex of T ′

adjacent to v in T .
slide(v→ w).
Let v ← w and let T ← T ′.

remove(v).

communicating, lazy robbers. We still have iclms(G, r) = ilms(G) and, with just
one robber, of course, miclms(G, 1) = milms(G) = ptw(G) since a single robber
has nobody to communicate with. However, for any r ≥ 2, having r invisible, com-
municating, lazy robbers is as bad as having an active, invisible robber: essentially,
whenever the cops move to a vertex in the robbers’ free space, they may disturb a
robber, and, if they do, all the robbers may move. Thus, after any move, the cops
must ensure that the entire boundary of the robbers’ free space is guarded, just as in
the active, invisible case. Hence, for r ≥ 2, miclms(G, r) = miams(G) = ppw(G).
We summarize these observations in the following theorem.

Theorem 9. For any graph G and any integers r ≥ 1 and s ≥ 2,

ilms(G, r) = iclms(G, r) = ilms(G),
milms(G, r) = miclms(G, 1) = milms(G) = ptw(G),

miclms(G, s) = miams(G, r) = miams(G) = ppw(G) .

We also note that it is believed but not yet proven1 that ilms(G) = milms(G).

5. Upper bounds. In this section, we demonstrate upper bounds for the value
of mvams(G, r) for trees, in particular, and for all graphs.

Lemma 10. If T is a tree, then mvams(T, r) ≤ �log r�+ 1.
Proof. Let Π(T, r) be the search program that calls program 3 with v assigned to

be any vertex of T .
We must prove that Π(T, r) is winning and monotone and uses at most �log r�+1

cops. For this we use induction on the logarithm of the number of robbers. For the
base case, notice that Π(T, r) degenerates to program 1 when r = 1, as the program
operates exclusively in the single component of T − v containing � r

2� = 1 robber.

1A flawed proof appeared in [12].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH SEARCHING IN A CRIME WAVE 363

Suppose that Π(T, � r
2�) defines a winning, monotone (q, � r

2�)-strategy, where q =
�log r

2�+1 = �log r�. We now show that Π(T, r) defines a winning, monotone (q+1, r)-
strategy.

Before each slide move to w, each component of T−v except for the one containing
w contained at most � r

2� robbers and has, by the inductive hypothesis, already been
searched monotonically. Therefore, after each slide move, the free positions of the
robbers have been updated from V (T) to V (T ′), where V (T ′) ⊂ V (T). As the free
positions for the robbers diminish, the program is monotone; and, as they diminish
properly, the program is winning.

By the inductive hypothesis, each call to Π(Ti, vi, ri) requires q cops. Meanwhile,
there is only one additional cop in T (the cop on v), so Π(T, r) uses q + 1 cops, as
required.

The following upper bound on mvams(T, r) is immediate from the previous
lemma and Corollary 8.

Corollary 11. For any tree T and for any positive integer r,

mvams(T, r) ≤ min {ppw(G), �log r�+ 1} .

Our bound for trees leads to a bound for general graphs, obtained by considering
tree decompositions.

Theorem 12. For any graph G and any positive integer r,

mvams(G, r) ≤ min {ppw(G),ptw(G) · (�log r�+ 1)} .

Proof. Let q = �log r�+ 1.
By Corollary 8, it is enough to show that mvams(G, r) ≤ ptw(G) · q. Assuming

that ptw(G) ≤ k, we have G � G′ = Kk × T for some tree T . We assume that the
vertices of the clique in G′ corresponding to the vertex v ∈ T are K(v) = {v1, . . . , vk}
and, for every edge uv ∈ T , the corresponding edges in G′ are u1v1, . . . , ukvk. For
each S ⊆ V (T), let K(S) =

⋃
v∈S K(v).

By Lemma 10, mvams(T, r) ≤ q, so there is a monotone winning (q, r)-strategy
μ for T . We use μ to construct a monotone, winning (kq, r)-strategy μ′ for G′. The
idea is that we simulate a single cop on v ∈ T with k cops, one on each vertex of
K(v) ⊆ G′. Each placement, removal and slide is replaced by the equivalent operation
on each of these k cops in turn.

Formally, let S ∈ V (T)[≤q], let R ∈ (V (T) ∪ {∗})r, and let S′ = μ(S,R). There
are three cases, depending on the type of the move from S to S′.

Placement. Let {v} = S′−S. For any j ∈ {1, . . . , k}, let Sj = K(S)∪{v1, . . . , vj−1}.
For any R′ with V (R′) ⊆ K(V (R))− {v1, . . . , vj−1}, we set μ′(Sj ,R′) = Sj ∪ {vj}.

Removal. Let {v} = S−S′. For any j ∈ {1, . . . , k}, let Sj = K(S)−{v1, . . . , vj−1}.
For any R′ with V (R′) ⊆ K(V (R)) ∪ {v1, . . . , vj−1}, we set μ′(Sj ,R′) = Sj − {vj}.

Sliding. Let {v} = S − S′ and {w} = S′ − S. For any j ∈ {1, . . . , k}, let Sj =(
K(S) − {v1, . . . , vj−1}

) ∪ {w1, . . . , wj−1}. For any R′ with V (R′) ⊆ (K(V (R)) ∪
{v1, . . . , vj−1}

)− {w1, . . . , wj−1}, we set μ′(Sj ,R′) = (Sj − {vj}) ∪ {wj}.
Notice that the fact that μ is winning and monotone implies the same for μ′.

Moreover, in each μ′-play any set S ∈ V (T)[≤q] corresponds to a sequence of k sets in
V (G′)[≤kq]. Therefore, mvams(G′, r) ≤ kq and thus mvams(G, r) ≤ kq, by Proposi-
tion 3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

364 DAVID RICHERBY AND DIMITRIOS M. THILIKOS

6. Lower bounds. We now give lower bounds for mvams(T, r) for trees T . We
introduce a general form of graph composition and analyze the search numbers of
graphs formed by such compositions. We define the composition for general graphs,
though our main use of the construction will be for trees.

We say that graphs G0, . . . , G3 are k-connectable if
• for 0 ≤ i ≤ 3, Gi is k-connected;
• G1, G2, and G3 are pairwise disjoint;
• for 1 ≤ i ≤ 3, |Ui| = k, where Ui = V (G0) ∩ V (Gi); and
• for 1 ≤ i < j ≤ 3 and h ∈ {1, 2, 3} − {i, j}, G0 − Uh contains a set Pij of k

pairwise vertex-disjoint paths from Ui to Uj .
Note that the k-connectedness of G0 already implies the existence in that graph of
a set of k pairwise vertex-disjoint paths from Ui to Uj, but these do not necessarily
avoid Uh.

Let G be a graph, with x ∈ V (G) and U ⊆ V (G) − {x}. An (x, U)-fan is a set
of paths in G, one from x to each vertex in U, where the paths are pairwise disjoint,
except for the common endpoint x.

Lemma 13. Let G0, . . . , G3 be k-connectable. Then G = G0 ∪ · · · ∪ G3 is k-
connected.

Proof. It suffices to show that, for any u, v ∈ V (G), G contains k independent
(u, v)-paths. If u, v ∈ V (Gi) for some i, then the result follows immediately from the
k-connectedness of Gi. So, suppose that there are i < j such that u ∈ V (Gi)−V (Gj)
and v ∈ V (Gj)− V (Gj). There are two cases.

If i = 0, then, by [4, Theorem 2.6], G0 contains a (u, Uj) fan and Gj contains a
(v, Uj) fan. Since V (G0)∩ V (Gj) = Uj , these fans are disjoint, except for the vertices
in Uj . Their union is, therefore, a set of k independent (u, v)-paths in G.

If i > 0 then, as above, Gi contains a (u, Ui)-fan and Gj contains a (u, Uj)-fan
and these fans are disjoint. The union of the two fans and the paths Pij is a set of k
independent (u, v)-paths in G.

The following is the key technical result of this section.
Lemma 14. Let G0, . . . , G3 be k-connectable, with mvams(Gi, � r

2�) ≥ q for each
i, and let G = G0 ∪ · · · ∪G3. Then mvams(G, r) ≥ q + k.

Proof. Suppose, toward a contradiction, that mvams(G, r) < q + k, and let μ
be a smooth, monotone, winning (q + k − 1, r)-strategy for G. By Lemma 13, G
is k-connected. Hence, whenever there are robbers in the graph and the position
of the cops is S, with |S| < k, the robbers’ free space is the whole of G − S. Let
P = S0,R0, S1,R1, . . . be a play, and let α be minimal such that

• the free space of some robber in Rα does not include the whole of V (Gi)−Sα

for some i ≥ 1, or
• |V (Gi) ∩ Sα| ≥ k for some i ≥ 1.

α is well defined because μ is winning. We may assume that the robbers, who are
aware of the cops’ strategy μ, arrange to maximize α. By smoothness, the cops make
the same moves in all plays up to (and including) the αth move, as long as the robbers
behave as we have described.

As argued above, |Sα| ≥ k; otherwise, the free space of every robber is just
V (G) − Sα and no Gi contains k cops. We may assume, without loss of generality,
that |V (G1)∩Sα| < k and |V (G2)∩Sα| < k. (If necessary, rename the parts to achieve
this.) Let S′

α = Sα − (V (G1) ∩ V (G2)). By construction, |S′
α| ≥ k.

At the point when the cops make move α, the free space of every robber includes
all of V (G1)−Sα−1 and all of V (G2)−Sα−1. Therefore, we may assume that Rα has

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH SEARCHING IN A CRIME WAVE 365

� r
2� robbers in G1 and � r

2� robbers in G2. We will show that the assumption that μ
is monotone and winning contradicts the hypothesis that mvams(G1, � r

2�) ≥ q and
mvams(G2, � r

2�) ≥ q.
Let Tμ be the labeled tree representing the strategy μ. We may delete from Tμ any

subtree whose root has an incoming edge labeled R for some R containing more than
� r

2� robbers in G1 or more than � r
2� robbers in G2. This restriction on the robbers’

position can only make the game easier for the cops.
First, let T1 be the tree formed from Tμ by deleting every vertex outside V (G1)

from every vertex label and replacing every vertex outside V (G1) with ∗ in every edge
label. These deletions from the labels may result in two adjacent vertices u and v
having identical labels (because the corresponding move in Tμ was outside G1) and
two edges from the same vertex having identical labels (because a move within G1 in
Tμ depended on the positions of robbers outside G1). As such, T1 is nondeterministic,
in the sense discussed in section 2.

Call the subtree of T1 rooted at vertex x bad if either the label of x is a set of size at
least q or there is some R such that, whenever the edge (x, y) is labeled R, the subtree
rooted at y is bad. Call a subtree good if it is not bad. We claim that T1 is, itself,
bad. Suppose not. Delete all bad subtrees from T1 to give T ′

1. Because every vertex
of the resulting tree has at least one child for each possible R, T ′

1 defines a winning
(q − 1, � r

2�)-strategy for G1, contradicting the hypothesis that mvams(G1, � r
2�) ≥

mvams(G1, � r
2�) ≥ q. (In fact, the strategy defined by T ′

1 may be nondeterministic,
but we may take an arbitrary deterministic restriction.)

Now, let T ∗
1 be the tree that results from deleting all good subtrees from T1. T ∗

1

is a tree of all plays where the robbers force there to be q cops in G1 and can be seen
as a certificate of the fact that no monotone winning (q+ k− 1, r)-strategy for G can
induce a monotone winning (q − 1, � r

2�)-strategy for G1.
Let T be the subtree of Tμ consisting of those vertices in T ∗

1 , and let T2 be the
tree made from T by deleting every vertex outside V (G2) from every vertex label
and replacing every vertex outside V (G2) with ∗ in every edge label. T2 defines a
nondeterministic strategy for G2 in the same sense that T1 does for G1. Because T1

is a strategy for G1, it includes responses for every possible position R of the robbers
within that subgraph. In turn, every position of robbers in G whose restriction to
G1 is R will produce the same response within T ′

1: in particular, then, T2 contains a
vertex corresponding to this position.

Using the hypothesis that mvams(G2, � r
2�) ≥ q and the same argument as for

G1, we see that T2 is also bad. Again, define T ∗
2 by deleting all good subtrees from

T2. By construction, any path in T ∗
2 corresponds to a path in T ∗

1 and a path in Tμ.
Choose any such path, and let P = S0,R0, S1,R2, . . . be the corresponding μ-play.
For i ∈ {1, 2}, let P i = Si

0,R
i
0, S

i
1,R

i
2, . . . be the labels of the corresponding path in

T ∗
i . Note that S1

j ∪ S2
j ⊆ Sj and V (R1

j) ∪ V (R2
j) ⊆ V (Rj) for all j ≥ 0.

For i ∈ {1, 2}, let ci be minimal such that V (Ri
ci

) = ∅. Since no move of the
cops can simultaneously capture robbers in both G1 and G2, we must have c1 �= c2.
Without loss of generality, we may assume c1 < c2. Let h be minimal such that
|S1

h| ≥ q. Since μ is a (q + k − 1, r)-strategy, we must have |S2
h| < k, and, further,

at least one of the cops originally placed on v ∈ S′
α must have been removed. This

contradicts the monotonicity of μ because, after move α of the game, no robber in G2

could reach vertex v, but now they all can.
A 3-star composition of disjoint, connected graphs G1, G2, and G3 is any graph

Y(G1, G2, G3) formed by adding a new vertex v to G1 ∪G2 ∪G3 and adding one edge

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

366 DAVID RICHERBY AND DIMITRIOS M. THILIKOS

from v to each of the three component graphs. Observe that the 3-star composition
of G1, G2, and G3 is a special case of the graphs K1,3, G1, G2, and G3 being 1-
connectable. Hence, the following is an immediate corollary of Lemma 14.

Corollary 15. Let G = Y(G1, G2, G3), where, for each i ∈ {1, 2, 3}, it holds
that mvams(Gi, � r

2�) ≥ q. Then, mvams(G, r) > q.
We are now ready to show that the upper bound of Corollary 11 is, in fact, an

exact characterization of mvams(T, r) for all trees T and natural numbers r.
Theorem 16. For any tree T and r ≥ 1,

mvams(T, r) = min {ppw(T), �log r�+ 1} .

Proof. By Corollary 11, it suffices to show that mvams(T, r) ≥ min {ppw(T),
�log r� + 1}. For this, we use induction on q = �log r� + 1. For the base case, q =
1, program 1 shows that mvams(T, r) = 1 = q. Suppose the result holds for all
values smaller than q, and let T be a tree. If ppw(T) = 1, then T is a path and
mvams(T, r) = 1 for any r, as required. Otherwise, it is known from [14] that we
can write T = Y(T1, T2, T3), where, for each i, ppw(Ti) = ppw(T) − 1. By the
inductive hypothesis, mvams(Ti, � r

2�) ≥ min {ppw(T) − 1, q − 1}. By Corollary 15,
mvams(T, r) ≥ min {ppw(T)− 1, q − 1}+ 1 = min {ppw(T), q}, as required.

We do not have a lower bound for mvams(G, r) for general graphs. However, we
are able to demonstrate that the upper bound of Theorem 12 is reached by an infinite
class of graphs. Toward this end, define the parameterized graph class Ow recursively
as follows: O0 = {K1}, and G ∈ Ow+1 if and only if G is a 3-star composition of three
graphs in Ow. From [13], Ow contains all minor-minimal trees with proper pathwidth
at least w. Define

Ok
w = {T ×Kk : T ∈ Ow} .

It follows from Lemma 14 that the upper bound of Theorem 12 is tight as the bound is
attained by all graphs in Ok

w. Further, because the graphs in Ok
w are minor-minimal,

the bound of Theorem 12 is attained by all products of trees and cliques.
We have remarked that k-composition is a generalization of 3-star composition.

Finally, we show that the above results on proper pathwidth of 3-star compositions
of graphs can be strengthened to k-compositions.

Corollary 17. Let G0, . . . , G3 be k-connectable graphs, each of proper pathwidth
at least w, and let G = G0 ∪ · · · ∪G3. Then, ppw(G) ≥ w + k.

Proof. Let n = |V (G)|.

ppw(G) = mvams(G, 2n) (Corollary 8)
≥ min

0≤i≤3
mvams(Gi, n) + k (Lemma 14)

= min
0≤i≤3

ppw(Gi) + k (Corollary 8)

≥ w + k .

7. Conclusions and open problems. We have presented our results in the
setting of mixed search (i.e., searching with placement, removal, and sliding of cops).
For node search (searching with only placement and removal of cops), we can similarly
define parameters vans(G) and mvans(G, r) for the general and monotone node
search numbers for r visible, active robbers. Similarly, we can adapt all definitions
of mixed-search parameters given in this paper to their node search counterparts.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH SEARCHING IN A CRIME WAVE 367

The difference between mixed search and node search is not very great: node search
can be reduced to mixed search, and the node search number is either equal to the
corresponding mixed search number or one greater, depending on the graph.

We could, in principle, rewrite the present paper in terms of node search. Writing
pw(G) and tw(G) for the well-known parameters of pathwidth and treewidth, it can
be shown, using the results in [6, 11], that, for a graph of order n, vians(G, 1) =
tw(G) + 1 and vians(G,n) = pw(G) + 1. For completeness, we restate our core
results for this setting:

mvans(T, r) = min {pw(T), �log r�+ 1}+ 1 (for any tree T),
mvans(G, r) ≤ min {pw(G) + 1, (tw(G) + 1) · (�log r�+ 1)} (for any graph G).

Moreover, the framework of this paper can be applied to the other classical search
variant, edge search. As this version can also be reduced to mixed searching (see,
e.g., [3, 12]), we make no further comments in this direction.

The problem settled in this paper can be stated in the following way: given a graph
G, what is the maximum number of visible, active robbers that can be captured by
k cops? According to our results, this number is unbounded if k ≥ ppw(G). In the
case that k < ppw(G), the maximum number of robbers that can be caught in a tree
is 2k−1, and, for general graphs, it is at least 2k/ptw(G)−1. This interpretation of our
results may be useful for estimating how many sweeps of a graph a small number of
cops needs to catch a large number of robbers.

We identify three main open problems on the study of graph searching for many
robbers. The first is to find good lower bounds for mvams(G, r) in terms of G and
r, for general graphs, corresponding to the bounds for trees found in this paper. We
believe that this is a hard task as such a study appears to require the identification
of obstructions for mvams(G, r) for all values of r.

Another open problem is to find graph decompositions corresponding to the game,
tuning between (proper) tree decompositions (the case for one robber) and (proper)
path decompositions (one robber per vertex). It is unclear what form such a family
of decompositions would take.

Finally, it would be interesting to know whether there is any relation between
our results and the search game defined by Fomin, Fraigniaud, and Nisse [8]. That
game has only one robber but tunes between pathwidth and treewidth by limiting
the number of rounds at which the cops may ask for the position of the robber.
This provides an alternative way of tuning the interactivity of the game: it is fully
interactive if the cops may ask for the robber’s position at every move and fully
predetermined if they may never ask for his position. Correspondingly, our game is
fully interactive with a single robber and fully predetermined with a robber for each
vertex of the graph.

REFERENCES

[1] B. Alspach, Searching and sweeping graphs: A brief survey, Matematiche (Catania), 59 (2004),
pp. 5–37 (2006).

[2] D. Bienstock, Graph searching, path-width, tree-width, and related problems (a survey), in Re-
liability of Computer and Communication Networks (New Brunswick, NJ, 1989), DIMACS
Ser. Discrete Math. Theoret. Comput. Sci. 5, AMS, Providence, RI, 1991, pp. 33–49.

[3] D. Bienstock and P. Seymour, Monotonicity in graph searching, J. Algorithms, 12 (1991),
pp. 239–245.

[4] B. Bollobás, Extremal Graph Theory, Dover, Mineola, NY, 2004. Reprint of the 1978 original.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

368 DAVID RICHERBY AND DIMITRIOS M. THILIKOS

[5] Y. Colin de Verdière, Multiplicities of eigenvalues and tree-width of graphs, J. Combin.
Theory Ser. B, 74 (1998), pp. 121–146.

[6] N. D. Dendris, L. M. Kirousis, and D. M. Thilikos, Fugitive-search games on graphs and
related parameters, Theoret. Comput. Sci., 172 (1997), pp. 233–254.

[7] J. A. Ellis, I. H. Sudborough, and J. S. Turner, The vertex separation and search number
of a graph, Inform. and Comput., 113 (1994), pp. 50–79.

[8] F. V. Fomin, P. Fraigniaud, and N. Nisse, Nondeterministic graph searching: From pathwidth
to treewidth, in Mathematical Foundations of Computer Science 2005, Lecture Notes in
Comput. Sci. 3618, Springer-Verlag, Berlin, 2005, pp. 364–375.

[9] F. V. Fomin and D. M. Thilikos, Multiple Edges Matter When Searching a Graph: The Exact
Figure, manuscript.

[10] P. Hunter and S. Kreutzer, Digraph measures: Kelly decompositions, games, and orderings,
in Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (New
Orleans, 2007), ACM, New York, SIAM, Philadelphia, 2007, pp. 637–644.

[11] P. D. Seymour and R. Thomas, Graph searching and a min-max theorem for tree-width, J.
Combin. Theory Ser. B, 58 (1993), pp. 22–33.

[12] Y. C. Stamatiou and D. M. Thilikos, Monotonicity and inert fugitive search games, Elec-
tronic Notes in Discrete Mathematics, 3 (1999).

[13] A. Takahashi, S. Ueno, and Y. Kajitani, Minimal acyclic forbidden minors for the family
of graphs with bounded path-width, Discrete Math., 127 (1994), pp. 293–304.

[14] A. Takahashi, S. Ueno, and Y. Kajitani, Mixed searching and proper-path-width, Theoret.
Comput. Sci., 137 (1995), pp. 253–268.

[15] D. M. Thilikos, Algorithms and obstructions for linear-width and related search parameters,
Discrete Appl. Math., 105 (2000), pp. 239–271.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 369–371

REDUCTION OF ROTA’S BASIS CONJECTURE TO A PROBLEM
ON THREE BASES∗

TIMOTHY Y. CHOW†

Abstract. It is shown that Rota’s basis conjecture follows from a similar conjecture that involves
just three bases instead of n bases.

Key words. common independent sets, non–base-orderable matroid, odd wheel

AMS subject classifications. Primary, 05B20; Secondary, 15A03

DOI. 10.1137/080723727

1. Introduction. In 1989, Rota formulated the following conjecture, which re-
mains open.

Conjecture 1 (Rota’s basis conjecture). Let M be a matroid of rank n on n2

elements that is a disjoint union of n bases B1, B2, . . . , Bn. Then there exists an n×n
grid G containing each element of M exactly once, such that for every i the elements
of Bi appear in the ith row of G and such that every column of G is a basis of M .

Partial results toward this conjecture may be found in [1, 2, 3, 4, 5, 6, 7, 8, 12,
14, 15]. Now consider the following conjecture.

Conjecture 2. Let M be a matroid of rank n on 3n elements that is a disjoint
union of 3 bases. Let I1, I2, . . . , In be disjoint independent sets of M , with 0 ≤ |Ii| ≤ 3
for all i. Then there exists an n × 3 grid G containing each element of M exactly
once, such that for every i the elements of Ii appear in the ith row of G and such that
every column of G is a basis of M .

The main purpose of the present note is to make the following observation.
Theorem 3. Conjecture 2 implies Conjecture 1.
Our proof is inspired by the proof of Theorem 4 in [10].
Proof. Since Conjecture 1 is known if n ≤ 2, we may assume that n ≥ 3. LetM be

given as in the hypothesis of Conjecture 1. Define a transversal to be a subset τ ⊆M
that contains exactly one element from each Bi. Define a double partition of M
to be a pair (β, τ) where β = (β1, β2, . . . , βn) is a partition of M into n pairwise
disjoint bases βi and τ = (τ1, τ2, . . . , τn) is a partition of M into n pairwise disjoint
transversals. Given a double partition (β, τ), define

μ(β, τ) =
∑
i�=j

|βi ∩ τj |.

Observe that if μ(β, τ) = 0, then necessarily βi = τi for all i, and then Rota’s basis
conjecture follows—just let the (i, j)th entry of G be Bi ∩ τj .

So let (β, τ) be an arbitrary double partition with μ(β, τ) > 0. We show how
to construct a double partition (β′, τ ′) with μ(β′, τ ′) < μ(β, τ); the proof is then
complete, by infinite descent, since by hypothesis there exists at least one double
partition. Since μ(β, τ) > 0, there exist βi and τj with i �= j such that βi ∩ τj �= ∅.
Since n ≥ 3, there also exists k such that i, j, and k are all distinct. It will simplify

∗Received by the editors May 8, 2008; accepted for publication (in revised form) September 29,
2008; published electronically January 7, 2009.

http://www.siam.org/journals/sidma/23-1/72372.html
†Center for Communications Research, 805 Bunn Drive, Princeton, NJ 08540 (tchow@mit.edu).

369

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

370 TIMOTHY Y. CHOW

notation to assume that i = 1, j = 2, and k = 3; no generality is lost, and it will be
convenient to be able to reuse the index variables i and j below. Let S = β1∪β2∪β3,
let T = τ1 ∪ τ2 ∪ τ3, and let M ′ = M |S (i.e., M restricted to the ground set S).

For each i, let Ii = Bi ∩ T ∩ S. Then Ii is an independent subset of the
matroid M ′, and |Ii| ≤ |Bi ∩ T | ≤ 3. The Ii are pairwise disjoint because the Bi are
pairwise disjoint. Therefore, we may apply Conjecture 2 to obtain an n × 3 grid G′

whose columns β′
1, β

′
2, and β′

3 are disjoint bases of M ′ (and therefore are bases of M)
and whose ith row contains the elements of Ii.

To construct the desired double partition (β′, τ ′), let β′ = β except with β1, β2,
and β3 replaced with β′

1, β
′
2, and β′

3, respectively. Similarly, let τ ′ = τ except with τ1,
τ2, and τ3 replaced with τ ′1, τ

′
2, and τ ′3, which are defined as follows. Let G′′ be any

n × 3 grid whose ith row contains the elements of Bi ∩ T in some order, and whose
(i, j)th entry agrees with that of G′ whenever that entry is in Ii. Clearly G′′ exists
(though it may not be unique). Let τ ′j be the jth column of G′′ for j = 1, 2, 3.

It is easily verified that what we have done is to regroup the elements of M ′ into
three new bases and to regroup the elements of T into three new transversals in such
a way that the contribution to μ(β′, τ ′) from intersections of the new bases with the
new transversals is reduced to zero, and such that the total of the other contributions
to μ is unchanged. Thus the overall value of μ is reduced, as required.

Careful inspection of the above proof shows that it is easily adapted to prove
a stronger statement than Theorem 3. Let C(k) denote the statement obtained by
replacing “3” with “k” throughout Conjecture 2. Then the above argument, mutatis
mutandis, yields the following result.

Theorem 4. For any � ≥ k ≥ 2, C(k) implies C(�).
In particular, proving C(k) for any fixed k would prove Rota’s basis conjecture

(in fact, a stronger statement, namely, C(n)) for all n greater than or equal to that
fixed k.

It is therefore natural to ask why we have formulated Conjecture 2 as C(3) rather
than as C(2). The reason is that C(2) is false. The simplest counterexample is a well-
known stumbling block that is partly responsible for the fact that there is no known
general “matroid union intersection theorem,” i.e., a criterion for determining the
minimum number of common independent sets that a set with two matroid structures
on it can be partitioned into. Namely, take M(K4), the graphic matroid of the
complete graph on four vertices, and let the Ii be the three pairs of nonincident
edges of K4. Another counterexample arises from a matroid that Oxley [11] calls J .
Representing J by vectors in Euclidean 4-space, we can, for example, let

I1 = {(−2, 3, 0, 1), (0, 0, 1, 1)},
I2 = {(0, 2, 0, 1), (1, 0, 3, 1)},
I3 = {(1, 0, 0, 1), (0, 1, 2, 1)},
I4 = {(0, 1, 0, 1), (4, 0, 0, 1)}.

It may be possible to construct other examples from non–base-orderable matroids
such as those in [9].

Despite these counterexamples to C(2), we believe that Conjecture 2 is plausible.
Using a database of matroids with nine elements kindly supplied by Gordon Royle [13],
we have computationally verified Conjecture 2 for the case n = 3.

In an earlier version of this paper, the formulation of Conjecture 2 did not require
the Ii to be independent. A counterexample to that version of the conjecture was

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ROTA’S BASIS CONJECTURE 371

found by Colin McDiarmid. Take the complete graph on the vertex set {1, 2, 3, 4},
and create an extra copy of the three edges incident to vertex 4. Call the edges
12, 13, 14, 23, 24, 34, 14′, 24′, 34′, and let I1 = {14, 14′, 23}, I2 = {24, 24′, 13}, and
I3 = {34, 34′, 12}. More generally, as pointed out by an anonymous referee, if k is
odd, then a wheel with k − 1 copies of each of its k spokes yields a counterexample
to C(k) if the Ii are not required to be independent.

In closing, we speculate that Conjecture 2 might be provable using the following
strategy. First, develop a modified version of C(2) that says that the conclusion
holds provided certain “obstructions” (such as M(K4) and J) are absent. Then
use Rado’s theorem (12.2.2 of [11]), or a suitable strengthening of it, to construct
a first column of G in such a way that the remaining 2n elements are obstruction-
free. Applying the modified version of C(2) would then yield the desired result.
The analysis of obstructions should hopefully be tractable since there are only three
columns to consider.

Acknowledgments. I wish to thank Jonathan Farley, Patrick Brosnan, and
James Oxley for useful discussions, and a referee for correcting an error in my coun-
terexample based on J .

REFERENCES

[1] R. Aharoni and E. Berger, The intersection of a matroid and a simplicial complex, Trans.
Amer. Math. Soc., 358 (2006), pp. 4895–4917.

[2] W. Chan, An exchange property of matroid, Discrete Math., 146 (1995), pp. 299–302.
[3] T. Chow, On the Dinitz conjecture and related conjectures, Discrete Math., 145 (1995), pp.

73–82.
[4] A. A. Drisko, On the number of even and odd Latin squares of order p + 1, Adv. Math., 128

(1997), pp. 20–35.
[5] A. A. Drisko, Proof of the Alon–Tarsi conjecture for n = 2rp, Electron. J. Combin., 5 (1998),

R28.
[6] J. Geelen and P. J. Humphries, Rota’s basis conjecture for paving matroids, SIAM J. Discrete

Math., 20 (2006), pp. 1042–1045.
[7] J. Geelen and K. Webb, On Rota’s basis conjecture, SIAM J. Discrete Math., 21 (2007), pp.

802–804.
[8] R. Huang and G.-C. Rota, On the relations of various conjectures on Latin squares and

straightening coefficients, Discrete Math., 128 (1994), pp. 225–236.
[9] A. W. Ingleton, Non-base-orderable matroids, in Proceedings of the 5th British Combinatorial

Conference, Aberdeen, Scotland, 1975, pp. 355–359.
[10] J. Keijsper,An algorithm for packing connectors, J. Combin. Theory Ser. B, 74 (1998), pp.

397–404.
[11] J. G. Oxley, Matroid Theory, Oxford University Press, Oxford, UK, 1992.
[12] V. Ponomarenko, Reduction of jump systems, Houston J. Math., 30 (2004), pp. 27–33.
[13] D. Mayhew and G. F. Royle, Matroids with nine elements, J. Combin. Theory Ser. B, 98

(2008), pp. 415–431.
[14] M. Wild, On Rota’s problem about n bases in a rank n matroid, Adv. Math., 108 (1994), pp.

336–345.
[15] P. Zappa, The Cayley determinant of the determinant tensor and the Alon–Tarsi conjecture,

Adv. in Appl. Math., 19 (1997), pp. 31–44.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 372–383

6-CRITICAL GRAPHS ON THE KLEIN BOTTLE∗

KEN-ICHI KAWARABAYASHI† , DANIEL KRÁL’‡ , JAN KYNČL§ , AND

BERNARD LIDICKÝ¶

Abstract. We provide a complete list of 6-critical graphs that can be embedded on the Klein
bottle settling a problem of Thomassen [J. Combin. Theory Ser. B, 70 (1997), pp. 67–100, Problem
3]. The list consists of nine nonisomorphic graphs which have altogether 18 nonisomorphic 2-cell
embeddings and one embedding that is not 2-cell.

Key words. graphs on surfaces, 6-critical graphs, Klein bottle, Heawood formula

AMS subject classifications. 05C15, 05C10

DOI. 10.1137/070706835

1. Introduction. We study colorings of graphs embedded on surfaces. It is well
known [13] that the chromatic number of a graph embedded on a surface of Euler
genus g is bounded by the Heawood number H(g) =

⌊7+
√

24g+1
2

⌋
. The Dirac map

color theorem [5, 6] asserts that a graph G embedded on a surface of Euler genus
g �= 0, 2 is (H(g)− 1)-colorable unless G contains a complete graph of order H(g) as
a subgraph. Dirac’s theorem can be rephrased using the language of critical graphs
as follows: the only H(g)-critical graph that can be embedded on a surface of Euler
genus g �= 0, 2 is the complete graph of order H(g). Recall that a graph G is k-critical
if G is k-chromatic and every proper subgraph of G is (k − 1)-colorable.

In fact, Dirac [5] showed that there are only finitely many k-critical graphs, k ≥ 8,
that can be embedded on a fixed surface. The number of 7-critical graphs that can
be embedded on a fixed surface is also finite by classical results of Gallai [11, 12] as
pointed out by Thomassen in [16]. Later, Thomassen [18] established that the number
of 6-critical graphs that can be embedded on any fixed (orientable or nonorientable)
surface is finite (see also [10] for related results on 7-critical graphs). This result is
best possible as there are infinitely many k-critical graphs, 3 ≤ k ≤ 5, that can be
embedded on any fixed surface different from the plane [9].

In this paper, we focus on 6-critical graphs on surfaces, motivated by Problem 3
from [18]. As every plane graph is 4-colorable [1, 2, 14], there are no 6-critical graphs

∗Received by the editors October 30, 2007; accepted for publication (in revised form) September 9,
2008; published electronically January 14, 2009. A significant part of these results was obtained
during a DIMACS-DIMATIA REU project of Jan Kynčl and Bernard Lidický (supervised by Daniel
Král’) during their stay at DIMACS in June 2007. Their work was partially supported by KONTAKT
grant ME 886.

http://www.siam.org/journals/sidma/23-1/70683.html
†National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Japan (k keniti@nii.

ac.jp). This author’s research was partly supported by Japan Society for the Promotion of Science,
Grant-in-Aid for Scientific Research, by C & C Foundation, by Kayamori Foundation, and by Inoue
Research Award for Young Scientists.

‡Institute for Theoretical Computer Science (ITI), Faculty of Mathematics and Physics, Charles
University, Malostranské náměst́ı 25, 118 00 Prague 1, Czech Republic (kral@kam.mff.cuni.cz). ITI
is supported as project 1M0545 by the Czech Ministry of Education.

§Department of Applied Mathematics and Institute for Theoretical Computer Science (ITI), Fac-
ulty of Mathematics and Physics, Charles University, Malostranské náměst́ı 25, 118 00 Prague 1,
Czech Republic (kyncl@kam.mff.cuni.cz).

¶Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University,
Malostranské náměst́ı 25, 118 00 Prague 1, Czech Republic (bernard@kam.mff.cuni.cz).

372

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

6-CRITICAL GRAPHS ON THE KLEIN BOTTLE 373

in the plane. The Dirac map color theorem implies that the complete graph of order
six is the only 6-critical projective planar graph. Thomassen [16] classified 6-critical
toroidal graphs: the only 6-critical graphs that can be embedded on the torus are
the complete graph K6, the join of the cycles C3 and C5 (recall that the join of two
graphs G1 and G2 is the graph obtained by adding all edges between G1 and G2),
the graph obtained by applying Hajos’s construction to two copies of K4 and then by
adding K2 joined to all other vertices, and the third distance power of the cycle C11

(which is further denoted by T11). Thomassen posed as a problem [16, Problem 3]
whether the toroidal 6-critical graphs distinct from T11 and the graph obtained by
applying Hajos’s construction to two copies of K6 are the only 6-critical graphs that
can be embedded on the Klein bottle.

We refute Thomassen’s conjecture by exhibiting the list of all nine 6-critical graphs
that can be embedded on the Klein bottle (the graphs are depicted in Figure 7.1).
The same result was independently established by Chenette et al. [3]. The two proofs
are different (and we thus agreed to publish two separate papers): Chenette et al.
analyzed 6-critical graphs on the Klein bottle to establish the existence of a vertex w
whose reduction yields a reduced graph with small faces only. Our approach is based
on a systematic generating of all embeddings of 6-critical graphs on the Klein bottle
from the complete graph K6 and is computer-assisted (unlike the proof of Chenette
et al.). We also obtain the list of all nonisomorphic embeddings of 6-critical graphs
on the Klein bottle. We believe that our proof can be decomputerized (at the expense
of massive case analysis) but we decided not to do so in light of the proof of Chenette
et al. which is significantly shorter than our decomputerized proof would be.

As we have mentioned, our proof is computer-assisted. In this paper, we outline
the main concepts we use and explain the procedure used to generate all embeddings of
6-critical graphs on the Klein bottle. In order to verify the correctness of our programs,
we have separately prepared two different programs implementing our procedures and
compared their outputs. Further details of the implementation and the source code of
one of our programs can be found at http://kam.mff.cuni.cz/∼bernard/klein. In this
paper, we establish the correctness of used algorithms and refer the reader to the web
page for details on implementation. The outcome of our programs is summarized in
section 7 where we also briefly discuss the algorithmic corollaries of our results.

2. 6-critical graphs. In this section, we observe basic properties of 6-critical
graphs on the Klein bottle. Euler’s formula implies that the average degree of a graph
embedded on the Klein bottle is at most six. As Sasanuma [15] established that every
6-regular graph that can be embedded on the Klein bottle is 5-colorable, we have the
following proposition (observe that no 6-critical graph contains a vertex of degree four
or less).

Proposition 2.1. The minimum degree of every 6-critical graph on the Klein
bottle is five.

Let G be a 6-critical graph on the Klein bottle and v a vertex of degree five in
G. Further let vi, 1 ≤ i ≤ 5, be the neighbors of v in G. If all vertices vi and vj ,
1 ≤ i < j ≤ 5, are adjacent, the vertices v and vi, 1 ≤ i ≤ 5, form a clique of order
six in G. As G is 6-critical, G must then be a complete graph of order six. Hence, we
can conclude the following.

Proposition 2.2. Let G be a 6-critical graph embedded on the Klein bottle. If
G is not a complete graph of order six, then G contains a vertex v of degree five that
has two nonadjacent neighbors v′ and v′′.

We now introduce the following reduction: let G be a 6-critical graph embedded

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

374 KAWARABAYASHI, KRÁL’, KYNČL, AND LIDICKÝ

on the Klein bottle that is not isomorphic to K6 and let v, v′, and v′′ be three vertices
as in Proposition 2.2. G|vv′v′′ is the graph obtained from G by removing all the edges
incident with v except for vv′ and vv′′ and contracting the edges vv′ and vv′′ to a
new vertex w. The obtained graph can have parallel edges, but it does not have loops
as the vertices v′ and v′′ are not adjacent. Observe that the graph G|vv′v′′ is not
5-colorable: otherwise, consider a 5-coloring of G|vv′v′′ and color the vertices v′ and
v′′ with the color assigned to the vertex w. Next, extend the 5-coloring to v—this is
possible since v has five neighbors and at least two of them (v′ and v′′) have the same
color. Hence, we obtain a 5-coloring of G.

Since G|vv′v′′ has no 5-coloring, it contains a 6-critical subgraph—this subgraph
will be denoted by |G|vv′v′′|, and we say that G can be reduced to |G|vv′v′′|. Observe
that the reduction operation can again be applied to |G|vv′v′′| until a graph that is
isomorphic to K6 is obtained.

We continue with a simple observation on the graph |G|vv′v′′|.
Proposition 2.3. Let G be a 6-critical graph embedded on the Klein bottle, v a

vertex of degree five in G, and v′ and v′′ two nonadjacent neighbors of v. The graph
|G|vv′v′′| contains the vertex w obtained by contracting the path v′vv′′. Moreover, the
vertex w has a neighbor w′ in |G|vv′v′′| that is a neighbor of v′ in G but not of v′′

and it also has a neighbor w′′ that is a neighbor of v′′ but not of v′ in G.
Proof. If |G|vv′v′′| does not contain the vertex w, then |G|vv′v′′| is a subgraph

of G \ {v, v′, v′′}. Since both |G|vv′v′′| and G are 6-critical graphs, this is impossible.
Hence, |G|vv′v′′| contains the vertex w.

Assume now that |G|vv′v′′| contains no vertex w′ as described in the statement
of the proposition; i.e., all neighbors of w in |G|vv′v′′| are neighbors of v′′ in G. This
implies that |G|vv′v′′| is isomorphic to a subgraph of G \ {v, v′} (view the vertex v′′

as w), which is impossible since both G and |G|vv′v′′| are 6-critical. A symmetric
argument yields the existence of a vertex w′′.

The strategy of our proof is to generate all 6-critical graphs by reversing the
reduction operation. More precisely, we choose a vertex w of a 6-critical graph G and
partition the neighbors of w into two nonempty sets W1 and W2. We next replace
the vertex w with a path w1ww2 and join the vertex wi, i = 1, 2, to all vertices in
the set Wi. Let G[w,W1,W2] be the resulting graph. We say that G[w,W1,W2] is
obtained by expanding the graph G. By Proposition 2.3, the following proposition
holds (choose w as in the statement of the proposition).

Proposition 2.4. Let G be a 6-critical graph embedded on the Klein bottle and
let v be a vertex of degree five of G with two nonadjacent neighbors v′ and v′′. The
graph G′ = |G|vv′v′′| contains a vertex w such that G′[w,W1,W2] ⊆ G for some
partition W1 and W2 of the neighbors of the vertex w.

3. Minimal graphs. Our plan is to generate all 6-critical graphs from the com-
plete graph K6 by expansions and insertions of new graphs into faces. In this section,
we describe the graphs we have to insert into the faces to be sure that we have gen-
erated all 6-critical graphs.

A plane graph G with the outer face bounded by a cycle C of length k is said to
be k-minimal if for every edge e ∈ E(G)\C, there exists a proper precoloring ϕe of C
with five colors that cannot be extended to G and that can be extended to a proper
5-coloring of G\ e (the graph G with the edge e removed). Note that the precolorings
ϕe can differ for various choices of e.

The cycle Ck of length k is k-minimal (the definition vacuously holds); we say
that Ck is a trivial k-minimal graph. For k = 3, it is easy to observe that C3 is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

6-CRITICAL GRAPHS ON THE KLEIN BOTTLE 375

Fig. 3.1. The list of all 6-minimal graphs.

the only 3-minimal graph since the colors of the vertices of C3 must differ and every
planar graph is 5-colorable. Similarly, every precoloring of a chordless C4 can be
extended to a 5-coloring of its interior and and thus C4 and C4 with a chord are the
only 4-minimal graphs. As for k = 5, Thomassen [16] showed that if G is a plane
graph with the outer face bounded by a cycle C of length five and C is chordless, then
a precoloring of C with five colors can be extended to G unless G is the 5-wheel and
the vertices of C are precolored with all five colors. Hence, C5, C5 with one chord,
C5 with two chords, and the 5-wheel are the only 5-minimal graphs. The analogous
classification result of Thomassen [16] implies that the only 6-minimal graphs (up to
an isomorphism) are those depicted in Figure 3.1; see also [4].

The following lemma justifies the use of k-minimal graphs in our considerations.
Lemma 3.1. Let G be a 6-critical graph embedded on the Klein bottle. If C is a

contractible cycle of G of length k, then the subgraph G′ of G inside the cycle C (G′

includes the cycle C itself) is k-minimal.
Proof. We verify that G′ is k-minimal. Let e be an edge of G′ that is not contained

in C. Let ϕe be the 5-coloring of G \ e restricted to the cycle C. Clearly, ϕe cannot
be extended to G′ but can be extended to G′ \ e.

In the light of Lemma 3.1, our next goal is to find all k-minimal graphs for small
values of k. The following proposition enables us to systematically generate all k-
minimal graphs for any fixed k from the lists of k′-minimal graphs for 3 ≤ k′ < k.

Proposition 3.2. If G is a nontrivial k-minimal graph, k ≥ 3, with the outer
cycle C, then either the cycle C contains a chord or G contains a vertex v adjacent to
at least three vertices of the cycle C. In addition, if C′ is a cycle of G of length k′ and
G′ is the subgraph of G bounded by the cycle C′ (inclusively), then G′ is a k′-minimal
graph.

Proof. First assume that C is chordless and each vertex v of G is adjacent to at
most two vertices of C. Let G′ be the subgraph of G induced by the vertices not lying
on C. We consider the following list coloring problem: each vertex of G′ not incident
with the outer face receives a list of all five available colors, and each vertex incident
with the outer face is given a list of the colors distinct from the colors assigned to its
neighbors on C in G. By our assumption, each such vertex of G′ has a list of at least
three colors. A classical list coloring result of Thomassen [17] on list 5-colorings of
planar graphs yields that G′ has a coloring from the constructed lists. Hence, every
precoloring of the boundary of G can be extended to the whole graph G, and thus G
cannot be k-minimal. This establishes the first part of the proposition. The proof of
the fact that every cycle of length k′ bounds a k′-minimal subgraph is very analogous
to that of Lemma 3.1 and is omitted.

Proposition 3.2 suggests the following algorithm for generating k-minimal graphs.
Assume that we have already generated all �-minimal graphs for � < k and let M�

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

376 KAWARABAYASHI, KRÁL’, KYNČL, AND LIDICKÝ

Table 3.1

The numbers of nonisomorphic k-minimal graphs for 3 ≤ k ≤ 10 and the largest number nk of
internal vertices of a k-minimal graph.

k 3 4 5 6 7 8 9 10
|Mk| 1 2 4 14 46 291 2124 19876
nk 0 0 1 3 4 6 7 9

be the list of all �-minimal graphs. Note that we have explicitly described the lists
M3, M4, M5, and M6. The list Mk is then generated by the following procedure (the
vertices of outer boundary are denoted by v1, . . . , vk):
M_k := { the cycle C_k on v_1,...,v_k }
repeat
M’ := M_k
forall 1 <= a < b <= k with b-a>=2 do

G := the cycle C_k on v_1,...,v_k with the chord v_av_b
forall G_1 in M_{b-a+1} and G_2 in M_{k+a-b+1} do
H := G with G_1 and G_2 pasted into its faces
if H is k-minimal and H is not in M_k then
add H to M_k

endfor
endfor
forall 1 <= a < b < c <= k do

G := the cycle C_k on v_1,...,v_k with the vertex v
adjacent to v_a, v_b and v_c

forall G_1 in M_{b-a+2}, G_2 in M_{c-b+2} and
G_3 in M_{k+a-c+2} do

H := G with G_1, G_2 and G_3 pasted into its faces
if H is k-minimal and H is not in M_k then
add H to M_k

endfor
endfor

until M_k = M’

Proposition 3.2 implies that the list Mk contains all k-minimal graphs after the ter-
mination of the procedure: if G is a k-minimal graph, it contains either a chord or a
vertex v adjacent to three vertices on the outer cycle and the graphs inside the faces
of the skeleton formed by the outer cycle and the chord/edges adjacent to v are also
minimal. The verifications of whether the graph G is isomorphic to one of the graphs
in Mk and whether G is k-minimal are straightforward, and the reader can find the
details in the program available at http://kam.mff.cuni.cz/∼bernard/klein.

The numbers of nonisomorphic k-minimal graphs for 3 ≤ k ≤ 10 can be found
in Table 3.1. We finish this section by justifying our approach with showing that the
number of k-minimal graphs is finite for every k; in particular, the procedure always
terminates.

Proposition 3.3. The number of k-minimal graphs is finite for every k ≥ 3.
Proof. Let Ak be the number of k-minimal graphs and Ak,� the number of k-

minimal graphs G such that exactly � precolorings of the boundary of G with five
colors can be extended to G. Clearly, Ak,� = 0 for � > 5 · 4k−1 since there are at
most 5 · 4k−1 proper precolorings of the boundary of G. We prove that the numbers
Ak,� are finite by the induction on 5k + �. More precisely, we establish the following

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

6-CRITICAL GRAPHS ON THE KLEIN BOTTLE 377

Fig. 3.2. The notation used in the proof of Proposition 3.2.

formula:

Ak,� ≤ k ·
k−1∑
i=3

4i(k + 2− i)AiAk+2−i(3.1)

+ k ·
k−1∑
i=4

k+3−i∑
i′=4

8ii′(k + 6− i− i′)AiAi′Ak+6−i−i′(3.2)

+ k

�−1∑
i=1

2kAk,i.(3.3)

Fix k and �. By Proposition 3.2, every k-minimal graph G with � extendable precol-
orings of its boundary cycle C contains either a chord or a vertex v adjacent to three
vertices on C. In the former case, the cycle C and the chord form cycles of length
i and k + 2 − i. Since these cycles bound i-minimal and (k + 2 − i)-minimal graphs
by Proposition 3.2, the number of such k-minimal graphs is at most AiAk+2−i. After
considering at most k possible choices of the chord (for fixed i) and 2i and 2(k+2− i)
possible rotations and/or reflections, we obtain the term (3.1).

Let us analyze the case that G contains a vertex v adjacent to three vertices on C.
If the neighbors of v are not three consecutive vertices of C, then the edges between
v and its neighbors delimit cycles of lengths i ≥ 4, i′ ≥ 4, and k + 6 − i − i′. These
cycles bound i-minimal, i′-minimal, and (k + 6 − i − i′)-minimal graphs, and their
number (including different rotations and reflections) is estimated by the term (3.2).

Assume that the neighbors of v on C are consecutive. Let v′, v′′, and v′′′ be the
neighbors of v and let G′ be the subgraph of G inside the cycle C′, where C′ is the
cycle C with the path v′v′′v′′′ replaced with the path v′vv′′′ (see Figure 3.2). Fix a
precoloring ϕ0 of the vertices of C except for v′′. Let α be the number of ways in
which ϕ0 can be extended to v that can also be extended to G′. Similarly, α′ is the
number of ways in which ϕ0 can be extended to v′′ that can also be extended to G.

We show that α ≤ α′. If α = 0, then α′ = 0. If α = 1, then α′ > 1. Finally, if
α > 1, then α ≤ α′ as any extension of ϕ0 to C also extends to G (note that α′ is 3
or 4 depending on ϕ0(v′) and ϕ0(v′′′)). We conclude that the number of precolorings
of C′ that can be extended to G′ does not exceed the number of precolorings of C
extendable to G.

Let ϕ be the precoloring of C that cannot be extended to G but that can be
extended to G \ vv′′ and let ϕ0 be the restriction of ϕ to C \ v′′. It is easy to infer
that the value of α for this particular precoloring ϕ0 must be equal to one. Hence,
the number of precolorings of C′ that can be extended to G′ is strictly smaller than
the number of precolorings of C that can be extended to G. Since G′ is a k-minimal
graph with fewer precolorings of the boundary that can be extended to G′ than the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

378 KAWARABAYASHI, KRÁL’, KYNČL, AND LIDICKÝ

number of precolorings of C extendable to G, the number of k-minimal graphs G with
a vertex v with three consecutive neighbors on C including their possible rotations
and reflections is estimated by (3.3). This finishes the proof of the inequality and thus
the proof of the whole proposition.

4. Embeddings of K6 on the Klein bottle. Subsequent applications of our
reduction procedure to a 6-critical graph on the Klein bottle eventually lead to an
embedding of the complete graph K6. The resulting embedding of K6 is either a 2-cell
embedding or not. Recall that an embedding is 2-cell if every face is homeomorphic
to a disc.

If the resulting embedding of K6 is not 2-cell, the embedding must be isomorphic
to the embedding obtained from the unique embedding ofK6 in the projective plane by
inserting a cross-cap into one of its faces. Otherwise, the embedding is isomorphic to
one of the seven embeddings of K6 depicted in Figure 4.1. All 2-cell embeddings ofK6

on the Klein bottle can be easily generated by a simple program that ranges through all
2-cell embeddings of K6 on surfaces: for each vertex v of K6, the program generates
all cyclic permutations of the other vertices (corresponding to the order in which
the vertices appear around v) and chooses which edges alter the orientation. Each
such pair of cyclic permutations and alterations of orientations determines uniquely
both the embedding and the surface. It is straightforward to compute the genus of
the surface and test whether the constructed embedding is not isomorphic to one of
the previously found embeddings. The source code of the program can be found at
http://kam.mff.cuni.cz/∼bernard/klein.

Fig. 4.1. The list of all seven nonisomorphic 2-cell embeddings of K6 on the Klein bottle.

5. Expansions of 2-cell embeddings of K6. In this section, we focus on
embeddings of 6-critical graphs that can be reduced to a 2-cell embedding of K6.
All such 6-critical graphs can easily be generated, using the expansion operation and
Lemma 3.1, by the following procedure:
G_1, G_2, G_3, G_4, G_5, G_6, G_7 :=
non-isomorphic embeddings of K_6 on the Klein bottle

k := 7
i := 1
while i <= k do
for all vertices w of G_i do

for all partitions of N(w) into W_1 and W_2 do
H_0 := G[w,W_1,W_2]
for all H obtained from H_0 by pasting

minimal graphs into its faces do

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

6-CRITICAL GRAPHS ON THE KLEIN BOTTLE 379

Fig. 5.1. The list of 11 nonisomorphic embeddings of 6-critical graphs on the Klein bottle that
are distinct from K6. The graphs are drawn in the plane with two cross-caps.

if H is not isomorphic to any of G_1,..., G_k then
k := k + 1; G_k := H

endfor
endfor

endfor
i := i + 1
done { while }

output G_1,..., G_k
The source code of the program implementing the above procedure can be found

at http://kam.mff.cuni.cz/∼bernard/klein. The program eventually terminates out-
putting 11 embeddings of 6-critical graphs on the Klein bottle, which are depicted in
Figure 5.1, in addition to the seven 2-cell embeddings of K6. Hence, Proposition 2.4
and Lemma 3.1 now yield the following lemma.

Lemma 5.1. Let G be an embedding of a 6-critical graph on the Klein bottle
that is distinct from K6. If G can be sequentially reduced to a 2-cell embedding of
K6 on the Klein bottle, then G is isomorphic to one of the 11 embeddings depicted in
Figure 5.1.

6. Expansions of non–2-cell embedding of K6. As we have already analyzed
embeddings of 6-critical graphs that can be reduced to a 2-cell embedding of K6 on
the Klein bottle, it remains to analyze 6-critical graphs that can be reduced to a non–
2-cell embedding of K6. We eventually show that all such embeddings are isomorphic
to one of those depicted in Figure 5.1.

Lemma 6.1. Let G be a 6-critical graph embedded on the Klein bottle. If G
can be reduced to a non–2-cell embedding of K6, then G is isomorphic to one of the
embeddings depicted in Figure 5.1.

Proof. Let G be a 6-critical graph on the Klein bottle with the smallest order
that can be reduced to a non–2-cell embedding of K6 and that is not isomorphic to
any of the embeddings in Figure 5.1. Observe that any possible reduction of G yields
a non–2-cell embedding of K6 on the Klein bottle (otherwise, the reduced graph is a
smaller graph missing in Figure 5.1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

380 KAWARABAYASHI, KRÁL’, KYNČL, AND LIDICKÝ

Fig. 6.1. The unique embedding of K6 in the projective plane and its two possible expansions.

Let H be the unique embedding of K6 in the projective plane and w a vertex of H .
By Proposition 2.4, G contains H [w,W1,W2] for some partition of the neighborhood
of w into nonempty sets W1 and W2. By symmetry, |W1| = 1 or |W1| = 2. We first
analyze the case that |W1| = 1, i.e., G contains the embedding drawn in the middle
of Figure 6.1 as a subgraph. The face which is not 2-cell is drawn using the gray color
(the choice is unique since a 6-critical graph cannot contain a separating triangle).

Let G15 be the subgraph of G contained inside the cycle C15 = ww′w′′w1w5 and
let G12 be the subgraph contained inside the cycle C12 = ww′w′′w1w2. By Lemma 3.1,
G12 is either the cycle C12 with zero, one, or two chords or a 5-wheel bounded by the
cycle C12. The interiors of the remaining 2-cell faces of H [w,W1,W2] must be empty
(since they are triangles).

Assume that G12 �= C12. The graph G without the interior of the cycle C12 is
5-colorable since G is 6-critical. Observe that the vertices w and w1 must get the
same color in any such 5-coloring (since adding an edge ww1 to G would form a clique
of order six). However, it is always possible to permute the colors of the vertices of
G15 preserving the colors of w, w1, and w5 in such a way that the 5-coloring can be
extended to G12. Hence, G12 = C12.

Since G is 6-critical, the graph G15 is 5-colorable. Moreover, the vertices w and
w1 receive distinct colors in every 5-coloring of G15: if the vertices w and w1 have the
same color, the 5-coloring of G0 can be extended to G.

Let G′ be the graph obtained from G15 by identifying the vertices w and w1.
Since G15 can be drawn in the projective plane with the cycle C15 bounding a face,
G′ can also be drawn in the projective plane. As no 5-coloring assigns the vertices w
and w1 the same color, G′ contains K6 as a subgraph. Since G does not contain K6

as a subgraph, the subgraph of G′ isomorphic to K6 contains the vertex obtained by
the identification of w and w1. In addition, G′ does not contain any edges except for
the edges of the complete graph and the path ww5w1 (removing any additional edge
from G would yield a graph that is also not 5-colorable contrary to our assumption
that G is 6-critical). We conclude that G15 is composed of

1. the path ww5w1, a complete graph on a 5-vertex set X such that {w′, w′′} ⊂
X and w5 �∈ X , and such that N(w) and N(w1) partition X , or

2. the path ww5w1, a complete graph on a 5-vertex set X , {w′, w′′, w5} ⊂ X ,
such that N(w) \ {w5} and N(w1) \ {w5} partition X \ {w5}.

In the former case, the graph G is isomorphic to the first or the second embedding
in the first line in Figure 5.1; in the latter case, G is isomorphic to the third or the
fourth embedding in the first line in the figure.

We now assume that |W1| = 2. G[w,W1,W2] is depicted in the right part of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

6-CRITICAL GRAPHS ON THE KLEIN BOTTLE 381

Fig. 6.2. The embeddings obtained in the analysis in the proof of Lemma 6.1.

Figure 6.1. We can also assume that w is not adjacent to w2 in G since otherwise
we could choose W1 = {w1} which would bring us to the previous case. Similarly,
the vertices w, w1, and w5 do not form a triangular face of G. Let C15 be the cycle
ww′w′′w1w5, C23 the cycle ww′w′′w2w3, G15 the subgraph of G inside C15, and G23

the subgraph inside C23. Again, G23 is either the cycle C23 with zero, one, or two
chords or a 5-wheel bounded by C23.

It is straightforward (but tedious) to check that any coloring c of G15 with five
colors extends to a coloring of G unless

• the vertices w and w′′ are assigned the same color in c, or
• all the five vertices w, w′, w′′, w1, and w5 are assigned mutually distinct

colors and G contains edges w3w
′ and w3w

′′ (see the embedding in the left
part of Figure 6.2).

The reader is asked to verify the details.
We first show that there is a coloring ofG15 of the latter type. LetG′ be the graph

obtained from G15 by adding the edge ww′′. Assume that G′ contains a complete
graph of order six as a subgraph. If G23 contains an inner edge e, consider a 5-
coloring of G \ e which exists since G is 6-critical. The coloring must assign the
vertices w and w′′ the same color (since otherwise, c restricted to G15 would also be
a proper coloring of G′). Consequently, none of the vertices wi, 1 ≤ i ≤ 5, can be
assigned the common color of w and w′′, which is impossible since the vertices wi,
1 ≤ i ≤ 5, form a clique. We conclude that G23 is formed by the cycle C23 only. As in
the previous case, we can now establish that G′ is formed by a subgraph isomorphic
to K6 and the path ww5w1w

′′ and that the vertex w′ is contained in the subgraph
isomorphic to K6. This embedding is isomorphic to the first or the last embedding in
the first line of Figure 5.1.

Since G′ does not contain K6 as a subgraph, there is a coloring of G15 with five
colors that assigns w and w′′ distinct colors. Hence, G15 has a coloring assigning all
the vertices w, w′, w′′, w1, and w5 distinct colors and G must be of the type depicted
in the left part of Figure 6.2. Since the vertices w and w2 are not adjacent in G and
the degree of w4 is five, we can consider the graph |G|w4ww2|; let G0 be this graph.
By the choice of G, G0 is a non–2-cell embedding of K6 in the projective plane, and
Proposition 2.3 implies that G0 contains the vertex w0 obtained by contracting the
path ww4w2 in G.

If G0 does not contain the vertex w3, consider a coloring of G15 assigning the
vertices w, w′, w′′, w1, and w5 five distinct colors. This coloring restricted to G0 is a
proper coloring of G0 = K6 with five colors since G0 can contain only the edges w0w

′′

and w0w1 in addition to those contained in G15 (considering the vertices w and w0 to
be the same vertex). Hence, G0 contains the vertex w3. Since the only neighbors of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

382 KAWARABAYASHI, KRÁL’, KYNČL, AND LIDICKÝ

w3 in G|w4ww2 are the vertices w0, w′, w′′, w1, and w5, the vertex set of G0 must be
{w0, w

′, w′′, w1, w5, w3}. In particular, the vertex w5 is adjacent to w′ and w′′ in G.
A symmetric argument applied to |G|w2w

′′w4| implies that w1 is adjacent to w′ and
w′′ in G. This brings us to the embedding depicted in the right part of Figure 6.2,
which is isomorphic to the third embedding in the second line in Figure 5.1.

7. Main result. We now summarize the results obtained in the previous sec-
tions. The discussion in section 4 and Lemmas 5.1 and 6.1 yield the following theorem.

Theorem 7.1. There are nine nonisomorphic 6-critical graphs that can be em-
bedded on the Klein bottle which are depicted in Figure 7.1. The graphs have altogether
a single non–2-cell embedding and 18 nonisomorphic 2-cell embeddings on the Klein
bottle, which are depicted in Figures 4.1 and 5.1.

Fig. 7.1. The list of all nine 6-critical graphs that can be embedded in the Klein bottle. Some
of the edges are only indicated in the figure: the straight edges between two parts represent that the
graph is obtained as the join of the two parts and the vertices with “stars” of edges are adjacent to
all vertices in the graph.

Immediate corollaries of Theorem 7.1 are the following.
Corollary 7.2. Let G be a graph that can be embedded on the Klein bottle. G

is 5-colorable unless it contains one of the nine graphs depicted in Figure 7.1 as a
subgraph.

Corollary 7.3. Let G be a graph embedded on the Klein bottle. G is 5-colorable
unless it contains a subgraph with embedding isomorphic to one of the 19 embeddings
depicted in Figures 4.1, 5.1, and 6.1.

Eppstein [7, 8] showed that testing the existence of a subgraph isomorphic to a
fixed graph H of a graph embedded on a fixed surface can be solved in linear time. As
we have found the explicit list of 6-critical graphs on the Klein bottle, we also obtain
the following corollary.

Corollary 7.4. There is an explicit linear-time algorithm for testing whether a
graph embedded on the Klein bottle is 5-colorable.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

6-CRITICAL GRAPHS ON THE KLEIN BOTTLE 383

REFERENCES

[1] K. Appel and W. Haken, Every planar map is four colorable, Part I. Discharging, Illinois J.
Math., 21 (1977), pp. 429–490.

[2] K. Appel, W. Haken, and J. Koch, Every planar map is four colorable, Part II. Reducibility,
Illinois J. Math., 21 (1977), pp. 491–567.

[3] N. Chenette, L. Postle, N. Streib, R. Thomas, and C. Yerger, Five-coloring graphs on
the Klein bottle, submitted.

[4] M. DeVos, K.-I. Kawarabayashi, and B. Mohar, Locally planar graphs are 5-choosable, J.
Combin. Theory Ser. B, 98 (2008), pp. 1215–1232.

[5] G. A. Dirac, Map colour theorems related to the Heawood colour formula, J. London Math.
Soc., 31 (1956), pp. 460–471.

[6] G. A. Dirac, A theorem of R. L. Brooks and a conjecture of H. Hadwiger, Proc. London Math.
Soc. (3), 7 (1957), pp. 161–195.

[7] D. Eppstein, Subgraph isomorphism in planar graphs and related problems, in Proceedings of
the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), San Francisco,
CA, 1995, pp. 632–640.

[8] D. Eppstein, Subgraph isomorphism in planar graphs and related problems, J. Graph Algo-
rithms Appl., 3 (1999), pp. 1–27.

[9] S. Fisk, The non-existence of colorings, J. Combin. Theory Ser. B, 24 (1978), pp. 247–248.
[10] S. Fisk and B. Mohar, Coloring graphs without short non-bounding cycles, J. Combin. Theory

Ser. B, 60 (1994), pp. 268–276.
[11] T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hungar. Acad. Sci., 8 (1963), pp. 165–192.
[12] T. Gallai, Kritische Graphen II, Publ. Math. Inst. Hungar. Acad. Sci., 8 (1963), pp. 373–395.
[13] P. J. Heawood, Map colour theorem, Quart. J. Pure Appl. Math., 24 (1890), pp. 332–338.
[14] N. Robertson, D. P. Sanders, P. D. Seymour, and R. Thomas, The four-colour theorem,

J. Combin. Theory Ser. B, 70 (1997), pp. 2–44.
[15] N. Sasanuma, Chromatic numbers of 6-regular graphs on the Klein bottle, Discrete Math., to

appear.
[16] C. Thomassen, Five-coloring graphs on the torus, J. Combin. Theory Ser. B, 62 (1994), pp. 11–

33.
[17] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B, 62 (1994),

pp. 180–181.
[18] C. Thomassen, Color-critical graphs on a fixed surface, J. Combin. Theory Ser. B, 70 (1997),

pp. 67–100.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 384–400

TORIC SURFACE CODES AND MINKOWSKI LENGTH
OF POLYGONS∗

IVAN SOPRUNOV† AND JENYA SOPRUNOVA‡

To our teacher Askold Khovanskii on the occasion of his 60th anniversary, with love

Abstract. In this paper we prove new lower bounds for the minimum distance of a toric surface
code CP defined by a convex lattice polygon P ⊂ R2. The bounds involve a geometric invariant L(P),
called the full Minkowski length of P . We also show how to compute L(P) in polynomial time in the
number of lattice points in P .

Key words. evaluation codes, toric codes, Minkowski sum

AMS subject classifications. 94B27, 14G50, 52B20

DOI. 10.1137/080716554

Introduction. Consider a convex polygon P in R
2 whose vertices lie in the

integer lattice Z
2. It determines a vector space LK(P) (over a field K) of polynomials

f(t1, t2) whose monomials correspond to the lattice points in P :

LK(P) = spanK{tm1
1 tm2

2 | (m1,m2) ∈ P ∩ Z
n}.

Let Fq be a finite field and Fq its algebraic closure. The toric surface code CP , first
introduced by Hansen in [6], is defined by evaluating the polynomials in LFq(P) at all
of the points (t1, t2) in the algebraic torus (F∗

q)
2. To be more precise, CP is a linear

code whose codewords are the strings (f(t1, t2) | (t1, t2) ∈ (F∗
q)2) for f ∈ LFq(P). It is

convenient to assume that P is contained in the square K2
q = [0, q− 2]2 so that all of

the monomials in LFq(P) are linearly independent over Fq. Thus CP has block length
(q − 1)2 and the dimension equal to the number of the lattice points in P .

Note that the weight of each nonzero codeword in CP is the number of points
(t1, t2) ∈ (F∗

q)2 where the corresponding polynomial does not vanish. Therefore, the
minimum distance of CP (which is the minimum weight for linear codes) equals

d(CP) = (q − 1)2 − max
0�=f∈LFq (P)

Z(f),

where Z(f) is the number of zeros (i.e., points of vanishing) in (F∗
q)

2 of f .
The name toric surface code comes from the fact that P defines a toric surface

X over Fq (strictly speaking the fan that defines X is a refinement of the normal fan
of P), where L

Fq
(P) can be identified with the space of global sections of a semiample

divisor on X (see, for example, [5]). This allows one to exploit algebraic geometric
techniques to produce results about the minimum distance of CP . In particular, Little
and Schenck in [10] used intersection theory on toric surfaces to come up with the
following general idea: If q is sufficiently large, then polynomials f ∈ LFq(P) with

∗Received by the editors February 28, 2008; accepted for publication (in revised form) Septem-
ber 15, 2008; published electronically January 14, 2009.

http://www.siam.org/journals/sidma/23-1/71655.html
†Department of Mathematics, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115

(i.soprunov@csuohio.edu).
‡Department of Mathematical Sciences, Kent State University, Summit Street, Kent, OH 44242

(soprunova@math.kent.edu).

384

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TORIC CODES AND MINKOWSKI LENGTH OF POLYGONS 385

more absolutely irreducible factors will necessarily have more zeros in (F∗
q)

2 (see [10,
Proposition 5.2]).

In this paper we expand this idea to produce explicit bounds for the minimum
distance of CP in terms of certain geometric invariant L(P), which we call the full
Minkowski length of P . Essentially L(P) tells you the largest possible number of
absolutely irreducible factors a polynomial f ∈ LFq(P) can have, but it derives it
from the geometry of the polygon P (see Definition 1.1). The number L(P) is easily
computable—we give a simple algorithm which is polynomial in the number of lattice
points in P . Moreover, we obtain a description of the factorization f = f1 · · · fL(P)

for f ∈ LFq(P) with the largest number of factors. More precisely, in Proposition 2.3
we show that the Newton polygon Pfi (which is the convex hull of the exponents of
the monomials in fi) is either a primitive segment, a unit simplex, or a triangle with
exactly one interior and three boundary lattice points, called an exceptional triangle.
This description enables us to prove the following bound.

Theorem 1. Let P ⊂ K2
q be a lattice polygon with area A and full Minkowski

length L. Then for q ≥ max
(
23,
(
c+

√
c2 + 5/2

)2), where c = A/2 − L + 9/4, the
minimum distance of the toric surface code CP satisfies

d(CP) ≥ (q − 1)2 − L(q − 1)− �2√q�+ 1.

The condition that no factorization f = f1 · · · fL(P) contains an exceptional tri-
angle (as the Newton polygon of one of the factors) is geometric and can be easily
checked for any given P (we provide a simple algorithm for this which is polynomial
in the number of lattice points in P). In this case we have a better bound for the
minimum distance of the toric surface code.

Theorem 2. Let P ⊂ K2
q be a lattice polygon with area A and full Minkowski

length L. Under the above condition on P , for q ≥ max
(
37,
(
c+
√
c2 + 2

)2), where
c = A/2− L+ 11/4, the minimum distance of the toric surface code CP satisfies

d(CP) ≥ (q − 1)2 − L(q − 1).

We remark that our thresholds for q, where the bounds begin to hold, are much
smaller than the ones in Little and Schenck’s result (see [10, Proposition 5.2]).

Although, as mentioned above, the minimum distance problem for toric codes
is tightly connected to toric varieties, our methods are geometric and combinatorial
and do not use algebraic geometry, except for the Hasse–Weil bound adapted to toric
surfaces (see section 2.2). In section 1 we define the full Minkowski length L(P) and
establish combinatorial properties of polygons with L(P) = 1, 2. In section 2 we give
a proof of Theorems 1 and 2. Section 3 is devoted to the above mentioned algorithms
for computing L(P) and determining the presence of an exceptional triangle. Finally,
in section 4 we give a detailed analysis of three toric surface codes which illustrates
our methods.

1. Full Minkowski length of polytopes.

1.1. Minkowski sum. Let P andQ be convex polytopes in R
n. Their Minkowski

sum is

P +Q = {p+ q ∈ R
n | p ∈ P, q ∈ Q},

which is again a convex polytope. Figure 1 shows the Minkowski sum of a triangle
and a square.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

386 IVAN SOPRUNOV AND JENYA SOPRUNOVA

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���
���
���

���
���
���

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

P Q P + Q

Fig. 1. The Minkowski sum of two polygons.

Let f be a Laurent polynomial in K[t±1
1 , . . . , t±1

n] (for some field K). Then its
Newton polytope Pf is the convex hull of the exponent vectors of the monomials
appearing in f . Thus Pf is a lattice polytope as its vertices belong to the integer
lattice Z

n ⊂ R
n. Note that if f, g ∈ K[t±1

1 , . . . , t±1
n], then the Newton polytope of

their product Pfg is the Minkowski sum Pf + Pg. A primitive lattice segment E
is a line segment whose only lattice points are its endpoints. The difference of the
endpoints is a vector vE whose coordinates are relatively prime (vE is defined up to a
sign). A polytope which is the Minkowski sum of primitive lattice segments is called
a (lattice) zonotope.

The automorphism group of the lattice is the group of affine unimodular trans-
formations, denoted by AGL(n,Z), which consists of translations by an integer vector
and linear transformations in GL(n,Z). Affine unimodular transformations correspond
to monomial changes of variables in K[t±1

1 , . . . , t±1
n] and preserve the zero set of f in

the algebraic torus (K∗)n.

1.2. Full Minkowski length. Let P be a lattice polytope in R
n. Consider a

Minkowski decomposition

P = P1 + · · ·+ P�

into lattice polytopes Pi of positive dimension. Clearly, there are only finitely many
such decompositions. We let �(P) be the largest number of summands in such decom-
positions of P , and call it the Minkowski length of P .

Definition 1.1. The full Minkowski length of P is the maximum of the Minkowski
lengths of all subpolytopes Q in P ,

L(P) := max{�(Q) |Q ⊆ P}.

A subpolytope Q ⊆ P is called maximal for P if �(Q) = L(P). A Minkowski decompo-
sition of Q into L(P) summands of positive dimension will be referred to as a maximal
(Minkowski) decomposition in P.

Here are a few simple properties of L(P) and maximal subpolytopes.
Proposition 1.2. Let P , P1, P2, and Q be lattice polytopes in R

n.
(1) L(P) is AGL(n,Z)-invariant.
(2) L(P) ≥ 1 if and only if dim(P) > 0.
(3) If P1 + P2 ⊆ P , then L(P1) + L(P2) ≤ L(P).
(4) If Q is maximal for P , then Q contains a zonotope Z maximal for P .
Proof. The first three statements are trivial. For the fourth one, note that if

Q = Q1 + · · ·+QL(P)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TORIC CODES AND MINKOWSKI LENGTH OF POLYGONS 387

is a maximal Minkowski decomposition in P , then by replacing each Qi with one of
its edges we obtain a zonotope Z ⊆ Q with �(Z) ≥ L(P). But Z ⊆ P , so �(Z) =
L(P).

Notice that the summands of every maximal decomposition in P are polytopes of
full Minkowski length 1. It seems to be a hard problem to describe polytopes of full
Minkowski length 1 in general. However, in dimensions 1 and 2 we do have a simple
description for such polytopes (Theorem 1.4).

Definition 1.3. A lattice polytope P is strongly indecomposable if its full
Minkowski length L(P) is 1. In other words, no subpolytope Q ⊆ P is a Minkowski
sum of lattice polytopes of positive dimensions.

Clearly, primitive segments are strongly indecomposable and are the only one-
dimensional strongly indecomposable polytopes.

Let Δ be the standard 2-simplex and T0 be the triangle with vertices (1, 0), (0, 1),
and (2, 2) (see Figure 2). It is easy to see that they are both strongly indecomposable.

���
���
���

���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

T0Δ

Fig. 2. Strongly indecomposable polygons.

The next theorem shows that these are essentially the only strongly indecompos-
able polygons. In the proof of this theorem and frequently later in the paper we will
use Pick’s formula: If P is a lattice polygon in R

2, then the area of P equals

A = I +
B

2
− 1,

where I is the number of interior lattice points in P and B is the number of boundary
points in P . The proof of this formula can be found, for example, in [3].

Theorem 1.4. Let P be a strongly indecomposable polygon. Then P is AGL(2,Z)-
equivalent to either the standard 2-simplex Δ or the triangle T0 above.

Proof. First, note that P cannot contain more than four lattice points. Indeed,
suppose a = (a1, a2) and b = (b1, b2) lie in P ∩Z

2. If ai ≡ bi mod 2, for i = 1, 2, then
the segment [a, b] lies in P and is not primitive; hence, L(P) > 1. Since there are only
four possible pairs of remainders mod 2 and P has at most four lattice points.

Suppose P is a triangle, then its sides must be primitive and either P has no
interior lattice points or it has exactly one interior lattice point. In the first case, P
has area 1/2 (by Pick’s formula) and so is AGL(2,Z)-equivalent to Δ. In the second
case, P has area 3/2 (by Pick’s formula) and hence any two of its sides generate a
parallelogram of area 3. Every such triangle is AGL(2,Z)-equivalent to T0.

Now suppose P is a quadrilateral. Then it has no interior lattice points and so
its area is 1 (by Pick’s formula). Every such quadrilateral is AGL(2,Z)-equivalent to
the unit square. However, the unit square is obviously decomposable.

Definition 1.5. A lattice polygon is called a unit triangle if it is AGL(2,Z)-
equivalent to Δ, and an exceptional triangle if it is AGL(2,Z)-equivalent to T0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

388 IVAN SOPRUNOV AND JENYA SOPRUNOVA

The following theorem describes maximal Minkowski decompositions for a given
lattice polygon P .

Theorem 1.6. Let P be a lattice polygon in R
2 with full Minkowski length L(P).

Consider a maximal Minkowski decomposition in P :

Q = Q1 + · · ·+QL(P),

for some Q ⊆ P . Then one of the following holds:
(1) every Qi is either a primitive segment or a unit triangle;
(2) after an AGL(2,Z)-transformation and reordering of the summands the de-

composition is

Q = T0 +m1[0, e1] +m2[0, e2] +m3[0, e1 + e2],

where mi are nonnegative integers such that m1 +m2 +m3 = L(P)− 1 and
the ei are the standard basis vectors.

Proof. Since every Qi must be strongly indecomposable, by Theorem 1.4 it is a
primitive segment, a unit triangle, or an exceptional triangle. We claim that if one of
the Qi is an exceptional triangle, then the other summands are primitive segments in
only three possible directions. This follows from the two lemmas below.

Lemma 1.7. Consider two primitive segments E1, E2 in Z
2, and let v1, v2 be the

corresponding vectors. If | det(v1, v2)| ≥ 3, then L(E1 + E2) ≥ 3.
Proof. We can assume that v1 = (1, 0) and v2 = (a, b) with 0 ≤ a < b and

b = det(v1, v2). Cases when 3 ≤ b ≤ 6 are easily checked by hand. For b ≥ 7 we can
use the same argument as in the proof of Theorem 1.4 to show that Π = E1 + E2

contains a segment of lattice length 3. Indeed, the area of Π equals b ≥ 7. By Pick’s
formula, Π has at least ten lattice points. But then there exist a = (a1, a2) and
b = (b1, b2) in Π such that ai ≡ bi mod 3, for i = 1, 2. Therefore the segment [a, b] is
contained in Π and has lattice length 3.

Lemma 1.8. Let P ⊂ R
2 be strongly indecomposable. Then L(T0 + P) ≥ 3 unless

P is a primitive segment in the direction of e1, e2 or e1 + e2.
Proof. Let E1 be an edge of T0 and E2 an edge of P , and let v1, v2 be the

corresponding vectors. If | det(v1, v2)| ≥ 3, then by Lemma 1.7 L(E1 + E2) ≥ 3,
and since E1 + E2 ⊆ T0 + P we also have L(T0 + P) ≥ 3. Therefore we suppose that
| det(v1, v2)| ≤ 2 for all edges E1 in T0. Then we have the following linear inequalities
for v2 = (s, t):

−2 ≤ s+ t ≤ 2, −2 ≤ 2s− t ≤ 2, −2 ≤ s− 2t ≤ 2.

Clearly, the only integer solutions (up to central symmetry) are v1 = (1, 0), (0, 1),
and (1, 1). Now if P contains at least 2 edges in these directions, then it must also
contain (up to a translation) either T = span{(0, 0), (1, 0), (1, 1)} or T = span{(0, 0),
(0, 1), (1, 1)}. But in both cases the sum T0 + T contains a 1× 2 rectangle which has
Minkowski length three. Therefore, L(T0 + P) ≥ 3.

Remark 1.9. Notice that in Lemma 1.8 the special directions e1, e2 or e1+e2 have
an easy AGL(2,Z)-invariant description: they are obtained by connecting the interior
lattice point in T0 to the vertices.

While classifying polygons of every given full Minkowski length does not seem
feasible, we will make a few statements about polygons of full Minkowski length 2,
which we will use later.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TORIC CODES AND MINKOWSKI LENGTH OF POLYGONS 389

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

P1 P2 P3

Fig. 3. Full length two polygons with three interior lattice points.

Proposition 1.10. Suppose L(P) = 2. Then we have the following:
(1) P has at most three interior lattice points, i.e., I(P) ≤ 3.
(2) If I(P) = 3, then P is AGL(2,Z)-equivalent to one of the polygons depicted

in Figure 3.
(3) If I(P) = 3, then L(P + T0) ≥ 4.
Proof. (1) The proof is somewhat technical so we will sketch its major steps.

Assume P has four or more interior lattice points. First, it is not hard to show that one
can choose four interior lattice points in P so that after an AGL(2,Z)-transformation
they form either a unit square, {(0, 0), (1, 0), (0, 1), (1, 1)}, or a base 2 isosceles triangle,
{(−1, 0), (0, 0), (1, 0), (0, 1)}.

In the first case, note that P must include a lattice point which is distance one
from the square and lies on one of the lines containing the sides of the square. By
symmetry we can assume it is (2, 0). In Figure 4 on the left, the solid dots represent
the five points that now belong to P , the crosses represent the points that cannot
belong to P (otherwise its length would be greater than 2). Now if point (0, 2) does
not belong to P (the middle picture in Figure 4), then either (−1, 2) or (1, 2) does.
But in either case the four points of the unit square cannot all lie in the interior of P .
If point (0, 2) does belong to P , then it produces more forbidden points (the rightmost
picture in Figure 4). Then again, it is not hard to see that no such P can exist.

Fig. 4. Nonexistence of full length two polygons with I(P) > 3.

Playing the same game, one can show that no P exists in the second case as well.
(2) First, one can show that the three interior lattice points cannot be collinear.

Thus we can assume that they are {(0, 0), (1, 0), (0, 1)}. Our first case is when (1, 1)
also lies in P . Since this must be a boundary point and there are no more interior
points in P , we see that (−1, 2) and (0, 2) are the only possible boundary points of P
on the line y = 2. Similarly, (2, 0) and (2,−1) are the only possible boundary points
of P on the line x = 2. Since both (−1, 2) and (2,−1) cannot belong to P , using
symmetry we arrive at two possibilities for the boundary piece of P containing (1, 1),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

390 IVAN SOPRUNOV AND JENYA SOPRUNOVA

Fig. 5. Constructing full length two polygons with I(P) = 3.

depicted in Figure 5 on the left. As in part (1), we crossed out the points which cannot
appear in P since L(P) = 2. Then it becomes clear that the only P (up to symmetry)
containing {(0, 0), (1, 0), (0, 1)} and (1, 1) are P1 and P2 in Figure 3.

In the second case, when (1, 1) does not lie in P we can assume that (1,−1) and
(−1, 1) do not lie in P either, otherwise we can reduce it to the previous case by a
unimodular transformation. Also, both (2,−1) and (−1, 2) cannot lie in P , therefore
by symmetry we can assume that (2,−1) does not. As before, by crossing out forbidden
points we obtain the rightmost picture in Figure 5. Now it is easy to see that the only
P containing the three points in the interior is P3 in Figure 3.

(3) By (2) it is enough to check that L(Pi + T) ≥ 4 for every 1 ≤ i ≤ 3 and any
exceptional triangle T .

We first look at P1. By Lemma 1.8 and Remark 1.9 we have L(E+T) ≥ 3 for any
primitive segment E except for the three special segments E1, E2, E3 that connect
the interior lattice point of T to its vertices. If T �= T0, then one of [0, e1], [0, e2],
[0, e1 + e2] is not among the Ei. But P1 contains the segments 2[0, e1], 2[0, e2], and
(−1,−1) + 2[0, e1 + e2]. If, say, [0, e1] is not among the Ei, then L(2[0, e1] + T) ≥ 4
and hence L(P1 + T) ≥ 4. It remains to show that L(P1 + T0) ≥ 4, which can easily
be checked by hand.

A similar argument works for P3. We only need to replace T0 with T ′
0, the triangle

with vertices (0, 0), (1, 1), and (−1, 2). Its special segments [0, e1], [0, e2], [0,−e1 + e2]
are contained in P with multiplicity 2. Finally, since P3 ⊂ P2 we do not need to do
any extra work for P2.

2. Bounds for toric surface codes.

2.1. Toric surface codes. Fix a finite field Fq where q is prime power. For any
convex lattice polygon P in R

2 we associate a Fq-vector space of bivariate polynomials
whose monomials have exponent vectors in P ∩ Z

2:

L(P) = spanFq
{tm | m ∈ P ∩ Z

2}, where tm = tm1
1 tm2

2 .

If P is contained in the square K2
q = [0, q − 2]2, then the monomials tm are linearly

independent over Fq and so dimL(P) = |P ∩ Z
2|. In what follows we will always

assume that P ⊂ K2
q .

The toric surface code CP is a linear code whose codewords are the strings of
values of f ∈ L(P) at all points of the algebraic torus (F ∗

q)2 (in some linear order):

CP = {(f(t), t ∈ (F ∗
q)2
) | f ∈ L(P)}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TORIC CODES AND MINKOWSKI LENGTH OF POLYGONS 391

This is a linear code of block length (q−1)2 and dimension |P ∩Z
2|. The weight of each

nontrivial codeword equals the number of points t ∈ (F ∗
q)2 where the corresponding

polynomial does not vanish. Let Z(f) denote the number of points in (F ∗
q)2 where

f vanishes. Then the minimum distance d(CP), which is also the minimum weight,
equals

d(CP) = (q − 1)2 − max
0�=f∈L(P)

Z(f).

2.2. The Hasse–Weil bound. Consider f ∈ L(P). Its Newton polygon Pf is
the convex hull of the lattice points in R

2 corresponding to the monomials in f . We
have

f(t) =
∑

m∈Pf∩Z2

λmt
m, where tm = tm1

1 tm2
2 , λm ∈ Fq.

Let X be a smooth toric surface over Fq defined by a fan ΣX ⊂ R
2 which is a

refinement of the normal fan of Pf . Then f can be identified with a global section of
a semiample divisor on X . Let Cf be the closure in X of the affine curve given by
f = 0 in (F

∗
q)2. If f is absolutely irreducible, i.e., Cf is irreducible, then the number

of Fq-rational points |Cf (Fq)| satisfies the Hasse–Weil bound:

|Cf (Fq)| ≤ q + 1 + �2g√q�,

where g is the arithmetic genus of Cf . For the case of smooth curves, see, for example,
[11]; for singular curves we refer to [1].

Since we are interested in the number Z(f) of zeros of f in the torus (F ∗
q)2, the

above bound might be improved by subtracting possible Fq-rational points on Cf at
“infinity.” More precisely, we have the following proposition.

Proposition 2.1. Let f be absolutely irreducible with Newton polygon Pf . Then

(2.1) Z(f) ≤ q + 1 + �2I(Pf)
√
q� −B′(Pf),

where I(Pf) is the number of interior lattice points and B′(Pf) is the number of
primitive edges of Pf .

Proof. It is a classical result from the theory of toric varieties that the arithmetic
genus g equals the number of interior lattice points in Pf (see [7] for the general case
or [10] for the case of curves).

Let D ⊂ X be the invariant divisor at “infinity,” i.e., D = X \ (F
∗
q)2. Then the

Hasse–Weil bound implies

Z(f) ≤ q + 1 + �2I(Pf)
√
q� − |Cf (Fq) ∩D|.

The divisor D is the disjoint union of zero- and one-dimensional orbits in X . The
one-dimensional orbits are isomorphic to F

∗
q and correspond to the rays of ΣX . Since

ΣX is a refinement of the normal fan of Pf , some of the orbits correspond to the edges
of Pf . Let E be an edge of Pf and OE the corresponding orbit in X , and consider the
“restriction” of f to E, i.e., a univariate polynomial fE(s) whose coefficients are λm

for m ∈ E, ordered counterclockwise. Then the intersection number Cf · OE equals
the number of zeros of fE in F

∗
q (see [9, Theorem 1 of section 2]). Note that if E is

primitive, then fE is linear, hence, has exactly one Fq-rational zero on OE . Therefore,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

392 IVAN SOPRUNOV AND JENYA SOPRUNOVA

|Cf (Fq)∩D| is greater than or equal to B′(Pf), the number of primitive edges of Pf ,
and the proposition follows.

Corollary 2.2. Let f ∈ L(P) be absolutely irreducible and Pf its Newton poly-
gon.

(1) If Pf is an exceptional triangle, then Z(f) ≤ q − 2 + �2√q�.
(2) If I(Pf) = 0, then Z(f) ≤ q − 1 unless Pf is twice a unit triangle in which

case Z(f) ≤ q + 1.
Proof. Part (1) follows immediately from Proposition 2.1. For (2) we use the

classification of polygons with no interior lattice points (see, for example, [9] or [2]):
Pf is AGL(2,Z)-equivalent to either (a) 2Δ or (b) a trapezoid (see Figure 6) where
0 ≤ a ≤ b (this includes primitive segments when a = b = 0 and unit triangles when
a = 0, b = 1). In the first case Z(f) ≤ q + 1 by (2.1). In the second case Pf has at
least two primitive edges, so Z(f) ≤ q − 1, again by (2.1).

����������
����������
����������

����������
����������
����������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

a

b
2Δ

Fig. 6. Polygons with no interior lattice points.

2.3. Bounds for the minimum distance. Let CP be the toric surface code
defined by a lattice polygon P in K2

q . In this section we prove bounds for the minimum
distance of CP in terms of the full Minkowski length L(P) of the polygon P .

Here is our first application of the results of the previous section.
Proposition 2.3. Let f ∈ L(P) be a polynomial with the largest number of

absolutely irreducible factors, f = f1 · · · fL. Then we have the following:
(1) L = L(P) and every P (fi) is either a primitive segment, a unit triangle, or

an exceptional triangle.
(2) The number of zeros of f in (F∗

q)
2 satisfies

Z(f) ≤ L(q − 1) + �2√q� − 1.

(3) If P (fi) is not an exceptional triangle for any 1 ≤ i ≤ L, then

Z(f) ≤ L(q − 1).

Proof. Part (1) follows directly from Theorem 1.6. Moreover, the theorem implies
that either (a) all Pi are primitive segments or unit triangles or (b) one of the Pi is
an exceptional triangle and the others are primitive segments. In the first case every
fi has at most q − 1 zeros in (F∗

q)
2 by Corollary 2.2. Not accounting for possible

common zeroes of the fi we obtain the bound in (3). In the second case one of the
fi has at most q − 2 + �2√q� zeros and the others have at most q − 1 zeros, again
by Corollary 2.2. As before, disregarding possible common zeros of the fi we get the
bound in (2).

The next proposition deals with polynomials f whose number of absolutely irre-
ducible factors is L(P)− 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TORIC CODES AND MINKOWSKI LENGTH OF POLYGONS 393

Proposition 2.4. Let P have full Minkowski length L, and let f ∈ L(P) have
L− 1 absolutely irreducible factors. Then

Z(f) ≤ (L− 1)(q − 1) + �6√q�.
Proof. As before, let f = f1 · · · fL−1 be the decomposition of f into absolutely

irreducible factors, and let Pi be the Newton polygon of fi. First, by Proposition 1.2

k + 1 = L ≥
k∑

i=1

L(Pi) ≥ k;

hence, up to renumbering, L(P1) ≤ 2 and L(Pi) = 1 for 2 ≤ i ≤ k.
Assume L(P1) = 1. Then every Pi is either a strongly indecomposable triangle or

a lattice segment. We claim that at most three of the Pi are exceptional triangles, and
so the statement follows from Corollary 2.2. Indeed, if, say, P1, . . . , P4 are exceptional
triangles, then by Lemma 1.8 L(P1 + · · · + P4) ≥ 6. Applying Proposition 1.2 again
we get

k + 1 = L ≥ L(P1 + · · ·+ P4) +
k∑

i=5

L(Pi) ≥ 6 + (k − 4) = k + 2,

a contradiction.
Now assume L(P1) = 2. According to (1) in Proposition 1.10, we have I(P1) ≤ 3.

Also since L(P1) = 2, at most one of the other Pi is an exceptional triangle. This
follows from Lemma 1.8 using arguments similar to the previous case. We now have
three subcases.
• If I(P1) = 1, then we have

Z(f) ≤ (q + 1 + �2√q�) + (q − 2 + �2√q�) + (L− 3)(q− 1) ≤ (L− 1)(q− 1) + �6√q�.
• If I(P1) = 2, then P1 has at least one primitive edge which we prove in Lemma

2.5 below. Therefore by Proposition 2.1 we have

Z(f) ≤ (q + �4√q�) + (q − 2 + �2√q�) + (L − 3)(q − 1) ≤ (L− 1)(q − 1) + �6√q�.
• Finally, if I(P1) = 3, then none of the other Pi is an exceptional triangle. This

follows from Proposition 1.10, (3), and the above arguments. In this case P1 has at
least two primitive edges by Proposition 1.10, (2). Therefore by Proposition 2.1 we
have

Z(f) ≤ (q − 1 + �6√q�) + (L− 2)(q − 1) = (L− 1)(q − 1) + �6√q�.
Lemma 2.5. If L(P) = 2 and I(P) = 2, then P has a primitive edge.
Proof. Since L(P) = 2, no edge can have more than 3 lattice points. If P has 4

or more edges, in which none are primitive, then P has at least 8 boundary lattice
points and, hence, at least 10 lattice points total. But then P contains a lattice segment
of lattice length 3 (see the proof of Lemma 1.7), which contradicts the assumption
L(P) = 2.

It remains to show that triangles with no primitive edges, 2 interior lattice points,
and 6 boundary lattice points do not exist. Let T be such a triangle and let 2E1, 2E2

be two of its edges, where E1 and E2 are primitive. Then E1, E2 form a triangle T ′

of area A(T ′) = 1
4A(T). On the other hand, by Pick’s formula A(P) = 4, and hence

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

394 IVAN SOPRUNOV AND JENYA SOPRUNOVA

A(T ′) = 1. This implies that up to an AGL(2,Z)-transformation E1 = [0, e1] and
E2 = [0, e1 + 2e2], but then I(T) = 1, a contradiction.

Now we are ready for the main result of this section.
Theorem 2.6. Let P ⊂ K2

q−1 be a lattice polygon with area A = A(P) and full
Minkowski length L = L(P). Then

(1) for q ≥ max
(
23,
(
c+
√
c2 + 5/2

)2), where c = A/2−L+9/4, every polynomial
f ∈ L(P) has at most L(q− 1) + �2√q�− 1 zeros in (F∗

q)2. Consequently, the
minimum distance for the toric surface code CP satisfies

d(CP) ≥ (q − 1)2 − L(q − 1)− �2√q�+ 1.

(2) If no maximal decomposition in P contains an exceptional triangle, then for
q ≥ max

(
37,
(
c +
√
c2 + 2

)2), where c = A/2 − L + 11/4, every polynomial
f ∈ L(P) has at most L(q − 1) zeros in (F∗

q)
2. Consequently, the minimum

distance for the toric surface code CP satisfies

d(CP) ≥ (q − 1)2 − L(q − 1).

Proof. (1) As we have seen in Proposition 2.3, (2), the bound holds for the poly-
nomials with the largest number of irreducible factors. We are going to show that for
large enough q every polynomial with fewer irreducible factors will have no greater
than L(q − 1) + �2√q� − 1 zeros in (F∗

q)
2.

Let f ∈ L(P) have k < L absolutely irreducible factors f = f1 · · · fk, and let Pi be
the Newton polygon of fi. If k = L−1, then we can use the bound in Proposition 2.4:

(2.2) Z(f) ≤ (L− 1)(q − 1) + �6√q�.

The latter is at most L(q − 1) + �2√q� − 1 for all q ≥ 19.
Now suppose 1 ≤ k ≤ L − 2. First, assume I(Pi) = 0 for all 1 ≤ i ≤ k. Then by

Corollary 2.2 (2),

Z(f) ≤ s(q + 1) + (k − s)(q − 1) = 2s+ k(q − 1),

where s is the number of twice unit triangles among the Pi. Since the sum of the full
Minkowski lengths of the Pi cannot exceed L we have 2s+(k−s) ≤ L, i.e., s ≤ L−k.
Using this inequality along with k ≤ L− 2, we obtain

Z(f) ≤ 2s+ k(q − 1) ≤ 2L+ k(q − 3) ≤ (L− 2)(q − 1) + 4.

The latter is at most L(q − 1) for all q ≥ 3 and the bounds follow.
Suppose I(Pi) > 0 for at least one of the Pi. Then, as we will show in Lemma 2.7,

(2.3) Z(f) ≤ k(q − 1) + 2
(
A+ 3/2− 2k

)√
q + 2.

Now the right-hand side will be at most L(q − 1) + 2
√
q − 1 whenever q satisfies

(2.4) (L − k)q − 2(A+ 1/2− 2k)
√
q − (L− k + 3) ≥ 0.

Before proceeding we introduce the following notation: m = L−k, d = A/2−L+1/4.
Then (2.4) becomes

mq − 4(d+m)
√
q − (m+ 3) ≥ 0, 2 ≤ m ≤ L− 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TORIC CODES AND MINKOWSKI LENGTH OF POLYGONS 395

Since this is a quadratic inequality in
√
q, it will hold if

√
q ≥ C +

√
C2 + 1 + 3/m, where C = 2 + 2d/m.

Since m ≥ 2, it is enough to choose
√
q ≥ C +

√
C2 + 5/2. Finally, if d ≥ 0, then

C ≤ 2 + d, since m ≥ 2, and it is enough to choose

q ≥ (c+
√
c2 + 5/2

)2
, where c = 2 + d = A/2− L+ 9/4.

If d < 0, then C < 2 and it is enough to choose q ≥ 23.
(2) The proof of the second statement is completely analogous. First, if f has

L irreducible factors, then the bound holds by Proposition 2.3, (3). Second, if f has
fewer than L factors we choose q large enough so that the right-hand sides of (2.2)
and (2.3) are no greater than L(q− 1). The same arguments as before show that it is
enough to choose

q ≥ max
(
37,
(
c+

√
c2 + 2

)2)
, where c = A/2− L+ 11/4.

It remains to prove the following lemma.
Lemma 2.7. Let f = f1 · · · fk, for 1 ≤ k ≤ L− 2, and I(Pi) > 0 for at least

one i. Then

Z(f) ≤ k(q − 1) + 2
(
A+ 3/2− 2k

)√
q + 2.

Proof. We order the Pi so that for 1 ≤ i ≤ t every Pi either has interior lattice
points or is twice a unit triangle. Then, according to Proposition 2.1 and Corollary 2.2,
we have

(2.5) Z(f) ≤ t(q + 1) + 2
√
q

t∑
i=1

I(Pi) + (k − t)(q − 1).

Now we want to get a bound for
∑t

i=1 I(Pi). Recall that given two polytopes Q1 and
Q2 in R

2, their normalized mixed volume (two-dimensional) is

V (Q1, Q2) = A(Q1 +Q2)−A(Q1)−A(Q2).

The mixed volume is symmetric; bilinear with respect to Minkowski addition; mono-
tone increasing (i.e., if Q′

1 ⊂ Q1, then V (Q′
1, Q2) ≤ V (Q1, Q2)); and AGL(2,Z)-

invariant (see, for example, [4, p. 138]). This implies that

(2.6) V (Pi, Pj) ≥ 2 for 1 ≤ i ≤ t and 1 ≤ j ≤ k.

Indeed, by monotonicity it is enough to show that V (Pi, E) ≥ 2 for any lattice seg-
ment E, and by AGL(2,Z)-invariance we can assume that E is horizontal. It follows
readily from the definition that V (Pi, E) = h(Pi)|E|, where h(Pi) is the length of
the horizontal projection of Pi (the height of Pi) and |E| is the length of E. Clearly,
|E| ≥ 1 and h(Pi) ≥ 2 if Pi has at least one interior lattice point or is twice a unit
triangle.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

396 IVAN SOPRUNOV AND JENYA SOPRUNOVA

Using (2.6) and bilinearity of the mixed volume, by induction we obtain

A ≥ A
(k∑

i=1

Pi

)
= A(P1) +A

(k∑
i=2

Pi

)
+ V

(
P1,

k∑
i=2

Pi

)

≥ A(P1) +A

(k∑
i=2

Pi

)
+ 2(k − 1) ≥ · · ·

≥
t∑

i=1

A(Pi) +A

(k∑
i=t+1

Pi

)
+ 2

t∑
i=1

(k − i) ≥
t∑

i=1

A(Pi) + 2kt− t2 − t.

Now, by Pick’s formula A(Pi) = I(Pi) + 1
2B(Pi) − 1 ≥ I(Pi) + 1

2 since B(Pi), the
number of boundary lattice points, is at least 3. Therefore

t∑
i=1

I(Pi) ≤ A+ t2 +
t

2
− 2kt.

Substituting this into (2.5) and simplifying, we obtain

(2.7) Z(f) ≤ k(q − 1) + 2
√
q

(
A+ t2 +

t

2
− 2kt

)
+ 2t.

It remains to note that the maximum of the right-hand side of (2.7) is attained at
t = 1, provided k ≥ 1 and q ≥ 4, which establishes the required inequality.

3. Two algorithms. Given a polytope P , to make use of our bounds in Theo-
rem 2.6 it remains to understand

(1) how to find L(P), the full Minkowski length of P , and
(2) how to determine whether there is a maximal Minkowski decomposition in P

one of whose summands is an exceptional triangle.
Here we provide algorithms that answer these questions in polynomial time in

|P ∩ Z
2|.

Recall that a zonotope Z =
∑k

i=1 Ej ⊆ P is called maximal for P if k, the number
of nontrivial Minkowski summands (counting their multiplicities), is equal to L(P).

It follows from Proposition 1.2 that a maximal zonotope always exists although it
is usually not unique. It turns out that any maximal zonotope of P has at most four
distinct summands and among them there are maximal zonotopes with a particularly
easy description.

Proposition 3.1. Let P be a lattice polygon. Then we have the following:
(1) Any zonotope Z maximal for P has at most 4 different summands.
(2) There exists a zonotope Z maximal for P with at most 3 different summands.

Moreover, up to an AGL(2,Z)-transformation these summands are [0, e1],
[0, e2], and [0, e1 + e2].

Proof. Let Z =
∑L

i=1Ej be a zonotope maximal for P , and let vj be the vector
of Ej . According to Lemma 1.7, | det(vi, vj)| ≤ 2 for any 1 ≤ i, j ≤ k.

The case when all vi are the same is trivial. Suppose there are exactly two different
summands; i.e., Z = m1E1 +m2E2 for some positive integers m1 ≥ m2 and E1 �= E2.
If | det(v1, v2)| = 1, then we can transform (v1, v2) to the standard basis (e1, e2) and
(2) follows. If | det(v1, v2)| = 2, then we can assume that v1 = e1 and v2 = e1 + 2e2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TORIC CODES AND MINKOWSKI LENGTH OF POLYGONS 397

However, E1 + E2 contains 2[0, e2], therefore we can pass to Z ′ = (m1 −m2)[0, e1] +
2m2[0, e2]. Clearly, Z ′ ⊆ Z and Z ′ is maximal.

Now suppose that Z has at least three different summands. First, let us assume
that | det(vi, vj)| = 2 for all i �= j. As before, without loss of generality, v1 = e1 and
v2 = e1 + 2e2. Consider v3 = (s, t). By looking at the determinants det(vi, v3) for
i = 1, 2, we have |t| = 2 and |t − 2s| = 2. This implies that v3 is not primitive, a
contradiction. Therefore, | det(vi, vj)| = 1 for some i �= j, and we can assume that
v1 = e1 and v2 = e2. Again, we let v3 = (s, t) and look at the determinants det(vi, v3)
for i = 1, 2. We see that the only vectors v3 (up to central symmetry) that may
appear are (1, 1), (1,−1), (2, 1), (2,−1), (1, 2), (1,−2). No two of the last four vectors
can appear together as they generate parallelograms of area at least 3. For the same
reason (1, 1) cannot appear with (2,−1) or (1,−2), and (1,−1) cannot appear with
(2, 1) or (1, 2). We have three possible combinations:

(a) v1 = (1, 0), v2 = (0, 1), v3 = (1, 1), v4 = (1,−1);
(b) v1 = (1, 0), v2 = (0, 1), v3 = (1, 1), and v4 = (1, 2) or v4 = (2, 1);
(c) v1 = (1, 0), v2 = (0, 1), v3 = (1,−1), and v4 = (1,−2) or v4 = (2,−1).

We have proved our first claim. To prove the second, note that we can actually
reduce the number of distinct segments Ej . In case (a), 2E1 ⊂ E3 + E4, and we will
be able to get rid of either E3 or E4 by replacing E3 + E4 with 2E1. In either case,
the remaining segments are AGL(2,Z)-equivalent to [0, e1], [0, e2], and [0, e1 + e2].

In case (b) we can assume that v4 = (1, 2). Since 2E2 ⊂ E1 +E4, we will be able
to get rid of either E1 or E4 and the remaining segments are AGL(2,Z)-equivalent
to [0, e1], [0, e2], and [0, e1 + e2]. Case (c) is obtained from (b) by flipping the second
coordinate.

To find L(P) we only need to look at all of the zonotopes Z ⊆ P with at most
three different summands AGL(2,Z)-equivalent to [0, e1], [0, e2], and [0, e1 + e2] and
find the one that has the largest number of summands (counting multiplicities).

Theorem 3.2. Let P be a lattice polygon, and let |P ∩Z
2| be the number of lattice

points in P . Then the full Minkowski length L(P) can be found in polynomial time in
|P ∩ Z

2|.
Proof. The case when P is one-dimensional is trivial so we will be assuming that

P has dimension two.

For every triple of points {A,B,C} ⊆ P ∩ Z
2, where it is important which point

goes first and the order of the other two does not matter, we check if E1 = [A,B] and
E2 = [A,C] generate a parallelogram of area one. If so, we want to construct various
zonotopes whose summands are E1, E2, and E3 = [A,B+C]. We do this in the most
straightforward way.

First, for every 1 ≤ i ≤ 3, we find Mi, the largest integer such that a lattice
translate of MiEi is contained in P . For this we find the maximum number of lattice
points in the linear sections of P with lines in the direction of Ei (there are finitely
many such lines with at least one lattice point of P).

Second, for each triple of integers m = (m1,m2,m3), where 0 ≤ mi ≤ Mi, we
check if some lattice translate of the zonotope Zm = m1E1+m2E2+m3E3 is contained
in P (we run through lattice points D in P to check if D + Zm is contained in P).
For all such zonotopes that fit into P we look at m1 +m2 +m3 and find the maximal
possible value M of this sum.

Finally, the largest such sum M over all choices of {A,B,C} ⊆ P ∩ Z
2 is L(P),

by Proposition 3.1. Clearly, this algorithm is polynomial in |P ∩ Z
2|.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

398 IVAN SOPRUNOV AND JENYA SOPRUNOVA

Notice that in the previous argument we have taken care of the maximal zonotopes
that are possibly multiples of a single segment. Indeed, if [A,B] is a primitive segment
connecting two lattice points in P , then unless P is one-dimensional there is a lattice
point C in P such that [A,B] and [A,C] generate a parallelogram of area one. We can
assume that A is the origin and B = (1, 0). Let C = (k, l) be a lattice point in P with
smallest positive l (flip P with respect to the x-axis if necessary). By the minimality
of l the triangle ABC has no lattice points except its vertices. By Pick’s formula, its
area is 1/2 and we have found the required third vertex C.

Theorem 3.3. Let P be a lattice polygon in R
n. Then we can decide in polynomial

time in |P ∩ Z
2| if there is a maximal Minkowski decomposition in P one of whose

summands is an exceptional triangle.
Proof. We first run the algorithm from Theorem 3.2 to find L(P). Next, for each

triple of points A,B,C ∈ P ∩ Z
2 we check if the triangle TABC has exactly four

lattice points—the three vertices A,B,C and one point D strictly inside the triangle.
If so, this triangle is exceptional. If this triangle is a summand in some maximal
Minkowski decomposition in P , then the other summands that may appear in this
decomposition are the primitive segments E1, E2, and E3 connecting D to the vertices
A,B,C (see Remark 1.9).

Now it remains to look at all Minkowski sums TABC +m1E1 +m2E2 +m3E3 with
m1 +m2 +m3 = L(P)−1 and check if any of them fits into P . If this indeed happens
for some TABC , then there is a maximal decomposition in P with an exceptional
triangle. Otherwise any maximal decomposition is a sum of primitive segments and
unit triangles. Clearly, this algorithm is polynomial in |P ∩ Z

2|.
4. Three examples. In this section we illustrate our methods with three exam-

ples. Example 2 was given by Joyner in [8]. Example 3 appears in Little and Schenck’s
paper [10].

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

P

Fig. 7. Pentagon.

Example 1. Consider the pentagon P with vertices (2, 0), (0, 2), (4, 4), (4, 3), and
(3, 1) as in Figure 7. One can easily check that L(P) = 3 and there is a maximal
decomposition in P containing T0 (in fact, P contains T0 + [0, e2] + [0, e1 + e2]).
Note that P defines a toric surface code of dimension n = |P ∩ Z

2| = 12. To apply
Theorem 2.6 we compute A = 15/2, so c = 3. Therefore,

d(CP) ≥ (q − 1)2 − 3(q − 1)− 2
√
q + 1

for all q ≥ 41. In this particular example we can establish a better lower bound for q,
namely q ≥ 19. Indeed, we have already seen in the proof of Theorem 2.6 that every

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TORIC CODES AND MINKOWSKI LENGTH OF POLYGONS 399

f with 2 absolutely irreducible factors will have at most 3(q − 1) + 2
√
q − 1 zeros for

all q ≥ 19 (see (2.2)). If f is absolutely irreducible, then we use (2.1). Then it has at
most q + 1 + �10

√
q� − 2 zeros since Pf ⊆ P has at most 5 interior lattice points in

which case it will have at least two primitive edges. It remains to notice that

q + 1 + �10
√
q� − 2 ≤ 3(q − 1) + 2

√
q − 1

for all q ≥ 19.

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

P

Fig. 8. Triangle.

Example 2. Consider the triangle P with vertices (0, 0), (4, 1), and (1, 4) (see
Figure 8). This example is similar to the previous one. We also have L(P) = 3,
A = 15/2, but the dimension of the corresponding toric surface code is slightly smaller,
n = |P∩Z

2| = 11. However, in this case P has no exceptional triangles in any maximal
decomposition. Therefore, Theorem 2.6 provides a better bound for the minimum
distance

d(CP) ≥ (q − 1)2 − 3(q − 1),

which holds for all q ≥ 53. As before, this can be improved to q ≥ 37 using (2.1) and
the fact that I(P) = 6. Note that f = xy(x− a)(x− b)(x− c), for a, b, c ∈ F

∗
q distinct,

has exactly 3(q − 1) zeros in (F∗
q)2, hence for q ≥ 37 the above bound is exact

(4.1) d(CP) = (q − 1)2 − 3(q − 1).

For q = 8 this was previously established by Joyner [8]. Also (4.1) follows from Little
and Schenck’s result [10] for all q ≥ (4I(P) + 3)2 = 729.

Example 3. Let P be the hexagon with vertices (1, 0), (0, 1), (1, 2), (3, 3), (3, 2),
and (2, 0) (see Figure 9). We have L(P) = 3, A = 5, and CP has dimension nine. Also P
has no maximal decomposition with an exceptional triangle. Therefore, Theorem 2.6
implies

d(CP) ≥ (q − 1)2 − 3(q − 1)

for all q ≥ 37. Little and Schenck’s result [10] proves this bound for q > 225. In fact
we can show more in this example: for all q ≥ 11

(4.2) d(CP) = (q − 1)2 − 3(q − 1) + 2.

To see this, first note that f = x(x − a)(y − b)(y − c), for a, b, c ∈ F
∗
q distinct, has

exactly 3(q − 1)− 2 zeros in (F∗
q)

2. Furthermore, every maximal decomposition in P

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

400 IVAN SOPRUNOV AND JENYA SOPRUNOVA

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

P

Fig. 9. Hexagon.

is of the form E1 + 2E2, where Ei is a primitive segment in the direction of e1, e2, or
e1 + e2. This implies that every polynomial f with the largest number of absolutely
irreducible factors (three) will have at most 3(q − 1)− 2 zeros in (F∗

q)
2 (here we take

into account the intersections of the irreducible curves defined by the factors of f).
Now we claim that for q ≥ 11 polynomials with fewer factors (one or two) will have

at most 3(q−1)−2 zeros in (F∗
q)

2 as well. Indeed, decompositions with two summands
in P can have at most one exceptional triangle, hence, Z(f) ≤ 2(q − 1) + �2√q� for
every f with two irreducible factors. This will be no greater than 3(q − 1) − 2 for
q ≥ 9. If f is absolutely irreducible, then by (2.1) Z(f) ≤ q+ 1 + �6√q� − 3, which is
no greater than 3(q − 1)− 2 starting with q = 11.

The computations preformed in [10] show the validity of (4.2) for all 5 ≤ q ≤ 11
except for q = 8 when the answer is d(CP) = (q − 1)2 − 3(q − 1) = 28. For example,
the polynomial x2 + y+ x3y3 has exactly 21 zeros in (F∗

8)2, and so the corresponding
codeword has weight 28. We now have a complete understanding of this example.

Acknowledgments. We thank Leah Gold and Felipe Martins for helpful discus-
sions on coding theory.

REFERENCES

[1] Y. Aubry and M. Perret, A Weil theorem for singular curves, in Arithmetic, Geometry and
Coding Theory (Luminy, 1993), de Gruyter, Berlin, 1996, pp. 1–7.

[2] V. Batyrev and B. Nill, Multiples of lattice polytopes without interior lattice points, Mosc.
Math. J., 7 (2007), pp. 195–207, 349.

[3] M. Beck and S. Robins, Computing the continuous discretely. Integer-point enumeration in
polyhedra, Undergraduate Texts in Mathematics, Springer, New York, 2007.

[4] Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin, 1988.
[5] W. Fulton, Introduction to Toric Varieties, Ann. of Math. Stud. 131, Princeton University

Press, Princeton, NJ, 1993.
[6] J. Hansen, Toric surfaces and error-correcting codes, in Coding Theory, Cryptography, and

Related Areas, Springer, Berlin, 2000, pp. 132–142.
[7] A. G. Hovanskii, Newton polyhedra, and the genus of complete intersections, Funktsional.

Anal. i Prilozhen., 12 (1978), pp. 51–61 (in Russian).
[8] D. Joyner, Toric codes over finite fields, Appl. Algebra Engrg. Comm. Comput., 15 (2004),

pp. 63–79.
[9] A. G. Khovanskii, Newton polytopes, curves on toric surfaces, and inversion of Weil’s theo-

rem, Russian Math. Surveys, 52 (1997), pp. 1251–1279.
[10] J. Little and H. Schenck, Toric surface codes and Minkowski sums, SIAM J. Discrete Math.,

20 (2006), pp. 999–1014.
[11] M. Tsfasman, S. Vlăduţ, and D. Nogin, Algebraic Geometric Codes: Basic Notions, Math-

ematical Surveys and Monographs 139, AMS, Providence, RI, 2007.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 401–406

REAL ZEROS AND NORMAL DISTRIBUTION FOR STATISTICS ON
STIRLING PERMUTATIONS DEFINED BY GESSEL AND STANLEY∗

MIKLÓS BÓNA†

Abstract. We study Stirling permutations defined by Gessel and Stanley in [J. Combin. Theory
Ser. A, 24 (1978), pp. 25–33]. We prove that their generating function according to the number of
descents has real roots only. We use that fact to prove that the distribution of these descents and
other equidistributed statistics on these objects converge to a normal distribution.

Key words. permutations, multisets, descents, normal distribution, real zeros

AMS subject classifications. 05A05, 05A15, 05A16

DOI. 10.1137/070702254

1. Introduction. In [8], Ira Gessel and Richard Stanley defined an interesting
class of multiset permutations called Stirling permutations. Let Qn denote the set
of all permutations of the multiset {1, 1, 2, 2, . . . , n, n} in which, for all i, all entries
between the two occurrences of i are larger than i. For instance, Q2 has three elements,
namely, 1122, 1221, and 2211. It is not difficult to see that Qn has 1 ·3 · · · · · (2n−1) =
(2n−1)!! elements. Gessel and Stanley then proved many enumerative results for these
permutations and showed several connections between these and other combinatorial
objects, such as set partitions.

Counting Stirling permutations by descents, the authors of [8] found a recurrence
relation similar to the recurrence relation known for classic permutations. In this
paper, we will continue in that direction. First, we show the simple but interesting
fact that on Qn the descent and the plateau statistics, to be defined in the next section,
are equidistributed. Then we prove that, for any fixed n, the generating polynomial
of all Stirling permutations in Qn with respect to the descent statistic has real roots
only. This is analogous to the well-known case (see Theorem 1.33 of [1]) of classic
permutations, namely, the result that all the roots of Eulerian polynomials are real.
Finally, we apply a classic result of Bender to use this real roots property to prove
that the descents of Stirling permutations in Qn are normally distributed.

2. Stirling permutations and real zeros. Let q = a1a2 · · · a2n ∈ Qn be a
Stirling permutation. Let the index i be called an ascent of q if i = 0 or ai < ai+1,
let i be called a descent of q if i = 2n or ai > ai+1, and let i be called a plateau of q if
ai = ai+1. It is obvious that the ascent and descent statistics are equidistributed, since
reversing an element of Qn turns ascents into descents and vice versa. It is somewhat
less obvious that the plateau statistic is also equidistributed with the previous two.
This fact, and a reason for it, are the content of the next proposition. Note that its
first identity, (1), was proved in [8].

Proposition 1. Let Cn,i be the number of elements of Qn with i descents. Then
for all positive integers n, i ≥ 2, we have

(1) Cn,i = iCn−1,i + (2n− i)Cn−1,i−1.

∗Received by the editors September 7, 2007; accepted for publication (in revised form) September
13, 2008; published electronically January 14, 2009.

http://www.siam.org/journals/sidma/23-1/70225.html
†Department of Mathematics, University of Florida, Gainesville, FL 32611-8105 (bona@math.ufl.

edu). This author was partially supported by an NSA Young Investigator Award.

401

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

402 MIKLÓS BÓNA

Similarly, let cn,i be the number of elements of Qn with i plateaux. Then for all
positive integers n, i ≥ 2, we have

(2) cn,i = icn−1,i + (2n− i)cn−1,i−1.

In particular, since C1,1 = c1,1 = 1 and C1,0 = c1,0 = 0, the identity

(3) Cn,i = cn,i

holds.
Proof. There are two ways to obtain an element of Qn from an element p ∈ Qn−1

by inserting two copies of n into consecutive positions. Either p must have i descents,
and then we insert the two copies of n into a descent, or p has i−1 descents, and then
we insert the two consecutive copies of n into one of the (2n− 1)− (i − 1) = 2n− i
positions that are not descents.

The argument proving (2) is analogous.
Corollary 1. On average, elements of Qn have (2n+ 1)/3 ascents, (2n+ 1)/3

descents, and (2n+ 1)/3 plateaux.
Proposition 1 enables us to prove a strong result on the roots of the polynomials∑n

i=1 Cn,ix
i. The method we use follows an idea of Wilf [9], [1, Theorem 1.33], who

used it on classic permutations.
Theorem 1. Let Cn(x) =

∑n
i=1 Cn,ix

i. Then for all positive integers n, the
roots of the polynomial Cn(x) are all real, distinct, and nonpositive.

Proof. For n = 1, one sees that C1(x) = x, and the statement holds. For n = 2,
one sees that C2(x) = 2x2 + x = x(2x+ 1), and so the statement again holds.

For n ≥ 3, recurrence relation (1) implies

(4) Cn(x) = (x− x2)C′
n−1(x) + (2n− 1)xCn−1(x),

as can be seen by equating coefficients of xi. The right-hand side is similar to the
derivative of a product, which suggests the following rearrangement:

(5) Cn(x) = x(1 − x)2n d

dx

(
(1 − x)1−2nCn−1(x)

)
.

Let us now assume inductively that the roots of Cn−1(x) are real, distinct, and non-
positive. Clearly, Cn(x) vanishes at x = 0. Furthermore, by Rolle’s theorem, (5)
shows that Cn(x) has a root between any pair of consecutive roots of Cn−1(x). This
counts for n − 1 roots of Cn(x). So the last root must also be real, since complex
roots of polynomials with real coefficients must come in conjugate pairs.

There remains to show that the last root of Cn(x) must be on the right of the
rightmost root of Cn−1. Consider (4) at the rightmost root x0 of Cn−1. As x0 is
negative, we know that x0 − x2

0 < 0, and so Cn(x0) and C′
n−1(x0) have opposite

signs. The claim now follows, since in −∞, the polynomials Cn(x) and C′
n−1(x)

must converge to the same (infinite) limit as their degrees are of the same parity.
As C′

n−1(x) has no more roots on the right of x0, the polynomial Cn(x) must have
one.

Note that we have in fact proved that the roots of Cn−1(x) and Cn(x) are inter-
lacing, so the sequence C1, C2, . . . is a Sturm sequence.

As an immediate application of the real zeros property, we can determine where
peak (or peaks) of the sequence Cn,1, Cn,2, . . . , Cn,n is. Our tool in doing so is the
following theorem of Darroch.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REAL ZEROS AND NORMALITY FOR STIRLING PERMUTATIONS 403

Theorem 2 (Darroch [4]). Let A(x) =
∑n

k=0 akx
k be a polynomial that has real

roots only that satisfies A(1) > 0. Let m be an index so that am = max0≤i≤n ai. Let
μ = A′(1)/A(1). Then we have

|μ−m| < 1.

In particular, a sequence with the real zeros property can have at most two peaks.
Note that A′(1) =

∑n
i=0 iai and A(1) =

∑n
i=0 ai; therefore, A′(1)/A(1) is nothing else

but the weighted average of the coefficients ai, with i being the weight of ai. So in
the particular case when A(x) = Cn(x), we have

C′
n(1)

Cn(1)
=
∑

i iCn,i∑
i Cn,i

=
∑

i

i · Cn,i

(2n− 1)!!

=
2n+ 1

3
,

where the last step follows from Corollary 1. Indeed, Cn,i

(2n−1)!! is just the probability
that a randomly selected Stirling permutation of length n has exactly i descents, so
sumii · Cn,i

(2n−1)!! is just the expected number of descents in such permutations.
Therefore, by Theorem 2, we obtain the following result.
Theorem 3. Let i be an index so that Cn,i = maxk Cn,k. Then
1. i = (2n+ 1)/3 if (2n+ 1)/3 is an integer, and
2. i = �(2n+ 1)/3� or i = �(2n+ 1)/3� if (2n+ 1)/3 is not an integer.

3. Stirling permutations and normal distribution. In this section, we prove
that the plateaux (equivalently, ascents; equivalently, descents) of Stirling permuta-
tions are normally distributed. Our main tool is the following result of Bender. Let
Xn be a random variable, and let an(k) be a triangular array of nonnegative real
numbers, n = 1, 2, . . . , and 1 ≤ k ≤ m(n) so that

P (Xn = k) = pn(k) =
an(k)∑m(n)

i=1 an(i)
.

Set gn(x) =
∑m(n)

k=1 pn(k)xk.
We need to introduce some notation for transforms of the random variable Z. Let

Z̄ = Z − E(Z), let Z̃ = Z̄/
√

Var(Z), and let Zn → N(0, 1) mean that Zn converges
in distribution to the standard normal variable.

Theorem 4 (see [2]). Let Xn and gn(x) be as above. If gn(x) has real roots only,
and

σn =
√

Var(Xn)→∞,
then X̃n → N(0, 1).

See [3] for related results.
We want to use Theorem 4 to prove that the plateaux of permutations in Qn are

normally distributed. Because of Theorem 1, all we need for that is to prove that the
variance of the number of these plateaux converges to infinity as n goes to infinity.
We will accomplish more by proving an explicit formula for this variance. In order
to state that formula, let Yn,i be the indicator random variable of the event that in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

404 MIKLÓS BÓNA

a randomly selected element of Qn, the two copies of i are consecutive; that is, they
form a plateau. Note that P (Yn,n = 1) = E(Yn,n) = 1. Set Yn =

∑n
i=1 Yn,i.

Theorem 5. For all positive integers n, the equality

(6) Var(Yn) =
2n2 − 2
18n− 9

holds.
Proof. We are going to use the identity Var(Yn) = E(Y 2

n) − E(Yn)2. We have
seen in Corollary 1 that E(Yn) = 2n+1

3 . Let sn = E(Y 2
n). The key element of our

computations is the following lemma.
Lemma 1. For all positive integers n, the equality

(7) sn+1 =
2n− 1
2n+ 1

· sn +
4n+ 4

3
holds.

Proof. In order to prove (7), we need the following simple facts.
Proposition 2.

1. For all positive integers n, and all indices i �= j that satisfy 1 ≤ i, j ≤ n, the
equality

E(Yn+1,iYn+1,j) =
2n− 1
2n+ 1

E(Yn,iYn,j)

holds.
2. For all positive integers n and all indices 1 ≤ i ≤ n, the equality

E(Yn+1,i) =
2n

2n+ 1
E(Yn,i)

holds.
3. For all indices i ≤ n+ 1, the equality

E(Yn+1,iYn+1,n+1) = E(Yn+1,i)

holds. In particular, E(Yn+1,n+1) = 1.
Proof.
1. In order to get an element of Qn+1 in which i and j are both plateaux, take an

element of Qn in which i and j are both plateaux, and insert two consecutive
copies of n+ 1 into any of the 2n− 1 available places, that is, anywhere but
between the two copies of i or the two copies of j.

2. In order to get an element of Qn+1 in which i is a plateau, insert two consec-
utive copies of n+ 1 into any of the 2n available slots, that is, anywhere but
between the two copies of i.

3. This part of the proof is obvious since n + 1 is always a plateau in elements
of Qn+1.

We return to proving Lemma 1.
Note that sn+1 =

∑
1≤i,j≤n+1 E(Yn+1,iYn+1,j). The latter can be split into partial

sums, based on whether i or j are equal to n+ 1, as follows:

sn+1 =
∑

1≤j≤n+1

E(Yn+1,n+1Yn+1,j) +
∑

1≤i≤n

E(Yn+1,iYn+1,n+1)

+
∑

1≤i,j≤n

E(Yn+1,iYn+1,j).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

REAL ZEROS AND NORMALITY FOR STIRLING PERMUTATIONS 405

Based on part 3 of Proposition 2, this simplifies to

sn+1 =
∑

1≤j≤n+1

E(Yn+1,j) +
∑

1≤i≤n

E(Yn+1,i) +
∑

1≤i,j≤n
i�=j

E(Yn+1,iYn+1,j)

+
∑

1≤i≤n

E(Yn+1,i).

Now note that the first sum on the right-hand side is just E(Yn+1), and the second
sum is E(Yn+1 − Yn+1,n+1) = E(Yn+1) − 1; use part 1 of Proposition 2 on the third
sum and part 2 of Proposition 2 on the fourth sum to get

sn+1 = 2E(Yn)− 1 +
2n− 1
2n+ 1

(sn − E(Yn)) +
2n

2n+ 1
E(Yn).

Recalling from Corollary 1 that E(Yn) = 2n+1
3 , this reduces to (7).

Using the recursive formula proved in Lemma 1, it is routine to prove that

(8) sn = E(Y 2
n) =

8n3 + 6n2 − 2n− 3
18n− 9

.

Therefore, Var(Yn) = sn − E(Yn)2 = 2n2−2
18n−9 , as claimed.

Theorem 6. The distribution of the number of plateaux of elements of Qn con-
verges to a normal distribution as n goes to infinity. That is, Ỹn → N(0, 1).

Proof. Let Xn = Yn, and let gn(x) = 1
(2n−1)!!Cn(x). Then Theorems 1 and 5

show that the conditions of Theorem 4 are satisfied, and the claim follows from The-
orem 4.

4. Remarks. Corollary 1 shows that E(Yn) = (2n+ 1)/3. It is not difficult to
prove that E(Yn,n−i) =

∏i
j=1

2n−2j
2n−2j+1 . By the linearity of expectation this proves the

interesting identity

n−1∑
i=0

i∏
j=1

2n− 2j
2n− 2j + 1

=
2n+ 1

3
,

where the empty product (indexed by i = 0) is considered to be 1.
The proof of the equidistribution of the descent and plateau statistics we gave

is very simple, but it is of recursive nature. It can be used to define an algorithm
that recursively constructs a bijection f from the set of permutations in Qn that have
k descents into the set of permutations in Qn that have k plateaux. Let us assume
that such a bijection has already been constructed for Qn−1 and any k ≤ n − 1. If
p ∈ Qn, and p has k descents, then let p′ ∈ Qn−1 be the permutation obtained from
p by removing the two copies of n. Let q′ be the image of p′ under the bijection al-
ready constructed for Qn−1. If p is obtained from p′ by inserting two copies of n into
the ith descent of p′, then let f(p) = q be the permutation obtained from q′ by insert-
ing the two copies of n into the ith plateau of q. If p is obtained from p′ by inserting
two copies of n into the jth nondescent of p′, then let f(p) = q be the permutation
obtained from q′ by inserting the two copies of n into the jth nondescent of q′.

A direct bijective proof has recently been given by Ju [7].
We mention that the results of this work have recently been extended by Janson

[5] and Janson, Kuba, and Panholzer [6].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

406 MIKLÓS BÓNA

Acknowledgments. I am indebted to Svante Janson, who pointed out an error
in an earlier version of this paper, which led to an improvement of my results. I am
grateful to Ira Gessel for having taken the time to show me some earlier unpublished
work on the subject.

REFERENCES

[1] M. Bóna, Combinatorics of Permutations, Chapman & Hall/CRC, Boca Raton, FL, 2004.
[2] E. A. Bender, Central and local limit theorems applied to asymptotic enumeration, J. Combin.

Theory Ser. A, 15 (1973), pp. 91–111.
[3] E. R. Canfield, Central and local limit theorems for coefficients of polynomials of binomial

type, J. Combin. Theory Ser. A, 23 (1977), pp. 275–290.
[4] J. N. Darroch, On the distribution number of successes in independent trials, Ann. Math.

Statist., 35 (1964), pp. 1317–1321.
[5] S. Janson, Plane Recursive Trees, Stirling Permutations, and an Urn Model, preprint; avail-

able online at http://arxiv.org/pdf/0803.1129v1.
[6] S. Janson, M. Kuba, and A. Panholzer, Generalized Stirling Permutations, Families of

Increasing Trees, and Urn Models, preprint; available online at http://arxiv.org/pdf/0805.
4804.

[7] H. Ju, Personal communication, 2007.
[8] I. Gessel and R. P. Stanley, Stirling polynomials, J. Combin. Theory Ser. A, 24 (1978),

pp. 25–33.
[9] H. S. Wilf, Real Zeros of Polynomials That Count Runs and Descending Runs, Unpublished

manuscript, 1998.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 407–427

A BOUND ON THE PATHWIDTH OF SPARSE GRAPHS WITH
APPLICATIONS TO EXACT ALGORITHMS∗

JOACHIM KNEIS† , DANIEL MÖLLE† , STEFAN RICHTER† , AND PETER ROSSMANITH†

Abstract. We present a bound of m/5.769 + O(log n) on the pathwidth of graphs with m
edges. Respective path decompositions can be computed in polynomial time. Using a well-known
framework for algorithms that rely on tree decompositions, this directly leads to runtime bounds
of O∗(2m/5.769) for Max-2SAT and Max-Cut. Both algorithms require exponential space due to
dynamic programming. If we agree to accept a slightly larger bound of m/5.217 + 3, we even obtain
path decompositions with a rather simple structure: all bags share a large set of common nodes.
Using branching based algorithms, this allows us to solve the same problems in polynomial space
and time O∗(2m/5.217).

Key words. graph algorithms, graph theory, algorithms

AMS subject classifications. 05C85, 68R10, 68W01

DOI. 10.1137/080715482

1. Introduction. In 2005, Fomin and Høie [5, 6] bounded the pathwidth of
cubic graphs with n nodes by (1 + ε)n/6 + O(log n). Using this result we derive an
upper bound of m/5.769 +O(log n) on the pathwidth of arbitrary graphs.

Combined with a general result on treewidth-based algorithms by Telle and
Proskurowski [20], this bound—besides being an interesting graph-theoretical result
by itself—implies runtime bounds of O∗(2m/5.769) for Max-2SAT and Max-Cut,
where m is the number of clauses or edges, respectively. The respective algorithms
require exponential space because they are based on dynamic programming on tree
decompositions. Moreover, we can construct simpler decompositions of width at most
m/5.217 + 3 that allow for branching-based O∗(2m/5.217) algorithms with only poly-
nomial space complexity.

The above runtime bounds are particularly interesting, because all previous re-
sults, such as the runtime bounds O∗(2m/2.88) [14], O∗(2m/3.44) [1], O∗(2m/4) [4], and
O∗(2m/5) [7] for Max-Cut, lead to much more involved algorithms directly tailored
to the problem at hand. In fact, all previous algorithms for Max-2SAT, Max-2CSP,
and Max-Cut are based on clever branching and a lot of reduction rules similar to the
Davis–Putnam procedure. The O∗(2m/5) algorithm for Max-2SAT [7], for example,
employs six reduction rules as well as a six-fold case distinction.

By contrast, the algorithms described in this paper operate on a graph represen-
tation of the respective instance (such as the connectivity graph of a 2SAT formula).
Nodes of low degree are removed according to a simple set of rules. Otherwise, the
algorithms branch on nodes of maximum degree until the graph becomes trivial—
namely, three-regular for the bound O∗(2m/5.769) or series-parallel for the bound
O∗(2m/5.217). In general, it does not make a difference which node of maximum
degree is selected; each of the two algorithms, however, handles a certain regular case

∗Received by the editors February 12, 2008; accepted for publication (in revised form) September
23, 2008; published electronically January 14, 2009. A preliminary version of this paper was presented
at the Workshop on Graph Theoretic Concepts in Computer Science (WG 2005) [10].

http://www.siam.org/journals/sidma/23-1/71548.html
†Computer Science Department, RWTH Aachen University, 52056 Aachen, Germany (kneis@

cs.rwth-aachen.de, moelle@cs.rwth-aachen.de, richter@cs.rwth-aachen.de, rossmani@cs.rwth-aachen.
de). The first author was supported by the DFG under grant RO 927/7.

407

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

408 KNEIS, MÖLLE, RICHTER, AND ROSSMANITH

differently. When proving the first bound, it is vital to avoid cases where a degree-five
node has only degree-five neighbors whenever possible. For the second bound, the
same holds for degree four.

The reduction rules are very simple and operate on nodes of degree at most two.
Nodes of higher degree are removed by branching. A problem can be solved by our
framework if all these graph operations correspond to appropriate operations in the
problem instance. On the one hand, there need to be corresponding—and efficient—
reduction rules for the affected entities represented by single nodes (such as variables in
a 2SAT formula that occur only with at most two other variables). On the other hand,
it is usually hard to find reduction rules for entities that are represented by a node of
high degree; we overcome this problem by simply branching on all possibilities for the
entity in question (such as setting a variable to true or false). The latter operations
constitute the expensive part and lead to the exponential runtime bounds.

Our construction results in very intuitive branching algorithms that outperform
all previous methods and are also easy to verify and implement. The choice of branch-
ing on all possibilities for a basic entity (such as placing a node on the left or right
side of a cut) can be seen to bring about the most simple branching possible. The
few reduction rules involved are straightforward and can be performed efficiently; the
constants and polynomial factors in the resulting runtime bounds are small.

Lately, several authors have matched or improved the aforementioned bounds.
Using an argument based on linear programming, Scott and Sorkin presented an
alternative proof for the bound of m/5.769 + O(log n) on the treewidth in 2007 (in
fact, their type-III reduction selects nodes in roughly the same way as our algorithm
from 2005) [18]. Again, this result leads to runtime bounds of O∗(2m/5.769) for Max-

2SAT and Max-Cut. Using a similar approach, they also obtained an O∗(2m/5.263)
algorithm for Max-2SAT and Max-Cut using only polynomial space [17], improving
on our bound of O∗(2m/5.217). Note that a technical report published shortly before
our result already contains this m/5.263 bound [16].1

Kojevnikov and Kulikov have taken the runtime bound for Max-2SAT under
polynomial space restrictions to O∗(2m/5.5) [11], and Kulikov and Kutzkov took it
subsequently to O∗(2m/5.88) [12]. Their algorithm uses a structure similar to our
direct algorithm: first the formula is reduced by simple reduction rules, and then they
branch on a variable. In order to achieve the improved runtime bounds, Kojevnikov
and Kulikov simulate branching on every variable and select the best one for the real
branching process, whereas we always select some node of maximum degree. The
additional quadratic factor in the runtime vanishes in the O∗-notation but cannot be
neglected for practical instances. The current fastest algorithm is due to Raible and
Fernau [15] with a runtime of O∗(2m/6.21).

Recently, Williams developed an algorithm for Max-2SAT with a runtime bound
of only O∗(22.376n/3), depending on fast matrix multiplication. This currently is the
fastest algorithm analyzed in the number n of variables [21]. As for approximation
results, we refer the reader to [8, 13].

The structure of this paper is as follows. Some preliminaries—particularly regard-
ing treewidth—are detailed in section 2. Section 3 introduces graph reduction rules re-
quired for later proofs and establishes an important property, namely, their confluence:
no matter in which order the rules are applied, they always lead to the same graph
eventually. In section 4, we prove the aforementioned bound of m/5.769+O(logn) on

1As pointed out by Scott and Sorkin, these bounds can easily be expanded into bounds of
O∗(rm/5.263) and O∗(rm/5.217) for Max-2CSP with r-ary variables.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A BOUND ON THE PATHWIDTH OF SPARSE GRAPHS 409

1

2 3

4 5

1

2

3

4

5

1

2

3

4 5

{1}

{1, 2} {1, 3}

{2, 4} {2, 5}

{3}

{3, 5} {2, 3, 4}

{1, 2, 4}

{2, 4, 5}

{1, 2, 4, 5}

{2, 3, 4, 5}

Fig. 2.1. The three graphs depicted in the upper row have treewidth one, two, and three,
respectively. A respective minimal tree decomposition is depicted below each graph.

the pathwidth of graphs with n nodes and m edges. The construction of polynomial
space algorithms for Max-2SAT and Max-Cut is discussed in section 5.

2. Preliminaries. Since the notions of treewidth and pathwidth are going to
play crucial roles in what follows, we proceed with a brief review of these graph-
theoretical concepts. For further reference we recommend the surveys by Bodlaen-
der [2] and Kloks [9].

Definition 2.1. Let G = (V,E) be a simple, undirected graph. A tree decompo-
sition of G is a tree T = (B, EB), where B is a family of subsets Bi ⊆ V called bags
such that

(i) each node v ∈ V occurs in at least one bag Bi ∈ B,
(ii) the two endpoints of each edge {v, w} ∈ E occur in at least one bag Bi ∈ B

simultaneously, and
(iii) for each node v ∈ V , the bags Bi ∈ B with v ∈ Bi induce a connected

subgraph of T (i.e., a tree).
If T is a path, then it is also called a path decomposition of G.

Clearly, every graph has a tree decomposition (B, T) in which B = {V } and T
is the degenerated tree consisting of only a single node. In most cases, however, we
can find a tree decomposition with smaller bags—only tree decompositions of cliques
necessarily have bags that contain all nodes.

Definition 2.2. The width of a tree decomposition is the maximum cardinal-
ity of its bags minus one. The treewidth of a graph is the minimum width of all
tree decompositions of that graph. The pathwidth is the minimum width of all path
decompositions.

In particular, trees have treewidth one. See Figure 2.1 for an illustration of
treewidth and tree decompositions.

A helpful tool for the analysis of tree decompositions is the so-called robber-
and-cops game [19]. If we interpret each bag as a set of positions to be guarded by
policemen, then a tree decomposition reveals a strategy to catch a robber who moves
along edges at arbitrary speed. The police move according to a traversal of the tree
decomposition, but while moving from one node to another, a policeman does not
affect the robber in any way. Let us exemplify this game by the second graph from
Figure 2.1 and the respective decomposition.

In the beginning, one cop blocks the node labeled 3; the robber can reside only in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

410 KNEIS, MÖLLE, RICHTER, AND ROSSMANITH

the right subgraph (node 5) or in the left subgraph (nodes 1, 2, and 4). The former
case allows us to catch the robber by placing a second cop on the node labeled 5. In
the latter case, we block the nodes labeled 2 and 4 by placing a second and third cop.
This forces the robber to retreat to node 1 such that moving the first cop from node 3
to node 1 ends the chase.

It is easy to see that the pathwidth of a graph is an upper bound for its treewidth.
In terms of the robber-and-cops game, a path decomposition of width k corresponds
to a strategy for k + 1 policemen who need to catch an invisible robber.

For the sake of brevity, we define the following symbols and abbreviations for
graphs G = (V,E). If V ′ ⊆ V , then G[V ′] denotes the subgraph of G induced by V ′.
In a slight abuse of notation, we abbreviateG[V \V ′] asG\V ′. Even though we discuss
results on simple and undirected graphs, the results also apply to multigraphs with
and without loops because treewidth is not affected by multiple edges or loops. As
usual, we let n and m denote the number of nodes and edges in a graph, respectively.

3. A confluent set of reduction rules. The upcoming section introduces the
graph reduction rules that are to play a crucial role throughout the entire document.
Whereas the rules are very simple, we need a few technical arguments to show that the
order in which reductions are performed does not affect the outcome. The confluence
of the reduction rules is not only an interesting result on its own; it is also a necessary
property for the main theorem of this paper: First we show that a specific reduction
sequence leads to a tree decomposition of width m/5.769 +O(log n). Next, we prove
that applying the reduction rules in a different order even yields a path decomposition.
By the confluence of the reduction rules, the path decomposition is of widthm/5.769+
O(log n) as well.

Definition 3.1. Let G = (V,E) be a graph and D ⊆ V an arbitrary subset of
its nodes. We define the following reduction rules:

R0: If there is a v /∈ D with deg(v) = 0, then remove v.
R1: If there is a v /∈ D with deg(v) = 1, then remove v.
R2: If there is a v /∈ D with deg(v) = 2, then contract v, i.e., remove v and

insert a new edge between its two neighbors, if no such edge exists.
RD: If G contains a node v ∈ D, then remove v.
R: If any of the above rules can be applied, do so.
R∗: Iterate R as long as possible.
Definition 3.2. Let G = (V,E) be a graph, let D ⊆ V , and let v ∈ V be a

node that can be reduced according to R0, R1, R2, or RD. Then v is called reducible
and G〈v〉 denotes the graph obtained from G by applying the respective rule on v. For
r ≥ 2 we define G〈v1, . . . , vr〉 = G〈v1〉〈v2, . . . , vr〉 inductively.

If vi is reducible in G〈v1, . . . , vi−1〉 for all 1 ≤ i ≤ r, then (v1, . . . , vr) is a
valid reduction sequence for G with respect to D. By ε we denote the (valid) empty
reduction sequence. If G = R∗(G), we call G reduced.

Later, we will need to prove the confluence of these rules. See Figure 3.1 for an
example.

Lemma 3.3. Let G = (V,E) be a graph, let D ⊆ V , and let x, y ∈ V be two
distinct reducible nodes. Then (x, y) and (y, x) are valid reduction sequences for G
and G〈x, y〉 = G〈y, x〉.

Proof. Deleting or contracting x does not affect the degree of y and vice versa if
they are not adjacent. Then (x, y) and (y, x) are both valid reduction sequences and
it is easy to see that G〈x, y〉 = G〈y, x〉.

If x and y are adjacent, then the application of a reduction rule to x or y either

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A BOUND ON THE PATHWIDTH OF SPARSE GRAPHS 411

v0

v1 v2 v3

v4 v5 v6 v7

G〈v0〉 G〈v3〉 G〈v7〉

G〈v0, v3〉 G〈v0, v7〉 G〈v3, v7〉 G〈v6, v7〉

G〈v0, v3, v7〉 G〈v0, v6, v7〉 G〈v3, v6, v7〉

R∗(G)

Fig. 3.1. The above graphs illustrate the confluence of the reduction rules R1 and R2: No
matter in which order nodes of degree one or two are reduced, the outcome is always the same. The
rule R0 cannot be applied because there are no isolated nodes, and we assume that D = ∅ for the
sake of readability.

does not change the degree of the other node or decreases it by one. That is, the
reduction of x or y cannot render the reduction of the respective other node impossible.
Hence, (x, y) and (y, x) are valid reduction sequences.

If none of the nodes is reduced according to R2, it is also easy to see that G〈x, y〉 =
G〈y, x〉 because the resulting graph is G \ {x, y}. Otherwise, we may assume that x
is reduced by R2 without loss of generality. Since x and y are adjacent, y satisfies
deg(y) ≥ 1. To see that the claimed equality holds in all remaining cases, check
Figure 3.2.

Lemma 3.4. Let G = (V,E) be a graph, let D ⊆ V , and let (v1, . . . , vr) be a valid

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

412 KNEIS, MÖLLE, RICHTER, AND ROSSMANITH

x y

y x

R2 R1

R1 R1

x y

y x

R2 R2

R2 R2

x y

y x

R2 R2

R1 R1

x y

y x

R2 RD

RD R1

Fig. 3.2. G〈x, y〉 = G〈y, x〉 when x is reduced according to R2.

reduction sequence for G such that vr is also reducible in G. Then (vr, v1, . . . , vr−1)
is also a valid reduction sequence for G, and

G〈v1, . . . , vr〉 = G〈vr, v1, . . . , vr−1〉.
Proof. The claim is obvious for r ≤ 1 and is given by Lemma 3.3 for r = 2. We

show the cases r > 2 by induction on r.
Recall that (v1, . . . , vr) is a valid reduction sequence forG, and therefore (vr−1, vr)

is a valid reduction sequence for G〈v1, . . . , vr−2〉. In particular, vr−1 is reducible in
G〈v1, . . . , vr−2〉. Since vr is also reducible in G, it must be reducible in G〈v1, . . . , vr−2〉
as well.

Lemma 3.3 guarantees that (vr, vr−1) and (vr−1, vr) are valid reduction sequences
for G〈v1, . . . , vr−2〉 and that

G〈v1, . . . , vr−2〉〈vr−1, vr〉 = G〈v1, . . . , vr−2〉〈vr, vr−1〉.
For the original valid reduction sequence, we find that

G〈v1, . . . , vr〉 = G〈v1, . . . , vr−2〉〈vr−1, vr〉
= G〈v1, . . . , vr−2〉〈vr , vr−1〉 = G〈v1, . . . , vr−2, vr〉〈vr−1〉.

This shows that (v1, . . . , vr−2, vr, vr−1) is valid for G, and (v1, . . . , vr−2, vr) is valid
for G as well because it is a prefix.

Owing to the induction hypothesis, we know that (vr , v1, . . . , vr−2) is valid for G,
too, and

G〈v1, . . . , vr−2, vr〉 = G〈vr , v1, . . . , vr−2〉.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A BOUND ON THE PATHWIDTH OF SPARSE GRAPHS 413

We get

G〈v1, . . . , vr〉 = G〈v1, . . . , vr−2〉〈vr−1, vr〉
= G〈v1, . . . , vr−2〉〈vr, vr−1〉
= G〈v1, . . . , vr−2, vr〉〈vr−1〉
= G〈vr , v1, . . . , vr−2〉〈vr−1〉
= G〈vr , v1, . . . , vr−2, vr−1〉

by putting all the pieces together.
Lemma 3.5. Let G = (V,E) be a graph, let D ⊆ V , and let (v1, . . . , vr) as well

as (vπ(1), . . . , vπ(r)) be two valid reduction sequences for G, where π ∈ Sr is some
permutation. Then

G〈v1, . . . , vr〉 = G〈vπ(1), . . . , vπ(r)〉.

Proof. The claim is obvious for r ≤ 1 and is given by Lemma 3.3 for r = 2. We
show the cases r > 2 by induction on r.

If π(1) = 1, we can apply the induction hypothesis directly to see that

G〈v1, . . . , vr〉 = G〈v1〉〈v2, . . . , vr〉
= G〈v1〉〈vπ(2), . . . , vπ(r)〉
= G〈vπ(1), . . . , vπ(r)〉.

Otherwise, let σ denote the sequence obtained from (vπ(1), . . . , vπ(r)) by remov-
ing v1. Lemma 3.4 guarantees that

G〈vπ(1), . . . , vπ(r)〉 = G〈v1〉〈σ〉.

Owing to the induction hypothesis, we get

G〈v1, . . . , vr〉 = G〈v1〉〈v2, . . . , vr〉 = G〈v1〉〈σ〉,

and this entails the claim.
Lemma 3.6. Let G = (V,E) be a graph, let D ⊆ V , and let (u1, . . . , ur) as

well as (v1, . . . , vs) be two valid reduction sequences for G such that {u1, . . . , ur} and
{v1, . . . , vs} are disjoint. Then (u1, . . . , ur, v1, . . . , vs) and (v1, . . . , vs, u1, . . . , ur) are
valid reduction sequences for G as well.

Proof. Note that for any reducible w ∈ V , the reduced graph G〈w〉 still contains
all nodes from G with the sole exception of w. Consequently, G〈u1, . . . , ur〉 still
contains v1, . . . , vs. Note also that the degree of all nodes in G〈w〉 is smaller than or
the same as that in G, implying that v1 is reducible in G〈u1, . . . , ur〉.

Due to these facts, (u1, . . . , ur, v1) is a valid reduction sequence for G. Since v2 is
reducible in G〈v1〉 and G〈u1, . . . , ur, v1〉 = G〈v1, u1, . . . , ur〉 according to Lemma 3.5,
we know that v2 is also reducible in G〈u1, . . . , ur, v1〉. In particular, (v2) is a valid
reduction sequence for G〈u1, . . . , ur, v1〉, and (u1, . . . , ur, v1, v2) is a valid reduction
sequence for G. Continuing in the same way, we can see that (u1, . . . , ur, v1, . . . , vs) is
a valid reduction sequence for G. Analogously, this statement holds for the sequence
(v1, . . . , vs, u1, . . . , ur).

Lemma 3.7. Let G = (V,E) be a graph, let D ⊆ V , and let σ1τ1, σ2τ2 be two valid
reduction sequences for G. Furthermore, assume that σ1∩σ2τ2 = ∅ and σ2∩σ1τ1 = ∅.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

414 KNEIS, MÖLLE, RICHTER, AND ROSSMANITH

Then there are sequences μ1 and μ2 such that σ1τ1σ2μ1 and σ2τ2σ1μ2 are valid
reduction sequences for G with G〈σ1τ1σ2μ1〉 = G〈σ2τ2σ1μ2〉.

Proof. We use induction on |σ1τ1|+ |σ2τ2|. Let us first assume that |σ1|+ |σ2| > 0.
Since σ1 and σ2 are disjoint, Lemma 3.6 implies that σ1σ2 and σ2σ1 are valid

reduction sequences for G. Lemma 3.5 then implies that

(3.1) G〈σ1σ2〉 = G〈σ2σ1〉.
We now know that σ2τ2 and σ2σ1 are both valid reduction sequences for G. Hence,
τ2 and σ1 are valid reduction sequences for G〈σ2〉. Furthermore, they are disjoint.
Again, Lemmas 3.6 and 3.5 imply that σ1τ2 and τ2σ1 are valid reduction sequences for
G〈σ2〉 and that G〈σ2〉〈σ1τ2〉 = G〈σ2〉〈τ2σ1〉. In the same way we get G〈σ1〉〈σ2τ1〉 =
G〈σ1〉〈τ1σ2〉. We can rewrite these two equalities as

(3.2) G〈σ2σ1τ2〉 = G〈σ2τ2σ1〉 and G〈σ1σ2τ1〉 = G〈σ1τ1σ2〉.
Let G′ = G〈σ1σ2〉, σ′

1 = σ′
2 = ε, τ ′1 = τ1, and τ ′2 = τ2. Note that σ′

1τ
′
1 and σ′

2τ
′
2

are both valid for G′ due to (3.2). Of course, σ′
1 ∩ σ′

2τ
′
2 = σ′

2 ∩ σ′
1τ

′
1 = ∅ because σ′

1

and σ′
2 are empty. All preconditions of this lemma are fulfilled, and |σ′

1τ
′
1|+ |σ′

2τ
′
2| <

|σ1τ1| + |σ2τ2|. We can thus use the induction hypothesis to show the existence of
μ′

1 and μ′
2 such that τ ′1μ

′
1 and τ ′2μ

′
2 are valid reduction sequences for G′ and that

G′〈τ ′1μ′
1〉 = G′〈τ ′2μ′

2〉. If we choose μ1 = μ′
1 and μ2 = μ′

2, then this is exactly the same
as

(3.3) G〈σ1σ2τ1μ1〉 = G〈σ1σ2τ2μ2〉.
Using all of the above we get (see Figure 3.3 for an illustration)

G〈σ1τ1σ2μ1〉 (3.2)
= G〈σ1σ2τ1μ1〉

(3.3)
= G〈σ1σ2τ2μ2〉 (3.1)

= G〈σ2σ1τ2μ2〉 (3.2)
= G〈σ2τ2σ1μ2〉.

The other case is that σ1 = σ2 = ε. If τ1 = ε as well, the statement of the lemma
holds because setting μ1 = τ2 and μ2 = ε guarantees that σ1τ1σ2μ1 = σ2τ2σ1μ2 and
thus G〈σ1τ1σ2μ1〉 = G〈σ2τ2σ1μ2〉. Otherwise, if τ1 is not empty, we may furthermore
assume that the first vertex in τ1 also occurs in τ2: if it did not, we could shift the
first node of τ1 into σ1 and apply the argument from the above first case.

Now define τ1 = vτ ′1 and τ2 = τ ′2vτ
′′
2 . Applying Lemma 3.4 to τ ′2v yields G〈τ ′2v〉 =

G〈vτ ′2〉. This entails G〈vτ ′2τ ′′2 〉 = G〈τ2〉. Furthermore, both τ ′1 and τ ′2τ
′′
2 are valid

reduction sequences for G〈v〉. Owing to the induction hypothesis with respect to
G〈v〉 and the sequences below, there are μ1 and μ2 such that

G〈τ1μ1〉 = G〈v〉〈τ ′1μ1〉 i.h.= G〈v〉〈τ ′2τ ′′2 μ2〉 = G〈τ2μ2〉,
which completes the proof.

Theorem 3.8. Let G = (V,E) be a graph and D ⊆ V . Then R∗(G) is well
defined; i.e., if τ1 and τ2 are two valid reduction sequences for G of maximal length,
then G〈τ1〉 = G〈τ2〉.

Proof. Let σ1 = σ2 = ε; then G, D, σ1τ1, and σ2τ2 satisfy the conditions of
Lemma 3.7. Thus there are sequences μ1 and μ2 such that σ1τ1σ2μ1 = τ1μ1 and
σ2τ2σ1μ2 = τ2μ2 are valid reduction sequences for G with G〈τ1μ1〉 = G〈τ2μ2〉. The
fact that τ1μ1 is a valid reduction sequence for G and that τ1 is a reduction sequence
of maximal length implies μ1 = ε. Using the same argument, we obtain μ2 = ε.
Hence, G〈τ1〉 = G〈τ2〉.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A BOUND ON THE PATHWIDTH OF SPARSE GRAPHS 415

G

G〈σ1〉 G〈σ2〉
G〈σ1σ2〉

G〈σ1τ1〉 G〈σ2τ2〉

G〈σ1τ1σ2〉 G〈σ2τ2σ1〉

G〈σ1τ1σ2μ1〉 = G〈σ2τ2σ1μ2〉

σ1 σ2

σ2 σ1

τ1 τ2

τ1 τ2

σ2 σ1

μ1 μ2

Fig. 3.3. Confluent sequences.

4. Bounds on treewidth and pathwidth. Now that we have established the
confluence of our reduction rules, we continue by investigating their influence on the
treewidth of graphs. The following lemmas reveal two important properties: graphs
of treewidth at most two collapse upon application of the reduction rules, whereas the
rules R0, R1, and R2 cannot affect any treewidth greater than two. These lemmas
constitute important building blocks for the main result of this section, namely, the
bound of m/5.769 + O(log n) on the pathwidth of graphs.

Lemma 4.1. Let G = (V,E) be a graph, D ⊆ V , and tw(G) ≤ 2. Then R∗(G) is
empty.

Proof. Connected graphs with treewidth at most two are reduced by R1 and R2

to a single node [2].
Lemma 4.2. Let G = (V,E) be a connected graph, let tw(G) > 2, and let G′ be a

graph obtained from G by applying R0, R1, or R2. Then tw(G) = tw(G′).
Proof. Note that the reduction rules can be inverted easily. The inverse of R0

or R1 is to add or connect a new node to the graph, and the inverse of R2 is to
subdivide an edge (with or without keeping a copy of that edge). We begin with a
tree decomposition for G′ and construct a tree decomposition for G.

Let us first investigate the case that R0 or R1 was applied to turn G into G′.
Adding an isolated node to a tree decomposition is trivial, and in order to connect a
new node v to some node w in G′, it suffices to find a bag B with w ∈ B and attach
a new bag B′ = {v, w} to B.

Otherwise, R2 was applied. To subdivide an edge {w1, w2} by a new node v (with
or without keeping a copy of that edge), it suffices to find a bag B with w1, w2 ∈ B
and attach a new bag B′ = {v, w1, w2} to B.

In either case, the resulting tree of bags is a tree decomposition for G. Moreover,
we added only a bag B′ of size at most three. If tw(G′) ≤ 2, then tw(G) ≤ 2, which
contradicts the assumption that tw(G) ≥ 3 from the statement of this lemma. Oth-
erwise, we have tw(G′) ≥ 3 and tw(G′) = tw(G) because the old tree decomposition
already contains a bag at least as large as B′.

Lemma 4.3. Let G = (V,E) be a graph such that R∗(G) = ∅ where D = ∅. Then
pw(G) = O(log |V |).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

416 KNEIS, MÖLLE, RICHTER, AND ROSSMANITH

Proof. Lemma 4.2 implies tw(G) ≤ 2; thus there is a separator U of size three
such that all components of G \ U have a size of at most (n − 2)/2 [3]. Recursively
construct path decompositions for these components, concatenate them, and add U to
each bag to get a path decomposition for G. The recursion depth is logarithmic.

In order to bound the treewidth of a graph by m/5.769 + O(log n), we present
a construction of tree decompositions based on the iterated removal of nodes where
reduction rules are applied whenever possible. If the graph splits into several compo-
nents, the construction can be performed for each of the components independently.

Clearly, the removal of a node—combined with subsequent reductions—leads to
a loss of edges as well. Since the number of edges that vanish upon deletion of a node
is small in a few cases, but larger on average, we employ an amortized analysis using
node potentials. To do this, we first define a potential function φ : V → Q as follows.

Definition 4.4.

φ(v) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if deg(v) < 3,
25/26 if deg(v) = 3,
25/13 if deg(v) = 4,
deg(v)/2 if deg(v) ≥ 5.

The continuation Φ maps entire graphs to the sum of the potentials over all nodes:
Φ(G) :=

∑
v∈V φ(v). Observe that this sum—the potential of a graph—never exceeds

the number of edges in any graph.
Lemma 4.5. Let G = (V,E) be a reduced connected graph that contains a node of

degree at least four and is not five-regular. There is a node of maximum degree whose
removal decreases the potential of G by at least 75/13 > 5.769.

Proof. Choose a node v of maximum degree and recall that deg(v) ≥ 4. In the
special case that the maximum degree equals five, choose a node v of degree five at
least one of whose neighbors has lower degree. Observe also that every node in G has
degree at least three because G is assumed to be a reduced graph.

The removal of v decreases the potential in two ways. First, the deletion of v
lowers the potential of G by φ(v). Second, the deletion of v lowers the degree of each
neighbor of v by one, leading to another loss in potential. If such a neighbor has
degree three or four, its potential decreases by 25/26. If its degree equals five, its
potential decreases by only 5/2− 25/13 = 15/26. In all other cases, the potential of
the neighbor decreases by 1/2.

We employ a case distinction to verify that the potential of G is lowered by at
least 75/13 when v is removed.

If deg(v) = 4, each neighbor of v has degree three or four, and the above considera-
tions imply that the total loss of potential amounts to exactly 25/13+4·25/26 = 75/13.

In the special case that deg(v) = 5, at least one neighbor of v has degree three or
four as detailed above. The removal of v thus leads to a total loss of potential of at
least 5/2 + 4 · 15/26 + 25/26 = 75/13.

If deg(v) ≥ 6, the potential drops by at least 6/2 + 6 · 1/2 = 6.
An exceedingly helpful case is reflected by the following lemma.
Lemma 4.6. Let G = (V,E) be a connected graph of maximum degree five that

has been reduced according to the rules R0, R1, and R2. Let v ∈ V be a node with
deg(v) = 5 such that R∗(G \ {v}) contains a five-regular component C. Then Φ(C) ≤
Φ(G)− 95/13.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A BOUND ON THE PATHWIDTH OF SPARSE GRAPHS 417

Proof. Since G is connected, v has a neighbor of degree three. Otherwise, each
component of G \ {v} would contain at least one node of degree three or four and
no reduction rules could be applied. This contradicts the existence of a five-regular
component in R∗(G \ {v}).

The most simple way to obtain a five-regular component is to remove a node, all
of whose neighbors are of degree three. After the removal all neighbors are contracted
by R2, leading to a possibly five-regular component. Regardless of the structure of
the resulting graph, the potential Φ(G) decreases by at least 5/2 + 5 · 25/26 = 95/13.

In any other case resulting in a five-regular component, the removal of v decreases
the degree of some of its neighbors to three or four. In order to obtain a five-regular
component, these neighbors must either be part of a different component or be reduced
by some further reduction rules. Let ni denote the number of nodes in N(v) with
degree i. Then, on removal of v the potential of G decreases by only 5/2+n3 ·25/26+
n4 · (25/13− 25/26) + n5 · (5/2− 25/13), but the potential of C can be bounded by

Φ(G) − 5/2− n3 · 25/26− n4 · 25/13− n5 · 5/2.

Therefore, the potential of C is at most Φ(G)− 95/13.
The above lemmas enable us to prove the main result of this paper.
Theorem 4.7. Let G = (V,E) be a graph. Then tw(G) ≤ |E|/5.769 +O(log n),

and a respective tree decomposition can be obtained in polynomial time.
Proof. Without loss of generality, assume that G is connected. We prove the claim

constructively by giving an algorithm that outputs the respective tree decomposition.
Basically, the algorithm is really simple: it keeps on removing nodes of maximum
degree and adds them to each bag of the tree decomposition. After each node removal,
the aforementioned reduction rules are applied immediately. As soon as the graph
becomes cubic, we obtain the rest of the tree decomposition using a technique by
Fomin and Høie.

The proof requires us to deal with some technicalities in order to obtain the desired
result. First, the removal of a node may split the graph into several components, but
these can be handled independently. Second, we avoid removing a degree-five node
with only degree-five neighbors whenever possible; this is a critical case in the analysis.

To see how the algorithm can be employed to construct a tree decomposition, let
G = (V,E) denote the currently inspected graph and v the node selected for removal.
If G′ = G \ {v} is connected, a tree decomposition for G can be obtained by adding v
to each bag of a tree decomposition for G′. In particular, this operation cannot
invalidate the tree decomposition. Otherwise, if G′ consists of several components, a
tree decomposition for G can be obtained as follows: after adding v to each bag in
the tree decompositions of the components, connect a new bag {v} to an arbitrary
bag of every such decomposition. Again, it is easy to verify that the resulting tree of
bags is a tree decomposition.

As detailed in Lemmas 4.1 and 4.2, the reduction rules do not increase the poten-
tial or the treewidth of a graph. Moreover, as described in the proof of Lemma 4.2,
the tree decomposition can be updated accordingly whenever a reduction rule has
been applied. It remains only to show that the size of the bags does not exceed the
claimed bound, which is done using an amortized analysis using node potentials.

We distinguish three phases. As long as the graph contains nodes of degree at
least six, we are in the first phase. While the maximum degree equals five or four,
we are in the second phase. The third phase begins as soon as the maximum degree
decreases to three or less. Observe that the maximum degree, as well as the degree

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

418 KNEIS, MÖLLE, RICHTER, AND ROSSMANITH

Algorithm T
Input: A reduced graph G
Output: A tree decomposition for G

(1) B := ∅;
(2) if G has maximum degree at most three then

return path decomposition as computed by Fomin and Høie;
(3) if G consists of several independent components G1, . . . , Gl

(4) then connect B to one bag from each T (Gi);
(5) return this tree decomposition;
(6) else
(7) choose a preferable node v;
(8) G′ = G \ {v}; T ′ = T (R∗(G′));
(9) Update T ′ according to every applied reduction rule;

(10) Add v to each bag of T ′;
(11) return T ′;

Fig. 4.1. Algorithm T computes a tree decomposition. If G is five-regular, then every node
is preferable. Otherwise, every node of maximum degree is preferable unless it has exactly five
neighbors, each of which have degree five.

of every node in the graph, decreases monotonically as we proceed to remove nodes,
implying that the phases are traversed in the given order.

Within the first phase, each step decreases the potential by at least 3+6 ·1/2 = 6:
a node of degree at least six has a potential of at least 3, and each of its neighbors
loses an edge, which decreases the potential by at least 1/2 per neighbor.

Whenever the removed node disconnects the graph, it suffices to compute the tree
decomposition for each of the respective components independently. At any point, we
may thus restrict our analysis to the component having the largest potential. For the
second phase, it hence suffices to analyze the cases in which the graph is connected
and has maximum degree four or five.

According to Lemma 4.5, each step in the second phase decreases the potential
by 75/13 unless the graph is five-regular. When removing a node from a five-regular
graph, the potential decreases by only 5/2 + 5 · (5/2 − 25/13) = 70/13. However,
Lemma 4.6 implies that in the last step the potential has been decreased by at least
95/13, except for the very first step of this phase, whose constant additional cost is
hidden in the O(log n) term. Thus, the average loss is 165/26 > 75/13.

As soon as we enter the third phase, the remaining graph G′ = (V ′, E′) is either
three-regular or empty (due to reductions). It obviously suffices to consider the three-
regular case, in which |V ′| = Φ(G′) · 26/25. According to a result by Fomin and
Høie [5], the pathwidth of an n-node cubic graph is bounded by (1+ε)n/6+O(log n),
where ε > 0 is an arbitrarily small constant. This implies a bound of

(1 + ε)(Φ(G′) · 13/75) +O(log Φ(G′)) ≤ Φ(G′)/5.769 +O(log |V ′|)

on the treewidth of G′. A respective tree decomposition can be computed in polyno-
mial time [5].

A tree-decomposition algorithm that employs the construction used in Theo-
rem 4.7 is depicted in Figure 4.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A BOUND ON THE PATHWIDTH OF SPARSE GRAPHS 419

Lemma 4.8. Let G be a graph, D = ∅, and (V ′, E′) = R∗(G). Then every
(connected) component of G \ V ′ is connected to at most two vertices in G[V ′].

Proof. Let C = G[{v1, . . . , vr}] be a (connected) component of G \ V ′. G has
been reduced to (V ′, E′) by a valid reduction sequence σ. Observe that σ contains
v1, . . . , vr without loss of generality in this order. Moreover, v1 is reducible in G
because no neighbor of v1 is removed before v1. Lemma 3.4 shows that we can move
v1 to the front of σ. Repeating this argument, we see that (v1, . . . , vr) is a valid
reduction sequence for G. Moreover, applying any reduction rule on C does not affect
the connectivity of the remaining nodes in C, since only nodes of degree one or less
are removed and nodes of degree two are contracted.

Let

Vi := { v ∈ V ′ | v is a neighbor of {vi, . . . , vr} in G〈v1, . . . , vi−1〉 }.

We claim that Vi = Vi+1 for 1 ≤ i ≤ r − 1.
If vi has no neighbor in Vi (in the graph G〈v1, . . . , vi−1〉), the claim obviously

holds. Otherwise, vi is of degree two with neighbors u ∈ V ′ and w ∈ {vi+1, . . . , vr}.
Vi \ {u} ⊆ Vi+1, as all these nodes have neighbors in {vi+1, . . . , vr}.

Applying R2 on vi adds a new edge between u and w. Since w ∈ G〈v1, . . . , vi〉,
u ∈ Vi+1. Thus V1 = Vr.

Now, if |Vr| ≥ 3, then vr is not reducible in G〈v1, . . . , vr−1〉, which is a contradic-
tion.

Theorem 4.9. Let G = (V,E) be a graph. Then pw(G) ≤ |E|/5.769 +O(log n),
and a respective path decomposition can be obtained in polynomial time.

Proof. Let D be the set of nodes that have been chosen as preferable nodes in
line (7) of Algorithm T. The algorithm transforms G into a cubic graph G〈σ〉, where σ
is a valid reduction sequence with respect to D. Note that every node in D is reducible
in G. By Lemma 3.4 there is a valid reduction sequence σ′ = (d1, . . . , dr, v1, . . . , vs)
that is a permutation of σ and di ∈ D, vi /∈ D. Moreover, G〈σ〉 = G〈σ′〉.

We will modify Algorithm T so as to construct a path decomposition instead of
a tree decomposition.

Without loss of generality, we assume G〈σ′〉 is connected. Otherwise, we apply
the following argument for each component separately.

Let P = (P1, . . . , Pt) be a path decomposition for G〈σ′〉 as computed by Fomin
and Høie. A component C of G[{v1, . . . , vs}] has at most two neighbors in G〈σ′〉
according to Lemma 4.8. If there are indeed two neighbors, they must be connected
by an edge in G〈σ′〉 as the path connecting both neighbors in C has been contracted
to a single edge. Thus the neighbors occur together in a bag of P . Let Pi be the
smallest bag in P that contains all neighbors of C and P ′ = (P ′

1, . . . , P
′
k) be a path

decomposition of C. Since C is series-parallel, the width of P ′ is only O(log n). Then
(P ′

1 ∪ Pi, . . . , P
′
k ∪ Pi) is a path decomposition for G[V (C) ∪ Pi] and (P1, . . . , Pi, P

′
1 ∪

Pi, . . . , P
′
k ∪ Pi, Pi+1, . . . Pt) is a path decomposition for G[U], where U consists of all

nodes in C and G〈σ′〉. Notice that we can do this for all components of G[{v1, . . . , vs}]
in parallel, such that the size of the resulting bags is still bounded by the width of P
plus O(log n), since the original bags from P remain untouched and thus can be used
as smallest bag Pi.

Therefore, we obtain path decompositions for every connected component of
G〈d1, . . . , dr〉. To obtain path decompositions for each component of G〈d1, . . . , dr−1〉,
we proceed as follows: We add dr to every bag of the path decomposition of each

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

420 KNEIS, MÖLLE, RICHTER, AND ROSSMANITH

component that is adjacent to dr just as in Algorithm T. Afterward, we connect these
path decompositions as a path.

Compared to the tree decompositions described in Theorem 4.7, only the incor-
poration of the path decompositions of G[{v1, . . . , vs}] increases the size of the bags
as described above. We obtain a bound of

O(log n) + |E|/5.769 +O(log n) = |E|/5.769 +O(log n)

for the width of our path decomposition.
Employing a framework for algorithms that work on tree decompositions by Telle

and Proskurowski [20], one immediately obtains the following result.
Corollary 4.10. Max-2SAT and Max-Cut can be solved in O∗(2m/5.769)

using exponential space.
The exponential space complexity of the resulting algorithms is due to dynamic

programming on the actual tree decomposition. As we will see in the next section, tree
decompositions that were computed according to Theorem 4.7 have a unique structure:
instead of adding nodes to the tree decomposition when they are removed from the
graph in the first two phases and solving the problem at hand with the framework by
Telle and Proskurowski, we can simply branch on these nodes if there are appropriate
reduction rules for that problem. Since branching requires only polynomial space,
this will enable us to get rid of the exponential space complexity.

Unfortunately, the algorithm by Fomin and Høie employed in the third phase
does not necessarily output decompositions of the aforementioned structure. Since
this forbids us to switch to algorithms that branch directly, the third phase forces us
to use the Telle–Proskurowski approach and thus requires exponential space.

5. Algorithms for MAX-CUT and MAX-2SAT. In order to enforce polyno-
mial space complexity and to solve the problem discussed at the end of the previous
section, we now abandon the special processing of cubic graphs. The resulting al-
gorithms for problems like Max-Cut and Max-2SAT solely rely on branching and
avoid any dynamic programming. They guarantee polynomial space complexity at
the expense of slightly worse runtime bounds. Again, branching is only possible for
problems that can be represented as graph problems with appropriate reduction rules
for nodes of degree at most two.

As a bonus, these branching-based algorithms are extremely intuitive. In con-
trast to previous algorithms [1, 14, 7], our algorithm for Max-2SAT (see Figure 5.1)
consists of only three reductions and straightforward branching. Whenever a vari-
able x occurs with at most two other variables y, z, we can eliminate x by adding new
clauses over y and z. If branching leads to several independent subformulas, we can
solve these independently—a very natural reduction. Finally, the algorithm simply
branches by setting a variable x to true or false, which is the most simple branching
imaginable. The simple structure makes the resulting algorithms relatively efficient
(the runtime bounds do not contain large hidden constants or polynomials) but also
easy to implement and verify.

Since we cannot rely on the result for cubic graphs by Fomin and Høie [6] any
longer, we need to redefine the node potentials. The following values turn out to be
the best choice for our analysis.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A BOUND ON THE PATHWIDTH OF SPARSE GRAPHS 421

Algorithm A
Input: A Max-2SAT-formula F
Output: A(F) = OptVal(F)

(1) Reduce F by the reduction rules while possible;
(2) if F = {(k,T)} then return k;
(3) if F consists of several independent subformulas F1, . . . , Fl

(4) then return
∑l

i=1 A(Fi);
(5) else
(6) choose the preferable variable x;
(7) return max{A(F [x]), A(F [x̄])};

Fig. 5.1. A very simple algorithm for Max-2SAT that does not use the connectivity graph
directly.

Definition 5.1.

ψ(v) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if deg(v) < 3,
30/23 if deg(v) = 3,
45/23 if deg(v) = 4,
deg(v)/2 if deg(v) ≥ 5.

Again, Ψ maps entire graphs to the sum of the potentials over all nodes. As in
Definition 4.4, the potential of any graph is bounded by its number of edges.

Lemma 5.2. Let G = (V,E) be a connected graph of maximum degree four
that has been reduced according to the rules R0, R1, and R2. Let v ∈ V be a node
with deg(v) = 4 such that R∗(G \ {v}) contains a four-regular component C. Then
Φ(C) ≤ Φ(G)− 165/23.

Proof. This is can be proven analogously to Lemma 4.6.
Lemma 5.3. Let G = (V,E) be a graph such that R∗(G) is not empty. If

R∗(G) consists of multiple components, then each component has a potential of at
most Ψ(G)− 120/23.

Proof. Each component of R∗(G) contains a node v of degree at least three.
The neighbors of v have degree at least three as well. Hence, the potential of each
component is at least 4 · 30/23. If there are multiple components, the potential of
each is thus bounded by Ψ(G)− 120/23.

Using the above two lemmas, it is possible to find small node sets that either
split a graph into several components of bounded potential or leave a trivial graph.
This is formalized by the following theorem which is the backbone of the upcoming
algorithms for Max-2SAT and Max-Cut.

Theorem 5.4. Let G = (V,E) be a graph. There is a set D ⊆ V such that either
(i) R∗(G \D) contains at least two components, each having a potential of at

most Ψ(G)− 5.217|D|, or
(ii) R∗(G \D) = ∅ and |D| ≤ Ψ(G)/5.217 + 1.

Proof. Let G = (V,E) be a graph. If G has maximum degree at least five,
removing a node of maximum degree and applying the reduction rules decreases the
potential by at least 2.5 + 5 · (2.5 − 45/23) = 120/23 > 5.217. We may thus assume
that G has maximum degree at most four.

Analogously to Theorem 4.7, we remove nodes of maximum degree until G either
splits into several components or becomes empty. In doing so, we avoid nodes with

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

422 KNEIS, MÖLLE, RICHTER, AND ROSSMANITH

four neighbors of degree four if possible. Again, the potential decreases by at least
120/23 in any step, except for the aforementioned four-regular case. But even in this
case with a loss of 45/23 + 4 · 15/23 = 105/23, there is an average loss of more than
120/23 according to Lemma 5.2, since the step before yields a loss of at least 165/23.

There is only one exception that does not allow for the above bonus argument,
namely, the case when the graph is four-regular for the first time. Note that the loss
of potential in this case amounts to only 105/23, which is 15/23 short of the desired
value.

If we end up with an empty graph, the additional node in D is absorbed by the
last summand in the bound Ψ(G)/5.217 + 1. Otherwise, if the graph breaks down
into several components, the remaining potential is at most Ψ(G)−5.217|D|+15/23.
Lemma 5.3 implies that each component has potential at most Ψ(G) − 5.217|D| +
15/23− 120/23 < Ψ(G)− 5.217|D|.

Note that according to our results from section 3, reducing the graph G\D yields
exactly the same graph as removing the nodes in D successively and reducing the
remaining graph in each step. Hence, the nodes selected by the above algorithm
constitute a set D with the desired properties.

Note that, similar to the proofs from section 4, this result can be used to bound
the pathwidth of sparse graphs by m/5.127 + 3. While this bound is worse than the
one obtained earlier, the corresponding path decompositions have nice properties that
can be exploited in direct algorithms, as we will see shortly.

We now possess the graph-theoretical means to construct the desired polynomial-
space algorithms. When F is a Max-2SAT formula, we use GF to denote the con-
nectivity graph of F : each variable in F is represented by a node in GF , and two
nodes are connected if and only if the formula contains a clause consisting of the
two corresponding variables. Observe that the connectivity graph does not represent
negations or weights in the formula. For instance, f = (x1 ∨x2)∧ (x1 ∨x2)∧ (x2 ∨x3)
and g = (x1 ∨ x2) ∧ (x2 ∨ x3) have identical connectivity graphs Gf and Gg. As a
consequence, the formula F cannot be reconstructed from GF .

In order to fix a terminology for the discussion of satisfiability problems, we adhere
to the notation for weighted boolean formulas used by Gramm et al. [7].

Definition 5.5. A (weighted) clause is a pair (ω, S) where ω is an integer and S
is a nonempty finite set of literals that does not contain, simultaneously, any variable
together with its negation.

A formula F is a set of clauses, such that each set of literals appears in at most
one clause.

We call ω the weight of a clause (ω, S) and define

wF (S) =

{
ω if (ω, S) ∈ F ,
0 otherwise.

In addition to usual clauses, we allow a special true clause (ω,T) which is satisfied
by every assignment. (We also call it a T-clause.) The operators + and − are defined
as follows.

Definition 5.6.

F +G = { (wF (S) + wG(S), S) | wF (S) + wG(S) �= 0 },
F −G = { (wF (S)− wG(S), S) | wF (S)− wG(S) �= 0 }.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A BOUND ON THE PATHWIDTH OF SPARSE GRAPHS 423

For a literal l and a formula F , the formula F [l] is obtained by setting the value
of l to True. For a set of literals X = {x1, . . . , xk}, we set F [X] := F [x1][x2] . . . [xk].
For example,

F = {(5, {x, y, z̄}), (3, {y, z̄}), (2, {x̄, y}), (−1, {x̄, y, z̄})},
F [x] = {(5,T), (2, {y, z̄}), (2, {y})},
F [x̄] = {(1,T), (8, {y, z̄})},

F [x, y] = {(9,T)}.

Definition 5.7. The optimal value of a maximum weight assignment for for-
mula F is defined as OptVal(F) = maxA{ω | (ω,T) ∈ F [A] }, where A is taken over
all possible assignments.

An assignment A is optimal if F [A] contains only one clause (ω,T) (or if it
does not contain any clause, in this case we set ω = 0) and OptVal(F) = ω (=
OptVal(F [A])). We call F and G max-equivalent if OptVal(F) = OptVal(G).

In order to design a branching algorithm for Max-2SAT as suggested above (i.e.,
an algorithm that branches on nodes from the set D as constructed in Theorem 5.4),
we must find reduction rules for formulas that correspond to removing nodes of degree
at most one and contracting nodes of degree two. Clearly, a simple reduction rule
suffices to remove nodes of degree zero from GF : if a variable occurs only in unary
clauses, it is optimal to choose the assignment that satisfies most of these clauses.

But what do we need to do with F in order to remove a degree-one node or
contract a degree-two node in GF ? It is easy to see that we have to eliminate a
variable x that occurs with exactly one or two other variables, respectively. In order
to maintain a max-equivalent formula, these steps require us to introduce new clauses.

Since we branch on nodes in the connectivity graph that hides negations it is
straightforward to analyze the running time without respect to negations as well.
This notion is reflected by the following definition.

Definition 5.8. Let F be a SAT formula. For each clause C, we call the set of
variables that occur in C the clause type. The clause types of F are the clause types
of the clauses in F .

For example, (x1∨x2) and (x1∨x2) have the same type and may thus be counted
as one entity in the analysis. This way of measuring the complexity of a formula by
the number of clause types has a crucial advantage: we may employ reduction rules
that introduce additional clauses of existing types without raising the potential.

Definition 5.9. Let F be a 2SAT formula. We call the variable x a companion
(of y) if there is a unique variable y �= x that occurs together with x in a clause.

In terms of the respective connectivity graph GF , the variable x is a companion
if and only if the degree of x in GF is one.

Lemma 5.10 (companion reduction rule). Let F be a 2SAT formula. If x is
a companion, we can transform F into a max-equivalent formula F ′ containing the
same variables except for x, where GF ′ = GF \ {x}. This can be done in polynomial
time.

Proof. Let F be a formula, let x be a companion of y, let F ′ consist of all clauses
in F with an occurrence of the variable x, and let F ′′ = F \ F ′. Let, furthermore,
a = OptVal(F ′[y]), b = OptVal(F ′[ȳ]), and

H =

{{
(b,T), (a− b, {y})} if a > b,{
(a,T), (b − a, {ȳ})} otherwise.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

424 KNEIS, MÖLLE, RICHTER, AND ROSSMANITH

It is easy to see that a = OptVal(H [y]) and b = OptVal(H [ȳ]). We immediately get

OptVal(H + F ′′)

= max
{
OptVal(H [y]) + OptVal(F ′′[y]),OptVal(H [ȳ]) + OptVal(F ′′[ȳ])

}
= max

{
OptVal(F ′[y]) + OptVal(F ′′[y]),OptVal(F ′[ȳ]) + OptVal(F ′′[ȳ])

}
= OptVal(F ′ + F ′′) = OptVal(F).

Hence, we can replace F by the max-equivalent formula H +F ′′. Note that it is easy
to calculate a and b and that H + F ′′ does not contain the variable x anymore.

Definition 5.11. Let F be a 2SAT formula. A variable x is a double companion
if and only if the degree of x in GF is two.

For the following lemma, remember the definition of our new parameter t, the
number of clause types.

Lemma 5.12 (double companion reduction rule). Let F be an arbitrary 2SAT
formula. If x is a double companion, then we can transform F into a max-equivalent
formula F ′ that contains the same variables as F except x, and possibly clauses of
negative weight, in polynomial time. The formula F ′ does not have more clause types
than F . Moreover, GF ′ is the graph obtained from GF by contracting x.

Proof. Let x be a double companion that occurs together with y and z. Let F =
F ′ +F ′′, where F ′ consists of all the clauses that contain x and F ′′ holds all the other
clauses. We define a = OptVal(F ′[y, z]), b = OptVal(F ′[y, z̄]), c = OptVal(F ′[ȳ, z]),
and d = OptVal(F ′[ȳ, z̄]). Let

G =
{
(a+ b+ c+ d,T), (−d, {y, z}), (−c, {y, z̄}), (−b, {ȳ, z}), (−a, {ȳ, z̄})}.

We easily see a = OptVal(G[y, z]), b = OptVal(G[y, z̄]), c = OptVal(G[ȳ, z]), and
d = OptVal(G[ȳ, z̄]). Therefore, OptVal(F ′ + F ′′) = OptVal(G + F ′′). Moreover, x
does obviously not occur in G+ F ′′.

Note that the new clauses containing y and z imply the existence of an edge
between the corresponding nodes in GF ′ . Hence, GF ′ can be obtained from GF by
contracting x.

We now have reduction rules for formulas in 2-CNF that enable us to eliminate all
nodes with degree up to two in the corresponding connectivity graph. The following
lemma shows how branching on a variable affects the connectivity graph.

Lemma 5.13. Let F be a formula and x a variable. Then GF [x] = GF [x] =
GF \ {x}.

Proof. Let F be a formula and x a variable. Setting x to true removes every clause
containing x and shrinks each clause containing x to size one. Both operations result in
the removal of all corresponding edges in GF . Thus, GF [x] = GF \ {x} = GF [x].

Definition 5.14. Let F be a formula over variables x1, . . . , xn such that GF

is connected. If GF is four-regular or its maximum degree does not equal four, the
preferable variable is the first xi of maximum degree. Otherwise, if GF has maximum
degree four as well as nodes of smaller degree, the preferable variable is the first xi of
degree four with at least one neighbor of smaller degree.

From our results on confluence, we already know that a sequence of branching
steps in Algorithm A is equivalent to branching on all involved variables and then
applying the reduction rules as long as the formula does not decompose into several
independent formulas. Whenever this is the case, each independent call of Algo-
rithm A on Fi branches on a different set of variables. Observe that in this case,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A BOUND ON THE PATHWIDTH OF SPARSE GRAPHS 425

simply branching on all variables could be too expensive—e.g., if each component is a
clique of size five, we would have to branch on m/5 variables. Solving these formulas
independently allows us to overcome this problem.

In order to ease the forthcoming proofs, we introduce the splitting number of a
formula to represent the depth of this splitting process, i.e., how often a formula is
separated on a single path in the recursion tree until all components are solved.

Definition 5.15. Let F be a formula. We define the splitting number s(F) of
a run of Algorithm A on F as

(i) s(F) := 0 if the algorithm returns in line (2),
(ii) s(F) := 1 + max{ s(Fi) | i = 1, . . . , l } if the algorithm returns in line (4),
(iii) s(F) := s(F [x]) if the algorithm returns in line (7).

Clearly, s(F [x]) = s(F [x]).
Theorem 5.16. Let F be a formula. Using only polynomial space, Algorithm A

solves Max-2SAT in time O∗(2t/5.217) on F , where t is the number of clause types.
Proof. Let Ψ(F) = Ψ(GF). Recall that branching on a variable x leads to the

same connectivity graph in both branches, implying that the preferable variable is
the same for both F [x] and F [x]. Therefore, Algorithm A always branches on the
same variable set D until we end up with either {(k, T)} or several independent
subformulas Fi. In the latter case, new pairwise disjoint sets D of variables are used
for each Fi. Note that the above variable sets D correspond to the node set D from
Theorem 5.4 when applied to the respective connectivity graph, since Algorithm A
selects the nodes in the same way as described in the proof of Theorem 5.4.

We prove a bound of |F |2Ψ(F)/5.217 on the number of leaves in the recursion
tree by induction over the splitting number s(F), where |F | denotes the number of
variables in F .

If s(F) = 0, then F = {(k, T)} and F never decomposes into several independent
subformulas. Thus we obtain R∗(GF \D) = ∅. Consequently, |D| ≤ Ψ(GF)/5.217 =
Ψ(F)/5.217, and therefore the number of leaves in the recursion tree is bounded by
2Ψ(F)/5.217.

If s(F) > 0, then F decomposes into several independent subformulas F1, . . . , Fl

after branching on all variables in D. By Theorem 5.4, the potential Ψ(Fi) of each Fi

is bounded by Ψ(F)− |D| · 5.217. Obviously, we end up with 2|D| different branches.
Using the induction hypothesis, we bound the number of recursive calls by

2|D| ·
l∑

i=1

|Fi| · 2(Ψ(F)−|D|·5.217)/5.217

= 2|D| · 2(Ψ(F)−|D|·5.217)/5.217 ·
l∑

i=1

|Fi| = |F | · 2Ψ(F)/5.217.

Since the number of leaves in the recursion tree is bounded by |F | · 2Ψ(F)/5.217, Ψ(F)
is a lower bound on the number of clause types, and each call takes only polynomial
time, the running time of Algorithm A is O∗(2t/5.217).

Using the well-known reduction from Max-Cut to Max-2SAT which consists of
two clauses for each edge but only one clause type, we obtain the following corollary.

Corollary 5.17. Let G be a graph. Max-Cut can be solved in at most
O∗(2m/5.217) steps on G using only polynomial space, where m denotes the number of
edges in G.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

426 KNEIS, MÖLLE, RICHTER, AND ROSSMANITH

It is very simple to construct reduction rules for Max-Cut to deal with nodes
of degree at most two. In doing so, the construction of a direct algorithm similar to
Algorithm A for Max-Cut is straightforward.

Acknowledgments. We would like to thank Stefan Kratsch for pointing out a
mistake in section 3 of the preliminary paper [10]. The mistake affects Lemma 6 of
[10] and invalidates the proof of Theorem 2 of [10], which states a weaker bound of
m/5 + 2 on the treewidth. We are also grateful to Gregory Sorkin for revealing a
minor problem in our proof of the bound of m/5.769 + O(log n); the case where the
graph decomposes into several parts has not been addressed in the original paper [10]
(the completed proof can be found in section 4).

REFERENCES

[1] N. Bansal and V. Raman, Upper bounds for MaxSat: Further improved, in Proceedings of the
10th International Symposium on Algorithms and Computation (ISAAC), Lecture Notes
in Comput. Sci. 1741, Springer-Verlag, New York, 1999, pp. 247–258.

[2] H. L. Bodlaender, A tourist guide through treewidth, Acta Cybernet., 11 (1993), pp. 1–21.
[3] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput.

Sci., 209 (1998), pp. 1–45.
[4] S. S. Fedin and A. S. Kulikov, A 2|E|/4 algorithm for MAX-CUT, J. Math. Sci., 126 (2005),

pp. 1995–1999.
[5] F. V. Fomin and K. Høie, Pathwidth of Cubic Graphs and Exact Algorithms, Technical report

298, Department of Informatics, University of Bergen, Bergen, Norway, 2005.
[6] F. V. Fomin and K. Høie, Pathwidth of cubic graphs and exact algorithms, Inform. Process.

Lett., 97 (2006), pp. 191–196.
[7] J. Gramm, E. A. Hirsch, R. Niedermeier, and P. Rossmanith, New worst-case upper bounds

for MAX-2-SAT with application to MAX-CUT, Discrete Appl. Math., 130 (2003), pp.
139–155.

[8] T. Hofmeister, An approximation algorithm for MAX-2-SAT with cardinality constraint, in
Proceedings of the 11th European Symposium on Algorithms (ESA), Lecture Notes in
Comput. Sci. 2832, Springer-Verlag, New York, 2003, pp. 301–312.

[9] T. Kloks, Treewidth, Lecture Notes in Comput. Sci. 842, Springer-Verlag, New York, 1994.
[10] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith, Algorithms based on the treewidth

of sparse graphs, in Proceedings of the 31st International Workshop on Graph-Theoretic
Concepts in Computer Science (WG), Lecture Notes in Comput. Sci. 3787, Springer-Verlag,
New York, 2005, pp. 385–396.

[11] A. Kojevnikov and A. S. Kulikov, A new approach to proving upper bounds for MAX-2-
SAT, in Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms (SODA),
ACM, New York, SIAM, Philadelphia, 2006, pp. 11–17.

[12] A. S. Kulikov and K. Kutzkov, New bounds for MAX-SAT by clause learning, in Proceedings
of the 2nd International Symposium on Computer Science in Russia, Ekaterinburg, Russia,
2007, pp. 194–204.

[13] D. Livnat M. Lewin and U. Zwick, Improved rounding techniques for the MAX 2-SAT and
MAX DI-CUT problems, in Proceedings of the 9th Conference on Integer Programming
and Combinatorial Optimization (IPCO), Lecture Notes in Comput. Sci. 2337, Springer-
Verlag, New York, 2002, pp. 67–82.

[14] R. Niedermeier and P. Rossmanith, New upper bounds for maximum satisfiability, J. Algo-
rithms, 36 (2000), pp. 63–88.

[15] D. Raible and H. Fernau, A new upper bound for MAX-2-SAT: A graph-theoretic approach,
in Proceedings of the 33rd Conference on Mathematical Foundations of Computer Science
(MFCS), E. Ochmanski and J. Tyszkiewicz, eds., Lecture Notes in Comput. Sci. 5162,
Springer-Verlag, New York, 2008, pp. 551–562.

[16] A. D. Scott and G. B. Sorkin, A faster exponential-time algorithm for Max 2-Sat, Max
Cut, and Max k-Cut, Technical report RC23456(W0412-001), IBM Research Report, 2004,
available online at http://domino.research.ibm.com/library/cyberdig.nsf.

[17] A. D. Scott and G. B. Sorkin, An LP-designed algorithm for constraint satisfaction, in
Proceedings of the 14th European Symposium on Algorithms (ESA), Lecture Notes in
Comput. Sci. 4168, Springer-Verlag, New York, 2006, pp. 588–599.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A BOUND ON THE PATHWIDTH OF SPARSE GRAPHS 427

[18] A. D. Scott and G. B. Sorkin, Linear-programming design and analysis of fast algorithms
for Max 2-SAT and Max 2-CSP, Discrete Optim., 4 (2007), pp. 260–287.

[19] P. D. Seymour and R. Thomas, Graph searching and a min-max theorem for tree-width, J.
Combin. Theory, 58 (1993), pp. 22–33.

[20] J. A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems on partial
k-trees, SIAM J. Discrete Math., 10 (1997), pp. 529–550.

[21] R. Williams, A new algorithm for optimal constraint satisfaction and its implications, in
Proceedings of the 31st International Colloquium on Automata, Languages, and Program-
ming (ICALP), Lecture Notes in Comput. Sci. 3142, Springer-Verlag, New York, 2004, pp.
1227–1237.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 428–446

MAXIMAL LABEL SEARCH ALGORITHMS TO COMPUTE
PERFECT AND MINIMAL ELIMINATION ORDERINGS∗

A. BERRY† , R. KRUEGER‡ , AND G. SIMONET§

Abstract. Many graph search algorithms use a vertex labeling to compute an ordering of
the vertices. We examine such algorithms which compute a peo (perfect elimination ordering) of a
chordal graph and corresponding algorithms which compute an meo (minimal elimination ordering)
of a non-chordal graph, an ordering used to compute a minimal triangulation of the input graph.
We express all known peo-computing search algorithms as instances of a generic algorithm called
MLS (maximal label search) and generalize Algorithm MLS into CompMLS, which can compute any
peo. We then extend these algorithms to versions which compute an meo and likewise generalize
all known meo-computing search algorithms. We show that not all minimal triangulations can be
computed by such a graph search, and, more surprisingly, that all these search algorithms compute
the same set of minimal triangulations, even though the computed meos are different. Finally, we
present a complexity analysis of these algorithms.1

Key words. graph search, peo, meo, minimal triangulation, elimination scheme, maximal label
search

AMS subject classification. 05C85

DOI. 10.1137/070684355

1. Introduction. Graph searching plays a fundamental role in many algorithms,
particularly using breadth-first or depth-first searches and their many variants. One
important application is to compute special graph orderings related to the chordality
of a graph. When the input graph is chordal, one wants to find an ordering of the
vertices called a peo (perfect elimination ordering), which repeatedly selects a vertex
whose neighborhood is a clique (called a simplicial vertex) and removes it from the
graph. This is a certificate of chordality, as, given an ordering of the vertices, one can
determine in linear time whether it is a peo of the graph.

When the input graph fails to be chordal, it is often interesting to embed it into a
chordal graph by adding an inclusion-minimal set of edges, a process called minimal
triangulation. One of the ways of accomplishing this is to use an ordering of the
vertices called an meo (minimal elimination ordering) and use this to simulate a peo
by repeatedly adding any edges whose absence would violate the simplicial condition.

Though some earlier work had been done on these problems (see [13, 12]), the
seminal paper is that of Rose, Tarjan, and Lueker [14], which presented two very
efficient algorithms to compute a peo or an meo. They introduced the concept of
lexicographic order (which, roughly speaking, is a dictionary order) and used this for
graph searches which at each step choose an unnumbered vertex of maximal label.
With this technique, they introduced Algorithm LEX M, which for a non-chordal
graph G = (V,E) computes an meo in a very efficient O(nm) time, (where n = |V |
and m = |E|) and then streamlined this for use on a chordal graph, introducing

∗Received by the editors March 5, 2007; accepted for publication (in revised form) July 14, 2008;
published electronically January 16, 2009.

http://www.siam.org/journals/sidma/23-1/68435.html
†LIMOS, Ensemble scientifique des Cézeaux, F-63177 Aubière, France (berry@isima.fr).
‡Department of Computer Science, University of Toronto, Toronto, Ontario, M5S 3G4 Canada

(krueger@cs.toronto.edu).
§LIRMM, 161, Rue Ada, F-34392 Montpellier, France (simonet@lirmm.fr).
1An extended abstract of part of this paper was published in WG 2005 [4].

428

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAXIMAL LABEL SEARCH ALGORITHMS 429

what is now called Algorithm LexBFS, a breadth-first search which runs in optimal
O(n + m) time and computes a peo if the input graph is chordal (see a survey on
LexBFS in [7]).

Later work has been done on computing peos. Tarjan and Yannakakis [16] pre-
sented Algorithm MCS (maximal cardinality search), which is similar to LexBFS but
uses a simplified labeling (a cardinality choice criterion is used instead of a lexico-
graphic one). MCS also computes in linear time a peo if the input graph is chordal.

Shier [15] remarks that neither LexBFS nor MCS is capable of computing all peos.
He proposes Algorithms MEC and MCC, that are generalizations of MNS and MCS,
respectively, and can both compute any peo of a chordal graph.

Recently, Corneil and Krueger [8] introduced Algorithm LexDFS as a depth-first
analogue to LexBFS. They also introduced Algorithm MNS (maximal neighborhood
search), which chooses at each step a vertex whose set of numbered neighbors is
inclusion-maximal. They gave characterizations of the orderings computed by these
search algorithms and observed, from a result of Tarjan and Yannakakis [16] on the
property characterizing MNS orderings, that every MNS ordering yields a peo if the
input graph is chordal. They showed with these characterizations that any ordering
computed by LexBFS, MCS, or LexDFS can also be computed by MNS.

Berry et al. [1] recently introduced Algorithm MCS-M, which computes an meo.
MCS-M is extended from MCS in the same fashion LEX M can be extended from
LexBFS. The sets of meos defined by LEX M and by MCS-M are different, but Vil-
langer [19] recently showed that the same sets of minimal triangulations were obtained.

In this paper, we address natural questions which arise about peos and meos:
how can the existing algorithms be generalized? Do these new algorithms compute
all peos of a chordal graph? Can they all be extended to compute meos? What sets
of minimal triangulations are obtained?

Algorithms LexBFS, MCS, LexDFS, and MNS clearly process in a similar way:
they number the vertices of the input graph by repeatedly numbering an unnumbered
vertex with maximal label and incrementing the labels of its neighbors. They only
differ by their vertex labeling, i.e., the nature of labels and the way they are compared,
initialized, and incremented. We show that they can be described as instances of a
generic algorithm called MLS (maximal label search) having the vertex labeling as a
parameter. We show that every instance of MLS computes a peo of a chordal graph but
cannot compute every peo of every chordal graph. In order to obtain all possible peos,
we extend MLS to CompMLS, which uses Shier’s idea of working on the connected
components of the subgraph induced by the unnumbered vertices. We show that every
instance of generic CompMLS is capable of computing any peo of a chordal graph.

We then go on to examine the issues pertaining to meos and minimal triangu-
lations. We show that MNS, MLS, and CompMLS can all be extended to compute
an meo, in the same way that LEX M is extended from LexBFS. We show the very
strong result that all the sets of minimal triangulations computed are the same, in-
dependent of the meo-computing algorithm which is used, and that not all minimal
triangulations can be computed by this new family of algorithms.

The paper is organized as follows: in section 2 we give some definitions and
notations, in section 3 we discuss peos, in section 4 we discuss meos, and in section 5
we present a complexity analysis of the algorithms defined in the paper.

2. Preliminaries. All graphs in this work are undirected and finite. A graph
is denoted G = (V,E), with n = |V | and m = |E|. The neighborhood of a vertex x
in G is denoted NG(x), or simply N(x) if the meaning is clear. An ordering on V is
a one-to-one mapping from {1, 2, . . . , n} to V . In every figure in this paper showing

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

430 A. BERRY, R. KRUEGER, AND G. SIMONET

an ordering α on V , α is defined by giving on the figure the number α−1(x) for every
vertex x. Z

+ denotes the set of positive integers {1, 2, 3, . . .}, and for any positive
integer i, Z

+
i denotes the set of positive integers strictly larger than i.

A chordal (or triangulated) graph is a graph with no chordless cycle of length
greater or equal to 4. To recognize chordal graphs efficiently, Fulkerson and Gross
[11] used a greedy elimination structure on simplicial vertices: “A graph is chordal
iff one can repeatedly find a simplicial vertex and delete it from the graph, until no
vertex is left” (a vertex is simplicial if its neighborhood is a clique). This defines an
ordering on the vertices which is called a peo of the graph.

When a graph G fails to be chordal, any ordering α on the vertices can be used
to embed G into a chordal graph (called a triangulation of G) by repeatedly choosing
the next vertex x, adding any edges necessary to make it simplicial, and removing
x. If F is the set of added edges, the graph obtained is chordal and is denoted
H = (V,E + F) = G+

α .
If H = (V,E + F) is a triangulation of G = (V,E) and if for every proper subset

F ′ ⊂ F , graph (V,E + F ′) fails to be chordal, H is called a minimal triangulation of
G. If, moreover, α is an ordering such that H = G+

α , α is called a meo of G.
In [14], two very important characterizations are given.

Path Lemma. For any graph G = (V,E), any ordering α on V , and any x, y in V
such that α−1(y) < α−1(x), xy is an edge of G+

α iff there is a path μ in G from x to
y such that ∀t ∈ μ \ {x, y}, α−1(t) < α−1(y).
Unique Chord Property.
For any graph G = (V,E) and any triangulation H = (V,E+F) of G, H is a minimal
triangulation of G iff each edge in F is the unique chord of a 4-cycle of H .

3. Computing peos. Every one of Algorithms LexBFS, MCS, LexDFS, and
MNS works in the following fashion: Start with a graph where all vertices are unnum-
bered and have the same label. Repeatedly choose an unnumbered vertex x whose
label is maximal (with respect to a given partial order on labels), give x the following
number i (in increasing or decreasing order according to the algorithm), and incre-
ment the label of each as yet unnumbered neighbor of x into a new value depending
on its current value and i. Algorithms LexBFS and MCS, as defined in [14] and [16],
number vertices from n down to 1, whereas LexDFS and MNS, as defined in [8], num-
ber vertices from 1 to n, so that they actually compute the reverse of a peo of every
chordal graph. In this paper, our algorithms compute peos and meos directly, and
thus number vertices from n down to 1; thus, vertex number 1 of a peo-computing
algorithm will be a simplicial vertex of the graph.

In order to define a generic peo-computing algorithm, we first define a labeling
structure.

Definition 3.1. A labeling structure is a structure (L,�, l0, Inc), where
• L is a set (the set of labels);
• � is a partial order on L (which may be total or not, with ≺ denoting the

corresponding strict order), which will be used to choose a vertex of maximal
label;
• l0 is an element of L, which will be used to initialize the labels;
• Inc is a mapping from L× Z

+ to L, which will be used to increment a label,
and such that the following condition IC (inclusion condition) holds:
IC : for any subsets I and I ′ of Z

+
2 , if I ⊂ I ′, then labS(I) ≺ labS(I ′), where

labS(I) = Inc(. . . (Inc(Inc(l0, i1), i2), . . .), ik), where I = {i1, i2, . . . , ik},
with i1 > i2 > · · · > ik.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAXIMAL LABEL SEARCH ALGORITHMS 431

Algorithm MLS (maximal label Search)
input : A graph G = (V,E) and a labeling structure (L,�, l0, Inc).
output: An ordering α on V .
Initialize all labels as l0; G′ ← G;
for i = n downto 1 do

Choose a vertex x of G′ of maximal label;
α(i)← x;
foreach y in NG′(x) do

label(y)← Inc(label(y), i);
Remove x from G′;

Fig. 1. Algorithm MLS.

It will sometimes be useful to use the number n of vertices of the graph to be
labeled in the definition of Inc(l, i). It will be the case, for instance, for the labeling
structure S3 associated with Algorithm LexDFS. In that case, Inc can be seen as a
family of mappings Incn from L× Z

+ to L for each positive integer n.
The corresponding algorithm, which we introduce as MLS, is given by Figure 1.

MLS iteratively selects a vertex to add to the ordering and increments the labels of
its unselected neighbors. We will refer to the iteration of the loop that defines α(i)
as Step i of the algorithm.

LexBFS, MCS, LexDFS, and MNS are all special cases of MLS, with the following
labeling structures (L,�, l0, Inc); in each case, we also give the value of labS(I) for
any subset I of Z

+.
LexBFS (Structure S1): L is the set of lists of elements of Z

+, � is the lexico-
graphic order (a total order), l0 is the empty list, Inc(l, i) is obtained from l by adding
i to the end of the list, labS1(I) is the string of the integers in I in decreasing order.

MCS (Structure S2): L = Z
+∪{0}, � is ≤ (a total order), l0 = 0, Inc(l, i) = l+1,

labS2(I) = |I|.
LexDFS (Structure S3): L is the set of lists of elements of Z

+, � is the lexico-
graphic order (a total order), l0 is the empty list, Inc(l, i) is obtained from l by adding
n+1− i to the beginning of the list, labS3(I) is the string of the complements to n+1
of the integers in I in decreasing order.

MNS (Structure S4): L is the power set of Z
+, � is ⊆ (not a total order), l0 = ∅,

Inc(l, i) = l ∪ {i}, labS4(I) = I.
In our proofs, we will use the following notations.
Notations 3.2. For any graph G = (V,E), any execution of our algorithms on

G computing some ordering α on V , and any integer i between 1 and n,
- Vi is the set of still unnumbered vertices at the beginning of Step i, i.e., the set

{α(j), 1 ≤ j ≤ i};
- G′

i is graph G′ at the beginning of Step i, i.e., the subgraph of G induced by Vi,
and, for each y ∈ Vi,

- labeli(y) is the value of label(y) at the beginning of Step i and
- Numi(y) = {j ∈ {i+1, i+2, . . . , n} | label(y) has been incremented at Step j}.
The following Lemma is clear from Algorithm MLS.
Lemma 3.3. For any graph G = (V,E), any labeling structure S, any execution

of MLS on G and S computing some ordering α on V , any integer i between 1 and
n, and any y ∈ Vi, labeli(y) = labS(Numi(y)) and Numi(y) = Numα

G,i(y), where
Numα

G,i(y) denotes the set of integers j > i such that α(j) is adjacent to y in G.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

432 A. BERRY, R. KRUEGER, AND G. SIMONET

Thus, the label of y at the beginning of Step i is equal to labS(Numα
G,i(y)),

where Numα
G,i(y) is defined from the ordering α computed so far on numbered ver-

tices, independently from the labeling structure involved. This property will al-
low us to characterize the orderings computed by MLS and to compare the sets
of orderings computed with different labeling structures (Characterization 3.4 and
Lemma 3.5).

We can view MLS as a generic algorithm with parameter S. For every labeling
structure S, we denote by S-MLS the instance of generic Algorithm MLS using this
particular labeling structure S and by “S-MLS ordering of a graph G” any ordering
that can be computed by S-MLS on input graph G. Thus, LexBFS is S1-MLS, MCS
is S2-MLS, LexDFS is S3-MLS, and MNS is S4-MLS.

The set of S-MLS orderings of a given graph depends on S. An MLS ordering
of a graph G is an ordering that can be computed by MLS on G, i.e., by S-MLS for
some labeling structure S. Thus, the set of MLS orderings of G is the union of the
sets of S-MLS orderings of G for all labeling structures S.

The following theorem shows that MNS can compute every S-MLS ordering of
a given graph for every labeling structure S. This theorem can be proved using the
MNS characterization presented in [8]. We will prove it by using the following more
general results.

Characterization 3.4. For any graph G, any labeling structure S, and any
ordering α of V , α is an S-MLS ordering of G iff for any integers i, j such that
1 ≤ j < i ≤ n, labS(Numα

G,i(α(i))) �≺ labS(Numα
G,i(α(j))).

Proof. α is an S-MLS ordering of G iff for any integer i between 1 and n, the
label of α(i) at the beginning of Step i is maximal among the labels of vertices α(j),
i ≤ j ≤ n. We conclude with Lemma 3.3.

Lemma 3.5. Let S and S′ be labeling structures with partial orders �S and �S′ ,
respectively, such that for any subsets I and I ′ of Z

+
2 , if labS′(I) ≺S′ labS′(I ′), then

labS(I) ≺S labS(I ′).
Then every S-MLS ordering of G is also an S′-MLS ordering of G for every

graph G.
Proof. Let G be a graph and α be an S-MLS ordering of G. By Characteri-

zation 3.4, for any integers i, j such that 1 ≤ i < j ≤ n, labS(Numα
G,i(α(i))) �≺S

labS(Numα
G,i(α(j))), where Numα

G,i(α(i)) and Numα
G,i(α(j)) are subsets of Z

+
2 since

i > 1, so labS′(Numα
G,i(α(i))) �≺S′ labS′(Numα

G,i(α(j))). By Characterization 3.4
again, α is an S′-MLS ordering of G.

Theorem 3.6. For any graph G = (V,E) and any labeling structure S, any
S-MLS ordering of G is an MNS ordering of G.

Proof. This follows immediately from Lemma 3.5 and condition IC, since MNS
= S4-MLS, with labS4(I) = I and ≺S4=⊂.

A corollary of Theorem 3.6 is that any instance of MLS computes a peo of a
chordal graph, since this is true for MNS [8].

Another consequence is that any LexBFS, MCS, or LexDFS ordering of a graph
is also an MNS ordering, which already follows from the characterizations given in
[8]. However, for arbitrary labeling structures S and S′, an ordering computed by S-
MLS need not be computable by S′-MLS. For instance, Figure 2(a) shows a LexBFS
ordering which is not an MCS ordering, while Figure 2(b) shows an MCS ordering
which is not a LexBFS ordering. There also exist graphs with MNS orderings that
are neither LexBFS nor MCS orderings.

As the set of MLS orderings of a graph G is the union of the sets of S-MLS
orderings of G for all labeling structures S and as MNS is equal to S4-MLS, it follows

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAXIMAL LABEL SEARCH ALGORITHMS 433

(a)
4

1 3

5

2

2 3

1

5
(b)

4

Fig. 2. A chordal graph with different (a) LexBFS and (b) MCS orderings.

Lex BFS MCS MNS S−MLSLex DFS Lex BFS MCS Lex DFS S−MLS

MLS MLS / MNS

S1 S2 S3 S4 S

(a) (b)

Fig. 3. (a) Instances of MLS and (b) Inclusion order on the sets of computable orderings.

1

4

2
3

Fig. 4. α is a CompMNS ordering of G but not an MNS one.

from Theorem 3.6 that every graph has the same MLS and MNS orderings. However,
be careful that MLS and MNS are different algorithms, since MLS has a graph and
a labeling structure as input, whereas MNS only has a graph (or, if MLS is seen as a
generic algorithm with a labeling structure as a parameter, MNS is only an instance of
MLS). Figure 3 gives two different relations on peo-computing algorithms. Figure 3(a)
shows some instances of generic Algorithm MLS, each arrow from MLS to one of its
instances being labeled with the corresponding value of parameter S. Figure 3(b)
shows the inclusion order on the sets of orderings computable by these algorithms on
a given graph. In this figure, S is an arbitrary labeling structure.

It is interesting to remark that even though MLS, or equivalently MNS, is more
general (in the sense that it can compute more peos) than LexBFS and MCS, it still
is not powerful enough to compute every possible peo of a given chordal graph. This
is shown by the simple counterexample in Figure 4: no MLS execution on this graph
will find the ordering indicated, although it is clearly a peo.

In order to make it possible to find any peo, we further generalize MLS using
Shier’s idea [15] of using the connected components of the subgraph G′ induced by
the unnumbered vertices. We thus introduce Algorithm CompMLS, defined from
Algorithm MLS, by replacing the following:
“Choose a vertex x of G′ of maximal label;” with
“Choose a connected component C of G′;
“choose a vertex x of C of maximal label in C;”.

This generalizes the entire family of peo-computing algorithms discussed in this
paper: for any X in {LexBFS, MCS, LexDFS, MNS, MLS}, Algorithm CompX is a
generalization of X, and we will show that it computes a peo if the graph is chordal.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

434 A. BERRY, R. KRUEGER, AND G. SIMONET

Algorithms MEC and MCC defined by Shier [15] are instances of generic Algorithm
CompMLS: MEC is CompMNS, i.e., S4- CompMLS, and MCC is CompMCS, i.e., S2-
CompMLS. Algorithm CompMNS can compute the peo of Figure 4. In fact, Shier
proved in [15] that CompMNS and even CompMCS compute all peos of a chordal
graph. We show that this holds for every instance of Algorithm CompMLS, using
some results from section 4.

Theorem 3.7. For any chordal graph G and any labeling structure S, the S-
CompMLS orderings of G are exactly its peos.

Proof. Let G be a chordal graph and S be a labeling structure. By [15], the
CompMNS orderings of G are exactly its peos, and by Theorem 4.15 from section 4,
G has the same S-CompMLSM and CompMNSM orderings, which are also its S-
CompMLS and CompMNS orderings, since G is chordal (by the extension of Prop-
erty 4.7 from section 4 to CompMLS and CompMLSM).

We consider here that a labeling structure is defined without the condition IC, and
we discuss the choice of the condition IC in view of obtaining an algorithm computing
peos of chordal graphs. By Theorem 3.6, IC is a sufficient condition on a labeling
structure S for S-MLS to compute only peos of every chordal graph. It turns out that
it is also a necessary one, so that IC is exactly the condition required on a labeling
structure for MLS to compute only peos of every chordal graph.

Theorem 3.8. The condition IC imposed on a labeling structure S is a necessary
and sufficient condition for S-MLS to compute only peos of every chordal graph.

Proof. IC is a sufficient condition, since by Theorem 3.6, S-MLS computes only
MNS orderings, and therefore peos, of every chordal graph.

Conversely, suppose there are some subsets I and I ′ of Z
+
2 such that I ⊂ I ′ and

labS(I) �≺ labS(I ′) and let us show that there is a chordal graph G and an S-MLS
ordering of G that is not a peo of G. Let q = max(I ′). We choose two subset I and
I ′ of Z

+
2 such that I ⊂ I ′, labS(I) �≺ labS(I ′), max(I ′) = q and min(I ′) is the largest

possible with these conditions. Let p = min(I ′). p > 2 since I ′ is a subset of of Z
+
2 .

Let G = (V,E), with V = {z1, z2, . . . , zq} and E = {zizj , p ≤ i < j ≤ q}∪{zizp−1, i ∈
I ′}∪{zizp−2, i ∈ I}∪{zp−1zp−2}. G is chordal since (z1, z2, . . . , zq) is a peo of G. By
the choice of I and I ′, there is an execution of S-MLS on G choosing zq, zq−1, . . . , zp

first and then choosing zp−2 before zp−1. The resulting S-MLS ordering of G is not
a peo of G because the set of neighbors of zp−1 with higher numbers than zp−1 in
this ordering is not a clique, since zp−2 is not adjacent to the vertices of the form zi,
i ∈ I ′ \ I.

The condition imposed on a labeling structure was defined in a different way in
[4]. Instead of satisfying IC, the mapping Inc had to satisfy the following condition:
For any integer n in Z

+, any integer i between 1 and n and any labels l and l′ in Ln
i ,

the following properties hold:
(ls1) l ≺ Inc(l, i);
(ls2) if l ≺ l′, then Inc(l, i) ≺ Inc(l′, i), where Ln

i is the subset of L defined by
induction on i by

Ln
n = {l0} and Ln

i−1 = Ln
i ∪ {l = Inc(l′, i) | l′ ∈ Ln

i } for any i from n down to 2.
It is easy to show that this condition implies IC, but the converse is not true.

For instance, let S be the labeling structure obtained from S4 (the structure used for
MNS) by replacing the inclusion order �S4 by the partial order � on L defined by the
following: For any l, l′ ∈ L, l � l′ iff (l ⊆ l′ or (l = {4} and 5 ∈ l′)) (checking that� is a
partial order on L is left to the reader). IC holds since the inclusion order is a suborder
of �, but not (ls2) since {4} ≺ {5} but Inc({4}, 3) = {4, 3} �≺ {5, 3} = Inc({5}, 3).
Thus, IC is more appropriate than the conjunction of (ls1) and (ls2) in the context

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAXIMAL LABEL SEARCH ALGORITHMS 435

(a)

3 3

4

1

5

2

2

4
(b)

5

1

Fig. 5. A non-chordal graph with different (a) CompLexBFS and (b) CompMCS orderings.

of peo-computing algorithms, though a labeling structure satisfying IC necessarily
satisfies (ls1) and often satisfies (ls2) in practice.

Let us conclude this section by some remarks on running the MLS family of
algorithms on non-chordal graphs. LexBFS has been used on asteroidal triple-free
graphs [9] and has been shown to have very interesting invariants even on an arbitrary
graph (see [2, 3]). Likewise, MCS has also been used on various graph classes (see
[10, 6]).

Unlike a chordal graph, a non-chordal graph does not necessarily have the same
CompLexBFS, CompMCS, CompLexDFS, and CompMNS orderings. Figure 5(a)
shows a CompLexBFS ordering which is not a CompMCS one, while Figure 5(b)
shows a CompMCS ordering which is not a CompLexBFS one.

4. Computing meos. We will now introduce the extensions of Algorithms
MNS, MLS, and CompMLS into their meo-computing counterparts.

To extend LexBFS into LEX M, at each step choosing a vertex x of maximum
label label(x), an edge is added between x and any unnumbered vertex y whenever
there is a path from x to y in the subgraph induced by the unnumbered vertices such
that all internal vertices on the path have a label strictly smaller than the label of
y. This approach has been used recently in [1] to extend MCS into meo-computing
Algorithm MCS-M; here, we extend MLS into MLSM, as given by Figure 6. Thus,
LEX M is S1-MLSM, MCS-M is S2-MLSM, LexDFS-M is defined as S3-MLSM, and
MNSM is defined as S4-MLSM. We will see that Algorithm MNSM is, in fact, as
general as MLSM: every MLSM ordering of a graph is an MNSM ordering.

For any labeling structure S, we call S-MLSM the instance of Algorithm MLSM
using S, and S-MLSM ordering an ordering computed by S-MLSM.

Clearly, the relation between labeli(y) and Numi(y) in an execution of MLS still
holds in an execution of MLSM.

Lemma 4.1. For any graph G = (V,E), any labeling structure S, any execution
of MLSM on G and S, any integer i between 1 and n, and any y ∈ Vi,

labeli(y) = labS(Numi(y)).

We will show that as for MLS, Numi(y) can be defined from the ordering α
computed so far on numbered vertices, independently from the labeling structure
involved, with similar consequences in terms of characterizing MLSM orderings and
comparing the sets of orderings computed by MLSM with different labeling structures.

4.1. The MLSM family of algorithms.
Theorem 4.2. For any execution of MLSM, H = G+

α and α is a meo of G.
To prove this, we will need several technical lemmas. Lemma 4.3 is clear from

algorithm MLSM, Lemma 4.4 immediately follows from Lemma 4.1 and condition IC.
The proof of Lemma 4.5 is long and technical and so, for reasons of readability, is
given in the Appendix.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

436 A. BERRY, R. KRUEGER, AND G. SIMONET

Algorithm MLSM (maximal label search for meo).

input : A graph G = (V,E) and a labeling structure (L,�, l0, Inc).
output: An meo α on V and a minimal triangulation H = G+

α of G.

Initialize all labels as l0; E′ ← ∅; G′ ← G;
for i =n downto 1 do

Choose a vertex x of G′ of maximal label;
α(i)← x;
foreach vertex y of G′ different from x do

if there is a path from x to y in G′ such that every internal vertex on
the path has a label strictly smaller than label(y), then

E′ ← E′ ∪ {xy};
foreach y in V such that xy ∈ E′ do

label(y)← Inc(label(y), i);
Remove x from G′;

H ← (V,E′);
Fig. 6. Algorithm MLSM.

Lemma 4.3. For any graph G = (V,E), any execution of MLSM on G computing
ordering α and graph H, any integers i, j such that 1 ≤ i < j ≤ n, and any y in Vi,
the following propositions are equivalent:

1. j ∈ Numi(y),
2. α(j)y is an edge of H,
3. There is a path μ in G′

j from α(j) to y such that ∀t ∈ μ \ {α(j), y},
labelj(t) ≺ labelj(y).

Lemma 4.4. For any graph G = (V,E), any execution of MLS or MLSM on G,
any integer i between 1 and n, and any x, y in Vi,

(i) if Numi(x) = Numi(y), then labeli(x) = labeli(y), and
(ii) if Numi(x) ⊂ Numi(y), then labeli(x) ≺ labeli(y).
Lemma 4.5. For any graph G, any execution of MLSM on G computing ordering

α, any integer i between 1 and n, and any path μ in G′
i ending in some vertex y,

(a) ∀t ∈ μ \ {y}, labeli(t) ≺ labeli(y) iff ∀t ∈ μ \ {y}, Numi(t) ⊂ Numi(y);
(b) if ∀t ∈ μ \ {y}, labeli(t) ≺ labeli(y), then ∀t ∈ μ \ {y}, α−1(t) < α−1(y);
(c) if ∀t ∈ μ \ {y}, α−1(t) < α−1(y), then ∀t ∈ μ \ {y}, Numi(t) ⊆ Numi(y).
Proof of Theorem 4.2. We first show that for any execution of MLSM, H = G+

α .
Let x, y ∈ V such that α−1(y) < α−1(x) = i. Let us show that xy is an edge of H iff
it is an edge of G+

α .
If xy is an edge of H , then, by Lemma 4.3, there is a path μ in G′

i from x to y such
that ∀t ∈ μ\{x, y}, labeli(t) ≺ labeli(y). By Lemma 4.5 (b), ∀t ∈ μ\{x, y}, α−1(t) <
α−1(y), and, by the path lemma, xy is an edge of G+

α .
Conversely, let xy be an edge of G+

α . Let us show that xy is an edge of H . By the
path lemma, there is a path μ in G from x to y such that ∀t ∈ μ \ {x, y}, α−1(t) <
α−1(y) < i, so μ \ {x} ⊆ Vi−1. By Lemma 4.5(c), ∀t ∈ μ \ {x, y}, Numi−1(t) ⊆
Numi−1(y). Let t1 be the neighbor of x in μ. xt1 is an edge of H , so, by Lemma 4.3,
i ∈ Numi−1(t1); hence, i ∈ Numi−1(y), and, by Lemma 4.3, xy is an edge of H .

We now show that G+
α is a minimal triangulation of G. Let H = G+

α = (V,E+F).
As G+

α is a triangulation of G, by the unique chord property, it is sufficient to show
that each edge in F is the unique chord of a cycle in H of length 4. Let xy be an
edge in F , with α−1(y) < α−1(x) = i. xy is an edge of H , so, by Lemma 4.3, there

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAXIMAL LABEL SEARCH ALGORITHMS 437

is a path μ in G′
i from x to y such that ∀t ∈ μ \ {x, y}, labeli(t) ≺ labeli(y), and

also α−1(t) < α−1(y) by Lemma 4.5(b). μ \ {x, y} �= ∅, since xy is not an edge in
G. Let t1 be the vertex in μ \ {x, y} such that α−1(t1) is maximum. By the path
lemma, xt1 and t1y are edges of G+

α and, therefore, of H . As labeli(t1) ≺ labeli(y),
by Lemma 4.4, Numi(y) �⊆ Numi(t1). Let j ∈ Numi(y) \ Numi(t1) and z = α(j).
j > i, and, by Lemma 4.3, yz is an edge of H (and, therefore, of G+

α), but t1z is not.
Since yx and yz are edges of G+

α with α−1(y) < α−1(x) = i < j = α−1(z), by the
definition of G+

α , xz is an edge of G+
α , and, therefore, of H . Hence, xy is the unique

chord of cycle (x, t1, y, z, x) in H of length 4.
Thus, MLSM (and also LEX M, MCS-M, LexDFS-M, and MNSM) computes an

meo and a minimal triangulation of the input graph. An execution of MLSM has the
same behavior (same labeling and numbering) on the input graph G as an execution
of MLS on the output minimal triangulation G+

α , breaking ties in the same way. If,
moreover, G is chordal, then G is equal to its minimal triangulation G+

α , so that MLS
and MLSM have the same behavior on G. We immediately obtain the following two
properties.

Property 4.6. For any graph G and any labeling structure S, any S-MLSM
ordering α of G is an S-MLS ordering of G+

α .
Property 4.7. For any chordal graph G and any labeling structure S, G has the

same S-MLS and S-MLSM orderings.
It follows from Property 4.7 and Theorems 3.8 and 4.2 that IC is exactly the

condition required on a labeling structure S for S-MLSM to compute only meos of
every graph.

Corollary 4.8. Condition IC imposed on a labeling structure S is a necessary
and sufficient condition for S-MLSM to compute only meos of every graph.

Proof. IC is a sufficient condition by Theorem 4.2.
Conversely, if S-MLSM computes only meos of every graph, then it computes

only peos of every chordal graph and so does S-MLS by Property 4.7. It follows by
Theorem 3.8 that S satisfies IC.

Let us remark that, for two given structures S and S′, the sets of orderings com-
puted by S-MLSM and S′-MLSM may be different, as is the case for S-MLS and
S′-MLS. LEX M and MCS-M, for example, compute different orderings, as shown in
Figure 2 (since MLS and MLSM compute the same orderings on a chordal graph). In
the same way that MNS is as general as MLS, it turns out that MNSM is as general as
MLSM, thus every graph has the same MLSM and MNSM orderings. The proof goes
as for MLS and MNS, since by Lemma 4.5(a), Numi(y) can be defined from the order-
ing α computed on numbered vertices, independently from the labeling structure used.

Lemma 4.9. For any graph G = (V,E), any execution of MLSM on G computing
some ordering α on V , any integer i between 1 and n, and any y ∈ Vi, Numi(y)) =
NumMα

G,i(y)), where NumMα
G,i is defined on Vi by induction on i from n down to 1

by the following:
NumMα

G,n(y) = ∅, and for any i from n down to 2, NumMα
G,i−1(y) =

NumMα
G,i(y) ∪ {i} if there is a path μ in G′

i from α(i) to y such that ∀t ∈ μ \
{α(i), y}, NumMα

G,i(t) ⊂ NumMα
G,i(y), otherwise NumMα

G,i−1(y) = NumMα
G,i(y).

Characterization 4.10. For any graph G, any labeling structure S, and any
ordering α of V , α is an S-MLSM ordering of G iff for any integers i, j such that
1 ≤ j < i ≤ n, labS(NumMα

G,i(α(i))) �≺ labS(NumMα
G,i(α(j))).

Lemma 4.11. Let S and S′ be labeling structures with partial orders �S and �S′ ,
respectively, such that for any subsets I and I ′ of Z

+
2 , if labS′(I) ≺S′ labS′(I ′), then

labS(I) ≺S labS(I ′).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

438 A. BERRY, R. KRUEGER, AND G. SIMONET

Then every S-MLSM ordering of G is also an S′-MLSM ordering of G for every
graph G.

Theorem 4.12. For any graph G = (V,E) and any labeling structure S, any
S-MLSM ordering of G is an MNSM ordering of G.

4.2. The CompMLSM family of algorithms. We define CompMLSM from
MLSM in the same way we defined CompMLS from MLS. Properties extend readily
from an MLSM algorithm to its CompMLSM version: at Step i, our proofs only
compare the label of α(i) to labels of vertices along paths in the graph G′

i, so α(i)
needs only be maximal within the connected component of G′

i containing it.
We thus have similar results.
Theorem 4.13. For any input graph G and any X in {LEX M, MCS-M, LexDFS-

M, MNSM, MLSM}, CompX computes an meo α of G and the associated minimal
triangulation G+

α of G.
We also easily extend results such as Properties 4.6 and 4.7 and Characteriza-

tion 4.10.
An important difference between MLSM and CompMLSM is that the set of or-

derings CompMLSM can find is independent of the labeling structure used and is a
superset of the set of orderings obtainable by any algorithm of the MLSM family.

Lemma 4.14. For any execution of MLSM or CompMLSM on a graph G, any in-
teger i between 1 and n, and any vertex y of the connected component of G′

i containing
α(i), Numi(y) ⊆ Numi(α(i)).

Proof. Let μ be a path in G′
i between α(i) and y. ∀t ∈ μ \ {α(i)}, α−1(t) < i, so,

by Lemma 4.5(c), Numi(y) ⊆ Numi(α(i)).
Theorem 4.15. Any graph has the same S-CompMLSM orderings for all labeling

structures S.
Proof. Let G be a graph and S, S′ be labeling structures. Let α be an S-

CompMLSM ordering of G, let us show that α is an S′-CompMLSM ordering of G.
By the extension of Characterization 4.10 to CompMLSM, it is sufficient to show
that for any integers i, j such that 1 ≤ j < i ≤ n and α(i) and α(j) are in the
same connected component of the subgraph of G induced by {α(k), 1 ≤ k < i},
labS′(NumMα

G,i(α(i))) �≺ labS′(NumMα
G,i(α(j))). Let i, j be such integers. By

Lemma 4.14, Numi(α(j)) ⊆ Numi(α(i)) in an execution of S-CompMLSM comput-
ing α, so, by Lemma 4.9, NumMα

G,i(α(j)) ⊆ NumMα
G,i(α(i)). It follows by condition

IC that labS′(NumMα
G,i(α(j))) � labS′(NumMα

G,i(α(i))), and therefore

labS′(NumMα
G,i(α(i))) �≺ labS′(NumMα

G,i(α(j))).

Every chordal graph G has the same S-CompMLSM and S-CompMLS orderings,
which are exactly its peos (Theorem 3.7, whose proof uses Theorem 4.15).

Computing all peos does not extend to meos for the MLSM family of algorithms:
Figure 7 shows an meo which CompMLSM is not capable of computing.

This raises the question of which minimal triangulations can be obtained by var-
ious algorithms of this family. Villanger in [19] proved the surprising result that the
sets of minimal triangulations obtainable by LEX M and MCS-M are the same. Upon
investigation, it turns out that, given one of these algorithms, using its Comp version
does not enlarge the set of computable triangulations, although the set of computable
meos may be larger.

Theorem 4.16. For any graph G and any given labeling structure S, G has the
same sets of S-MLSM and of S-CompMLSM minimal triangulations.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAXIMAL LABEL SEARCH ALGORITHMS 439

(a)

3

6 4

(b)

3

6 4

55

2

1

2

1

Fig. 7. (a) Graph G and an meo α of G. (b) The corresponding minimal triangulation G+
α

of G. No version of CompMLSM or MLSM can compute this meo, and the corresponding minimal
triangulation is not obtainable by any of these algorithms.

Proof. Let G = (V,E) be a graph, and let S be a labeling structure. Clearly, any
S-MLSM minimal triangulation of G is an S-CompMLSM one.

Conversely, let H be an S-CompMLSM minimal triangulation of G, and let us
show that it is an S-MLSM one. Let α be the ordering on V computed by some
execution of S-CompMLSM computing H , and, for any i from 1 to n, let Ci be the
connected component of G′

i chosen at Step i of this execution. Let α′ be the ordering
on V and H ′ be the minimal triangulation of G computed by an execution of S-
MLSM, choosing, for any i from 1 to n, α′(i) at Step i in the following way (every
variable v is denoted v in the execution of CompMLSM and v′ in that of MLSM):

(1) Choose a connected component C′
i of G′′

i containing a vertex of maximal label
in G′′

i .
(2) If there is some j from 1 to n such that C′

i = Cj and label′i(α(j)) is maximum
in C′

i, then choose α′(i) = α(j), otherwise choose α′(i) equal to any vertex of C′
i of

maximal label in G′′
i .

Note that there is at most one integer j such that C′
i = Cj since for any j, k such

that j < k, Cj �= Ck, since α(k) ∈ Ck \Cj . Let us show that H ′ = H . For any subset
J of {1, 2, . . . , n}, let α(J) denote the set of vertices {α(j) | j ∈ J}, and, for any i
from 1 to n, let P (i) be the following property:

P (i) : If there is some j from 1 to n such thatC′
i = Cj and ∀y ∈ C′

i, α
′(Num′

i(y)) =
α(Numj(y)), then the edges of H ′ produced when processing the vertices of C′

i (in
the execution of MLSM) are exactly those of H produced when processing the vertices
of Cj (in the execution of CompMLSM).

Let us show P (i) by induction on i from 1 to n. P (1) holds since C′
1 con-

tains a single vertex and processing this vertex produces no edge of H (or H ′).
We suppose P (i − 1) for some i, 1 < i ≤ n. Let us show P (i). We suppose that
there is some j from 1 to n such that C′

i = Cj and ∀y ∈ C′
i, α

′(Num′
i(y)) =

α(Numj(y)). By Lemma 4.14, ∀y ∈ Cj , Numj(y) ⊆ Numj(α(j)), so ∀y ∈ C′
i,

α′(Num′
i(y)) = α(Numj(y)) ⊆ α(Numj(α(j))) = α′(Num′

i(α(j))), and therefore
Num′

i(y) ⊆ Num′
i(α(j)). It follows by Lemma 4.4 that label′i(α(j)) is maximum in

C′
i. By definition of α′, α′(i) = α(j). The edges of H ′ produced when processing α′(i)

are exactly those of H produced when processing α(j) by Lemma 4.5(a) and the fact
that ∀y ∈ C′

i, α
′(Num′

i(y)) = α(Numj(y)), and the connected components of G′′
i−1

obtained from C′
i by removing α′(i) are exactly those of G′

j−1 obtained from Cj by re-
moving α(j), with ∀y ∈ C′

i \{α′(i)}, α′(Num′
i−1(y)) = α(Numj−1(y)). For each such

connected component C, there is some k < i and some l < j such that C = C′
k = Cl

and ∀y ∈ C′
k, α′(Num′

k(y)) = α′(Num′
i−1(y)) = α(Numj−1(y)) = α(Numl(y)), so

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

440 A. BERRY, R. KRUEGER, AND G. SIMONET

by induction hypothesis, the edges of H ′ produced when processing the vertices of C
are exactly those of H produced when processing the vertices of C. Hence, the edges
of H ′ produced when processing the vertices of C′

i are exactly those of H produced
when processing the vertices of Cj . So P (i) holds, which completes the induction on
i. Now, for each connected component C of G, there are some i and j from 1 to n
such that C = C′

i = Cj and ∀y ∈ C, Num′
i(y) = Numj(y) = ∅, so by P (i), the edges

of H ′ produced when processing the vertices of C are exactly those of H produced
when processing the vertices of C. Hence, H ′ = H .

Theorem 4.16, together with Theorem 4.15, yields the following interesting result.
Theorem 4.17. For any graph G, whichever meo-computing algorithm of the

MLSM and CompMLSM families is used (e.g., LEX M, MCS-M, LexDFS-M, MNSM,
or their Comp extensions), the set of computable minimal triangulations is the same.

These minimal triangulations fail to cover all possible minimal triangulations:
Figure 7(b) shows a minimal triangulation which is obtainable by none of our graph
search meo-computing algorithms.

5. Complexity of MLS and MLSM. We now consider the question of im-
plementing Algorithms MLS and MLSM. In the following, we use the word “imple-
mentation” in an algorithmic sense and not in a programming one. We will give a
detailed version of each algorithm studied in this paper and precise the data struc-
tures used in order to compute its time and space complexity, but we will not give
any real implementation in a programming language. We will also explore variants
Test-MLS and Test-MLSM: Algorithm Test-MLS takes as input a graph G = (V,E),
a labeling structure S, and an ordering α of V and returns “YES” if α is an S-MLS
ordering of G and “NO” otherwise. It is obtained from Algorithm MLS by replacing
the instructions

Choose a vertex x of G′ of maximal label;
α(i)← x

by
if the label of α(i) is not maximal in G′, then return “NO”
x← α(i)

and by adding the instruction
return “YES”

at the end of the algorithm.
Test-MLSM is defined from MLSM in the same way, and we denote by Test–S-

MLS, Test–S-MLSM, Test-LexBFS, etc., the corresponding variants of S-MLS, S-
MLSM, LexBFS, etc.

An implementation of S-MLS is required to compute only S-MLS orderings but
not to be able to compute every S-MLS ordering of a graph. For instance, as any MCS
ordering is an MNS ordering, any implementation of MCS is also an implementation of
MNS. However, an implementation finding out if a given ordering is an MCS ordering
or not will not be able to find out if this ordering is an MNS ordering or not. An
implementation of Test–S-MLS (resp. Test–S-MLSM) will, in general, have to keep
closer to S than S-MLS (resp. S-MLSM). By Lemmas 3.5 and 4.11, we have the
following property.

Property 5.1. Let S and S′ be labeling structures with partial orders �S and
�S′ , respectively, such that for any subsets I and I ′ of Z

+
2 , if labS′(I) ≺S′ labS′(I ′),

then labS(I) ≺S labS(I ′).
Then any implementation of S-MLS (resp. S-MLSM) is also an implementation

of S′-MLS (resp. S′-MLSM).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAXIMAL LABEL SEARCH ALGORITHMS 441

In particular, S-MLS (resp. S-MLSM) can be implemented by replacing the par-
tial order on labels by any one of its linear extensions.

5.1. Complexity of MLS and Test-MLS. We will first study the main in-
stances of MLS, namely, LexBFS, MCS, LexDFS, and MNS. Then we will give an
implementation of S-MLS with a stratified tree, which is a data structure designed to
manipulate priority queues, for any labeling structure S such that labels are positive
integers ordered by ≤.

An implementation of LexBFS is given by Rose, Tarjan, and Lueker [14], and an
implementation of MCS is given by Tarjan and Yannakakis [16] with the following
complexity results.

Theorem 5.2 (see [14, 16]). LexBFS and MCS can be implemented in O(n+m)
time and space.

It is easy to check that the data structures used in [14] for LexBFS and in [16] for
MCS can be used without extra cost for Test-LexBFS and Test-MCS, respectively.
Moreover, as by Theorem 3.6 any LexBFS or MCS ordering is an MNS one, we have
the following Corollary of Theorem 5.2.

Corollary 5.3. Test-LexBFS, Test-MCS, and MNS can be implemented in
O(n+m) time and space.

We can derive from the implementation of LexBFS given in [14] an implementa-
tion of LexDFS.

Implementation of LexDFS and Test-LexDFS with a list of lists.
As in the implementation of LexBFS, the current state of labels is represented by

a list L of nonempty lists l. Each list l contains the unnumbered vertices bearing a
given label, and the list L is ordered in decreasing order on the labels associated with
the lists l (see [14] for a full description of the data structure). It is initialized with a
unique list l containing all the vertices of the graph. At Step i, α(i) is chosen in the
first list in L and removed from this list, and for each list l in L, the neighbors of α(i)
in l are removed from l and put into a new list l1, which is placed just before l in L.
This corresponds to the new decreasing LexBFS order in an execution of LexBFS. To
obtain an implementation of LexDFS, it is sufficient to add the following instruction
at the end of each Step i: scan the list L to extract the lists l1 and form a list L1

with these lists l1 in the same order, then concatenate L1 with the remaining list L
to obtain the new list L in decreasing LexDFS order.

For Test-LexDFS, we test at iteration i whether α(i) is in the first list of L or
not.

Theorem 5.4. LexDFS and Test-LexDFS can be implemented in O(n2) time and
O(n+m) space.

Proof. The time complexity of LexDFS is obtained from the time complexity of
LexBFS by adding the cost of scanning the list L to form the list L1 at each step.
As there are n scans and each scan requires O(n) time, we obtain an O(n2) time
complexity for LexDFS. The space complexity is the same as that of LexBFS, i.e.,
O(n+m). These complexity bounds also hold for Test-LexDFS.

We will now discuss implementing Test-MNS. We remark that for any vertices
v and w of G′

i, the Boolean value of labeli−1(v) � labeli−1(w) depends only on the
value of labeli(v) � labeli(w) and on whether v and w are neighbors of α(i) or not.
Thus we can implement Test-MNS by storing these Boolean values instead of storing
and comparing explicit labels.

Implementation of Test-MNS.
We use a Boolean matrix Preceq such that, at the beginning of Step i, for any

vertices v and w of G′
i, Preceq(v, w) = True iff labeli(v) � labeli(w). Preceq is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

442 A. BERRY, R. KRUEGER, AND G. SIMONET

initialized with True. Testing the maximality of the label of α(i) in G′ is imple-
mented by testing the absence of a vertex v of G′ such that Preceq(α(i), v) and
not Preceq(v, α(i)). Labels are updated at Step i by the following procedure, where
x = α(i):

foreach neighbor v of x in G′ do
foreach non-neighbor w of x in G′ do

Preceq(v, w)← False.
It is easy to check that this procedure correctly updates matrix Preceq with respect
to its desired meaning, so that this implementation of Test-MNS is correct.

Theorem 5.5. Test-MNS can be implemented in O(n(n + m)) time and O(n2)
space.

Proof. Initialization requires O(n2) time and at each Step i, testing the maximal-
ity of the label of α(i) in G′ requires O(n) time, and updating matrix Preceq requires
O(n|N(α(i))|) time, which makes a global O(n(n +m)) time bound. Matrix Preceq
requires O(n2) space, which is the space bound of the algorithm.

Note that we can derive from this implementation of Test-MNS an implementation
of MNS which is able to compute every MNS ordering of the input graph with the same
time and space bounds. In addition to matrix Preceq, we use an array containing for
each vertex v of G′ the number of vertices w of G′ having a larger label than v (i.e.,
such that Preceq(v, w) and not Preceq(w, v)). This array allows us to choose at each
step a vertex of maximal label in G′ in O(n) time.

5.1.1. Using a stratified tree. For any labeling structure S such that labels
are positive integers ordered by ≤, S-MLS can be implemented with the data structure
of a stratified tree defined by van Emde Boas [17, 18] to manipulate priority queues.
This data structure is used to implement a subset C of an interval of integers in the
form [1, n] ordered by ≤, which here will be the set of current labels, i.e., the set
of labels assigned to unnumbered vertices at some point of the execution of S-MLS.
The stratified tree can be initialized in O(n log logn) time. Inserting or removing
an element, or finding the maximum element in C requires O(log logn) time. The
structure requires O(n) space. These bounds are computed in the model of the unit-
cost RAM.

Implementation of S-MLS and Test–S-MLS with a stratified tree.
We suppose that labels are positive integers in some interval I ordered by ≤.

The set C of current labels is stored in a stratified tree. With each current label is
associated the nonempty list of unnumbered vertices having this label. These lists
can be stored in an array indexed by the integers in I. At the initialization step,
the unique element l0 of C is associated with the list of all vertices of the graph. To
choose an unnumbered vertex with maximal label at Step i, we find the maximum
element lmax of C, remove a vertex from the list associated with lmax, and remove
lmax from C if this list has become empty. For Test–S-MLS, it is tested whether σ(i)
has label lmax or not. To update the label of a vertex v from l to l′, we transfer v
from the list associated with l to the list associated with l′, with a possible removal
of l from C and a possible insertion of l′ into C.

Proposition 5.6. Let S be a labeling structure such that for any integer n ≥ 1,
set Ln = {labS(I), I ⊆ [1, n]} is a subset of an interval [1, r(n)] of integers ordered
by ≤, with r(n) in O(n).

Then S-MLS and Test–S-MLS can be implemented in O((n + m) log logn +
mtInc(n)) time and O(n + m) space, where tInc(n)) is the time required to incre-
ment a label of Ln.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAXIMAL LABEL SEARCH ALGORITHMS 443

Proof. Implementing the set C of current labels with a stratified tree requires
O(n log logn) initialization time, O(log logn) time per operation, and O(n) space
[17, 18]. As choosing a vertex with maximal label and updating the label of a vertex
require at most a constant number of operations on the stratified tree, we obtain the
announced bounds.

As for CompMLS, for any labeling structure S, S-CompMLS can be implemented
by any implementation of S-MLS, since any S–MLS ordering is an S-CompMLS
one. Moreover, by Theorem 3.7, S-CompMLS restricted to chordal graphs can be
implemented by an implementation of LexBFS or MCS. Test–S-CompMLS restricted
to chordal graphs only has to determine if the given ordering is a peo of the graph or
not, which can be implemented in linear time and space [14].

5.2. Complexity of MLSM and Test-MLSM. MLSM is more complex than
MLS, since graph G′ must additionally be searched at each Step i to determine the
vertices whose label has to be incremented, i.e., the neighbors of α(i) in the minimal
triangulation H of G. We will show that this search can be performed using another
labeling structure than the input labeling structure S, which will allow us to deduce an
implementation and complexity bounds of S-MLSM from those of LEX M and S-MLS.

An implementation of LEX M is given by Rose, Tarjan, and Lueker [14] with the
following complexity results, where m′ denotes the number of edges of the computed
minimal triangulation H of G.

Theorem 5.7 (see [14]). LEX M can be implemented in O(n(n+m)) time and
O(n+m′) space.

Note that the implementation of LEX M given in [14] requires only O(n+m) space
because it only computes an meo α of G and not its minimal triangulation H = G+

α .
We will show that this implementation of LEX M can be used to implement S-MLS
for any labeling structure S. We first extend Lemma 4.5(a) to the following lemma.

Lemma 5.8. For any graph G, any labeling structures S and S′ with partial orders
�S and �S′ , respectively, any execution of MLSM on G and S, any integer i between
1 and n, and any path μ in G′

i ending in some vertex y, ∀t ∈ μ \ {y}, labeli(t) ≺S

labeli(y) iff ∀t ∈ μ \ {y}, labS′(Numi(t)) ≺S′ labS′(Numi(y)).
Proof. By Lemma 4.5(a), it is sufficient to show that ∀t ∈ μ\{y}, labS′(Numi(t))

≺S′ labS′(Numi(y)) iff ∀t ∈ μ \ {y}, Numi(t) ⊂ Numi(y). The proof of this last
equivalence is similar to that of Lemma 4.5(a), replacing the references to Lemma 4.4
with references to condition IC.

We distinguish in an execution of MLSM the specific MLSM part, which is the
search in G′ at each Step i from α(i) to determine the vertices whose label has to be
incremented, from the MLS part which corresponds to an execution of MLS on the
output graph G+

α . We suppose in the following result that the MLS part of MLSM on
G can be implemented with the same time and space complexity as MLS on G+

α . In
other words, we assume that the fact that G+

α is only partially known at each step of
an execution of MLSM does not affect the complexity of MLS, which seems reasonable
since the unknown edges of G+

α are between unnumbered edges and therefore play no
role in the algorithm.

Theorem 5.9. For any labeling structure S, if S-MLS (resp. Test–S-MLS) can
be implemented in O(f(n,m)) time and O(g(n,m)) space, then S-MLSM (resp. Test–
S-MLSM) can be implemented in O(n(n+m)+f(n,m′)) time and O(g(n,m′)) space.

Proof. We implement the specific MLSM part of Algorithm S-MLSM or Test-S-
MLSM with the part of the implementation of LEX M given in [14] corresponding to
the specific MLSM part and the updating of the integer labels l(v) at each step. As the
order on these labels l(v) at the beginning of Step i is the same as the lexicographic

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

444 A. BERRY, R. KRUEGER, AND G. SIMONET

order on the labS1(Numi(v)), with S1-MLSM = LEX M [14], Lemma 5.8 ensures
that this correctly implements the specific MLSM part of the algorithm. By our
assumption, the MLS part of S-MLSM (resp. Test–S-MLSM) can be implemented by
an implementation of S-MLS (resp. Test–S-MLS) with the same complexity as this
algorithm on G+

α . The result follows from Theorem 5.7.
Corollary 5.10. MCS-M, LexDFS-M, MNSM, Test-LEX M, Test-MCS-M, and

Test-LexDFS-M can be implemented in O(n(n +m)) time and O(n+m′) space.
Test-MNSM can be implemented in O(n(n +m′)) time and O(n2) space.
For some labeling structures S, we can directly derive from the implementation

of LEX M given in [14] an implementation of S-MLSM by just modifying the way
labels l(v) are updated to make them correspond to the labels obtained with the
labeling structure S. For instance, we obtain an implementation of LexDFS-M by
replacing the instruction l(z) := l(z) + 1/2 by l(z) := l(z) + n, and we obtain an
implementation of MCS-M by replacing this instruction by l(z) := l(z) + 1 and by
replacing the procedure sort by the following: set k to the maximum value of l(v)
for unnumbered vertices v. This implementation of MCS-M is a little simpler than
the implementation of LEX M (with the same complexity bounds), since it avoids
renaming all labels in the procedure sort. It can be used in the implementation of
S-MLSM and Test–S-MLSM instead of the implementation of LEX M and is itself
an implementation of MNSM by Theorem 4.12. In the same way, we can define
direct implementations of Test-LexDFS-M and Test-MCS-M, but not of Test-MNSM.
If labels are positive integers ordered by ≤, we can implement the MLS part with a
stratified tree and deduce complexity bounds from Proposition 5.6 and Theorem 5.9.
By Theorem 4.15, for any labeling structure S, S-CompMLSM can be implemented
by an implementation of LEX M or MCS-M.

6. Conclusion. We have extended Algorithm LexBFS into Algorithm MLS
by defining a general labeling structure and shown how to extend this further to
CompMLS to enable any possible peo to be computed. We have also extended all
these algorithms to meo-computing versions. Our work yields alternate (and often
simpler) proofs for the results of several papers, as [1, 14, 15, 16, 19].

However, we have shown that these new meo-computing algorithms fail to en-
hance the possibility for finding a wider range of minimal triangulations. LEX M
has been studied experimentally and shown to be very restrictive (see [5]), yielding
triangulations which, for example, are far from edge-number minimum. This problem
remains with the enlarged family of new meo-computing algorithms we present here
and appears to be a fundamental limitation of graph search.

We presented time and space complexity bounds of some algorithms of the MLS
and MLSM families. These results mostly derive from the known complexity bounds
of LexBFS, MCS, and LEX M. An interesting fact is that the search in G′ at each step
of an execution of MLSM can be performed using any other labeling structure than
the input labeling structure S, which allows us to implement S-MLSM by combining
implementations of LEX M and S-MLS.

As mentioned in the Introduction, LexBFS and MCS, though designed for chordal
graphs, have been used for graph classes other than chordal graphs. The more general
peo-finding algorithms discussed in this paper could also prove useful on non-chordal
graphs, on a wider variety of graph classes and problems.

Appendix. We give the proof of Lemma 4.5.
Lemma 4.5. For any graph G, any execution of MLSM on G computing ordering

α, any integer i from 1 to n, and any path μ in G′
i ending in some vertex y,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MAXIMAL LABEL SEARCH ALGORITHMS 445

(a) ∀t ∈ μ \ {y}, labeli(t) ≺ labeli(y) iff ∀t ∈ μ \ {y}, Numi(t) ⊂ Numi(y);
(b) if ∀t ∈ μ \ {y}, labeli(t) ≺ labeli(y), then ∀t ∈ μ \ {y}, α−1(t) < α−1(y);
(c) if ∀t ∈ μ \ {y}, α−1(t) < α−1(y), then ∀t ∈ μ \ {y}, Numi(t) ⊆ Numi(y).
The proof uses the following technical Lemmas 6.1 and 6.2. For any path μ

containing vertices x and y, μ[x, y] denotes the subpath of μ between x and y.
Lemma 6.1. For any graph G, any execution of MLSM on G, any integer i from

1 to n, and any path μ in G′
i−1 ending in some vertex y, if ∀t ∈ μ \ {y}, Numi(t) ⊂

Numi(y), then ∀t ∈ μ \ {y}, Numi−1(t) ⊂ Numi−1(y).
Proof. We suppose that ∀t ∈ μ \ {y}, Numi(t) ⊂ Numi(y) (and, therefore

labeli(t) ≺ labeli(y) by Lemma 4.4). Let t ∈ μ\{y}, and let us show thatNumi−1(t) ⊂
Numi−1(y). It is sufficient to show that if i ∈ Numi−1(t), then i ∈ Numi−1(y).
We suppose that i ∈ Numi−1(t). By Lemma 4.3, there is a path λ in G′

i from
α(i) to t such that ∀t′ ∈ λ \ {α(i), t}, labeli(t′) ≺ labeli(t). Let μ′ be the path
obtained by the concatenation of λ and μ[t, y]. Then μ′ is a path in G′

i from α(i)
to y such that ∀t′ ∈ μ′ \ {α(i), y}, labeli(t′) ≺ labeli(y). Hence, by Lemma 4.3,
i ∈ Numi−1(y).

Lemma 6.2. For any graph G, any execution of MLSM on G, any integer i from
1 to n, and any path μ in G′

i ending in some vertex y, if ∃t ∈ μ \ {y} | Numi(t) �⊆
Numi(y), then ∃t1 ∈ μ \ {y} | ∀t ∈ μ[t1, y] \ {t1}, Numi(t) ⊂ Numi(t1).

Proof. We suppose that ∃t ∈ μ \ {y} | Numi(t) �⊆ Numi(y). Let j be the largest
integer such that ∃t ∈ μ \ {y} | Numj−1(t) �⊆ Numj−1(y), and let t1 be the vertex of
μ closest to y such that Numj−1(t1) �⊆ Numj−1(y). So j − 1 ≥ i, j ∈ Numj−1(t1),
and ∀t ∈ μ[t1, y]\{t1}, j �∈ Numj−1(t). Let us show that Numj(t1) = Numj(y). We
assume for contradiction that Numj(t1) �= Numj(y). Let t2 be the vertex of μ[t1, y]
closest to t1 such that Numj(t2) = Numj(y). By the choice of j, ∀t ∈ μ[t1, t2] \
{t2}, Numj(t) ⊂ Numj(t2), and, by Lemma 6.1, Numj−1(t1) ⊂ Numj−1(t2). So
j ∈ Numj−1(t2), with t2 ∈ μ[t1, y] \ {t1}, a contradiction.

So ∀t ∈ μ[t1, y] \ {t1}, Numj−1(t) = Numj(t) ⊆ Numj(y) = Numj(t1) ⊂
Numj(t1) ∪ {j} = Numj−1(t1). As j − 1 ≥ i, by Lemma 6.1, ∀t ∈ μ[t1, y] \
{t1}, Numi(t) ⊂ Numi(t1).

Proof of Lemma 4.5. (a) For the forward direction, we assume for contradiction
that ∀t ∈ μ \ {y}, labeli(t) ≺ labeli(y), and ∃t ∈ μ \ {y} | Numi(t) �⊂ Numi(y) (and,
therefore Numi(t) �⊆ Numi(y), since, by Lemma 4.4 (i), Numi(t) �= Numi(y)). By
Lemma 6.2, ∃t1 ∈ μ \ {y} | Numi(y) ⊂ Numi(t1), and, by Lemma 4.4, labeli(y) ≺
labeli(t1), a contradiction.

The reverse direction follows immediately from Lemma 4.4.
(b) We suppose that ∀t ∈ μ \ {y}, labeli(t) ≺ labeli(y). Let k = max{α−1(t), t ∈

μ}. By (a) and Lemma 6.1, ∀t ∈ μ \ {y}, labelk(t) ≺ labelk(y). So α(k) = y, which
completes the proof.

(c) We assume for contradiction that ∀t ∈ μ \ {y}, α−1(t) < α−1(y) and ∃t ∈
μ \ {y} | Numi(t) �⊆ Numi(y). By Lemma 6.2, ∃t1 ∈ μ \ {y} | ∀t ∈ μ[t1, y] \
{t1}, Numi(t) ⊂ Numi(t1), and by (a) and (b), α−1(y) < α−1(t1), a contradic-
tion.

REFERENCES

[1] A. Berry, J. Blair, P. Heggernes, and B. Peyton, Maximum cardinality search for com-
puting minimal triangulations of graphs, Algorithmica, 39 (2004), pp. 287–298.

[2] A. Berry and J.-P. Bordat, Separability generalizes Dirac’s theorem, Discrete Appl. Math.,
84 (1998), pp. 43–53.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

446 A. BERRY, R. KRUEGER, AND G. SIMONET

[3] A. Berry and J.-P. Bordat, Moplex elimination orderings, in Proceedings of the First
Cologne-Twente Workshop on Graphs and Combinatorial Optimization, Electron. Notes
Discrete Math. 8, J. Hurink, S. Pickl, H. Broersma, and U. Faigle, eds., Elseiver, Amster-
dam, 2001, pp. 6–9.

[4] A. Berry, R. Krueger, and G. Simonet, Ultimate generalizations of LexBFS and LEX M, in
Proceedings of the 31st International Workshop on Graph-Theoretic Concepts in Computer
Science 2005 (WG 2005), Lect. Notes Comput. Sci. 3787, Springer-Verlag, New York, 2005,
pp. 199–213.

[5] J. R. S. Blair, P. Heggernes, and J. A. Telle, A practical algorithm for making filled
graphs minimal, Theoret. Comput. Sci. A, 250-1/2 (2001), pp. 125–141.

[6] H. L. Bodlaender and A. M. C. A. Koster, On the maximum cardinality search lower bound
for treewidth, Discrete Appl. Math., 155 (2007), pp. 1348–1372.

[7] D. G. Corneil, Lexicographic breadth first search—a survey, in Proceedings of the 30th Inter-
national Workshop on Graph Theory (WG2004), Lect. Notes Comput. Sci. 3353, Springer-
Verlag, New York, 2004, pp. 1–19.

[8] D. G. Corneil and R. M. Krueger, Unified view of graph searching, SIAM J. Discrete Math.,
22 (2008), pp. 1259–1276.

[9] D. G. Corneil, S. Olariu, and L. Stewart, Linear time algorithms for dominating pairs in
asteroidal triple-free graphs, SIAM J. Comput., 28 (1999), pp. 1284–1297.

[10] E. Dahlhaus, P. L. Hammer, F. Maffray, and S. Olariu, On Domination Elimination
Orderings and Domination Graphs, in Proceedings of WG 1994, London, 1994, pp. 81–92.

[11] D. R. Fulkerson and O. A. Gross, Incidence matrixes and interval graphs, Pacific J. Math.,
15 (1965), pp. 835–855.

[12] T. Ohtsuki, A fast algorithm for finding an optimal ordering in the vertex elimination on a
graph, SIAM J. Comput., 5 (1976), pp. 133–145.

[13] T. Ohtsuki, L. K. Cheung, and T. Fujisawa, Minimal triangulation of a graph and optimal
pivoting order in a sparse matrix, J. Math. Anal. Appl., 54 (1976), pp. 622–633.

[14] D. Rose, R. E. Tarjan, and G. Lueker, Algorithmic aspects of vertex elimination on graphs,
SIAM J. Comput., 5 (1976), pp. 266–283.

[15] D. R. Shier, Some aspects of perfect elimination orderings in chordal graphs, Discrete Appl.
Math., 7 (1984), pp. 325–331.

[16] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput.,
13 (1984), pp. 566–579.

[17] P. van Emde Boas, Preserving order in a forest in less than logarithmic time and linear space,
Inform. Process. Lett., 6 (1977), pp. 80–82.

[18] P. van Emde Boas, R. Kaas, and E. Zijlstra, Design and implementation of an efficient
priority queue, Math. Syst. Theory, 10 (1977), pp. 99–127.

[19] Y. Villanger, Lex M versus MCS-M, Discrete Math., 306 (2004), pp. 393–400.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 447–465

MORE PATTERNS IN TREES:
UP AND DOWN, YOUNG AND OLD, ODD AND EVEN∗

NACHUM DERSHOWITZ† AND SHMUEL ZAKS‡

Abstract. We apply the tree-pattern enumeration formulæ of earlier work of ours [N. Dershowitz
and S. Zaks, Discrete Appl. Math., 25 (1989), pp. 241–255], and a new extension thereof, to some
recent enumerations of distributions of leaves in ordered trees [W. Y. C. Chen, E. Deutsch, and
S. Elizalde, European J. Combin., 27 (2006), pp. 414–427] and in bicolored ordered trees [L. H.
Clark, J. E. McCanna, and L. A. Székely, Bull. Inst. Combin. Appl., 21 (1997), pp. 33–45], and
of distributions of up-down-up subpaths in Dyck lattice paths [Y. Sun, Discrete Math., 287 (2004),
pp. 177–186]. Bijections are used to facilitate the derivation of statistics for bicolored trees.

Key words. tree enumerations, tree patterns, node distribution, ordered trees, plane-planted
trees, bicolored trees, binary trees, Dyck paths, lattice paths, bridges

AMS subject classification. 05A15

DOI. 10.1137/070687475

the bridge guard’s bucket
upside-down to dry. . .

fresh leaves

—Issa (1818)

1. Introduction. Over and above their intrinsic combinatorial interest, enu-
merations of classes of trees have manifold applications to average-case analysis of
algorithms. For instance, the performance of various manipulations of tree structures
may depend on the distribution of node degrees or of tree heights. For one example,
see [12].

Several recent lattice-path and tree enumerations turn out to be amenable to the
generic pattern enumeration formula we gave in [7], which was based on Dvoretsky
and Motzkin’s cycle lemma [10] (called “penetrating analysis” in [16]; see [8]). One
formulation of this lemma is the following.

Cycle Lemma (see [10]). For any sequence of m natural numbers j0, . . . , jm−1,
whose sum is n, with m > n, there are exactly m− n offsets π, 0 ≤ π < m, such that

jπ mod m + · · ·+ j(π+k−1) mod m > k + n−m

for all k, 1 ≤ k < m.
For example, the sequence 102001030 has 2 (= 9− 7) such cyclic permutations:

10 3010200 3010 200 10.

Notice that both of these sequences can be read as well-formed Polish-prefix ex-
pressions (as indicated by the underscoring), where each number j is followed by j
well-formed expressions.

∗Received by the editors April 4, 2007; accepted for publication (in revised form) July 28, 2008;
published electronically January 16, 2009.

http://www.siam.org/journals/sidma/23-1/68747.html
†Department of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel (nachum.

dershowitz@cs.tau.ac.il). This author’s research was supported in part by the Israel Science Foun-
dation (grant 250/05).

‡Department of Computer Science, Technion, Haifa 32000, Israel (zaks@cs.technion.ac.il).

447

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

448 NACHUM DERSHOWITZ AND SHMUEL ZAKS

To understand why the lemma holds, note that such a sequence must have at least
one occurrence of 0, since m > n. Replacing a (cyclically adjacent) pair j0, where j
is positive, with just j − 1, decreases both the sum n and count m by 1. This does
not affect the quantity—or starting positions—of valid cyclic permutations, which
cannot begin with 0. Repeatedly making such replacements terminates when only
zeros remain, at which point the lemma clearly holds true.

Specifically, we show here how Sun’s enumeration [23] of Dyck lattice paths with
a given number of subsequences ↗↘↗ (udu) can be solved in this manner, and how
a convenient extension of our pattern formula applies to the enumeration by Chen,
Deutsch, and Elizalde [4] of ordered trees with given numbers of eldest and noneldest
childless children (leaves). We also show how to apply the extended formula to count
trees with given distributions of leaves on odd and even levels, as done by Clark,
McCanna, and Székely [5].

We review the pattern enumeration of [7] in the next two sections, and then
extend it in section 4. Our main result, Theorem 4.1 below, counts occurrences of a
multiset of patterns in ordered trees, or in other Catalan structures (see Figure 1).
Tree patterns are specified by subtrees having empty slots that can be filled with
leaves and/or with larger subtrees, and gaps that can be filled by a series of subtrees
(see Figure 2).

These formulæ are applied to the problems of Sun [23], of Chen, Deutsch, and
Elizalde [4], and of Clark, McCanna, and Székely [5] in sections 5, 6, and 7, respec-
tively. Section 7 includes a new bijection between ordered trees, mapping odd-level
nodes to internal nodes, and even-level internal nodes to leftmost leaves, plus some
results on their distributions.

In the concluding section, the correspondence between the lattice-path enumera-
tion of [23], the ordered-tree enumeration of [4], and the bicolored tree enumeration
of [5] is explicated.

2. Pattern formulæ. Ordered trees (that is, plane-planted trees with a root
whose children are also ordered in sequence) may be defined as follows:

T ::= 〈T ∗〉 ,

meaning a bracketed sequence of zero or more ordered trees.1 In other words, T
is the set of nonempty balanced bracketed expressions, where the first open bracket
matches the last close bracket. See Figure 1(a). A subtree of t ∈ T is any subsequence
of t that is itself a tree in T . Ordered trees are counted by the Catalan/Segner
[2, 20] numbers, and are in one-to-one correspondence with many other combinatorial
structures, including those in Figure 1(b),(c). See [13].

Patterns come in four basic shapes: �, ♦, �, and ◦◦◦ . The plain triangle pattern
� matches any subtree, a lozenge ♦ corresponds to any tree leaf 〈〉, a dark triangle
� matches any nonleaf subtree (that is, a subtree rooted at an internal node), and
an ellipsis ◦◦◦ can match any sequence of (zero or more) subtrees. So, the pattern �
matches any subtree matched by either ♦ or �.

Base patterns can be composed to form more complicated shapes. An ellipsis
is intended to match a forest (sequence) of trees, rather than a single tree, so it
makes sense only within a composite pattern. Thus, tree patterns have the following

1Some authors (e.g., [24, 5]) follow a convention by which ordered trees have an extra unary
(monovalent) node connected by an extra edge to what is the root of our trees. This necessitates
minor changes in the parameters of some enumerations.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MORE PATTERNS IN TREES 449

•
• • •

• •

•
� •

� •
•

� •
� �

�
↗↘↗↘↗↗↘↗↘↘

〈〈〉 〈〉 〈〈〉 〈〉〉〉 〈〈〉 〈〈〉 〈〈〈〉 〈〈〉 〈〉〉〉 〈〉〉〉〉 ududuududd

(a) Ordered tree (b) Binary tree (c) Lattice path

Fig. 1. Corresponding objects.

grammar:

P ::= ♦ | � | � | 〈Q+
〉
,

Q ::= P | ◦◦◦ ,
where Q+ means one or more patterns Q, in sequence. See Figure 2.

A composite pattern 〈p1 · · · pq〉 matches a tree 〈t1 · · · tn〉 if the latter’s immedi-
ate subtrees t1 · · · tn can be divided into q (possibly empty) subsequences t1 · · · tk1 · · ·
tk2 · · · tkq = tn of trees, such that each pi (i = 1, . . . , q) matches the subsequence
tki−1+1 · · · tki (k0 = 0). Of course, only the ellipsis pattern ◦◦◦ can match a subse-
quence of more than one subtree; an ellipsis even matches the empty sequence of zero
subtrees. In other words, a match is an injection (embedding) of pattern nodes to tree
nodes and of pattern edges to tree edges that preserves edge incidence and order, and
also edge neighbors—unless the pattern has an ellipsis between the edges in question.

For example, the pattern 〈♦ ◦◦◦�〉, depicted in Figure 2(a), matches any tree
whose root has two or more children, the youngest (rightmost) having children, but
the eldest (leftmost) still childless (a leaf). Thus, it matches the tree t, depicted in
Figure 1(a). Clearly, the same tree can match many different (base and composite)
patterns. In fact, t is also matched by the patterns in Figure 2(b),(c) but not by that
in Figure 2(d).

There may be many ways to divide n subtrees into q subsequences when a pattern
has more than one ellipsis. For instance, the pattern 〈♦◦◦◦�◦◦◦ 〉 in Figure 2(b)
matches t in two ways, for each of the two younger children.

A pattern occurs in a tree if it matches any subtree; for example, p = 〈♦◦◦◦�◦◦◦ 〉
(Figure 2(b)) also occurs at the youngest child of the root of t (Figure 1(a)). A multiset
(bag) of patterns occurs in a tree if the patterns match disjoint subtrees. The singleton
set {〈♦♦〉} of patterns appears exactly once in t, while {♦,♦} appears six times, once
for each choice of two of the leaves. The disjointness requirement means that no tree
node or edge may be part of more than one pattern match—though triangles (plain
� or dark �) of one pattern can be at the root of an occurrence of another pattern.
Thus, the pattern multiset {p, p} occurs only twice in t: one p at the youngest child
and the other at the root in either of two ways.

The number of edges in a pattern is equal to the total number of left (or right)
brackets—excluding the first one, plus the total number of triangles, � or �, plus
the total number of leaf patterns ♦. In other words, the number of edges e(p) in a
(nonellipsis) pattern p is obtained, recursively, as follows:

e(�) = e(�) = e(♦) = 0,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

450 NACHUM DERSHOWITZ AND SHMUEL ZAKS

•
• ◦◦◦

•
• ◦◦◦ ◦◦◦

•
• ◦◦◦

•
•

〈♦ ◦◦◦�〉 〈♦ ◦◦◦�◦◦◦ 〉 〈♦�◦◦◦�〉 〈� 〈�〉�〉

(a) Leftmost leaf; (b) Leftmost leaf; (c) Leftmost leaf; (d) Ternary node;
rightmost internal another child adjacent sibling; leftmost internal;

rightmost internal middle unary

Fig. 2. Some patterns.

e(◦◦◦) = −1,

e(〈p1 · · · pq〉) = e(p1) + · · ·+ e(pq) + q.

The number v(p) of nodes (vertices) in p can be calculated similarly:

v(�) = v(�) = v(◦◦◦) = 0,

v(♦) = 1,

v(〈p1 · · · pq〉) = v(p1) + · · ·+ v(pq) + 1.

For example, the four patterns in Figure 2 comprise a total of e = 2 + 2 + 3 + 4 = 11
edges and v = 2 + 2 + 2 + 2 = 8 nodes.

Let p1, . . . , pq, be some patterns and let their desired multiplicities of occurrence
in a tree be n1, . . . , nq, respectively. In [7], we provided the pattern enumeration
formula

(2.1)
1
u

(
u

n1, . . . , nq, u−m
)(

2n+ d+ s− 2e−m
n− e

)

for the number of occurrences of such a multiset ofm = Σni patterns among all n-edge
ordered trees, where e is the total number of edges in the m patterns, d is the number
of plain triangles � therein, s is the number of ellipses ◦◦◦ , and u = n + d − e + 1.
Nonleaf patterns � were not treated in [7].2

This formula can be used to calculate various tree statistics. Let the size of a tree
be measured by the number of its edges.

Example 2.1. A simple one-pattern case of this formula establishes the expected
number of nodes in an ordered tree that are “eldest” leaves (leftmost and childless).
The pattern p1 = 〈♦◦◦◦ 〉 matches each such leaf. Letting m = n1 = e = s = 1, d = 0,
u = n in (2.1), yields

1
n

(
n

1

)(
2n− 2
n− 1

)
=
(

2n− 2
n− 1

)

2We use multinomial coefficients (j
j1,...,jk

) = j!
j1!·····jk !

throughout. Virtually all the formulæ in

this paper containing occurrences of the multinomial would benefit from dropping the common (but
not universal) requirement that j = j1 + · · ·+ jk, in which case the first two factors of (2.1) would

become simply (
u−1

n1,...,nq ,u−m).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MORE PATTERNS IN TREES 451

for the total number of leftmost leaves among all trees of size n. The number of trees
of size n is the Catalan number [14],

Cn =
1

2n+ 1

(
2n+ 1
n

)
=

1
n+ 1

(
2n
n

)

(see [21, A000108]); so there are, on the average,(
2n−2
n−1

)
1

n+1

(
2n
n

) =
n2 + n

4n− 2
≈ n

4

leftmost leaves in a tree with n+ 1 nodes.
Similarly, the average number of “younger” (nonleftmost) leaves is counted by

taking p1 = 〈�◦◦◦♦◦◦◦ 〉, m = n1 = d = 1, e = s = 2, and u = n:(
2n−2
n−2

)
1

n+1

(
2n
n

) =
n2 − 1
4n− 2

≈ n

4
.

The leaf subpattern ♦ contributes to the count for each nonleftmost leaf child of the
node matching 〈�◦◦◦♦◦◦◦ 〉.

Here and throughout, we speak freely of nodes as being “leftmost,” “nonleft-
most,” “rightmost,” or “nonrightmost” interchangeably with age-based terminology,
“oldest,” “younger,” “youngest,” or “older,” respectively. The root of a tree and the
only child of a unary node are leftmost and rightmost at one and the same time.

The following is an easy observation.
Proposition 2.2. In any ordered tree, the number of leftmost (resp., rightmost)

leaves is one more than the number of nonleftmost (resp., nonrightmost) internal
nodes.

The difference of one in the numbers is on account of the root, which is perforce
leftmost, as well as rightmost.

This correspondence holds even for the one-node tree, which has one leftmost/
rightmost leaf, the root, and no internal nodes at all. It also holds for the two-node
tree, which has one leftmost/rightmost leaf and no nonleftmost internal nodes.

Proof. We give two proofs, one “geometric” and one “algebraic.”
1. From each leftmost leaf, travel up leftmost edges as far as possible, reaching the

root or else reaching some nonleftmost internal node. In the reverse, from the root or
any nonleftmost internal node, one can travel down leftmost edges until encountering
the corresponding leftmost leaf.

2. Suppose there are i internal nodes, � leftmost leaves, and k leftmost nonroot
internal nodes. Since every internal node has exactly one leftmost child, i = � + k.
Hence � = i − k, which is one more (for the root) than the number of nonleftmost
internal nodes.

(The correspondence of rightmost leaves with nonrightmost internal nodes and
the root follows by symmetry.)

We will see (Theorem 7.3 below) that leftmost leaves, rightmost leaves, left-
most/rightmost internal nodes, nonleftmost/nonrightmost leaves/internal nodes all
occur with almost equal frequency among ordered trees with a given number of nodes
(or of edges). All eight cases occur in about one-fourth of the nodes. See the previous
example.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

452 NACHUM DERSHOWITZ AND SHMUEL ZAKS

3. Tree enumerations. This paper is mainly concerned with counting trees,
rather than pattern occurrences.

When the patterns are such that there can be no more than one occurrence of
the multiset of patterns in any one tree, then formula (2.1) above counts trees. This
is the case, in particular, when the patterns include all the nodes in the tree being
counted (m+ e− d = n+ 1), and different patterns do not overlap each other. (Two
patterns “overlap” if there is a tree in which both occur and whose occurrences share
at least one node.) The latter condition precludes, for instance, sibling ellipses, such
as 〈◦◦◦�◦◦◦ 〉, which can occur multiple times at the same subtree.

Example 3.1. The number of ordered trees with n edges, � leaves, and no unary
or binary nodes is counted by the number of occurrences of n1 = � leaf patterns ♦
and n2 = n+ 1− � patterns 〈���◦◦◦ 〉 for nodes of (out-) degree at least 3. We have
e = d = 3n− 3�+ 3, s = n+ 1− �, and m = u = n+ 1, giving

1
n+ 1

(
n+ 1
�

)(
2�− n− 3
n− �

)
.

Summing over �, for 2n/3 < � ≤ n, counts all n-edge trees sans unary and binary
nodes. For n = 3, 4, . . . , this is: 1, 1, 1, 4, 8, 13, 31, 71, 144, 318, 729, 1611, 3604,
8249, Note that this also counts the number of sequences of n natural numbers,
excluding 1 and 2, such that the sum of every prefix is no more than its length.3

If we exclude only unary nodes, we get, instead, the nth Riordan number [21,
A005043]. See [15, p. 587] and [7, Ex. 3.1.3]; see also [1].

Example 3.2. The number of ordered trees with n edges, r leaves, and i unary
nodes is obtained by considering r leaf patterns ♦, i instances of 〈�〉, and n+1− r− i
of 〈��◦◦◦ 〉 for the remaining nodes (e = d = 2n− 2r − i+ 2, s = n− r − i+ 1, and
m = u = n+ 1):

1
n+ 1

(
n+ 1

r, i, n− r − i+ 1

)(
r − 2

n− r − i
)
.

When patterns include all the nodes and all the edges in the tree (e = n, m =
u = d+ 1, and s = 0), enumeration (2.1) simplifies to just

(3.1)
1
m

(
m

n1, . . . , nq

)
.

This generalizes [11] and [24], which consider patterns representing the degrees of the
nodes only.

Example 3.3. The number of “0-1-2” (“unary-binary”) trees (with maximum
outdegree 2) with n edges and � leaves, and, hence, �− 1 binary nodes and n− 2�+ 2
unary nodes, is 1

n+1 (n+1
�,�−1,n−2�+2) ([9]; cf. [19]). Summing over �, we get

Mn =
1

n+ 1

∑
�

(
n+ 1

�, �− 1, n− 2�+ 2

)

for the total number of 0-1-2 trees of size n, which is the nth Motzkin number [21,
A001006]. (A different derivation for this enumeration is given in [7, Ex. 3.1.1].)

3This sequence was recently added as #A114997 to Neil Sloane’s The on-line encyclopedia of
integer sequences [21].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MORE PATTERNS IN TREES 453

If one is interested only in a (lone) pattern occurring at the root of a tree (with
no sibling ellipses, so the pattern does not overlap itself), then we have the following
tree enumeration (see [7, sect. 3.3]):

(3.2)
d+ s

n− e
(

2n+ d+ s− 2e− 1
n− e− 1

)
.

When n = e, this is taken to be 1.

4. Patterns with nonleaf slots. Now we extend (2.1) by incorporating nonleaf
patterns �. Like a plain triangle �, a dark triangle � may also overlap an occurrence
of another pattern (at its root), but with the added proviso that the latter is not ♦.
This is why we need dark triangles, and cannot simply use 〈�◦◦◦ 〉 for nonleaf nodes,
instead (something that can be done in the absence of leaf patterns).

For example, the pattern 〈♦�◦◦◦�〉 (see Figure 2(c)) occurs in a tree, such as
that in Figure 1(a), at each node of degree at least three, with eldest child a leaf and
youngest not a leaf. The pair of patterns {〈♦�◦◦◦�〉 ,♦}, which includes another leaf
pattern, occurs three times in the tree 〈〈〉 〈〉 〈〈〉 〈〉〉〉 of Figure 1(a), once for each of
the leaves, excluding the eldest child of the root. It occurs a total of 12 times in the
42 five-edged trees, but only in the following five of them:〈〈〉 〈̄〉〈̄〉 〈〈̄〉〉〉 〈〈〉 〈̄〉 〈〈〈̄〉〉〉〉 〈〈〉 〈̄〉 〈〈̄〉〈̄〉〉〉 〈〈〉 〈〈̄〉〉 〈〈̄〉〉〉 〈〈〈〉 〈̄〉 〈〈̄〉〉〉〉 .
The composite pattern matches at the high-degree node and the leaf pattern ♦
matches any one of the overlined leaves 〈̄〉.

Theorem 4.1. Let p1, . . . , pq, q ≥ 0, be various nonleaf nonellipsis patterns. The
number of occurrences among all n-edge ordered trees of ni of each of the patterns pi

and of � ≥ 0 leaf patterns ♦ is

(4.1)(
m

n1, . . . , nq

)(
u− t
�

) ∑
�≤k≤u

1
u− k + 1

(
u− k + 1

m

)(
u− t− �
k − �

)(
n+ s− e− 1
u+ s−m− k

)
,

where e = Σe(pi) is the total number of edges in the patterns, d is the number of plain
triangles � appearing in them, t is the number of dark triangles �, s is the number
of ellipses ◦◦◦ , u = n+ d+ t− e, and m = Σni. When m > 0, this enumeration can
be rewritten as

(4.1a)
1
m

(
m

n1, . . . , nq

)(
u− t
�

) ∑
�≤k≤u

(
u− k
m− 1

)(
u− t− �
k − �

)(
n+ s− e− 1
u+ s−m− k

)
.

Proof. We count separately for each possible number of “loose” (unattached to
composite patterns) tree leaves, k = �, � + 1, . . . , u. Note that the total number of
leaves missing from the m patterns cannot exceed n− e+ d ≤ u.

Let v = Σv(pi) + � = m + e − d − t + k be the number of tree nodes accounted
for by the patterns and leaves. (The m+ k patterns contain e edges, so the number
of nodes and triangles is v + d+ t = e+m+ k.) The proof proceeds in several steps:

1. Arrange the given m nonleaf patterns in a row, in any of (m
n1,...,nq) ways.

2. Intersperse n+1−v = u+1−m−k extra patterns of the form 〈�◦◦◦ 〉 among
the m patterns, to cover all the missing internal (nonleaf) nodes, in (u−k+1

m)
ways, for a total of u− k + 1 patterns.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

454 NACHUM DERSHOWITZ AND SHMUEL ZAKS

3. Distribute the (n − e) − (n + 1 − v) = m − d − t + k − 1 missing edges (of
the n − e missing from the given patterns, n+ 1 − v were just added in the
previous step), as sequences � · · ·� of triangles, in place of the s+ n+ 1− v
ellipses (s original and n+ 1 − v new), in (n+s−e−1

m−d−t+k−1) = (n+s−e−1
u+s−m−k) ways.

Note that when there are no missing edges (n = e and u + 1 − k = m), this
factor is (s−1

0) = (s−1
s−1) = 1.

4. Place the � distinguished leaves in some of the d+(n+1−v)+(v−e−1) = u−t
unrestricted, plain triangles (d in the original patterns, plus n + 1 − v from
step 2 and v − e− 1 from step 3), in (u−t

�) ways.
5. Place the remaining k−� leaves in some of the remaining u−t−� unrestricted

triangles in (u−t−�
k−�) ways.4

6. The cyclic arrangement of the resultant m + (u + 1 − m − k) = u − k + 1
patterns corresponds to exactly one occurrence of the patterns in a tree. To
see this, graft the patterns into one tree by repeatedly picking any pattern
in the sequence and inserting it into the closest (rightmost) available triangle
slot among the patterns preceding it, wrapping back around from the end
when necessary. The u−k+1 patterns contain a total of d+ t+(u+1−m−
k)+(m−d−t+k−1)−�−(k−�) = u−k slots. So, in fact, a single tree results
from the grafting, with each pattern occurring at the point it ends up in the
reconstructed tree. This situation may be viewed as an application of the
cycle lemma, given in the introduction. Reading each pattern as the number
of its slots, the lemma asserts that each of the u−k+1 cyclic permutations of
the patterns gives one and the same grafted outcome. Thus, the enumeration
has an additional factor of 1

u−k+1 .

Summing for k, and replacing 1
u−k+1 (u−k+1

m) by 1
m (u−k

m−1) when m > 0, gives the
result.

By way of illustration, let us count occurrences in 9-node trees of the quartet of
patterns

•
◦◦◦

•
◦◦◦

•
• ◦◦◦ • ,

written linearly as

{〈◦◦◦�〉 , 〈◦◦◦�〉 , 〈�♦◦◦◦ 〉 , ♦}.

The patterns account for e = 4 out of n = 8 edges and for v = 5 of the nodes, including
2 leaves, � = 1 of which is a pattern on its own. There are d = 1 plain triangles and
t = 2 dark triangles in the patterns, so u = 8 + 1 + 2− 4 = 7. The patterns also have
s = 3 ellipses.

The construction proceeds as follows:
0. Consider k = 3, meaning that we want 2 more leaves in the tree, besides the

lone ♦ appearing in the pattern set—and besides the one embedded in the
third pattern, for a total of 3 internal nodes and 4 leaves.

4Steps 4 and 5 can be supplanted by first, (4′) choosing all k leaves in (n+d−e
k

) ways,

and only then, (5′) selecting (k
�) of them, for the same total contribution of (n+d−e

k
)(k

�) =

(n+d−e
�

)(n+d−e−�
k−�).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MORE PATTERNS IN TREES 455

1. Them = 3 nonleaf patterns can be arranged in (3
2,1) = 3 ways, one of which is

〈◦◦◦�〉 , 〈�♦◦◦◦ 〉 , 〈◦◦◦�〉 .

2. We need to add 2 internal-node patterns 〈�◦◦◦ 〉 for the remaining 2 as yet
unaccounted-for nodes. These extra patterns can be intermingled with the 3
original nonleaf patterns in

(
3+2
3

)
= 10 different ways, including, for example,

the following sequence:

〈�◦◦◦ 〉 , 〈◦◦◦�〉 , 〈�◦◦◦ 〉 , 〈�♦◦◦◦ 〉 , 〈◦◦◦�〉 .

3. There are only 6 edges in these patterns, so we need to graft in the 2 remaining
tree edges, and eliminate all 3 + 2 = 5 ellipses in the process. This can be
done in

(
5+2−1

2

)
= 15 ways, such as

〈�〉 , 〈��〉 , 〈�〉 , 〈�♦�〉 , 〈�〉 .

4. The � = 1 leaf in the original pattern set can go into any of the 5 ordinary
subtree (�) slots—in the middle one, say,

〈�〉 , 〈��〉 , 〈♦〉 , 〈�♦�〉 , 〈�〉 .

5. Similarly, the extra k− � = 2 leaves can go into any of the remaining n+ d−
e− � = 4 plain slots, in

(
4
2

)
= 6 combinations, giving something such as this

final set of 5 tree patterns, arranged in sequence:

〈�〉 , 〈♦�〉 , 〈♦〉 , 〈�♦♦〉 , 〈�〉 .

We have 4 slots now and 5 patterns. All the leaves have been allocated, so
the type of slot no longer matters.

6. Last, these 5 tree pieces are grafted together, step by step, as follows:

〈�〉 , 〈♦�〉 , 〈♦〉 , 〈�♦♦〉 , 〈�〉
〈〈♦�〉〉 , 〈♦〉 , 〈�♦♦〉 , 〈�〉
〈〈♦ 〈♦〉〉〉 , 〈�♦♦〉 , 〈�〉
〈〈♦ 〈♦〉〉〉 , 〈〈�〉♦♦〉
〈〈〈〈♦ 〈♦〉〉〉〉♦♦〉 .

Pictorially, this is what happens:
◦ •

◦
◦
•

•
• ◦

•

A dashed line in a pattern means that the edge is not from the original pattern
set and similarly for an unfilled node. One can see, then, that the original
patterns account for 4 out of 8 edges, 2 out of 4 leaves, and 3 out of 5 internal
nodes.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

456 NACHUM DERSHOWITZ AND SHMUEL ZAKS

The point of the cycle lemma is that the outcome is the same regardless of the
order in which (cyclic) neighbors are grafted. The same end result, namely,

b

a

◦
a

◦ ◦
c

• ◦

would be obtained from any of the 5 cyclic permutations of the starting sequence.
The third of the original four patterns, 〈�♦◦◦◦ 〉, occurs at the root, marked b; the
first two patterns, 〈◦◦◦�〉, occur at the nodes marked a; the distinguished leaf is c.

The above theorem says that there are a total of 3× 10× 15× 5× 6× 1
5 = 2700

occurrences of the given patterns among all 490 trees with 8 edges and 4 leaves. For
example, the same tree as obtained above happens to contain 8 additional occurrences
of the same multiset of patterns, as follows:

b

a

a

•
c ◦
◦

• ◦
b

a

a

•
◦ ◦

c

• ◦
b

a

a

•
◦ ◦
◦

• c

b

a

◦
a

c ◦
◦

• ◦
b

a

◦
a

◦ ◦
◦

• c

b

•
a

a

c ◦
◦

• ◦
b

•
a

a

◦ ◦
c

• ◦
b

•
a

a

◦ ◦
◦

• c

Example 4.2. As a trivial example, with no patterns, this formula counts ordered
trees of size n, by summing the number of trees with k = 1, . . . , n+ 1 leaves, since a
tree has only one occurrence of an empty pattern set. Letting q = m = e = d = s =
t = � = 0 and u = n in (4.1), we obtain

∑
k

1
n+ 1− k

(
n

k

)(
n− 1
k − 1

)
=

1
n

∑
k

(
n

k

)(
n

k − 1

)
=

1
2n+ 1

(
2n+ 1
n

)
,

the nth Catalan number, Cn. Each term 1
n (n

k−1)
(

n
k

)
in the sum is a Narayana number

[17], and represents the number of n-edge k-leaf trees, as shown in
[6, 18].

Remark 4.3. Suppose there are no dark triangle (�) subpatterns (t = 0, u =
n+ d− e). Then (4.1) reduces to (2.1), but with an additional nq+1 = � occurrences
of the leaf pattern:(

m

n1, . . . , nq

)(
u− 1
�

)∑
k

1
u− k + 1

(
u− k + 1

m

)(
u− �
k − �

)(
n+ s− e− 1
u+ s−m− k

)

=
∑

k

1
u−m− k + 1

(
u

n1, . . . , nq, �, k − �, u−m− k
)(

n+ s− e− 1
u+ s−m− k

)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MORE PATTERNS IN TREES 457

=
1

u+ 1

(
u+ 1

n1, . . . , nq, �, u−m− �+ 1

)∑
k

(
u−m− �+ 1

k − �
)(

n+ s− e− 1
u+ s−m− k

)

=
1

u+ 1

(
u+ 1

n1, . . . , nq, �, u−m− �+ 1

)(
2n+ d+ s− 2e−m− �

n− e
)
.

When the patterns account for all the leaves (as, for instance, when they account
for all n+ 1 nodes), the sum contributes only the k = � term, and (4.1a) simplifies to

(4.2)
1
m

(
u− �+ 1

n1, . . . , nq, u− �−m+ 1

)(
n+ d− e

�

)(
n+ s− e− 1
u+ s−m− �

)
.

If they also account for all edges (n = e), then u = d + t = m + k − 1 = m + � − 1,
and we get the following mild extension of (3.1):

(4.3)
1
m

(
m

n1, . . . , nq

)(
d

�

)
,

with an added factor for the (d
�) ways of filling � of the d unrestricted slots with leaves.

Example 4.4. The number of binary trees with i internal nodes and j left leaves is
also counted by the Narayana numbers, as is clear from the standard correspondence
[15, sect. 2.3.2] between ordered trees with i edges and binary trees with i internal
nodes. Let there be n1 = j patterns 〈♦�〉, n2 = t = i − j patterns 〈��〉, and
� = i+ 1 − j leaf patterns ♦. Then put d = i, n = e = 2i, and s = 0 (hence, m = i
and u = 2i − j) into the formula. Only k = � contributes to the sum, and the last
factor in (4.2) is

(−1
0

)
= 1, so we get

1
i

(
i

j

)(
i

i+ 1− j
)

=
1
i

(
i

j

)(
i

j − 1

)
.

Example 4.5. The number of ordered trees with n edges, k leaves, and j leftmost
(that is, “eldest”) nonroot internal nodes (out of a total of n − k nonroot internal
nodes) is counted by n1 = j patterns p1 of the form 〈�◦◦◦ 〉, n2 = n + 1 − j − k of
the form p2 = 〈♦◦◦◦ 〉 (for the internal nodes not covered by p1), and � = k − n2 =
2k+ j−n− 1 leaf patterns (for the leaves not in p2). Putting m = e = s = n− k+1,
t = j, d = 0, and u = j + k − 1 into (4.2), we have

1
n− k + 1

(
n− k + 1

j

)(
k − 1

2k + j − n− 1

)(
n− 1
n− k

)

=
1
n

(
n

j, n− j − k + 1, n− j − k, 2k + j − n− 1

)
.

Letting i = n− j − k + 1 yields

1
n

(
n

i, i− 1, j, n− 2i− j + 1

)

for the number of trees with j leftmost internal nodes, not counting the root, and i−1
nonleftmost ones. The tree in Figure 1(a), for instance, has one nonleftmost internal
node, but no leftmost ones (other than the root).

Example 4.6. Looking back at Example 3.2, suppose one wishes to count leftmost
leaves separately. Let there be n edges, q internal nodes, i of which are unary, and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

458 NACHUM DERSHOWITZ AND SHMUEL ZAKS

r = n+1− q leaves, j of which are leftmost. We must, therefore, distinguish between
nodes with leftmost leaves, and those without. If x is the number of unary nodes with
a lone-leaf child, then we want x occurrences of 〈♦〉, i− x of 〈�〉, j − x of 〈♦�◦◦◦ 〉,
� = r− j loose leaves ♦, and n+ 1− i+ x− 2j− � = q+ x− i− j of 〈��◦◦◦ 〉, making
m = n − r + 1, e = 2n − 2r − i + 2, d = s = n − r − i + 1, t = n − j − r + 1, and
u = n− j. Summing over x, we get

1
q

(
r − 1
r − j

)(
r − 2

r + i− q − 1

)∑
x

(
q

x, i− x, j − x, q + x− i− j
)

=
1
q

(
r − 1
j − 1

)(
r − 2

q − i− 1

)(
q

i

)∑
x

(
i

x

)(
q − i
j − x

)

=
1
q

(
q

i

)(
q

j

)(
r − 1
j − 1

)(
r − 2

q − i− 1

)
.

5. Up and down steps. By the standard correspondence between binary trees
and Dyck (nonnegative lattice) paths (or bridges) [18], the number of paths from (0, 0)
to (m,m) not crossing below the baseline (grid diagonal), with exactly j occurrences
of the lattice pattern udu (a step up, u, followed by a step down, d, and another
step up), as counted in [23], is the same as the number of occurrences of binary trees
that have j left leaves with a nonleaf sibling amongst binary trees with m internal
nodes. For example, the lattice path in Figure 1(c) has 3 occurrences of udu, drawn
sideways as ↗↘↗, corresponding to the first (reading left to right) three left leaves
in Figure 1(b).

We can count these tree patterns by using (3.1), taking n1 = j patterns 〈♦�〉 for
internal nodes with a left leaf, n2 = i of 〈♦♦〉 for “double” leaves (internal nodes with
two leaves), n3 = m + 1 − j − 2i of 〈�♦〉 for internal nodes with a right leaf, and
n4 = i− 1 for the rest 〈��〉, for a total of m patterns (e = 2m, d = m− 1) and

(5.1)
1
m

(
m

j, i,m− 2i− j + 1, i− 1

)

occurrences. Since the patterns account for all the internal nodes of the tree, no
triangle subpattern � can be filled by anything but another binary node.

Summing over all i, we get

1
m

(
m

j

)∑
i

(
m− j

i, i− 1,m− 2i− j + 1

)

=
1
m

(
m

j

)∑
i

(
m− j
i

)(
m− i− j
i− 1

)

for the number of binary trees with m binary nodes, j of which have a left leaf child
and right nonleaf. For m = 5 and j = 3, there are 1

5

(
5
3

)(
2
1

)
= 4 such binary trees,

including the one portrayed in Figure 1(b).
This enumeration is equivalent to the formula(

m− 1
j

)
Mm−j−1 =

1
m− j

(
m− 1
j

)∑
i

(
m− j

i, i− 1,m− 2i− j + 1

)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MORE PATTERNS IN TREES 459

in [23, Thm. 2.1] for Dyck paths with m u-steps and m d-steps, and including j
segments udu, where Mm−j−1 is a Motzkin number (as in Example 3.3).

Alternatively, we can apply (4.1a) with n1 = j patterns 〈♦�〉 for internal nodes
with a leftmost leaf and rightmost nonleaf, n2 = i double-leaf patterns 〈♦♦〉, and
n3 = m − j − i of 〈��〉 for the remaining internal nodes, for a total of m patterns
(n = e = 2m, d = m − j − i, t = m − i, s = � = 0, u = 2m− 2i− j). Recalling the
convention that

(−1
0

)
= 1, we have

1
m

(
m

j, i,m− j − i
)∑

k

(
m− j − i

k

)(−1
m− u+ k + 1

)

=
1
m

(
m

j, i,m− j − i
)(

m− j − i
u−m+ 1

)

=
1
m

(
m

i, i− 1, j,m− 2i− j + 1

)
,

as before.
A low-level occurrence of a lattice pattern, like udu, means that one end of each u

and d step touches the baseline. For example, the lattice path in Figure 1(c) has two
low occurrences of udu (the first two such occurrences). To count these, we use, this
time, the standard correspondence between paths and ordered trees [22], in which the
two low occurrences in Figure 1(c) correspond to the two first leaves in Figure 1(a).

For paths from (0, 0) to (n, n) with j low occurrences, we need to count n-edge
trees with exactly j nonyoungest (i.e., nonrightmost) leaves sprouting from the root.
For example, the pattern 〈〈�◦◦◦ 〉 〈�◦◦◦ 〉♦�〉 matches a root of degree 4, with the
third child having no children, but its two older siblings having children. For a root
of degree r, there are, in general, (r−1

j) such patterns for the different placements of
the j leaves (in every place but the last).

Substituting s = r − j − 1, d = s+ 1, and e = r + s into our root formula (3.2),
and summing over root degree r, we get

∑
r

2r − 2j − 1
n+ j − 2r + 1

(
r − 1
j

)(
2n− 2j
n− r − 1

)

(ignoring the fraction whenever the denominator is 0) for the number of paths with j
low-level udu’s, as counted in [23, Thm. 3.1]. For example, for n = 5 and j = 2, we
get 1

2

(
6
1

)(
2
2

)
+
(

6
0

)(
3
2

)
= 6, including the path in Figure 1(c).

6. Young and old leaves. The number of ordered trees with n edges, i oldest
(leftmost) leaves, and j younger (nonleftmost) leaves is given by (4.2), with n1 = i
nodes 〈♦◦◦◦ 〉 with eldest leaf, n2 = t = n + 1 − 2i − j nodes 〈�◦◦◦ 〉 with nonleaf
eldest, m = e = s = n− i− j + 1, d = 0, and u = n− i (all leaves are accounted for):

1
n− i− j + 1

(
n− i− j + 1

i

)(
i+ j − 1

j

)(
n− 1

n− i− j
)

=
1
n

(
n

i, i− 1, j, n− 2i− j + 1

)
(6.1)

=
1
n

(
n

j

)(
n− j
i

)(
n− i− j
i− 1

)
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

460 NACHUM DERSHOWITZ AND SHMUEL ZAKS

The above formula counts trees, since all nodes are covered by the m patterns
and j leaves. It is equivalent to the enumeration in [4, Prop. 2.1], namely,

1
n

(
n

i

)(
n− i
j

)(
n− i− j
i− 1

)
.

There, a tree-grafting proof, based on [3], and similar to the idea in [7] that has been
reused here, is provided. The tree in Figure 1(a) is one of the 1

5 (5
2,1,2) = 6 five-edge

trees with 2 oldest leaves and 2 younger ones.
Summing the formula for all i gives the total number of n-edge trees containing

j noneldest leaves:

1
n

(
n

j

)∑
i

(
n− j
i

)(
n− i− j
i− 1

)
.

By Proposition 2.2, a tree with i leftmost leaves and j nonleftmost ones has i− 1
nonleftmost interior nodes and n− 2i− j+2 leftmost ones. Letting r = n− 2i− j+2
and s = i− 1, we have that there are

1
n

(
n

r − 1, s, s+ 1, n− 2s− r
)

trees with n edges, r leftmost interior nodes, and s nonleftmost ones, and that there
are a total of

1
n

(
n

r − 1

)∑
s

(
n− r + 1

s, s+ 1, n− 2s− r
)

n-edge trees with r leftmost internal nodes and any number of nonleftmost ones.

7. Odd and even levels. The Narayana numbers,

1
n

(
n

q

)(
n

q − 1

)
,

also happen to count the number of (“bicolored”) n-edge ordered trees with q nodes
(leaves or internal) on their odd levels (the root’s children, great-grandchildren, etc.)
[24]. (See [5, Thm. 4.3B].) For example, q = 3 in Figure 1(a). This enumeration is
refined in [5, Thm. 4.4B], where it is shown that there are

1
r

(
r

�

)(
q

i

)(
r − 2

q − i− 1

)(
q − 1

r − �− 1

)

trees with q odd nodes, including i leaves, and r = n + 1 − q even nodes, � of which
are leaves. For example, i = � = 2 for the tree in Figure 1(a).

In [6], we gave the following bijection between n-edge ordered trees with � leaves
and those with � internal nodes:

〈〉� = 〈〉,
〈s, t1, . . . , tk〉� = 〈〈t1, . . . , tk〉�, s1, . . . , sm〉,

where

s� = 〈s1, . . . , sm〉.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MORE PATTERNS IN TREES 461

Applying that idea to even levels, but leaving odd levels intact, we get a bijection
defined as follows:

(7.1)
〈〉� = 〈〉,

〈〈s1, . . . , sm〉, t1, . . . , tk〉� = 〈〈t1, . . . , tk〉�, s�
1, . . . , s

�
m〉.

This maps n-edge trees (n > 0) with j even internal nodes, � even leaves, and i odd
leaves to n-edge trees with j leftmost leaves, � nonleftmost leaves, and i unary nodes.
More generally, odd nodes are mapped via this bijection to internal nodes, each with
one additional child.

To see the correspondences, consider the following points:
• The above mapping � is applied only to internal nodes from even levels; the

recursion continues down the leftmost branch until only a leaf remains. So
each even internal node corresponds to a leftmost leaf.
• If one of the si is a leaf, then it maps to s�

i = 〈〉� = 〈〉, yielding a nonleftmost
leaf.
• Each odd node 〈s1, . . . , sm〉 of degree m corresponds to the degree m + 1

internal node that results from 〈〈t1, . . . , tk〉�, s�
1, . . . , s

�
m〉.

The following example serves to illustrate the process:

0�

1

2

3 5

4 6
⇒

1

0�

3 5

4 6

2�

⇒

1

3

0�

5

4 6

2 ⇒

1

3

5

0� 4� 6�

2 ⇒

1

3

5

0 4 6

2 .

Applying the above bijection, we arrive immediately at the conclusion that the
formula of Example 4.6, viz.,

1
q

(
q

i

)(
q

r − �
)(

r − 1
�

)(
r − 2

q − i− 1

)

=
1
r

(
r

�

)(
q

i

)(
r − 2

q − i− 1

)(
q − 1

r − �− 1

)

=
1
r

(
r

j

)(
q

k

)(
r − 2
k − 1

)(
q − 1
j − 1

)
,

also counts trees with q odd nodes, r even nodes, i odd leaves, j even internal nodes,
k = q − i odd internal nodes, and � = r − j even leaves, rederiving the enumeration
in [5].

There is also a simple bijection between trees that flips odd and even levels, for
trees with at least two levels, and preserves the degree of all but two nodes:

〈〉◦ = 〈〉,

〈〈s1, . . . , sm〉, t1, . . . , tk〉◦ = 〈〈t1, . . . , tk〉, s1, . . . , sm〉.

We have the following theorem.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

462 NACHUM DERSHOWITZ AND SHMUEL ZAKS

Theorem 7.1.

(1) The expected degree of even-level nodes among all ordered trees of a given size
is exactly 1.

(2) The expected degree of odd-level nodes among all size n ordered trees is n−1
n+1 .

Proof. The expected degree of an even node is exactly 1, since

average even degree =
total number of odd nodes
total number of even nodes

= 1.

The first equality is by definition; the second is on account of the odd to even bijection.
Since there are the same quantities of odd and even nodes, we must have

average odd degree = 2× average degree− average even degree = 2
n

n+ 1
− 1.

The expected degree of an arbitrary node is clearly n
n+1 , there being n + 1 nodes in

each tree of size n.
To summarize, taking Proposition 2.2 into account, we have the following theorem.
Theorem 7.2.

(1) The following distributions in ordered trees of a given size (greater than 0)
are identical:
(a) even-level nodes (per tree);
(b) odd-level nodes;
(c) leaves;
(d) internal nodes.

(2) The following distributions in ordered trees of a given size (greater than 0)
are identical:
(a) even-level leaves;
(b) younger leaves;
(c) eldest internal nodes, minus 1.

(3) The following distributions in ordered trees of a given size (greater than 0)
are identical:
(a) even-level internal nodes;
(b) eldest leaves;
(c) younger internal nodes, plus 1.

(4) The following distributions in ordered trees of a given size are identical:
(a) odd-level nodes of degree d;
(b) nodes of degree d+ 1.

Thus, statistics for the distribution of node degrees can be applied to the degrees
of odd nodes—with an offset of 1. For example, since the average degree of an internal
node is 2n/(n+1) ≈ 2 [6, Cor. 2.2], the average degree of all odd nodes (leaf or internal)
is 2n/(n+ 1)− 1 = (n− 1)/(n+ 1) ≈ 1.

The above correspondences explain why, in fact, the Narayana numbers count
trees with a given number of odd (even) nodes, just as they do trees with a given
number of internal nodes (leaves). See Example 4.2.

Since the bijection between odd-level nodes and even-level nodes changes the
degree of at most two nodes and can turn at most one leaf into an internal node, we
also have the following theorem.

Theorem 7.3.

(1) The following distributions in ordered trees of a given size (greater than 0)
are identical, give or take 1:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MORE PATTERNS IN TREES 463

(a) even-level leaves, or younger leaves (per tree);
(b) even-level internal nodes, or eldest leaves;
(c) odd-level leaves;
(d) odd-level internal nodes;
(e) eldest internal nodes;
(f) younger internal nodes.

(2) The following distributions in ordered trees of a given size (greater than 0)
are identical, give or take 1:
(a) odd-level nodes of degree d;
(b) even-level nodes of degree d.

We know that leaves and internal nodes have the same distributions and that
odd and even nodes also do. Furthermore, the cases in which the odd-even bijection
changes an odd-level leaf into an even-level internal node are precisely those when the
leftmost level-one node is a leaf. There are exactly Cn−1 such cases for trees of size n.
Accordingly, we have the following theorem.

Theorem 7.4.

(1) The expected number of even-level leaves in a size n ordered tree is

n+ 1
4
− 1

2
Cn−1

Cn
=
n+ 1

4
− n+ 1

4(2n− 1)
=
n+ 1

4

(
1− 1

2n− 1

)
.

(2) The expected number of odd-level leaves in a size n ordered tree is

n+ 1
4

+
1
2
Cn−1

Cn
=
n+ 1

4

(
1 +

1
2n− 1

)
.

(3) The expected number of even-level internal nodes in a size n ordered tree is

n+ 1
4

(
1 +

1
2n− 1

)
.

(4) The expected number of odd-level internal nodes in a size n ordered tree is

n+ 1
4

(
1− 1

2n− 1

)
.

8. Up-down-ups, younger leaves, and even leaves. It should come as no
surprise at this point that the same number, namely,

(�)
1
n

(
n

i, i− 1, j, n− 2i− j + 1

)
,

counts
a. ordered trees with n edges, i oldest leaves, and j younger ones (see (6.1)

and [4]);
b. binary trees with n internal nodes, i internal nodes with two leaves, and j

internal nodes with a leaf only on the left (see (5.1));
c. Dyck (nonnegative lattice) paths with n u’s, n+ 1 d’s, i udd’s, and j udu’s,

where the extra d is always placed at the end of the path and cannot affect
the udu count (cf. section 5 and [23]);

d. ordered trees with n edges, i even internal nodes, and j even leaves (cf. sec-
tion 7 and [5]); as well as

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

464 NACHUM DERSHOWITZ AND SHMUEL ZAKS

e. ordered trees with n edges, j + 1 eldest internal nodes, and i − 1 younger
internal nodes (Example 4.5).

For the correspondences between enumerations (a), (b), (c), just consider the standard
correspondences [15, 6, 22], under which a leftmost leaf (or, symmetrically, a rightmost
leaf) in an ordered tree, a double leaf in a binary tree, and a lattice-path sequence
udd all correspond to each other, as do a nonleftmost (or nonrightmost) leaf in
an ordered tree, a lone leftmost leaf in a binary tree, and a path sequence udu.
For the correspondence between (a) and (d), use bijection � (see (7.1)), matching
even internal nodes with oldest leaves and even leaves with younger leaves. For the
correspondence between (a) and (e), recall (from Proposition 2.2) that the number
of eldest leaves in a tree equals the number of younger internal nodes plus the root,
and (from Theorem 7.2(2)) that younger leaves match up with eldest internal nodes
minus the root.

Rewriting formula (�) in terms of a total of � = i+ j leaves in an n-edge ordered
tree, i of which are leftmost, we get

1
n

(
n

i

)(
n− �
i− 1

)(
n− i
n− �

)
.

Summing over all i gives the Narayana numbers,

1
n

(
n

�

)(
n

�− 1

)
,

for trees with n edges and � leaves (leftmost or otherwise), as well as for trees with �
even nodes [24]. This, in turn (see Example 4.2), adds up to the Catalan number,

Cn =
1

2n+ 1

(
2n+ 1
n

)
,

for size n ordered trees with any number of leaves.

Acknowledgment. We thank the referees for their suggested improvements.

REFERENCES

[1] F. R. Bernhart, Catalan, Motzkin, and Riordan numbers, Discrete Math., 204 (1999), pp. 73–
112.

[2] E. C. Catalan, Note sur un problème de combinaisons, J. Math. Pures Appl., 3 (1838),
pp. 111–112.

[3] W. Y. C. Chen, A general bijection algorithm for trees, Proc. Natl. Acad. Sci. USA, 87 (1990),
pp. 9635–9639.

[4] W. Y. C. Chen, E. Deutsch, and S. Elizalde, Old and young leaves on plane trees, Eu-
ropean J. Combin., 27 (2006), pp. 414–427; available online from http://www.math.
dartmouth.edu/∼sergi/papers/oldleaves.pdf.

[5] L. H. Clark, J. E. McCanna, and L. A. Székely, A survey of counting bicoloured trees,
Bull. Inst. Combin. Appl., 21 (1997), pp. 33–45.

[6] N. Dershowitz and S. Zaks, Enumerations of ordered trees, Discrete Math., 31 (1980), pp. 9–
28.

[7] N. Dershowitz and S. Zaks, Patterns in trees, Discrete Appl. Math., 25 (1989), pp. 241–255.
[8] N. Dershowitz and S. Zaks, The cycle lemma and some applications, European J. Combin.,

11 (1990), pp. 35–40.
[9] R. Donaghey and L. W. Shapiro, Motzkin numbers, J. Combin. Theory Ser. A, 23 (1977),

pp. 291–301.
[10] A. Dvoretsky and T. Motzkin, A problem of arrangements, Duke Math. J., 14 (1947),

pp. 305–313.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MORE PATTERNS IN TREES 465

[11] A. Erdélyi and I. M. H. Etherington, Some problems of non-associative combinations II,
Edinburgh Math. Notes, 32 (1941), pp. 7–12.

[12] P. Flajolet and J.-M. Steyaert, On the analysis of tree-matching algorithms, in Proceedings
of the 7th Colloquium on Automata, Languages and Programming, J. W. Bakker and J. van
Leeuwen, eds., Lecture Notes in Comput. Sci. 85, Springer-Verlag, Berlin, 1980, pp. 208–
219.

[13] H. W. Gould, Catalan and Bell Numbers: Research Bibliography of Two Special Number
Sequences, 6th ed., Mathematica Monongaliae 12, Combinatorial Research Institute, Mor-
gantown, WV, 1985.

[14] F. Harary, G. Prins, and W. T. Tutte, The number of plane trees, Indag. Math., 26 (1964),
pp. 319–329.

[15] D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Addison-
Wesley, Reading, MA, 1968.

[16] S. Gopal Mohanty, Lattice Path Counting and Applications, Academic Press, New York,
1979.

[17] T. Venkata Narayana, Sur les treillis formés par les partitions d’un entier et leurs applica-
tions à la théorie des probabilités, C. R. Acad. Sci. Paris, 240 (1955), pp. 1188–1189.

[18] J. Riordan, Enumeration of plane trees by branches and endpoints, J. Combin. Theory Ser. A,
19 (1975), pp. 215–222.

[19] G. Rote, Binary trees having a given number of nodes with 0, 1, and 2 children, Sém.
Lothar. Combin., 38 (1996); available online from http://www.mat.univie.ac.at/∼slc/
wpapers/s38pr rote.pdf, 6 pp.

[20] J. A. von Segner, Enumeratio modorum, quibus figurae planae rectilineae per diagonales di-
viduntur in triangula, Novi Comm. Acad. Scient. Imper. Petropolitanae, 7 (1759), pp. 203–
209.

[21] N. J. A. Sloane, The on-line encyclopedia of integer sequences, http://www.research.att.com
/∼njas/sequences (2006).

[22] R. P. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth & Brooks/Cole, Monterey,
CA, 1986.

[23] Y. Sun, The statistic “number of udu’s” in Dyck paths, Discrete Math., 287 (2004), pp. 177–
186.

[24] W. T. Tutte and F. Harary, The number of plane trees with a given partition, Mathematika,
11 (1964), pp. 99–101.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 466–476

SPANNING DIRECTED TREES WITH MANY LEAVES∗

NOGA ALON† , FEDOR V. FOMIN‡ , GREGORY GUTIN§ , MICHAEL KRIVELEVICH† ,

AND SAKET SAURABH‡

Abstract. The Directed Maximum Leaf Out-Branching problem is to find an out-branching
(i.e., a rooted oriented spanning tree) in a given digraph with the maximum number of leaves. In
this paper, we obtain two combinatorial results on the number of leaves in out-branchings. We show
that (1) every strongly connected n-vertex digraph D with minimum in-degree at least 3 has an out-
branching with at least (n/4)1/3 − 1 leaves; (2) if a strongly connected digraph D does not contain
an out-branching with k leaves, then the pathwidth of its underlying graph UG(D) is O(k log k), and
if the digraph is acyclic with a single vertex of in-degree zero, then the pathwidth is at most 4k. The

last result implies that it can be decided in time 2O(k log2 k) · nO(1) whether a strongly connected
digraph on n vertices has an out-branching with at least k leaves. On acyclic digraphs the running
time of our algorithm is 2O(k log k) · nO(1).

Key words. out-branching, maximum leaf, fixed parameter tractability, rooted tree, directed
graphs

AMS subject classifications. 05C05, 05C85, 68R10, 68W05

DOI. 10.1137/070710494

1. Introduction. In this paper, we initiate the combinatorial and algorithmic
study of a natural generalization of the well-studied Maximum Leaf Spanning Tree

(MLST) problem on connected undirected graphs [9, 14, 17, 21, 18, 22, 24, 31, 33].
Given a digraph D, a subdigraph T of D is an out-tree if T is an oriented tree with
only one vertex s of in-degree zero (called the root). If T is a spanning out-tree, i.e.,
V (T) = V (D), then T is called an out-branching of D. The vertices of T of out-degree
zero are called leaves. The Directed Maximum Leaf Out-Branching (DMLOB)
problem is to find an out-branching in a given digraph with the maximum number of
leaves.

It is well known that MLST is NP-hard for undirected graphs [23], which means
that DMLOB is NP-hard for symmetric digraphs (i.e., digraphs in which the existence
of an arc xy implies the existence of the arc yx) and, thus, for strongly connected
digraphs. We can show that DMLOB is NP-hard for acyclic digraphs as follows:
Consider a bipartite graph G with bipartition X,Y and a vertex s �∈ V (G). To obtain
an acyclic digraph D from G and s, orient the edges of G from X to Y and add all
arcs sx, x ∈ X . Let B be an out-branching in D. Then the set of leaves of B is
Y ∪X ′, where X ′ ⊂ X , and for each y ∈ Y there is a vertex z ∈ Z = X \X ′ such that
zy ∈ A(D). Observe that B has maximum number of leaves if and only if Z ⊆ X is of

∗Received by the editors December 10, 2007; accepted for publication (in revised form) Septem-
ber 17, 2008; published electronically January 16, 2009. Preliminary extended abstracts of this paper
have been presented at FSTTCS 2007 [3] and ICALP 2007 [2].

http://www.siam.org/journals/sidma/23-1/71049.html
†Department of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel (nogaa@post.tau.ac.il,

krivelev@post.tau.ac.il). The research of these authors was supported in part by USA-Israeli BSF
grants and by grants from the Israel Science Foundation.

‡Department of Informatics, University of Bergen, POB 7803, 5020 Bergen, Norway (fomin@ii.
uib.no, saket@ii.uib.no). The research of the second author was supported in part by the Norwegian
Research Council.

§Corresponding author. Department of Computer Science, Royal Holloway, University of London,
Egham, Surrey TW20 0EX, UK (gutin@cs.rhul.ac.uk). This author’s research was supported in part
by EPSRC.

466

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SPANNING DIRECTED TREES WITH MANY LEAVES 467

minimum size among all sets Z ′ ⊆ X such that NG(Z ′) = X. However, the problem
of finding Z ′ of minimum size such that NG(Z ′) = X is equivalent to the Set Cover
problem ({NG(y)| y ∈ Y } is the family of sets to cover), which is NP-hard.

The combinatorial study of spanning trees with maximum number of leaves in
undirected graphs has an extensive history. Linial conjectured around 1987 that
every connected graph on n vertices with minimum vertex degree δ has a spanning
tree with at least n(δ − 2)/(δ + 1) + cδ leaves, where cδ depends on δ. This is indeed
the case for all δ ≤ 5. Kleitman and West [28] and Linial and Sturtevant [30] showed
that every connected undirected graph G on n vertices with minimum degree at least
3 has a spanning tree with at least n/4 + 2 leaves. Griggs and Wu [24] proved that
the maximum number of leaves in a spanning tree is at least n/2 + 2 when δ = 5 and
at least 2n/5 + 8/5 when δ = 4. All these results are tight. The situation is less clear
for δ ≥ 6; the first author observed that Linial’s conjecture is false for all large values
of δ. Indeed, the results in [1] imply that there are undirected graphs with n vertices
and minimum degree δ in which no tree has more than (1− (1+o(1)) ln (δ+1)

δ+1)n leaves,
where the o(1)-term tends to zero and δ tends to infinity, and this is essentially tight.
See also [4, pp. 4–5] and [11] for more information.

In this paper we prove an analogue of the Kleitman–West result for directed
graphs: Every strongly connected digraph D of order n with minimum in-degree at
least 3 has an out-branching with at least (n/4)1/3 − 1 leaves. Unlike in the case of
symmetric digraphs, in the case of all strongly connected digraphs, there is no linear
lower bound: We show that there are strongly connected digraphs with minimum
in-degree 3 in which every out-branching has at most O(

√
n) leaves.

Unlike its undirected counterpart which has attracted a lot of attention in all
algorithmic paradigms like approximation algorithms [22, 31, 33], parameterized al-
gorithms [9, 17, 18], exact exponential time algorithms [21], and also combinatorial
studies [14, 24, 28, 30], the Directed Maximum Leaf Out-Branching problem
has been neglected until the appearance of our conference papers [2] and [3].

Our second combinatorial result relates the number of leaves in a DMLOB of a
directed graph D with the pathwidth of its underlying graph UG(D). (We postpone
the definition of pathwidth till the next section.) If an undirected graph G contains
a star K1,k as a minor, then it is possible to construct a spanning tree with at least k
leaves from this minor. Otherwise, there is no K1,k minor in G, and it is possible to
prove that the pathwidth of G is O(k). (See, e.g., [8].) Actually, a much more general
result due to Bienstock et al. [7] is that any undirected graph of pathwidth at least k
contains all trees on k vertices as a minor. We prove a result that can be viewed
as a generalization of known bounds on the number of leaves in a spanning tree of
an undirected graph in terms of its pathwidth to strongly connected digraphs. We
show that either a strongly connected digraph D has a DMLOB with at least k leaves
or the pathwidth of UG(D) is O(k log k). For an acyclic digraph with a DMLOB
having k leaves, we prove that the pathwidth is at most 4k. This almost matches the
bound for undirected graphs. These combinatorial results are useful in the design of
parameterized algorithms.

In parameterized algorithms, for decision problems with input size n and a pa-
rameter k, the goal is to design an algorithm with runtime f(k)nO(1), where f is a
function of k alone. (For DMLOB such a parameter is the number of leaves in the
out-tree.) Problems having such an algorithm are said to be fixed parameter tractable
(FPT). The book by Downey and Fellows [15] provides an introduction to the topic
of parameterized complexity. For recent developments see the books by Flum and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

468 ALON, FOMIN, GUTIN, KRIVELEVICH, AND SAURABH

Grohe [20] and by Niedermeier [32].
The parameterized version of DMLOB is defined as follows: Given a digraph D

and a positive integral parameter k, does D contain an out-branching with at least
k leaves? We denote the parameterized versions of DMLOB by k-DMLOB. If in the
above definition we do not insist on an out-branching and ask whether there exists an
out-tree with at least k leaves, we get the parameterized Directed Maximum Leaf

Out-Tree problem (denoted k-DMLOT).
Our combinatorial bounds, combined with dynamic programming on graphs of

bounded pathwidth, imply the first parameterized algorithms for k-DMLOB on strongly
connected digraphs and acyclic digraphs. We remark that the algorithmic results pre-
sented here also hold for all digraphs if we consider k-DMLOT rather than k-DMLOB.
This answers an open question of Fellows [12, 19, 25]. However, we restrict ourselves
mainly to k-DMLOB for clarity and the harder challenges it poses, and we briefly
consider k-DMLOT only in the last section.

This paper is organized as follows. In section 2 we provide additional terminology
and notation as well as some well-known results. We introduce locally optimal out-
branchings in section 3. Bounds on the number of leaves in maximum leaf out-
branchings of strongly connected and acyclic digraphs are obtained in section 4. In
section 5 we prove upper bounds on the pathwidth of the underlying graph of strongly
connected and acyclic digraphs that do not contain out-branchings with at least k
leaves. In section 6 we show that k-DMLOT is FPT. We give a brief overview of
further research triggered by our papers [2] and [3] in section 7.

2. Preliminaries. Let D be a digraph. By V (D) and A(D) we represent the
vertex set and arc set of D, respectively. An oriented graph is a digraph with no
directed 2-cycle. Given a subset V ′ ⊆ V (D) of a digraph D, let D[V ′] denote the
digraph induced by V ′. The underlying graph UG(D) of D is obtained from D by
omitting all orientations of arcs and by deleting one edge from each resulting pair of
parallel edges. The connectivity components of D are the subdigraphs of D induced by
the vertices of components of UG(D). A digraph D is strongly connected if, for every
pair x, y of vertices, there are directed paths from x to y and from y to x. A maximal
strongly connected subdigraph of D is called a strong component. A vertex u of D is
an in-neighbor (out-neighbor) of a vertex v if uv ∈ A(D) (vu ∈ A(D), respectively).
The in-degree d−(v) (out-degree d+(v)) of a vertex v is the number of its in-neighbors
(out-neighbors).

We denote by �(D) the maximum number of leaves in an out-tree of a digraph D
and by �s(D) we denote the maximum possible number of leaves in an out-branching of
a digraphD. WhenD has no out-branching, we write �s(D) = 0. The following simple
result gives necessary and sufficient conditions for a digraph to have an out-branching.
This assertion allows us to check whether �s(D) > 0 in time O(|V (D)| + |A(D)|).

Proposition 1 (see [6]). A digraph D has an out-branching if and only if D has
a unique strong component with no incoming arcs.

Let P = u1u2 . . . uq be a directed path in a digraph D. An arc uiuj of D is a
forward (backward) arc for P if i ≤ j − 2 (j < i, respectively). Every backward arc of
the type vi+1vi is called double.

For a natural number n, [n] denotes the set {1, 2, . . . , n}.
A tree decomposition of an (undirected) graph G is a pair (X,U) where U is a

tree whose vertices we will call nodes and X = ({Xi | i ∈ V (U)}) is a collection of
subsets of V (G) such that

1.
⋃

i∈V (U)Xi = V (G),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SPANNING DIRECTED TREES WITH MANY LEAVES 469

2. for each edge {v, w} ∈ E(G), there is an i ∈ V (U) such that v, w ∈ Xi, and
3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of U .

The width of a tree decomposition ({Xi | i ∈ V (U)}, U) equals maxi∈V (U){|Xi| − 1}.
The treewidth of a graph G is the minimum width over all tree decompositions of G.

If in the definitions of a tree decomposition and treewidth we restrict U to be a
path, then we have the definitions of path decomposition and pathwidth. We use the
notation tw(G) and pw(G) to denote the treewidth and the pathwidth of a graph G.

We also need an equivalent definition of pathwidth in terms of vertex separators
with respect to a linear ordering of the vertices. Let G be a graph and let σ =
(v1, v2, . . . , vn) be an ordering of V (G). For j ∈ [n] put Vj = {vi : i ∈ [j]} and
denote by ∂Vj all vertices of Vj that have neighbors in V \ Vj . Setting vs(G, σ) =
maxi∈[n] |∂Vi|, we define the vertex separation of G as

vs(G) = min{vs(G, σ) : σ is an ordering of V (G)}.

The following assertion is well known. It follows directly from the results of
Kirousis and Papadimitriou [27] on interval width of a graph; see also [26].

Proposition 2 (see [26, 27]). For any graph G, vs(G) = pw(G).

3. Locally optimal out-branchings. Our bounds are based on finding locally
optimal out-branchings. Given a digraph D and an out-branching T , we call a vertex
leaf, link, or branch if its out-degree in T is 0, 1, or ≥ 2 respectively. Let S+

≥2(T) be
the set of branch vertices, S+

1 (T) the set of link vertices, and L(T) the set of leaves
in the tree T . Let P2(T) be the set of maximal paths consisting of link vertices. By
p(v) we denote the parent of a vertex v in T ; p(v) is the unique in-neighbor of v. We
call a pair of vertices u and v siblings if they do not belong to the same path from the
root r in T . We start with the following well-known and easy to observe facts.

Fact 1. |S+
≥2(T)| ≤ |L(T)| − 1.

Fact 2. |P2(T)| ≤ 2|L(T)| − 1.
Now we define the notion of local exchange which is intensively used in our proofs.
Definition 3. �-Arc Exchange (�-AE) optimal out-branching: An out-

branching T of a directed graph D with k leaves is �-AE optimal if, for all arc subsets
F ⊆ A(T) and X ⊆ A(D) − A(T) of size �, (A(T) \ F) ∪ X is either not an out-
branching, or an out-branching with at most k leaves. In other words, T is �-AE
optimal if it cannot be turned into an out-branching with more leaves by exchanging �
arcs.

Let us remark that, for every fixed �, an �-AE optimal out-branching can be
obtained in polynomial time. In our proofs we use only 1-AE optimal out-branchings.
We need the following simple properties of 1-AE optimal out-branchings.

Lemma 1. Let T be a 1-AE optimal out-branching rooted at r in a digraph D.
Then the following hold:

(a) For every pair of siblings u, v ∈ V (T) \ L with d+
T (p(v)) = 1, there is no arc

e = (u, v) ∈ A(D) \A(T).
(b) For every pair of vertices u, v /∈ L, d+

T (p(v)) = 1, which are on the same
path from the root with dist(r, u) < dist(r, v) there is no arc e = (u, v) ∈
A(D) \A(T) (here dist(r, u) is the distance to u in T from the root r).

(c) There is no arc (v, r), v /∈ L, such that the directed cycle formed by the
(r, v)-path and the arc (v, r) contains a vertex x such that d+

T (p(x)) = 1.
Proof. The proof easily follows from the fact that the existence of any of these

arcs contradicts the local optimality of T with respect to 1-AE.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

470 ALON, FOMIN, GUTIN, KRIVELEVICH, AND SAURABH

4. Combinatorial bounds. We start with a lemma that allows us to obtain
lower bounds on �s(D).

Lemma 2. Let D be an oriented graph of order n in which every vertex is of
in-degree 2, and let D have an out-branching. If D has no out-tree with k leaves, then
n ≤ 4k3.

Proof. Let us assume that D has no out-tree with k leaves. Consider an out-
branching T of D with p < k leaves which is 1-AE optimal. Let r be the root of
T .

We will bound the number n of vertices in T as follows. Every vertex of T is
either a leaf, or a branch vertex, or a link vertex. By Facts 1 and 2 we already have
bounds on the number of leaf and branch vertices as well as the number of maximal
paths consisting of link vertices. So to get an upper bound on n in terms of k, it
suffices to bound the length of each maximal path consisting of link vertices. Let us
consider such a path P and let x, y be the first and last vertices of P , respectively.

The vertices of V (T) \ V (P) can be partitioned into four classes as follows:
(a) ancestor vertices: the vertices which appear before x on the (r, x)-path of T ;
(b) descendant vertices: the vertices appearing after the vertices of P on paths

of T starting at r and passing through y;
(c) sink vertices: the vertices which are leaves but not descendant vertices;
(d) special vertices: none-of-the-above vertices.
Let P ′ = P − x, let z be the out-neighbor of y on T , and let Tz be the subtree

of T rooted at z. By Lemma 1, there are no arcs from special or ancestor vertices to
the path P ′. Let uv be an arc of A(D) \ A(P ′) such that v ∈ V (P ′). There are two
possibilities for u: (i) u �∈ V (P ′) or (ii) u ∈ V (P ′) and uv is backward for P ′ (there
are no forward arcs for P ′ since T is 1-AE optimal). Note that every vertex of type
(i) is either a descendant vertex or a sink. Since every vertex of D is of in-degree
2, the backward arcs for P ′ form a vertex-disjoint collection of out-trees with roots
at vertices that are not terminal vertices of backward arcs for P ′. These roots are
terminal vertices of arcs in which first vertices are descendant vertices or sinks.

We denote by {u1, u2, . . . , us} and {v1, v2, . . . , vt} the sets of vertices on P ′ which
have in-neighbors that are descendant vertices and sinks, respectively. Let the out-
tree formed by backward arcs for P ′ rooted at w ∈ {u1, . . . , us, v1, . . . , vt} be denoted
by T (w), and let l(w) denote the number of leaves in T (w). Observe that the following
is an out-tree rooted at z:

Tz ∪ {(in(u1), u1), . . . , (in(us), us)} ∪
s⋃

i=1

T (ui),

where {in(u1), . . . , in(us)} are the in-neighbors of {u1, . . . , us} on Tz. This out-tree
has at least

∑s
i=1 l(ui) leaves, and, thus,

∑s
i=1 l(ui) ≤ k−1. Let us denote the subtree

of T rooted at x by Tx and let {in(v1), . . . , in(vt)} be the in-neighbors of {v1, . . . , vt}
on T − V (Tx). Then we have the following out-tree:

(T − V (Tx)) ∪ {(in(v1), v1), . . . , (in(vt), vt)} ∪
t⋃

i=1

T (vi)

with at least
∑t

i=1 l(vi) leaves. Thus,
∑t

i=1 l(vi) ≤ k − 1.
Consider a path R = p0p1 . . . pr formed by backward arcs. Observe that the arcs

{pipi+1 : 0 ≤ i ≤ r − 1} ∪ {pjp
+
j : 1 ≤ j ≤ r} form an out-tree with r leaves,

where p+
j is the out-neighbor of pj on P. Thus, there is no path of backward arcs of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SPANNING DIRECTED TREES WITH MANY LEAVES 471

length more than k− 1. Every out-tree T (w), w ∈ {u1, . . . , us}, has l(w) leaves, and,
thus, its arcs can be decomposed into l(w) paths, each of length at most k − 1. Now
we can bound the number of arcs in all the trees T (w), w ∈ {u1, . . . , us}, as follows:∑s

i=1 l(ui)(k − 1) ≤ (k − 1)2. We can similarly bound the number of arcs in all the
trees T (w), w ∈ {v1, . . . , vs}, by (k− 1)2. Recall that the vertices of P ′ can be either
terminal vertices of backward arcs for P ′ or vertices in {u1, . . . , us, v1, . . . , vt}. Observe
that s+ t ≤ 2(k − 1) since

∑s
i=1 l(ui) ≤ k − 1 and

∑t
i=1 l(vi) ≤ k − 1.

Thus, the number of vertices in P is bounded from above by 1+2(k−1)+2(k−1)2.
Therefore,

n = |L(T)|+ |S+
≥2(T)|+ |S+

1 (T)|

= |L(T)|+ |S+
≥2(T)|+

∑
P∈P2(T)

|V (P)|

≤ (k − 1) + (k − 2) + (2k − 3)(2k2 − 2k + 1)

< 4k3.

Thus, we conclude that n ≤ 4k3.
Theorem 4. Let D be a strongly connected digraph with n vertices.
(a) If D is an oriented graph with minimum in-degree at least 2, then �s(D) ≥

(n/4)1/3 − 1.
(b) If D is a digraph with minimum in-degree at least 3, then �s(D) ≥ (n/4)1/3−1.
Proof. Since D is strongly connected, we have �(D) = �s(D) > 0. Let T be a 1-AE

optimal out-branching of D with maximum number of leaves. (a) Delete some arcs
from A(D) \A(T), if needed, such that the in-degree of each vertex of D becomes 2.
Now the inequality �s(D) ≥ (n/4)1/3 − 1 follows from Lemma 2 and the fact that
�(D) = �s(D).

(b) Let P be the path formed in the proof of Lemma 2. (Note that A(P) ⊆ A(T).)
Delete every double arc of P , in case there are any, and delete some more arcs from
A(D) \ A(T), if needed, to ensure that the in-degree of each vertex of D becomes 2.
It is not difficult to see that the proof of Lemma 2 remains valid for the new digraph
D. Now the inequality �s(D) ≥ (n/4)1/3 − 1 follows from Lemma 2 and the fact that
�(D) = �s(D).

Remark 5. It is easy to see that Theorem 4 also holds for acyclic digraphs D with
�s(D) > 0.

While we do not know whether the bounds of Theorem 4 are tight, we can show
that no linear bounds are possible. The following result is formulated for part (b) of
Theorem 4, but a similar result holds for part (a) as well.

Theorem 6. For each t ≥ 6 there is a strongly connected digraph Ht of order
n = t2 + 1 with minimum in-degree 3 such that 0 < �s(Ht) = O(t).

Proof. Let V (Ht) = {r} ∪ {ui
1, u

i
2, . . . , u

i
t | i ∈ [t]} and

A(Ht) =
{
ui

ju
i
j+1, u

i
j+1u

i
j | i ∈ [t], j ∈ {0, 1, . . . , t− 4}}⋃{

ui
ju

i
j−2 | i ∈ [t], j ∈ {3, 4, . . . , t− 2}}

⋃{
ui

ju
i
q | i ∈ [t], t− 3 ≤ j �= q ≤ t} ,

where ui
0 = r for every i ∈ [t]. It is easy to check that 0 < �s(Ht) = O(t).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

472 ALON, FOMIN, GUTIN, KRIVELEVICH, AND SAURABH

5. Pathwidth of underlying graphs and parameterized algorithms. By
Proposition 1, an acyclic digraph D has an out-branching if and only if D possesses
a single vertex of in-degree zero.

Theorem 7. Let D be an acyclic digraph with a single vertex of in-degree zero.
Then either �s(D) ≥ k or the underlying undirected graph of D is of pathwidth at
most 4k and we can obtain this path decomposition in polynomial time.

Proof. Assume that �s(D) ≤ k − 1. Consider a 1-AE optimal out-branching T of
D. Notice that |L(T)| ≤ k − 1. Now remove all the leaves and branch vertices from
the tree T . The remaining vertices form maximal directed paths consisting of link
vertices. Delete the first vertices of all paths. As a result we obtain a collection Q of
directed paths. Let H = ∪P∈QP . We will show that every arc uv with u, v ∈ V (H)
is in H. Let P ′ ∈ Q. As in the proof of Lemma 2, we see that there are no forward
arcs for P ′. Since D is acyclic, there are no backward arcs for P ′.

Suppose uv is an arc of D such that u ∈ R′ and v ∈ P ′, where R′ and P ′

are distinct paths from Q. As in the proof of Lemma 2, we see that u is either a
sink or a descendent vertex for P ′ in T . Since R′ contains no sinks of T , u is a
descendent vertex, which is impossible as D is acyclic. Thus, we have proved that
pw(UG(H)) = 1.

Consider a path decomposition of H of width 1. We can obtain a path decompo-
sition of UG(D) by adding all the vertices of L(T)∪S+

≥2(T)∪F (T), where F (T) is the
set of first vertices of maximal directed paths consisting of link vertices of T , to each
of the bags of a path decomposition of H of width 1. Observe that the pathwidth of
this decomposition is bounded from above by

|L(T)|+ |S+
≥2(T)|+ |F (T)|+ 1 ≤ (k − 1) + (k − 2) + (2k − 3) + 1 ≤ 4k − 5.

The bounds on the various sets in the inequality above follows from Facts 1 and 2.
This proves the theorem.

Corollary 1. For acyclic digraphs, the problem k-DMLOB can be solved in
time 2O(k log k) · nO(1).

Proof. The proof of Theorem 7 can be easily turned into a polynomial time
algorithm to either build an out-branching of D with at least k leaves or show that
pw(UG(D)) ≤ 4k and provide the corresponding path decomposition. A standard
dynamic programming over the path (tree) decomposition (see, e.g., [5]) gives us an
algorithm of running time 2O(k log k) · nO(1).

The following simple lemma is well known; see, e.g., [13].
Lemma 3. Let T = (V,E) be an undirected tree and let w : V → R

+ ∪ {0} be
a weight function on its vertices. There exists a vertex v ∈ T such that the weight of
every subtree T ′ of T − v is at most w(T)/2, where w(T) =

∑
v∈V w(v).

Let D be a strongly connected digraph and let T be an out-branching of D with
λ leaves. Consider the following decomposition of T (called a β-decomposition) which
will be useful in the proof of Theorem 8.

Assign weight 1 to all leaves of T and weight 0 to all nonleaves of T . By Lemma 3,
T has a vertex v such that each component of T − v has at most λ/2+1 leaves (if v is
not the root and its in-neighbor v− in T is a link vertex, then v− becomes a new leaf).
Let T1, T2, . . . , Ts be the components of T − v and let l1, l2, . . . , ls be the numbers of
leaves in the components. Notice that λ ≤∑s

i=1 li ≤ λ+ 1 (we may get a new leaf).
We may assume that ls ≤ ls−1 ≤ · · · ≤ l1 ≤ λ/2 + 1. Let j be the smallest index such
that

∑j
i=1 li ≥ λ

2 + 1. Consider two cases: (a) lj ≤ (λ + 2)/4 and (b) lj > (λ + 2)/4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SPANNING DIRECTED TREES WITH MANY LEAVES 473

In case (a), we have

λ+ 2
2
≤

j∑
i=1

li ≤ 3(λ+ 2)
4

and
λ− 6

4
≤

s∑
i=j+1

li ≤ λ

2
.

In case (b), we have j = 2 and

λ+ 2
4
≤ l1 ≤ λ+ 2

2
and

λ− 2
2
≤

s∑
i=2

li ≤ 3λ+ 2
4

.

Let p = j in case (a) and p = 1 in case (b). Add to D and T a copy v′ of v (with
the same in- and out-neighbors). Then the number of leaves in each of the out-trees

T ′ = T [{v} ∪ (∪p
i=1V (Ti))] and T ′′ = T [{v′} ∪ (∪s

i=p+1V (Ti))]

is between λ(1 + o(1))/4 and 3λ(1 + o(1))/4. Observe that the vertices of T ′ have at
most λ+1 out-neighbors in T ′′ and the vertices of T ′′ have at most λ+1 out-neighbors
in T ′ (we add 1 to λ due to the fact that v “belongs” to both T ′ and T ′′).

Similarly to deriving T ′ and T ′′ from T , we can obtain two out-trees from T ′ and
two out-trees from T ′′ in which the numbers of leaves are approximately between a
quarter and three quarters of the number of leaves in T ′ and T ′′, respectively. Observe
that after O(log λ) “dividing” steps, we will end up with O(λ) out-trees with just one
leaf, i.e., directed paths. These paths contain O(λ) copies of vertices of D (such as
v′ above). After deleting the copies, we obtain a collection of O(λ) disjoint directed
paths covering V (D).

Theorem 8. Let D be a strongly connected digraph. Then either �s(D) ≥ k or
the underlying undirected graph of D is of pathwidth O(k log k).

Proof. We may assume that �s(D) < k. Let T be a 1-AE optimal out-branching,
and let λ be the number of leaves in T . Consider a β-decomposition of T . The
decomposition process can be viewed as a tree T rooted in a node (associated with)
T . The children of T in T are nodes (associated with) T ′ and T ′′; the leaves of
T are the directed paths of the decomposition. The first layer of T is the node T ,
the second layer consists of T ′ and T ′′, the third layer consists of the children of T ′

and T ′′, etc. In what follows, we do not distinguish between a node Q of T and the
tree associated with the node. Assume that T has t layers. Notice that the last layer
consists of (some) leaves of T and that t = O(log k), which was proved above (note
that λ ≤ k − 1).

Let Q be a node of T at layer j. We will prove that

(1) pw(UG(D[V (Q)])) < 2(t− j + 2.5)k.

Since t = O(log k), (1) for j = 1 implies that the underlying undirected graph of D is
of pathwidth O(k log k).

We first prove (1) for j = t when Q is a path from the decomposition. Let
W = (L(T)∪S+

≥2(T)∪F (T))∩V (Q), where F (T) is the set of first vertices of maximal
paths of T consisting of link vertices. As in the proof of Theorem 7, it follows from
Facts 1 and 2 that |W | < 4k. Obtain a digraph R by deleting from D[V (Q)] all arcs
in which at least one end-vertex is in W and which are not arcs of Q. As in the proof
of Theorem 7, it follows from Lemma 1 and 1-AE optimality of T that there are no
forward arcs for Q in R. Let Q = v1v2 . . . vq. For every j ∈ [q], let Vj = {vi : i ∈ [j]}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

474 ALON, FOMIN, GUTIN, KRIVELEVICH, AND SAURABH

If for some j the set Vj contained k vertices, say {v′1, v′2, . . . , v′k}, having in-neighbors
in the set {vj+1, vj+2, . . . , vq}, then D would contain an out-tree with k leaves formed
by the path vj+1vj+2 . . . vq together with a backward arc terminating at v′i from a
vertex on the path for each 1 ≤ i ≤ k, a contradiction. Thus vs(UG(D2[P])) ≤ k. By
Proposition 2, the pathwidth of UG(R) is at most k. Let (X1, X2, . . . , Xs) be a path
decomposition of UG(R) of width at most k. Then (X1 ∪W,X2 ∪W, . . . ,Xs ∪W) is
a path decomposition of UG(D[V (Q)]) of width less than k + 4k. Thus,

(2) pw(UG(D[V (Q)])) < 5k.

Now assume that we have proved (1) for j = i and show it for j = i−1. Let Q be a
node of layer i−1. If Q is a leaf of T , we are done by (2). Thus, we may assume that Q
has children Q′ and Q′′ which are nodes of layer i. In the β-decomposition of T given
before this theorem, we saw that the vertices of T ′ have at most λ+ 1 out-neighbors
in T ′′ and the vertices of T ′′ have at most λ + 1 out-neighbors in T ′. Similarly, we
can see that (in the β-decomposition of this proof) the vertices of Q′ have at most k
out-neighbors in Q′′ and the vertices of Q′′ have at most k out-neighbors in Q′ (since
λ ≤ k − 1). Let Y denote the set of the above-mentioned out-neighbors on Q′ and
Q′′; |Y | ≤ 2k. Delete from D[V (Q′)∪V (Q′′)] all arcs in which at least one end-vertex
is in Y and which do not belong to Q′ ∪Q′′.

Let G denote the obtained digraph. Observe that G is disconnected and G[V (Q′)]
and G[V (Q′′)] are components of G. Thus, pw(UG(G)) ≤ b, where

(3) b = max{pw(UG(G[V (Q′)])), pw(UG(G[V (Q′′)]))} < 2(t− i+ 2.5)k.

Let (Z1, Z2, . . . , Zr) be a path decomposition of G of width at most b. Then (Z1 ∪
Y, Z2 ∪ Y, . . . , Zr ∪ Y) is a path decomposition of UG(D[V (Q′)∪ V (Q′′)]) of width at
most b+ 2k < 2(t− (i− 1) + 2.5)k. This completes the proof.

Similarly to the proof of Corollary 1, we obtain the following corollary.
Corollary 2. For a strongly connected digraph D, the problem k-DMLOB can

be solved in time 2O(k log2 k) · nO(1).

6. k-DMLOT is FPT. Observe that while our results are for strongly con-
nected digraphs, they can be extended to a larger class of digraphs. Notice that
�(D) ≥ �s(D) for each digraph D. Let L be the family of digraphs D for which
either �s(D) = 0 or �s(D) = �(D). The following assertion shows that L includes
a large number of digraphs including all strongly connected digraphs and acyclic di-
graphs (and, also, the well-studied classes of semicomplete multipartite digraphs, and
quasi-transitive digraphs; see [6] for the definitions).

Proposition 3 (see [2]). Suppose that a digraph D satisfies the following prop-
erty: for every pair R and Q of distinct strong components of D, if there is an arc
from R to Q, then each vertex of Q has an in-neighbor in R. Then D ∈ L.

Let B be the family of digraphs that contain out-branchings. The results of this
paper proved for strongly connected digraphs can be extended to the class L ∩ B of
digraphs since in the proofs we use only the following property of strongly connected
digraphs D: �s(D) = �(D) > 0.

For a digraph D and a vertex v, let Dv denote the subdigraph of D induced by
all vertices reachable from v. Using the 2O(k log2 k) ·nO(1) algorithm for k-DMLOB on
digraphs in L ∩ B and the facts that (i) Dv ∈ L ∩ B for each digraph D and vertex
v and (ii) �(D) = max{�s(Dv)|v ∈ V (D)} (for details, see [2]), we can obtain an
2O(k log2 k) · nO(1) algorithm for k-DMLOT on all digraphs. For acyclic digraphs, the
running time can be reduced to 2O(k log k) · nO(1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SPANNING DIRECTED TREES WITH MANY LEAVES 475

7. Consequent research. Research initiated by [2] and [3] was continued by
Bonsma and Dorn who proved in [10] that every strongly connected digraph of order
n with minimum in-degree at least 3 has an out-branching with at least

√
n/4 leaves.

Thus, the maximum guaranteed number λ(n) of leaves in a strongly connected digraph
of order n with minimum in-degree at least 3 is Θ(

√
n). It would be interesting to

obtain the maximum constant c such that λ(n) ≥ c√n.
Using several ideas of this paper, some new ideas and treewidth rather than

pathwidth, Bonsma and Dorn [10] designed algorithms of complexity 2O(k log k)nO(1)

for both k-DMLOT and k-DMLOB. Using another approach, Kneis, Langer, and
Rossmanith [29] obtained a 4knO(1) time algorithm for k-DMLOB. It is not difficult
to see that this algorithm implies an 4knO(1) time algorithm for k-DMLOT.

We conclude by pointing out that in a recent paper [16], Drescher and Vetta de-
scribe anO(

√
opt)-approximation algorithm for DMLOB, where opt is the maximum

number of leaves in an out-branching of the input digraph.

Acknowledgment. We would like to thank the referees for a number of useful
suggestions.

REFERENCES

[1] N. Alon, Transversal numbers of uniform hypergraphs, Graphs Combin., 6 (1990), pp. 1–4.
[2] N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh, Parameterized algo-

rithms for directed maximum leaf problems, in Automata, Languages and Programming
(ICALP 2007), Lecture Notes in Comput. Sci. 4596, Springer-Verlag, Berlin, 2007, pp. 352–
362.

[3] N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh, Better algorithms
and bounds for directed maximum leaf problems, in FSTTCS 2007: Foundations of Soft-
ware Technology and Theoretical Computer Science, Lecture Notes in Comput. Sci. 4855,
Springer-Verlag, Berlin, 2007, pp. 316–327.

[4] N. Alon and J. Spencer, The Probabilistic Method, 2nd ed., John Wiley & Sons, New York,
2000.

[5] S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems restricted
to partial k-trees, Discrete Appl. Math., 23 (1989), pp. 11–24.

[6] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications, Springer-
Verlag, London, 2001.

[7] D. Bienstock, N. Robertson, P. D. Seymour, and R. Thomas, Quickly excluding a forest,
J. Combin. Theory Ser. B, 52 (1991), pp. 274–283.

[8] H. L. Bodlaender, On linear time minor tests and depth-first search, J. Algorithms, 14 (1993),
pp. 1–23.

[9] P. S. Bonsma, T. Brueggermann, and G. J. Woeginger, A faster FPT algorithm for finding
spanning trees with many leaves, in Mathematical Foundations of Computer Science 2003,
Lecture Notes in Comput. Sci. 2747, Springer-Verlag, Berlin, 2003, pp. 259–268.

[10] P. S. Bonsma and F. Dorn, Tight bounds and faster algorithms for directed max-leaf, in
Proceedings of the 16th European Symposium on Algorithms, Lecture Notes in Comput.
Sci. 5193, Springer-Verlag, Berlin, 2008, pp. 222-233.

[11] Y. Caro, D. B. West, and R. Yuster, Connected domination and spanning trees with many
leaves, SIAM J. Discrete Math., 13 (2000), pp. 202–211.

[12] M. Cesati, Compendium of Parameterized Problems, http://bravo.ce.uniroma2.it/home/
cesati/research/compendium.pdf, 2006.

[13] F. R. K. Chung, Separator theorems and their applications, in Paths, Flows, and VLSI-Layout
(Bonn, 1988), Algorithms Combin. 9, Springer-Verlag, Berlin, 1990, pp. 17–34.

[14] G. Ding, Th. Johnson, and P. Seymour, Spanning trees with many leaves, J. Graph Theory,
37 (2001), pp. 189–197.

[15] R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer-Verlag, New York,
1999.

[16] M. Drescher and A. Vetta, An approximation algorithm for the maximum leaf spanning
arborescence problem, ACM Trans. Algorithms, to appear.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

476 ALON, FOMIN, GUTIN, KRIVELEVICH, AND SAURABH

[17] V. Estivill-Castro, M. R. Fellows, M. A. Langston, and F. A. Rosamond, FPT is P-
time extremal structure I, in Proceedings of ACiD, College Publications, London, 2005,
pp. 1–41.

[18] M. R. Fellows, C. McCartin, F. A. Rosamond, and U. Stege, Coordinated kernels and
catalytic reductions: An improved FPT algorithm for max leaf spanning tree and other
problems, in Proceedings of the 20th Conference on Foundations of Software Technology
and Theoretical Computer Science, Lecture Notes in Comput. Sci. 1974, Springer-Verlag,
Berlin, 2000, pp. 240–251.

[19] M. Fellows, private communications, 2005–2006.
[20] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer-Verlag, Berlin, 2006.
[21] F. V. Fomin, F. Grandoni, and D. Kratsch, Solving connected dominating set faster than

2n, Algorithmica, 52 (2008), pp. 153–166.
[22] G. Galbiati, A. Morzenti, and F. Maffioli, On the approximability of some maximum

spanning tree problems, Theoret. Comput. Sci., 181 (1997), pp. 107–118.
[23] M. R. Garey and D. S. Johnson, Computers and Intractability, W.H. Freeman, New York,

1979.
[24] J. R. Griggs and M. Wu, Spanning trees in graphs of minimum degree four or five, Discrete

Math., 104 (1992), pp. 167–183.
[25] G. Gutin and A. Yeo, Some parameterized problems on digraphs, Comput. J., 51 (2008),

pp. 363–371.
[26] N. G. Kinnersley, The vertex separation number of a graph equals its path-width, Inform.

Process. Lett., 42 (1992), pp. 345–350.
[27] L. M. Kirousis and C. H. Papadimitriou, Interval graphs and searching, Discrete Math., 55

(1985), pp. 181–184.
[28] D. J. Kleitman and D. B. West, Spanning trees with many leaves, SIAM J. Discrete Math.,

4 (1991), pp. 99–106.
[29] J. Kneis, A. Langer, and P. Rossmanith, A new algorithm for finding trees with many

leaves, in Proceedings of the 19th International Symposium on Algorithms and Computa-
tion (ISAAC), Lecture Notes in Comput. Sci. 5369, Springer-Verlag, Berlin, 2008, pp. 270–
281.

[30] N. Linial and D. Sturtevant, unpublished result, 1987.
[31] H.-I. Lu and R. Ravi, Approximating maximum leaf spanning trees in almost linear time, J.

Algorithms, 29 (1998), pp. 132–141.
[32] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford University Press, Oxford,

UK, 2006.
[33] R. Solis-Oba, 2-approximation algorithm for finding a spanning tree with maximum number

of leaves, in Algorithms—ESA ’98, Lecture Notes in Comput. Sci. 1461, Springer-Verlag,
Berlin, 1998, pp. 441–452.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 477–486

k-CHROMATIC NUMBER OF GRAPHS ON SURFACES∗

ZDENĚK DVOŘÁK† AND RISTE ŠKREKOVSKI‡

Abstract. A well-known result (Heawood [Quart. J. Pure Appl. Math., 24 (1890), pp. 332–
338], Ringel [Map Color Theorem, Springer-Verlag, New York, 1974], Ringel and Youngs [Proc.
Nat. Acad. Sci., U.S.A., 60 (1968), pp. 438–445]) states that the maximum chromatic number of
a graph embedded in a given surface S coincides with the size of the largest clique that can be
embedded in S, and that this number can be expressed as a simple formula in the Euler genus
of S. A partition of a graph G into k parts consists of k edge-disjoint subgraphs G1, . . . , Gk such
that E(G) = E(G1) ∪ E(G2) ∪ · · · ∪ E(Gk). The k-chromatic number χk(G) is the maximum

of
∑k

i=1 χ(Gi) over all partitions of G into k parts. We derive a Heawood-type formula for the
k-chromatic number of graphs embedded in a fixed surface, improving the previously known upper
bounds. In infinitely many cases, the new upper bound coincides with the lower bound obtained
from embedding disjoint cliques in the surface. In the proof of this result, we derive a variant of
Euler’s formula for the union of several graphs that might be interesting independently.

Key words. graph decomposition, chromatic number, surface embedding, Euler’s formula

AMS subject classifications. 05C15, 05C10

DOI. 10.1137/070688262

1. Introduction and definitions. We consider simple undirected graphs with
no loops and parallel edges. Let e(G) and n(G) denote the number of edges and
the number of vertices of a graph G, respectively. When the graph G is clear from
the context, we simply use e and n. A proper coloring of a graph G by k colors is
assignment of colors 1, 2, . . . , k to vertices of G such that no two adjacent vertices
have the same color. The chromatic number χ(G) of graph G is the minimum k such
that G has a proper coloring by k colors.

Let Σh denote the orientable surface obtained from the sphere by attaching h
handles, and let Πh be the nonorientable surface obtained from the sphere by insert-
ing h crosscaps. The Euler genus g(S) of a surface S is given by g(Σh) = 2h and
g(Πh) = h. Let g(G) denote the Euler genus of the graph G, i.e., the minimal Euler
genus of a surface into which G is embeddable.

Colorings of graphs on surface have been studied extensively. The fundamental
result in this area is the well-known Four Color Theorem that was proved by Appel
and Haken [1] in 1977, and a shorter proof was later found by Robertson et al. [12].
Regarding the graphs on surfaces of genus g ≥ 1, Heawood [6] showed that each graph
embedded in such a surface has chromatic number at most

H(g) =
⌊

7 +
√

24g + 1
2

⌋
.

Later, Ringel [11] and Ringel and Youngs [10] found the corresponding lower bounds
by showing that the complete graph on H(g) vertices can be embedded into any

∗Received by the editors April 16, 2007; accepted for publication (in revised form) May 20, 2008;
published electronically February 4, 2009. This research was supported in part by bilateral projects
SLO-CZ/04-05-002 and MSMT-07-0405 between Slovenia and Czech Republic.

http://www.siam.org/journals/sidma/23-1/68826.html
†Faculty of Mathematics and Physics, Institute for Theoretical Computer Science (ITI), Charles

University, Malostranské nám. 2/25, 118 00, Prague, Czech Republic (rakdver@kam.mff.cuni.cz).
‡Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia

(bluesky2high@yahoo.com).

477

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

478 ZDENĚK DVOŘÁK AND RISTE ŠKREKOVSKI

surface of Euler genus g, with the exception of the Klein bottle, where the correct
bound on the chromatic number is 6 (established by Franklin [4]).

We consider the properties (especially regarding the chromatic number) of parti-
tions of a graph into several subgraphs. A partition of a graphG into k parts consists of
k edge-disjoint subgraphsG1, . . . , Gk such that E(G) = E(G1)∪E(G2)∪ · · · ∪E(Gk).
Note that we do not require that the subgraphs Gi be spanning, i.e., possibly n(Gi) <
n(G) for some i. We always assume that the graphsGi do not contain isolated vertices.
We call the subgraphs Gi parts of the partition.

The k -chromatic number χk(G) is the maximum of
∑k

i=1 χ(Gi) over all partitions
G1, G2, . . . , Gk of G into k parts. The parameter χk has been studied for general
graphs as well as for graphs of bounded genus. The fact that for a graph G with
n vertices χ2(G) ≤ n + 1 follows from the well-known theorem of Nordhaus and

Gaddum [8]. Plesńık [9] proved that n+
(

k
2

) ≤ χk(Kn) ≤ n+2
(

k+1
2

)
and conjectured

that χk(Kn) = n+
(

k
2

)
. Watkinson [15] improved the upper bound to χk(Kn) ≤ n+ k!

2
and Füredi et al. [5] to χk(Kn) ≤ n+ 7k.

Regarding the graphs with bounded genus, let us define χk(S) to be the maximum
of χk(G) over all graphs G that can be embedded in the surface S. Stiebitz and
Škrekovski [14] have determined the exact values of χ2 for all surfaces. Füredi et al. [5]
have shown that

χk(S) ≤
⌊

7k +
√

24kg + 49k2 − 48k
2

⌋
,

where g denotes the Euler genus of S. They also found a lower bound of order

7k +
√

24kg + k2

2
.

In this paper, we decrease the upper bound; this way, we obtain exact values for many
surfaces and values of k.

Theorem 1. Let G be a simple graph G of Euler genus g. If k ≤ g, then

χk(G) ≤
⌊

7k +
√

24kg + k2

2

⌋
.

An embedding of a graph in a surface is called cellular if the interior of each
face is homeomorphic to an open disk. In particular, the boundary walk of each face
in a cellular embedding is connected. For a face f of such an embedding, let �(f)
be the length of its boundary walk. If G is a simple connected graph with at least
three vertices, then �(f) ≥ 3 for each face f . A block of a graph G is a maximum
2-connected induced subgraph ofG. Let us recall some fundamental facts about graph
embeddings and surfaces that can be found, e.g., in [7].

Theorem 2. Let G be a connected graph of Euler genus g. Then, any embedding
of G in a surface with Euler genus g is cellular.

Theorem 3 (Battle et al. [2], Stahl and Beineke [13]). If G1, G2, . . . , Gn are the
blocks of a graph G, then

g(G) =
n∑

i=1

g(Gi).

Theorem 4 (Franklin [4], Ringel [11], Ringel and Youngs [10]). The Euler genus
of the complete graph Kn is g = � 16 (n − 3)(n − 4)�. Kn can be embedded into any

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

k-CHROMATIC NUMBER OF GRAPHS ON SURFACES 479

surface with Euler genus g, with the exception of K7, that cannot be embedded in Π2,
i.e., the Klein bottle.

Theorem 5 (Euler’s formula). If f is the number of faces of a cellular embedding
of a graph G into a surface of Euler genus g, then e(G) = n(G) + f + g − 2.

In the following section, we derive a version of Euler’s formula that provides more
information about a graph split into several parts (Theorem 8).

A graph G is critical if for every proper subgraph H ⊂ G, χ(H)<χ(G). If G is a
critical graph and χ(G) = k, we say that G is k -critical. Obviously, if G is k-critical,
then δ(G) ≥ k − 1. For noncomplete graphs, the following stronger result known as
Dirac’s inequality was shown in [3].

Theorem 6 (Dirac). If G is a k-critical graph with k ≥ 4 and G is not a clique,
then 2e(G) ≥ (k − 1)n(G) + k − 3.

2. Generalized Euler’s formula. Let F be the set of the faces of a cellular
embedding of a simple connected graph G with at least three vertices. Then, Δ =∑

f∈F (�(f) − 3) ≥ 0 is the number of edges that must be added to G to make it a
triangulation (possibly introducing parallel edges and loops during the construction).
One of the well-known consequences of Euler’s formula is the following proposition.

Proposition 7. If G is a simple connected graph with n ≥ 3 vertices and e
edges embedded cellularly to a surface of Euler genus g, then e+ Δ = 3n+ 3g− 6. In
particular, e ≤ 3n+ 3g(G)− 6.

We include the proof for the sake of completeness.
Proof. Let F be the set of faces of G. Since each edge of G appears exactly twice

in the facial walks, we have 2e =
∑

f∈F �(f), and consequently 2e−Δ = 3|F |. Using
Theorem 5, we infer that 3e = 3n+ 3|F |+ 3g− 6 = 3n+ 2e−Δ + 3g− 6, from which
the desired formula immediately follows. Also, by Theorem 2, the embedding of G
into a surface of Euler genus g(G) is cellular, and since Δ ≥ 0, we have e ≤ 3n +
3g(G)− 6.

To prove our upper bound, we need to generalize this inequality for the union of
several graphs.

Theorem 8 (generalized Euler’s formula). Let G be a simple graph and let
G1, . . . , Gk be a partition of G into k parts. Let ni = n(Gi) ≥ 3 for each 1 ≤ i ≤ k.
If every component of each Gi has at least three vertices, then

e ≤ 3g(G) + 3
k∑

i=1

(ni − 2).

Proof. Suppose that the claim is false, and let G together with its partition to
graphs G1, . . . , Gk be a counterexample that is “smallest” in the following sense:

1.
∑k

i=1(ni − 2) is the smallest possible, and
2. among all graphs that satisfy the first condition, n is the largest possible.

By Proposition 7, we know that k > 1. Let us now describe some of the properties
of G and its partition:

(i) Each Gi is connected. Otherwise, we may assume without loss of generality
that G1 is not connected, i.e., G1 = Ga

1 ∪ Gb
1, where Ga

1 and Gb
1 are vertex-

disjoint. By the minimality, the partition G = Ga
1 ∪Gb

1 ∪G2 ∪ · · · ∪Gk satis-
fies e ≤ 3g(G)+ 3n(Ga)− 6 +3n(Gb)− 6 +3

∑k
i=2(ni− 2) < 3g(G) + 3

∑k
i=1

(ni − 2), which is a contradiction with the fact that G is a counterexample.
(ii) G is connected. Otherwise, G is a vertex-disjoint union of two smaller graphs

Ga and Gb, and we may assume that Ga = G1 ∪ · · · ∪Gt and Gb = Gt+1

∪ · · · ∪Gk (the graphs Gi are connected; thus they must be subgraphs of one

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

480 ZDENĚK DVOŘÁK AND RISTE ŠKREKOVSKI

of these two graphs). By Theorem 3, g(G) = g(Ga) + g(Gb), and since G is
a minimal counterexample, we have e(Ga) ≤ 3g(Ga) + 3

∑t
i=1(ni − 2) and

e(Gb) ≤ 3g(Gb) + 3
∑k

i=t +1(ni − 2). Summing these two inequalities results
in a contradiction with the fact that G is a counterexample.

(iii) Each ni is at least 4. Otherwise, we may assume that n1 =3 and let G′ be
the union of graphs G2, . . . , Gk. Since g(G′) ≤ g(G) and G is a minimal
counterexample, it follows that e(G′) = e− e(G1) ≤ 3g(G) + 3

∑k
i=2(ni − 2).

However, e(G1) ≤ 3 = 3(n1 − 2), and hence e ≤ 3g(G) + 3
∑k

i=1(ni − 2),
which is contradiction.

(iv) The minimum degree of each Gi is at least 3. Otherwise, we may assume that
v is a vertex ofG1 with degree d ≤ 2. LetG′

1 = G1−v, and let G′ be the union
of graphs G′

1, G2, G3, . . . , Gk. Suppose that G′
1 satisfies the assumptions of

the theorem. Since g(G′) ≤ g(G) and G is a minimal counterexample, we get
e(G′) = e(G)−d ≤ 3g(G)+3

∑k
i=1(ni−2)−3, which is again a contradiction.

We need to verify that G1 satisfies the assumptions of the theorem. This is
trivial if v is not a cut-vertex of G1, since n1 ≥ 4 by the previous item. There-
fore, if d = 1, then the assumptions are satisfied, and we may assume that G1

does not contain a vertex of degree 1. Let us consider the case that d = 2 and
v is a cut-vertex. Since δ(G1) ≥ 2, both components of G′

1 have at least three
vertices; hence in this caseG′

1 satisfies the assumptions of the theorem as well.
(v) G is 2-connected. Otherwise, suppose that G = Ga ∪ Gb, where Ga and Gb

share just a single vertex v. By Theorem 3, g(G) = g(Ga) + g(Gb). Suppose
that the graphs G1, . . . , Gt are subgraphs of Ga, the graphs Gt+1, . . . , Gr are
subgraphs of Gb, and for r < i ≤ k, Gi = Ga

i ∪ Gb
i , where Ga

i is a subgraph
of Ga and Gb

i is a subgraph of Gb. Since the minimum degree of Gi is at
least 3, both Ga

i and Gb
i have at least three vertices. Again, by summing

the inequalities e(Ga) ≤ 3g(Ga) + 3
∑t

i=t(ni − 2) + 3
∑k

i=r+1(n(Ga
i) − 2)

and e(Gb) ≤ 3g(Gb) + 3
∑r

i=t+1(ni − 2) + 3
∑k

i=r+1(n(Gb
i)− 2), we obtain a

contradiction with the minimality of G.
(vi) Each two graphs Gi and Gj share at most one vertex. Otherwise, if Gk−1

and Gk share t ≥ 2 vertices, then let G′
k−1 = Gk−1 ∪ Gk, and apply the

theorem on G split into graphs G1, . . . , Gk−2, G
′
k−1. We obtain e ≤ 3g(G) +

3
∑k

i=1(ni − 2) + 6− 3t, which is a contradiction since 6− 3t ≤ 0.
Let us now fix an embedding of G on a surface of Euler genus g(G). Recall

that this embedding is cellular by Theorem 2. Given a vertex v of degree d in G, let
e0, . . . , ed−1 be the edges of G in a cyclic ordering around v. A segment is a maximum
interval [a, b] such that all the edges ea, ea+1, . . . , eb (with the indices taken modulo d)
belong to a single graph Gi. The edges ea and eb are called boundary edges of the
segment. The length of the segment is the number of its edges. The embedding of G
has the following properties:

• If a vertex v belongs to at least two parts, then there are at least two segments
of edges at v for each of these parts. Otherwise, suppose that all the edges
of G1 at v form just a single segment. In this case, we may split v into two
vertices v1 and v2 such that all edges of G1 at v are incident to v1 and all the
remaining edges at v are incident to v2. The created graph G′ is a counter-
example embedded in the same surface with e(G′) = e(G) and n(G′) > n(G),
which is a contradiction to the choice of G.
• The following configuration (�) of edges cannot appear: e1 = vw belongs

to Gi, all the remaining edges of Gi at v belong to one segment [a, b], and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

k-CHROMATIC NUMBER OF GRAPHS ON SURFACES 481

the vertex w appears at a face f incident to ea or eb. If this were the case,
we might redraw G in such a way that e1 is adjacent to ea or eb in the list of
edges at v, by drawing it through the face f . We could then again split the
vertex v and obtain a contradiction.

We now plug the equality for Δ from Proposition 7 into the formula that we want
to prove, thus obtaining the following equivalent inequality:

Δ− 3n+ 3
k∑

i=1

ni ≥ 6k − 6.

Therefore, we need to show that either G has long faces or the vertex sets of
the graphs Gi have a big overlap. In fact, we prove that if the embedding of the
graph G and its partition satisfies all the conditions described above, then the follow-
ing stronger claim holds:

Δ− 3n+ 3
k∑

i=1

ni ≥ 6k.

We proceed by the discharging method. We assign an initial charge to each vertex
and each face in the following way: a vertex v that belongs to x of the graphs Gi has
initial charge 3(x − 1). A face of length � has initial charge �− 3. The sum of these
charges is equal to Δ− 3n+ 3

∑k
i=1 ni.

Next, we move some of this charge to the graphs Gi in such a way that the final
charge of each vertex and each face is nonnegative, and the final charge of each Gi is
at least 6. Since no charge is lost in the process, the required inequality follows.

We use the following rules to redistribute the charge:
(R1) Each vertex v that belongs to x ≥ 2 graphs Gi sends charge 3/2 to each of

these graphs.
(R2) Let f be a ≥ 4-face, and let v1v2v3v4v5 be a subwalk of the facial walk of f

such that edges v2v3 and v3v4 belong to the same graph Gi and neither v1v2
nor v4v5 belongs to Gi. Then, f sends 1/2 to Gi through each of v2 and v4
(one unit of charge in total).

(R3) Let f = wv1v2w v4v5 be a 6-face such that the edges v1v2, v2w, and v1w
belong to a graph Gi and the edges w v4, v4v5, and v5w belong to a different
graph Gj . Then, f sends 3/2 to each of Gi and Gj through the vertex w.

(R4) Let f be a face of length at least t− 1 (where t > 5) for which rule (R3) does
not apply, and let v1v2 · · · vt be a subwalk of the facial walk of f such that the
edges v2v3, v3v4, . . . , and vt−2vt−1 belong to the same graph Gi, and neither
v1v2 nor vt−1vt belongs to Gi. Then, f sends 1 to Gi through each of v2 and
vt−1 (two units of charge in total).

Let us first show that after the rules are applied, the final charge of each vertex
and each face is nonnegative. If v is a vertex that belongs to x graphs Gi, then its
final charge is zero if x = 1 and it is 3(x− 1)− 3x/2 = 3x/2− 3 ≥ 0 if x ≥ 2 by rule
(R1). Now, consider the charge of the faces. Let f be an arbitrary face of G:

(a) If rule (R3) is applied to f , then its final charge is zero.
(b) If f is a 3-face, then either all of its edges belong to the same graph or each

of them belongs to a different graph, as otherwise two of the graphs Gi would
intersect in at least two vertices. Therefore, no rule applies to f , and the final
charge of f is zero.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

482 ZDENĚK DVOŘÁK AND RISTE ŠKREKOVSKI

(c) Finally, suppose that rule (R2) applies a times and rule (R4) applies b times
on an �-face f . The final charge of f is �− 3− a− 2b; therefore, it suffices to
consider the case that a + 2b + 2 ≥ � ≥ 4. On the other hand, � ≥ 2a + 3b;
hence the final charge is at least a+ b−3, and we may assume that a+ b ≤ 2.
It follows that � ≤ 6 and exactly two of the graphs Gi contain edges of the
face f . Since these two graphs may share only one vertex and the graph is
simple, f must be a 6-face consisting of two triangles, a = 0 and b = 2. But
then we obtain case (a), which is covered by rule (R3).

Now, let us consider the charge of the parts. We need to prove that the final
charge of each of the parts is at least six. Let Gi be one of the parts, and let Y be the
set of vertices that Gi shares with the rest of the graph G. Since G is 2-connected,
|Y | ≥ 2. By rule (R1), the subgraph Gi receives 3|Y |/2 units of charge, which is at
least six if |Y | ≥ 4. Therefore, it suffices to consider the cases |Y | = 2 and |Y | = 3.

We call a boundary edge e of a segment of Gi at a vertex v ∈ Y rich if e does not
connect v with another vertex of Y . Let e = vw be a rich edge, and let fe be a face
that contains e and an edge incident to v that does not belong to Gi. Since w /∈ Y ,
all the edges incident to w must belong to Gi; hence one of rules (R2), (R3), or (R4)
applies and fe sends at least 1/2 units of charge through v to Gi.

Suppose first that |Y | = 3. Let v be an arbitrary vertex in Y . The edges of Gi

at v form at least two segments. By property (iv), the degree of v in Gi is at least 3;
hence there are at least three boundary edges incident with v. Since |Y \{v}| = 2,
at least one of these edges is rich; hence Gi receives at least 1/2 units of charge
through v. Therefore, Gi receives 9/2 units of charge by rule (R1) and at least 1/2
units of charge by rules (R2)–(R4) through each vertex of Y , which sum to at least
six units of charge.

Suppose now that |Y | = 2. The graph Gi receives three units of charge by rule
(R1). We prove that at least 3/2 units of charge are sent to Gi through each vertex
of Y by rules (R2)–(R4), thus showing that Gi receives at least six units of charge.
Suppose for the sake of contradiction that less than 3/2 units of charge are sent to
Gi through a vertex v ∈ Y . Then, there are at most two rich edges incident with v.
On the other hand, Gi has at least two segments at v, the degree of v is at least 3 by
property (iv), and Y \{v} consists of only one vertex w; thus at least two rich edges
are incident with v. Hence, we conclude that there are exactly two rich edges at v.
This is possible only in the following cases:

• The degree of v in Gi is three, and each of the edges of Gi incident with v
forms a segment of length one. However, note that in this case, each of the
four (not necessarily distinct) faces incident with the rich edges sends 1/2
units of charge through v, for a total of two units of charge.
• There are exactly two segments of Gi at v and one of them is of length one.

Let e0 = vu0 be the edge of the segment of length one, and let e1 = vu1 and
e2 = vu2 be the boundary edges of the other segment. Note that u1
= u2, as
the degree of v is at least 3. If w
= u0 (say, w = e1), then each of the faces
incident with e0 send 1/2 units of charge through v and the face fe2 sends
1/2 units of charge, for a total of 3/2 units.

Let us now consider the case that w = u0. The graph Gi receives 1/2
units of charge through v for each of e1 and e2. If rules (R3) or (R4) were
applied at v at least once, Gi would receive additional 1/2 units of charge,
contradicting the choice of v. Let us assume that this is not the case. Let
w1 and w2 be the vertices following u1 and u2 in the facial walks of fe1 and
fe2 , respectively. For i = 1, 2, the vertices wi and v are both neighbors of ui;

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

k-CHROMATIC NUMBER OF GRAPHS ON SURFACES 483

hence w1
= v
= w2. The edges following w1 and w2 in the facial walks do
not belong to Gi, since otherwise one of rules (R3) or (R4) applies. This
means that w1, w2 ∈ Y , and hence w1 = w2 = w. This is the forbidden
configuration (�); hence we obtain a contradiction with the assumption that
less than 3/2 is sent through the vertex v.

It follows that the final charge of each of the graphs Gi is at least six, and thus
we conclude that Δ + 3(

∑k
i=1 ni − n) ≥ 6k, which finishes the proof.

Theorem 8 is tight; for example, the equality is obtained for a disjoint union of
k triangulations, or graphs are obtained from this graph by identifying the vertices
in such a way that all edges of each graph form one segment at each vertex. Also, it
is not possible to relax the condition on the number of vertices in Gi, as the claim is
false if each Gi is just an edge.

3. Upper bound. We are now ready to prove the upper bound on the k-
chromatic number χk(G) of a graph G of Euler genus g. Our method is similar
to the one used by Furedi et al. [5], except that we use a better estimate on the
number of edges of G obtained from Theorem 8.

Proof of Theorem 1. Let us embed G in a surface of Euler genus g. Let G1, . . . , Gk

be a partition of G into k parts. For each i, let G′
i ⊆ Gi be a critical subgraph of

Gi such that χ(G′
i) = χ(Gi) = ci. We may assume that c1 ≥ c2 ≥ · · · ≥ ck. Let t be

the largest number such that ct ≥ 7. Thus, t = 0 if c1 ≤ 6. We bound the sum of
chromatic numbers of the graphs G1, . . . , Gt. Let ni = n(G′

i).
Let G′ = G′

1 ∪ · · · ∪G′
t and e′ = e(G′). Using Theorem 8, we get

2e′ ≤ 6g + 6
t∑

i=1

(ni − 2).

On the other hand, the minimum degree of each G′
i is at least ci − 1; hence

(ci − 1)ni ≤ 2e(G′
i). This implies that

t∑
i=1

(ci − 1)ni ≤ 6g + 6
t∑

i=1

(ni − 2).

Using the face that ci ≥ 7 and ni ≥ ci, we obtain

t∑
i=1

[(ci − 7/2)2 − 49/4] =
t∑

i=1

(ci − 7)ci ≤
t∑

i=1

(ci − 7)ni ≤ 6g − 12t.

By the inequality between the arithmetic and quadratic means,

1
t

[
t∑

i=1

(ci − 7/2)

]2

≤ 6g + t/4,

from which we infer
t∑

i=1

ci ≤ 7t+
√

24tg + t2

2
.

Taking into account the graphs Gt +1, . . . , Gk, we get

k∑
i=1

ci ≤ 7t+
√

24tg + t2

2
+ 6(k − t).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

484 ZDENĚK DVOŘÁK AND RISTE ŠKREKOVSKI

If t ≤ g, this expression is increasing in t; thus we obtain
k∑

i=1

ci ≤ 7k +
√

24kg + k2

2
.

Since the expression on the left-hand side is an integer, we may round the expres-
sion on the right-hand side down, thus finishing the proof of this theorem.

4. Lower bound. The proof of the upper bound hints at how the lower bound
examples should look. For each of the graphs in the partition, we should have ci = ni;
hence all the graphsGi should be complete. Also, since we used the inequality between
the arithmetic and quadratic means, their sizes should be the same. This is possible
only for special values of g and k. For example, consider the case g = 1

6k(t− 3)(t− 4)
for some t ≥ 4, t ≡ 0, 1 (mod 3). Then, Kt can be embedded in a surface of genus g/k
(K7 cannot be embedded in the Klein bottle, but it can be embedded in the torus),
according to Theorem 4. By Theorem 3, the disjoint union of k complete graphs on
t vertices can be embedded in a surface S of genus g; hence

χk(S) ≥ kt =
7k +

√
24kg + k2

2
.

For general g and k, we cannot hope for a nice formula like the one in Theorem 1;
thus we would be satisfied with some description of the best possible example. A
natural guess is that this example is a disjoint union of cliques. We were not able to
prove that this is the case. The best result that we obtained in this direction is the
following proposition.

Proposition 9. Let G1, . . . , Gk be a partition of a graph G of Euler genus g
into k parts, and let ci = χ(Gi) ≥ 7 for each i. Let G′

i be a ci-critical subgraph of Gi.
Suppose that ci ≡ 0, 1 (mod 3) whenever G′

i is a clique. Then, the disjoint union of
the cliques Kc1 , . . . ,Kck

has Euler genus at most g.
Proof. Let e′ = e(G′

1 ∪ · · · ∪G′
k) and ni = n(G′

i), and let δi = 0 if G′
i is a clique

and δi = ci − 3 otherwise. By Theorem 8,

2e′ ≤ 6g + 6
k∑

i=1

(ni − 2).

On the other hand, using Theorem 6, we get

2e′ ≥
k∑

i=1

(ci − 1)ni + δi.

Therefore, we obtain

g ≥ 1
6

k∑
i=1

(ci − 7)ni + 12 + δi

≥
k∑

i=1

1
6
((ci − 7)ci + 12 + δi)

≥
k∑

i=1

⌈
1
6
(ci − 3)(ci − 4)

⌉
=

k∑
i=1

g(Kci),

where the last inequality holds because δi ≥ 4 whenever ci ≡ 2 (mod 3), by the as-
sumptions of the lemma. The statement of the lemma follows from Theorem 3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

k-CHROMATIC NUMBER OF GRAPHS ON SURFACES 485

5. Conclusions. Let us call the complete graphKn bad if it does not triangulate
the minimal surface in which it can be embedded, i.e., n ≡ 2 (mod 3). Proposition 9
shows that the best values of χk are achieved for disjoint unions of cliques, unless
bad cliques appear in the partition. It is natural to ask whether the restriction on
the appearance of the bad cliques is necessary, or whether it is always possible to
“disentangle” cliques.

Problem 1. Let G1, . . . , Gk be a partition of a graph G into k parts such that
each subgraph Gi is a clique. Is it true that the vertex-disjoint union of the cliques Gi

can be embedded in a surface of Euler genus g(G)?
For k = 2, this follows from Theorem 3. The proof of Theorem 8 shows that

unless the graphs in the partition can be trivially disentangled, we may decrease the
bound by 6, which implies that the answer to Problem 1 is positive for k = 3.

One way to answer the question in Problem 1 positively for k ≥ 4 would be to
improve Theorem 8 by decreasing the right-hand side of the inequality by 2 for each
bad clique in the partition. Another way is suggested by the following conjecture of
Stiebitz and Škrekovski [14].

Conjecture 1. Let G be an edge-disjoint union of a clique K and an arbitrary
graph H. Let H ′ be the graph obtained from H by contracting the set V (K) to a single
vertex. Then, g(H ′) + g(K) ≤ g(G).

Because two complete graphs in a partition of a graph into k parts cannot share
more than one vertex, it is easy to show by induction that Conjecture 1 implies a
positive answer to Problem 1.

In our considerations, we do not distinguish between orientable and nonorientable
surfaces; we focus only on their Euler genus. While asymptotically there does not seem
to be much difference, for some values k and g the results may differ.

We have provided (almost) matching upper and lower bounds for a k-chromatic
number of graphs with bounded genus g, assuming that the genus is large enough
regarding k. The reason our techniques cannot be directly applied in the case in which
k is larger than g is that we would need to consider critical graphs with chromatic
number ≤ 6. Graphs with chromatic number ≤ 4 are easy to handle; we may assume
that they appear only as K4-disjoint with the rest of the graph, since they are planar
and hence do not affect the genus of the graph. However, graphs with chromatic
number 5 and 6 are difficult to deal with. For chromatic number 6, the list of critical
graphs is known only for surfaces with g ≤ 2, and for the chromatic number 5, there
even are infinitely many of them on each surface with g ≥ 1. Nevertheless, it might be
interesting to determine the exact values of χk for some special cases, e.g., for graphs
embedded in the torus or in the projective plane.

REFERENCES

[1] K. Appel and W. Haken, Every Planar Map is Four Colorable, Contemp. Math., 98, AMS,
Providence, RI, 1977.

[2] J. Battle, F. Harary, Y. Kodoma, and J. W. T. Youngs, Additivity of the genus of a graph,
Bull. Amer. Math. Soc., 68 (1962), pp. 565–568.

[3] G. A. Dirac, A theorem of R. L. Brooks and a conjecture of H. Hadwiger, Proc. London Math.
Soc. (3), 7 (1957), pp. 161–195.

[4] P. Franklin, A six colour problem, J. Math. Phys., 13 (1934), pp. 363–369.
[5] Z. Füredi, A. V. Kostochka, M. Stiebitz, R. Škrekovski, and D. B. West, Nordhaus–

Gaddum-type theorems for decompositions into many parts, J. Graph Theory, 50 (2005),
pp. 273–292.

[6] P. J. Heawood, Map colour theorem, Quart. J. Pure Appl. Math., 24 (1890), pp. 332–338.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

486 ZDENĚK DVOŘÁK AND RISTE ŠKREKOVSKI

[7] B. Mohar and C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, Balti-
more, MD, 2001.

[8] E. A. Nordhaus and J. W. Gaddum, On complementary graphs, Amer. Math. Monthly, 63
(1956), pp. 175–177.

[9] J. Plesńık, Bounds on the chromatic numbers of multiple factors of a complete graph, J. Graph
Theory, 2 (1978), pp. 9–17.

[10] G. Ringel and J. W. T. Youngs, Solution of the Heawood map-coloring problem, Proc. Nat.
Acad. Sci. U.S.A., 60 (1968), pp. 438–445.

[11] G. Ringel, Map Color Theorem, Springer-Verlag, New York, 1974.
[12] N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas, The four colour theorem,

J. Combin. Theory Ser. B, 70 (1997), pp. 2–44.
[13] S. Stahl and L. W. Beineke, Blocks and the non-orientable genus of graphs, J. Graph Theory,

1 (1977), pp. 75–78.
[14] M. Stiebitz and R. Škrekovski, A map colour theorem for the union of graphs, J. Combin.

Theory Ser. B, 96 (2006), pp. 20–37.
[15] T. Watkinson, A theorem of the Nordhaus–Gaddum class, Ars Combin., 20-B (1985), pp.

35–42.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 487–510

ALGORITHMS FOR DUALIZATION OVER PRODUCTS OF
PARTIALLY ORDERED SETS∗

KHALED M. ELBASSIONI†

Abstract. Let P = P1 × · · · × Pn be the product of n partially ordered sets (posets). Given a
subset A ⊆ P, we consider problem DUAL(P,A,B) of extending a given partial list B of maximal
independent elements of A in P. We give quasi-polynomial time algorithms for solving problem
DUAL(P,A,B) when each poset Pi belongs to one of the following classes: (i) semilattices of bounded
width, (ii) forests, that is, posets with acyclic underlying graphs, with either bounded in-degrees or
out-degrees, or (iii) lattices defined by a set of real closed intervals.

Key words. enumeration algorithms, forests, hypergraph transversals, infrequent elements,
lattices, monotone properties, monotone generation, ordered sets, duality testing

AMS subject classifications. 68Q25, 68R01

DOI. 10.1137/050622250

1. Introduction. Let P = P1 × · · · × Pn be the product of n partially ordered
sets (posets). Denote by � the precedence relation in P and also in P1, . . . ,Pn, i.e.,
if p = (p1, . . . , pn) ∈ P and q = (q1, . . . , qn) ∈ P , then p � q in P if and only
if p1 � q1 in P1, p2 � q2 in P2, . . . , and pn � qn in Pn. For a set A ⊆ P , let
A+ = {x ∈ P | x � a for some a ∈ A} and A− = {x ∈ P | x � a for some a ∈ A}
denote, respectively, the ideal and filter generated by A. For simplicity, we shall use
p+ and p− to denote {p}+ and {p}− for any p ∈ P . Any element in P \ A+ is called
independent of A. Let I(A) be the set of all maximal independent elements for A,
also called the dual of A in P :

I(A) def= {p ∈ P | p �∈ A+ and (q ∈ P , q � p, q �= p ⇒ q ∈ A+)}.
Then we have the following decomposition of P :

(1) A+ ∩ I(A)− = ∅, A+ ∪ I(A)− = P .
Call A an antichain if no two elements are comparable in P . In this paper, we are
concerned with the following dualization problem:

DUAL(P ,A,B): Given an antichain A ⊆ P in a poset P and a collection of maxi-
mal independent elements B ⊆ I(A), either find a new maximal independent
element x ∈ I(A)\B, or state that the given collection is complete: B = I(A).

If P is the Boolean cube, i.e., Pi = {0, 1} for all i = 1, . . . , n, then the above du-
alization problem reduces to the well-known hypergraph transversal problem, which
calls for enumerating all minimal subsets X ⊆ V that intersect all edges of a given
hypergraph H ⊆ 2V . The complexity of this problem is still an important open ques-
tion, for which the currently best known algorithm [FK96] runs in quasi-polynomial
time poly(n,m) +mo(log m), where m = |A|+ |B|, providing strong evidence that the
problem is unlikely to be NP-hard. More generally, when each Pi is a chain, that is,

∗Received by the editors January 8, 2005; accepted for publication (in revised form) August 10,
2008; published electronically February 4, 2009. A preliminary version of this paper, containing some
of the results, appeared in Elbassioni [Elb02b, Elb02a, Elb06].

http://www.siam.org/journals/sidma/23-1/62225.html
†Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany (elbassio@mpi-sb.mpg.de).

487

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

488 KHALED M. ELBASSIONI

(a) A lattice with W = 3. (b) A forest with d = 3.

Fig. 1. Lattices and forests.

I2

I3

I4

I5

I6

I23 = Intersection(I2, I3)

Span(I2, I3)

I1

I0 =empty interval

I2 I3 I4

I34I1
I5

Span(I3, I4)

I6

I23

I13

Span(I2, I3)

Span(I2, I3, I4)

(a) A set of intervals I1. (b) The corresponding lattice of intervals L1.

Fig. 2. The lattice of intervals.

a totally ordered set, the problem was considered in [BEG+02], where it was shown
that the algorithms of [FK96] can be extended to work in quasi-polynomial time, re-
gardless of each chain’s size. It is natural to investigate whether these results can be
extended further to wider classes of partially ordered sets. In this paper, we achieve
this for the cases when each Pi is the following:

(i) a join (or meet) semilattice with bounded width (see Figure 1(a)),
(ii) a forest, that is, a poset in which the underlying undirected graph of the

precedence graph is acyclic (see Figure 1(b)), and in which either the in-
degree or the out-degree of each element is bounded, and

(iii) the lattice of intervals defined by a set of intervals on the real line R (see
Figure 2): Let Ii be a set of intervals in R, and let Li be the lattice of
intervals whose elements are all possible intersections and spans defined by
the intervals in Ii and ordered by containment. The meet of any two intervals
in Li is their intersection, and the join is their span, i.e., the minimum interval
containing both of them.

We remark that for case (i), all posets Pi must be of the same type: either all posets
are join semilattices, or all of them are meet semilattices. Without loss of generality,
we will consider only join semilattices.

1.1. Main results. Here is a more formal description of the results in this paper.
For x ∈ Pi, denote by x⊥ the set of immediate predecessors of x, i.e.,

x⊥ = {y ∈ Pi | y ≺ x, (�z ∈ Pi : y ≺ z ≺ x)},

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMS FOR DUALIZATION OVER POSETS 489

and let in-deg(Pi) = max{|x⊥| : x ∈ Pi}. Similarly, denote by x� the set of im-
mediate successors of x, and let out-deg(Pi) = max{|x�| : x ∈ Pi}. Through-
out this paper, we shall use the notation m

def= |A| + |B|, [n] def= {1, . . . , n}, d def=
maxi∈[n] min{in-deg(Pi), out-deg(Pi)}, and μ = μ(P) def= max{|Pi| : i ∈ [n]}. Fi-
nally, denote by W (Pi) the width of Pi, i.e., the maximum size of an antichain in
Pi, let W = W (P) def= maxi∈[n]{W (Pi)} be the maximum width of the n posets, and

write γ(W) def= 2W 2 ln(W + 1). A join (respectively, meet) semi-lattice is a poset P
in which every two elements x, y ∈ P have a unique minimum upper-bound, called
the join x ∨ y (respectively, a unique maximum lower-bound, called the meet x ∧ y).

Theorem 1. Problem DUAL(L,A,B) can be solved in poly(n, μ(L)) ·
mγ(W (L))·o(log m) time if L is a product of join semilattices.

Theorem 2. Problem DUAL(P ,A,B) can be solved in poly(n, μ(P)) ·md·o(log m)

time if P is a product of forests.
Theorem 3. Problem DUAL(L,A,B) can be solved in kO(log2 k) time if L is a

product of lattices of intervals, where k = |A|+ |B|+∑n
i=1 |Li|.

Note that Theorem 3 strengthens Theorem 1 for the special case of the product of
lattices of intervals. Indeed, for the lattice of intervals Li, defined by a set of intervals
Ii, we have W (Li) = O(|Ii|) and |Li| = O(|Ii|2), and these bounds are tight. Thus,
for this special case, the result of Theorem 1 gives an exponential algorithm in the
maximum number of intervals maxn

i=1 |Ii|, while Theorem 3 gives a quasi-polynomial
bound.

In the next section, we consider some applications that motivate our consideration
of problem DUAL(P ,A,B). In section 3, we describe the general approach we use
for solving the dualization problem. We prove Theorems 1, 2, and 3 in sections 4, 5,
and 6, respectively.

2. Some applications. Let P = P1× · · · ×Pn be a partially ordered set. Con-
sider a monotone property π : P �→ {0, 1} defined over the elements of P : if x ∈ P
satisfies π, i.e., π(x) = 1, then any y � x satisfies π. We assume that π is described by
a polynomial-time satisfiability oracle Oπ, i.e., an algorithm that can decide whether
a given vector x ∈ P satisfies π, in time polynomial in n and the size |π| of the input
description of π. Denote by Fπ and Gπ, respectively, the families of minimal elements
satisfying property π, and maximal elements not satisfying property π. Then it is
clear that Gπ = I(Fπ). Given a monotone property π, we consider the problem of
jointly generating the families Fπ and Gπ :
GEN(P ,Fπ,Gπ,X ,Y): Given a monotone property π, represented by a satisfiability

oracle Oπ, and two explicitly listed vector families X ⊆ Fπ ⊆ P and Y ⊆
Gπ ⊆ P, either find a new element in (Fπ \ X) ∪ (Gπ \ Y), or state that these
families are complete: (X ,Y) = (Fπ,Gπ).

For a given monotone property π, described by a satisfiability oracle Oπ , we can
generate both Fπ and Gπ simultaneously by starting with X = Y = ∅ and solving
problem GEN(P ,Fπ,Gπ ,X ,Y) for a total of |Fπ| + |Gπ| + 1 times, incrementing in
each iteration either X or Y by the newly found vector x ∈ (Fπ \ X) ∪ (Gπ \ Y),
according to the answer of the oracle Oπ, until we have (X ,Y) = (Fπ,Gπ).

The following result, relating the time complexity of joint generation to that of
dualization, is a straightforward generalization of a similar result known for the binary
case [BI95, GK99].

Proposition 1. Problem GEN(P ,Fπ, I(Fπ),X ,Y) can be solved in time O
(
∑n

i=1 |Pi|) (n|X ||Y| + Tπ) + Tdual for any monotone property π defined by a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

490 KHALED M. ELBASSIONI

satisfiability oracle Oπ, where Tπ is the worst-case running time of the oracle on
any x ∈ P, and Tdual denotes the time required to solve problem DUAL(·, ·, ·).

When one the two families, say I(Fπ), is bounded polynomially (or quasi-poly-
nomially) in size by the other, i.e.,

(2) |I(Fπ)| ≤ poly(|π|, |Fπ |),
then it follows from the above proposition that all of the elements of the family Fπ

can be generated in total quasi-polynomial time quasi-poly(|π|, |Fπ|).
Problem GEN(P ,Fπ, I(Fπ),X ,Y) arises in several applications and in a vari-

ety of fields, including artificial intelligence [EG95], game theory [Gur75], reliability
theory [BEGK04, Col87], database theory [BGKM03, EG95, GMKT97], integer pro-
gramming [BEG+02, KBE+07, LLK80], learning theory [AB92], and data mining
[AIS93, KBE+07, BGKM03]. In the next subsections we consider three such applica-
tions.

2.1. Monotone systems of linear inequalities. Let A ∈ Rr×n be a given
nonnegative real matrix, b ∈ Rr be a given r-vector, and c ∈ Rn

+ be a given nonnegative
n-vector, and consider the system of linear inequalities

(3) Ax ≥ b, x ∈ C = {x ∈ Zn | 0 ≤ x ≤ c}.
For x ∈ C, let π(x) be the property that x satisfies (3). Then the families Fπ and
Gπ correspond, respectively, to the minimal feasible and maximal infeasible vectors
for (3). Proposition 1 implies that problem GEN(C,Fπ, I(Fπ),X ,Y) is polynomially
equivalent to dualization over the chain product C. Furthermore, it was shown in
[BEG+02] that an inequality of the form (2) holds, namely, |I(Fπ)| ≤ rn|Fπ|. Thus,
all minimal feasible solutions for (3) can be generated in quasi-polynomial time (see
[BEG+02] for more details).

2.2. Maximal frequent and minimal infrequent elements in products of
posets. Let P def= P1×· · ·×Pn be the product of n explicitly given posets. Consider a
database D ⊆ P of transactions, each of which is an n-dimensional vector of attribute
values over P . For an element p ∈ P , let us denote by

S(p) = SD(p) def= {q ∈ D | q � p}
the set of transactions in D that support p ∈ P . Note that, by this definition, the
function |S(·)| : P �→ {0, 1, . . . , |D|} is an antimonotone function, i.e., |S(p)| ≤ |S(q)|,
whenever p � q. Given D ⊆ P and an integer threshold t, let us say that an element
p ∈ P is t-frequent if it is supported by at least t transactions in the database, i.e.,
if |SD(p)| ≥ t. Conversely, p ∈ P is said to be t-infrequent if |SD(p)| < t. For each
x ∈ P , let π(x) be the property that x is t-infrequent. Then π is a monotone property
and the families Fπ and Gπ correspond, respectively, to minimal t-infrequent and
maximal t-frequent elements for D.

The joint generation of maximal frequent and minimal infrequent elements of
a database can be used for finding the so-called association rules in data mining
applications [AIS93]. If the database D contains categorical (e.g., zip code, make of
car) or quantitative (e.g., age, income) attributes, and the corresponding posets Pi

are total orders, then the above generation problems can be used to mine the so-called
quantitative association rules [SA96]. More generally, each attribute ai in the database
can assume values belonging to some partially ordered set Pi. For example, [SA95]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMS FOR DUALIZATION OVER POSETS 491

describes applications where items in the database belong to sets of taxonomies (or
is-a hierarchies), and proposes several algorithms for mining association rules among
these hierarchical data (see also [HCC93, HF95]). Proposition 1 and Theorems 1 and 2
imply that, for databases D ⊆ P where the underlying precedence graph of each poset
Pi is a rooted tree (is-a hierarchy), or where each poset Pi is a join semilattice of
bounded width, and for any integer threshold t, all maximal frequent elements and all
minimal infrequent elements can be jointly generated in quasi-polynomial time (the
binary case was considered in [BGKM03]).

2.3. Sparse boxes for multidimensional data. Let S be a set of points in
Rn, and k ≤ |S| be a given integer. A maximal k-box is a closed n-dimensional
rectangle which contains at most k points of S in its interior, and which is maximal
with respect to this property (i.e., cannot be extended in any direction without strictly
enclosing more points of S). Suppose we are interested in generating the family FS,k of
maximal k-boxes, defined by the set of points S. Then, without any loss of generality,
we may consider the generation of maximal k-boxes contained in a fixed bounded box
D containing all points of S in its interior. Let us further note that the ith coordinate
of each vertex of such a box is the same as pi for some p ∈ S, or the ith coordinate
of a vertex of D; hence all of these coordinates belong to a finite set of cardinality
at most |S| + 2. In other words, we can view FS,k as a set of boxes with vertices
belonging to such a finite grid.

For i = 1, . . . , n, consider the set of projection points Si
def= {pi | p ∈ S}, and

let Li be the lattice of intervals whose elements are the different intervals defined by
the projection points Si and ordered by containment. The minimum element li of Li

corresponds to the empty interval I0. A 2-dimensional example is shown in Figure 3.
Let L = L1×· · ·×Ln; then each element x of L, with xi �= li for all i ∈ [n], represents
a box containing some points of S. For x ∈ L, let π(x) be the property that the box
defined by x contains at least k+1 points of S in its interior. Then the sets Gπ and Fπ

can be identified, respectively, with the set of maximal k-boxes and the set of minimal
boxes of x ∈ L which contain at least k+1 points of S in their interior. Furthermore,
it can be shown [KBE+07] that |Fπ| ≤ |S||Gπ |. Thus, Proposition 1 and Theorem 3
imply that the family FS,k can be generated in quasi-polynomial time (see [KBE+07]
for more details).

The problem of generating all of the elements of FS,0 has been studied in the
machine learning and computational geometry literatures (see [CDL86, EGLM03,
Orl90]) and is motivated by the discovery of missing associations or “holes” in data
mining applications (see [AMS+96, LKH97, BLQ98]).

3. General approach.

3.1. Preliminaries. Given two subsets A ⊆ P = P1 × · · · × Pn and B ⊆ I(A),
we say that B is dual to A if B = I(A). By (1), this condition is equivalent to
A+ ∪ B− = P , and

(4) a �� b ∀a ∈ A, b ∈ B.

Thus problem DUAL(P ,A,B) can be equivalently stated as follows:
DUAL(P ,A,B): Given antichains A,B ⊆ P satisfying (4), check if there an x ∈

P \ (A+ ∪ B−).
Having found a solution to DUAL(P ,A,B), i.e., an element x ∈ P \ (A+ ∪ B−),

it can be extended to a maximal element x∗ with the same property in O(nμ|A|)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

492 KHALED M. ELBASSIONI

Span(I1, I4)

I1

I2

I3

I4

I5

I1 I2I3 I4 I5I6

I0

I1 I2 I3 I4 I5

Span(I1, I2) Span(I4, I5)

Span(I1, I2, I3, I4, I5)

(a) A 2-dimensional pointset and a maximal 1-box. (b) The lattice of intervals L1.

Fig. 3. Maximal sparse boxes: the shaded box has at most t = 1 point in its interior.

time. This can be done by initializing c(a) = |{i ∈ [n] : ai �� xi}| for all a ∈ A,
and repeating, for i = 1, . . . , n, the following two steps: (i) x∗i ← a maximal y ∈
Pi ∩ x+

i such that y �� ai for all a ∈ A with c(a) = 1 and ai �� xi; (ii) c(a)← c(a)− 1
for each a ∈ A such that ai � x∗i .

It is also worth noting that, if condition (4) does not hold, then the problem
becomes NP-hard in general, even if P = {0, 1}n is just the Boolean cube [EG95].

Given any Q ⊆ P , let us denote by

A(Q) = {a ∈ A | a+ ∩ Q �= ∅}, B(Q) = {b ∈ B | b− ∩Q �= ∅}.
Note that, for a ∈ A and Q = Q1×· · ·×Qn, a+∩Q �= ∅ if and only if a+

i ∩Qi �= ∅, for
all i ∈ [n]. Thus, the sets A(Q) and B(Q) can be found in O(nmμ) time.1 A simple
but important observation, which will be used frequently in the algorithms below, is
that

(5) Q ⊆ A+ ∪ B− ⇐⇒ Q ⊆ A(Q)+ ∪ B(Q)−.

To solve problem DUAL(P ,A,B), we shall use the same general approach used in
[FK96] to solve the hypergraph dualization problem, by decomposing it into a number
of smaller subproblems which are solved recursively. In each such subproblem, we
start with a subposet Q = Q1 × · · · × Qn ⊆ P (initially Q = P) and two subsets
A(Q) ⊆ A and B(Q) ⊆ B, and we want to check whether A(Q) and B(Q) are dual
in Q, i.e., whether Q ⊆ A(Q)+ ∪ B(Q)−. Note that since B ⊆ I(A) is assumed,
(4) continues to hold for the recursive subproblems. The decomposition of Q is done
by decomposing one factor poset, say Qi, into a number of (not necessarily disjoint)
subposets Q1

i , . . . ,Qr
i and solving r subproblems on the r different posets Q1 × · · · ×

Qi−1 × Qj
i × Qi+1 × · · · × Qn, j = 1, . . . , r. In most of the cases, a number of

decomposition rules may be followed, based on the sizes of certain subsets of A and
B, with the objective of reducing the problem size from one level of the recursion to the
next. To estimate this reduction in size (only in the analysis of the running time), we
measure the change in the “volume” of the problem defined as v = v(A,B) def= |A||B|
(actually, in section 6, we use v(Q,A,B) = |A||B|∑n

i=1 |Qi|). For brevity, we shall
denote by Qi

the product Q1 × · · · × Qi−1 ×Qi+1 × · · · × Qn, and accordingly by qi

the vector (q1, . . . , qi−1, qi+1, . . . , qn), for an element q = (q1, q2, . . . , qn) ∈ Q. When
the index i is understood from the context, we will use Q and q̄ for simplicity.

1In fact, by the way Q is chosen in our algorithms, these sets can be found in O(nm) time.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMS FOR DUALIZATION OVER POSETS 493

Procedure PD(Q,A,B):
Input: A subposet Q = Q1 × · · · × Qn ⊆ P and two antichains A,B ⊆ P
Output: true if Q ⊆ (A+ ∪ B−) and false otherwise

1. A ← A(Q), B ← B(Q)
2. A ← PROJECT(Q,A), B ← PROJECT(Q,B)
3. if min{|A|, |B|} ≤ Const. then
4. return POLY-DUAL(Q,A,B)
5. Using the appropriate decomposition rule, select i ∈ [n],

and decompose Qi into Q1
i , . . . ,Qr

i

6. return
∧r

j=1 PD(Qj
i ×Q,A,B)

Fig. 4. The general dualization procedure.

A general high-level dualization procedure is shown in Figure 4. In this procedure,
we use 2 subroutines: PROJECT and POLY-DUAL. The second of these routines
acts as the base case for recursion, while the first is used to ensure that, at that
base level, the subsets A,B,Q ⊆ P satisfy A,B ⊆ Q. The reason that we need the
latter condition and the details of these two routines will be given in subsections 3.3
and 3.4, respectively. In the next section, we derive some general decomposition rules
that can be used in step 5 of the procedure. The selection of which decomposition
rule to use in the algorithm depends on the frequencies of the element, at which the
decomposition is performed, with respect to A and B, but does not otherwise assume
anything about these frequencies. Assuming duality of A and B, one can show that
there exists a “high-frequency” element in one of the factor posets. Using this element
for decomposition at each recursion level usually yields much simpler algorithms, but
with worse running times with respect to m, although possibly better in terms of the
other parameters (e.g., width). In fact, this is the only method we know of for getting
quasi-polynomial bounds in the width, in the case of products lattices of intervals
(see section 6). In subsection 3.2.4, we give the arguments for the existence of such
high-frequency elements.

We assume that procedure PD(Q,A,B) returns either true or false depending on
whether A and B are dual in Q or not. Returning a vector x ∈ Q \ (A+ ∪ B−) in the
latter case is straightforward, as it can be obtained from any subproblem that failed
the test for duality.

In the rest of this paper, we shall denote by C(v(Q,A,B)) the total number
of recursive subproblems created by procedure PD(Q,A,B) on a problem of size
v(Q,A,B). We assume that C(v) ≤ R(v), where R(v) is a superadditive2 function of
v (i.e., R(v) + R(v′) ≤ R(v + v′) for all v, v′ ≥ 0), is monotone (i.e., f(v) ≥ f(v′)
for all v ≥ v′), R(0) = 0, and R(1) ≥ 1. Thus we may assume also, without loss of
generality, that C(v) is monotone and superadditive.

3.2. Decomposition.

3.2.1. Independent decomposition. Let us call two subposets Q,R ⊆ P in-
dependent if q �� r and q �� r for all q ∈ Q, r ∈ R. The following decomposition rule
can be used to reduce the problem on products of forests into one in which each forest
has exactly on connected component, i.e., a tree.

2This is naturally satisfied by any monotone superlinear function.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

494 KHALED M. ELBASSIONI

Proposition 2. Let Q = Q1 × · · · × Qn and A,B ⊆ Q. Suppose that poset
Qi can be partitioned into two independent posets Q′

i and Q′′
i . Let Q′ = Q′

i × Q,
Q′′ = Q′′

i × Q, A′ = A(Q′), B′ = B(Q′), A′′ = A(Q′′), and B′′ = B(Q′′). If
C(v(A′,B′)) ≤ R(v(A′,B′)) and C(v(A′′,B′′)) ≤ R(v(A′′,B′′)), then C(v(A,B)) ≤
R(v(A,B)).

Proof. We observe by (5) and the independence of Q′,Q′′ that

Q ⊆ A+ ∪ B− ⇐⇒ Q′ ⊆ (A′)+ ∪ (B′)− and Q′′ ⊆ (A′′)+ ∪ (B′′)−.

Clearly, if A′ ∪ B′ = ∅ (or A′′ ∪ B′′ = ∅), then any element in Q′ (respectively, in
Q′′) does not belong to A+ ∪ B−. On the other hand, if these unions are not empty,
then we can proceed by recursively solving the two subproblems DUAL(Q′,A′,B′)
and DUAL(Q′′,A′′,B′′). This gives

C(v(A,B)) = 1 + C(v(A′,B′)) + C(v(A′′,B′′)) ≤ 1 +R(v(A′,B′)) +R(v(A′′,B′′)).

Note that {A′,A′′} and {B′,B′′} form partitions of A and B, respectively, and there-
fore, we get by the superadditivity and monotonicity of R(·)

R(v(A,B)) = R(v(A′,B′) + v(A′′,B′′) + v(A′,B′′) + v(A′′,B′))

≥ R(v(A′,B′)) +R(v(A′′,B′′)) +R(v(A′,B′′)) +R(v(A′′,B′))

≥ R(v(A′,B′)) +R(v(A′′,B′′)) + 1,

where the last inequality follows from the fact that if v(A,B) > 0, then either v(A′,
B′′) > 0 or v(A′′,B′) > 0.

3.2.2. General decomposition. For an operator ◦ ∈ {�, ��,�, ��}, a subset
X ⊆ P , an i ∈ [n], and an element z ∈ Pi, we use the notation X◦(z)

def= {x ∈ X :
xi ◦ z}. In general, the algorithms will decompose a given problem by selecting an
i ∈ [n] and partitioning Qi into two subposets Q′

i and Q′′
i , defining accordingly two

poset products Q′ and Q′′. Specifically, let ao ∈ A, bo ∈ B be arbitrary elements
of A,B (in fact the algorithm in section 4.1 will select specific elements ao ∈ A and
bo ∈ B). By (4), there exists an i ∈ [n] such that ao

i �� boi . Let Q′
i ← Qi ∩ (ao

i)
+,

Q′′
i ← Qi \ Q′

i (we may alternatively set Q′′
i ← Qi ∩ (boi)

− and Q′
i ← Qi \ Q′′

i ; see
section 5.1). Defining Q′ = Q′

i×Q and Q′′ = Q′′
i ×Q to be the two subposets induced

by this partitioning and letting A′ def= A(Q′) = A	(ao
i), A′′ def= A(Q′′) = A
	(ao

i),

B′ def= B(Q′) = B	(ao
i), B′′ def= B(Q′′) = B
	(ao

i), we conclude by (5) that Q ⊆ A+∪B−

if and only if

Q′ ⊆ A+ ∪ (B′)− and(6)

Q′′ ⊆ (A′′)+ ∪ B−.(7)

Thus we have decomposed the original problem into two new subproblems. Note that
the volumes of the resulting problems are strictly less than the volume of the original
problem. For lattices and forests, it may be necessary to further decompose the sub-
poset Q′′

i in order to maintain a certain nice property (lattice property, connectedness
of the precedence graph) which allows for the projection step described in section 3.4.

Clearly, there may exist precedence relations between the elements of Q′
i and Q′′

i

and, therefore, the two subproblems (6) and (7) may not be independent. Once we

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMS FOR DUALIZATION OVER POSETS 495

get an affirmative answer to one subproblem, we gain some information about the
solution of the other. The following lemma shows how to utilize this dependence to
further decompose the other subproblem in such a case.

Lemma 1. Given z ∈ Qi, let R′
i = Qi ∩ z+, R′′

i ⊆ Qi ∩ z− \ {z} be two disjoint
subposets of Qi. Define

A2 = {a ∈ A | a+
i ∩R′′

i �= ∅}, A1 = {a ∈ A \ A2| a+
i ∩R′

i �= ∅},
B1 = {b ∈ B | b−i ∩R′

i �= ∅}, B2 = {b ∈ B \ B1| b−i ∩R′′
i �= ∅}.

Suppose further that R′
i ×Q ⊆ (A2 ∪ A1)+ ∪ (B1)−; then

R′′
i ×Q ⊆ (A2)+ ∪ (B1 ∪ B2)− ⇐⇒ ∀a ∈ A�(z) : R′′

i × (Q∩ a+) ⊆ (A2)+ ∪ (B2)−.

Proof. Suppose first thatR′′
i ×Q ⊆ (A2)+∪(B1∪B2)−. Let (qi, q) ∈ R′′

i ×(Q∩a+)
for some a ∈ A�(z); then (qi, q) ∈ (A2)+ ∪ (B1 ∪ B2)−. If (qi, q) � (b1, b) ∈ B1, then
by the definition of B1, there is a y ∈ R′

i such that y � bi. But then, a ∈ A�(z),
q ∈ Q∩a+, and y ∈ R′

i imply that (ai, a) � (z, q) � (y, q) � (bi, b), which contradicts
the assumed condition (4). This shows that (qi, q) ∈ (A2)+ ∪ (B2)−.

For the other direction, let (qi, q) ∈ (R′′
i × Q) \ (B1)−. Since x � y for all

x ∈ R′′
i , y ∈ R′

i, we must have (y, q) �∈ (B1)− for all y ∈ R′
i, for otherwise we get the

contradiction (q1, q) � (y, q) � (b1, b) for some b ∈ B1. Now we use our assumption
that R′

i×Q ⊆ (A1∪A2)+∪(B1)− to conclude that (y, q) ∈ (A1∪A2)+ for all y ∈ R′
i.

In particular, we have (z, q) � (a1, a) for some (a1, a) ∈ A1 ∪ A2. But this implies
that a ∈ A�(z) and hence that (q1, q) ∈ R′′

i × (Q ∩ a+) for some a ∈ A�(z). This
gives (qi, q) ∈ (A2)+ ∪ (B2)−.

By considering the dual poset of P (that is, the poset P∗ with the same set of
elements as P , but such that x ≺ y in P∗ whenever x � y in P) and exchanging the
roles of A and B, we get the following symmetric version of Lemma 1.

Lemma 2. Let R′′
i = Qi ∩ z−, R′

i ⊆ Qi ∩ z+ \ {z} be two disjoint subposets
of Qi where z ∈ Qi. Let A1,A2,B1,B2 be defined as in Lemma 1. Suppose that
R′′

i ×Q ⊆ (A2)+ ∪ (B1 ∪ B2)−; then

R′
i ×Q ⊆ (A1 ∪A2)+ ∪ (B1)− ⇐⇒ ∀b ∈ B	(z) : R′

i × (Q ∩ b−) ⊆ (A1)+ ∪ (B1)−.

We now use Lemma 1 inductively to get a further decomposition of poset Q′′
i .

Suppose that one of the subproblems, say (6), has no solution, i.e., Q′ ⊆ A+ ∪
(B′)−. Then we can proceed in this case as follows. Let us use y1, . . . , yk to denote
the elements of Q′′

i and assume, without loss of generality, that they are inversely
topologically sorted in this order, that is, yj ≺ yr implies j > r (see Figure 5(a)). Let
us decompose (7) further into the k subproblems

(8) {yj} × Q ⊆ (A′′
�(yj))+ ∪

⎡
⎣B′′

=(yj) ∪
⎛
⎝ ⋃

x∈(yj)�
B	(x)

⎞
⎠
⎤
⎦
−

, j = 1, . . . , k.

The following lemma will allow us to eliminate the contribution of the set B′ in
subproblems (8) at the expense of possibly introducing at most |A|W (Q) additional
subproblems.

Lemma 3. Given yj ∈ Q′′
i , suppose we know that (x+∩Qi)×Q ⊆ A+∪(B	(x))−

for all x ∈ (yj)�. Then (8) is equivalent to

(9) {yj} ×
⎡
⎣Q∩

⎛
⎝ ⋂

x∈(yj)�
a(x)+

⎞
⎠
⎤
⎦ ⊆ (A′′

�(yj))+ ∪ (B′′
=(yj))−

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

496 KHALED M. ELBASSIONI

ao
i

y4

y8

y5

Q′i

Q′′i
y10

y7y6

y3

y1

y9

y2

Q′i

Q′′i

x5

x2

x3

x8

x9

z

x1

x4

x6

x7

x10

(a) Rules (R1) and (R2). (b) Rule (R2′).

Fig. 5. Decomposing the poset Qi.

for all collections {a(x) ∈ A�(x) | x ∈ (yj)�} for j = 1, . . . , k. (That is, if (yj)� =
{x1, . . . , xs}, then we consider all collections of the form {a(x1), . . . , a(xs)}, where
a(x1) ∈ A�(x1), . . . , a(xs) ∈ A�(xs).)

Proof. We prove by induction on |X |, where X ⊆ (yj)�, that

(10)

{yj} × Q ⊆ (A′′
�(yj))+ ∪

[
B′′

=(yj) ∪
(⋃

x∈(yj)� B	(x)
)]−

⇐⇒ {yj} × [Q ∩ (⋂x∈X a(x)+
)] ⊆ (A′′

�(yj))+ ∪
[
B′′

=(yj) ∪
(⋃

x∈(yj)�\X B	(y)
)]−

for all collections {a(y) ∈ A�(x) | x ∈ X}. This trivially holds for X = ∅ and
will prove the lemma for X = (yj)�. To show (10), assume that it holds for some
X ⊂ (yj)�, and let u ∈ (yj)� \ Y . Consider a subproblem of the form

{yj} ×
[
Q∩

(⋂
x∈X

a(x)+
)]

⊆ (A′′
�(yj))+ ∪

⎡
⎣B′′

=(yj) ∪ B	(u) ∪
⎛
⎝ ⋃

x∈(yj)�\(X∪{u})
B	(y)

⎞
⎠
⎤
⎦
−

for some collection {a(y) ∈ A�(x) | x ∈ X}. Now we apply Lemma 1 with z ← u,
R′

i ← z+ ∩ Qi, R′′
i ← {yj}, A2 ← A�(yj), B1 ← B	(u), and B2 ← B′′

=(yj) ∪
(
⋃

x∈(yj)�\(X∪{u}) B	(y)) to get the required result.
Informally, Lemma 3 says that, given yj ∈ Q′′

i , if the dualization subproblems
for all subposets that lie above yj have been already verified to have no solution,
then we can solve subproblem (8) by solving at most

∏
x∈(yj)� |A�(x)| subproblems

of the form (9). Observe that it is important to check subproblems (8) in the reverse
topological order j = 1, . . . , h in order to be able to use Lemma 3.

3.2.3. Decomposition rules. Using the decomposition lemmas stated in the
previous subsection, we now derive some general decomposition rules that will be used
later by the algorithms.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMS FOR DUALIZATION OVER POSETS 497

Rule (R1). Solve the two subproblems (corresponding to) (6) and (7).
Rule (R2). Solve subproblem (6). If it has a solution, then we get an element

x ∈ Q \ (A+ ∪ B−). Otherwise, we solve subproblems (9) for all collections {a(x) ∈
A�(x) | x ∈ (yj)�}, for j = 1, . . . , k, where y1, . . . , yh denote the elements of Q′′

i in
reverse topological order (see Figure 5(a)).

Suppose, finally, that we decompose Qi by selecting an element z ∈ Qi, letting
Q′′

i ← Qi ∩ z−, Q′
i ← Qi \ z−, A′′ = A�(z), A′ = A \ A′′, and B′ = B
�(z).

By exchanging the roles of A and B and replacing P by its dual poset P∗ in Rule
(R2) above, we can also arrive at the following symmetric version of this rule (see
Figure 5(b)).

Rule (R2′). Solve subproblem (7). If it does not have a solution, then solve the
subproblems

(11) {xj} ×
⎡
⎣Q∩

⎛
⎝ ⋂

y∈(xj)⊥
b(y)−

⎞
⎠
⎤
⎦ ⊆ (A′

=(xj))+ ∪ (B′
	(xj))−

for all collections {b(y) ∈ B	(y) | y ∈ (xj)⊥}, for j = 1, . . . , k, where x1, . . . , xk denote
the elements of Q′

i in topological order (that is, xj ≺ xr implies j < r).
In sections 4, 5, and 6, we show how to use the above rules for decomposing

a given dualization problem into smaller subproblems. The algorithms will select
between these rules in such a way that the total volume is reduced significantly from
one recursion level to the next.

3.2.4. High-frequency based decomposition. Assume that A,B satisfy (4),
and let us denote by Min(Qi) and Max(Qi), respectively, the sets of minimal and
maximal elements of poset Qi. Define the support of a ∈ A (respectively, b ∈ B) to be
the set of all nonminimum coordinates of a (respectively, the set of all nonmaximum
coordinates of b):

Supp(a) = {i ∈ [n] : Min(Qi) �= {ai}}, Supp(b) = {i ∈ [n] : Max(Qi) �= {bi}}.

Let α = α(Q) def= maxi∈[n]{|Min(Qi) ∪Max(Qi)|}. The following lemma generalizes
a known fact for dual Boolean functions (cf. [FK96]).

Lemma 4. If A,B are dual in Q, then there exists an element x ∈ A ∪ B with a
logarithmically small support: | Supp(x)| ≤ α lnm, where m = |A|+ |B|.

Proof. Let z ∈ Q be the vector obtained by picking each coordinate zi randomly
from Xi

def= Min(Qi) ∪ Max(Qi), i = 1, . . . , n, and consider the random variable
N(z) def= |{a ∈ A | z � a}| + |{b ∈ B | z � b}|. Then the expected value of N(z) is
given by

(12)

E[N(z)] =
∑
a∈A

Pr{z � a}+
∑
b∈B

Pr{z � b}

=
∑
a∈A

∏
i∈Supp(a)

|Xi∩a+
i |

|Xi| +
∑
b∈B

∏
i∈Supp(b)

|Xi∩b−i |
|Xi|

≤
∑
a∈A

∏
i∈Supp(a)

(
1− 1

|Xi|
)

+
∑
b∈B

∏
i∈Supp(b)

(
1− 1

|Xi|
)

≤
∑
a∈A

(
1− 1

α

)| Supp(a)| +
∑
b∈B

(
1− 1

α

)| Supp(b)|
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

498 KHALED M. ELBASSIONI

Clearly E[N(z)] ≥ 1, for otherwise there exists an element x ∈ L\(A+∪B−) (which can
be found in O(nmα) using the standard method of conditional expectation [MR95]).
Let r = min{| Supp(z)| : z ∈ A ∪ B}. Then (12) implies that

1 ≤ E[N(z)] ≤ (|A|+ |B|)
(

1− 1
α

)r

≤ me−r/α.

The lemma follows.
Next we show that, for any dual pair (A,B), a high-frequency element exists with

respect to either A or B.
Lemma 5. Let A,B be a pair of dual subsets of Q with |A||B| ≥ 1. Then there

exist a coordinate i ∈ [n] and an element z ∈ Qi, such that either
(i) |A	(z)| ≥ 1 and |B
	(z)| ≥ |B|

α(Q) ln m , or

(ii) |B�(z)| ≥ 1 and |A
�(z)| ≥ |A|
α(Q) ln m .

There also exist a coordinate i ∈ [n] and an element z ∈ Qi, such that either
(iii) |A
�(z)| ≥ 1 and |B�(z)| ≥ |B|

α(Q)W (Qi) ln m , or

(iv) |B
	(z)| ≥ 1 and |A	(z)| ≥ |A|
α(Q)W (Qi) lnm .

Proof. By Lemma 4, A ∪ B contains an element x with | Supp(x)| ≤ α lnm.
Suppose, without loss of generality, that x ∈ A. From condition (4), we know that
for every b ∈ B, there is an i ∈ Supp(b) ∩ Supp(x) such that bi �� xi. Thus

|B| =
∣∣∣∣ ⋃

i∈Supp(x)

B
	(xi)
∣∣∣∣ ≤ ∑

i∈Supp(x)

|B
	(xi)|,

and therefore there is an i ∈ [n] such that |B
	(xi)| ≥ |B|/| Supp(x)| ≥ |B|/(α lnm),
which implies (i) for z = xi.

To show (iii), consider the set Y = I({xi}) of maximal independent elements in
Qi \ {xi}+, and observe that

|B
	(xi)| =
∣∣∣∣ ⋃

z∈Y
B�(z)

∣∣∣∣ ≤∑
z∈Y
|B�(z)|.

Noting that |Y| ≤ W (Qi), we conclude that (iii) holds. If x actually belongs to B,
then by a similar argument we obtain (ii) and (iv).

3.3. Polynomial dualization when one of the sets is small. When one of
the sets A or B has constant size, the problem can be solved in polynomial time.

Proposition 3. Suppose that min{|A|, |B|} ≤ k, A,B ⊆ P; then problem
DUAL(P , A,B) is solvable in time O(nk+1 mW (P)k+1μ(P)).

Proof. Let us assume, without loss of generality, that B = {b1, . . . , bk} for some
constant k. Then problem DUAL(P , A,B) can be reduced to nk subproblems of the
form DUAL(P ′,A, ∅), where P ′ = P ′

1 × · · · ×P ′
n, is obtained from P by selecting, for

each j ∈ [k], a coordinate ij ∈ [n] and setting P ′
i = Pi \

⋃
j∈[k](b

j
ij

)−.
Clearly, P ′ ⊆ A+ if and only if Min(P ′) ⊆ A+, where Min(P ′) = Min(P ′

1)× · · ·×
Min(P ′

n) and Min(P ′
i) is the set of minimal elements of P ′

i. Now the latter problem
is easily seen to be polynomially solvable as follows. Let Min(P ′

i) = {q1i , . . . , qki

i },
for i ∈ [n], where ki = |P ′

i|. By construction, only l ≤ k of the posets P ′
i satisfy

P ′
i �= Pi. Assume, without loss of generality, that these posets are P ′

1 × · · · × P ′
l ;

then our problem reduces to finding whether {qi1
1 } × · · · × {qil

l } ×Min(Pl+1)× · · · ×

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMS FOR DUALIZATION OVER POSETS 499

Min(Pn) ⊆ A+ for all (i1, . . . , il) ∈ [k1]× · · · × [kl]. Each such problem is equivalent
to determining whether Min(Pl+1) × · · · ×Min(Pn) ⊆ (Ai1,...,il)+, where Ai1,...,il =
{(al+1, . . . , an) | a ∈ A, aj � q

ij

j for j = 1, . . . , l, and a+
j ∩Min(Pj) �= ∅ for j = l +

1, . . . , n}. Note that Ai1,...,il ⊆ Min(Pl+1)×· · ·×Min(Pn) since A ⊆ P was assumed,
and hence, each subproblem of the form Min(Pl+1) × · · · × Min(Pn) ⊆ (Ai1,...,il)+

can be solved in O(W (P)nm) as a special case of Proposition 2 (since each of the
posets Min(Pl+1), . . . ,Min(Pn) can be decomposed into independent posets of size 1
each).

On the negative side, if we do not insist on the condition A,B ⊆ P in Proposi-
tion 3, then the problem becomes NP-hard even for B = ∅.

Proposition 4. Given a subposet Q of a poset P and a subset A ⊆ P, it is
coNP-complete to decide if Q ⊆ A+.

Proof. We use a polynomial transformation from the satisfiability problem. Let
C = C1 ∧ · · · ∧Cm be a conjunctive normal form in n variables x1, . . . , xn, and let us
consider the poset P = P1 × · · · × Pn, where Pi = Qi ∪ {a1

i , . . . , a
m
i }, Qi = {xi, xi},

and where we associate a vector aj = (aj
1, . . . , a

j
n) with each clause Cj , j = 1, . . . ,m.

The relations in the poset P are defined as follows: For a literal li ∈ Qi and an
element aj

i ∈ Pi \Qi, let aj
i ≺ li in Pi if and only if li does not appear in clause Cj in

C. Finally, let Q = Q1 × · · · × Qn, and A = {a1, . . . , am}. Then Q �⊆ A+ if and only
if C is satisfiable.

3.4. Projection. As seen above, it is necessary throughout the algorithm to
maintain the condition A,B ⊆ P , so that when we arrive at the base case, we can
apply Proposition 3. Clearly, A,B ⊆ P holds initially, but might not hold after
decomposing P . To solve this problem, we project the elements of A and B on the
poset Q, for each newly created subproblem DUAL(Q,A,B). More precisely, if there
are a ∈ A and i ∈ [n] such that a+

i ∩ Qi �= ∅, but ai �∈ Qi, we replace a by the set of
elements {(x, ai) | x ∈Min(a+

i ∩Qi)}, where Min(·) is the set of minimal elements of
(·). Similarly, if there is an element b ∈ B and an index i ∈ [n] such that b−i ∩Qi �= ∅,
but bi �∈ Qi, then we replace b by the set of elements {(x, bi) | x ∈ Max(b−i ∩ Qi)}.
Note that condition (4) continues to hold after such replacements.

In general, an element of A or B may project to a number of elements in Q. Thus
performing a large number of projection steps, we may end up with an exponential
increase in the sizes of A,B. However, for certain classes of posets, such as lattices and
forests with connected precedence graphs (i.e., trees), each element of A,B projects
to a single element in Q, i.e., |Min(a+

i ∩ Qi)| = |Max(b−i ∩ Qi)| = 1 for all a ∈ A,
b ∈ B, and i ∈ [n]. Indeed, if Qi is a lattice, then Min(a+

i ∩ Qi) = {ai ∨ min(Qi)}
and Max(b−i ∩ Qi) = {bi ∧max(Qi)}, where min(Qi) and max(Qi) are, respectively,
the minimum and maximum elements of Qi. Similarly, if the precedence graph of
Qi is a tree and there are two distinct minimal elements y, z ∈ Qi with the property
that y � ai and z � ai, then there exists an undirected path between y and z in the
precedence graph of Qi and another path through ai, forming a cycle, in contradiction
to the fact that the original poset Pi (of which Qi is subposet) is a forest.

Thus, in conclusion, when decomposing a given dualization problem into a number
of subproblems, we need to make sure that, in each resulting subproblem DUAL
(Q,A,B), the poset Q is still the product of lattices, or the product of forests with
connected precedence graphs. In fact, this is the only place where the algorithms
described later fail to work for products of general posets.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

500 KHALED M. ELBASSIONI

Procedure LD-A(Q,A,B):
Input: A sublattice Q = Q1 × · · · × Qn ⊆ L and two antichains A,B ⊆ L
Output: true if Q ⊆ (A+ ∪ B−) and false otherwise

1. A← A(Q), B ← B(Q)
2. A← PROJECT(Q,A), B ← PROJECT(Q,B)
3. if min{|A|, |B|} < δ(W) then
4. return POLY-DUAL(Q,A,B)
5. Find i ∈ [n] and z ∈ Qi that satisfy Lemma 5 (iii)–(iv); if no such elements exist then
6. return false
7. if z satisfies Lemma 5(iii) then

8. return LD-A((Qi ∩ z−)×Q,A,B) ∧ (
∧

x∈Min(Qi\z−) LD-A((Qi ∩ x+)×Q,A,B))

9. else

10. return LD-A((Qi ∩ z+)×Q,A,B) ∧ (
∧

x∈Max(Qi\z+) LD-A((Qi ∩ x−)×Q,A,B))

Fig. 6. The first dualization procedure for lattices.

4. Dualization in products of join semilattices. Let L = L1 × · · · × Ln,
where each Li is a join semilattice with maximum element ui, and let A ⊆ L and
B ⊆ I(A).

We begin with the observation that dualization on products of join semilattices
can be reduced in polynomial time to dualization on products of lattices. Indeed, for
each join semilattice Li, let us add a minimum element li that precedes every element
in Li. Then it is easy to see that the resulting poset L′i def= Li∪{li} is a lattice. Given
A,B ⊆ L satisfying (4), let us obtain a new set B′ ⊆ L′ def= L′1×· · ·×L′n by extending
B as follows. For each added minimum element li, we define a new element b ∈ B′ by
setting bi = li, and bj = uj for j �= i. Clearly, condition (4) still holds for the pair
(A,B ∪ B′), and A+ ∪ B− = L if and only if A+ ∪ (B ∪ B′)− = L′ by construction.
Thus, for the rest of this section, we shall assume, without loss of generality, that
each poset Li is a lattice.

Before we prove Theorem 1, we show that the simpler (high-frequency based)
algorithm of [FK96] can also be generalized for lattices to get a weaker bound than
that of Theorem 1 (in fact, with an exponent linear in W, in contrast to the super-
quadratic bound in Theorem 1).

4.1. Algorithm A. The first dualization algorithm for lattices is given in Fig-
ure 6. In the algorithm, we use δ = δ(W) =

√
(W + 3) log(W + 2), whereW = W (L).

As usual, the algorithm is called initially with Q = L. In a general step, we check if
there is a frequent element z ∈ ∪n

i=1Qi, satisfying Lemma 5 (iii)–(iv) (where α = 2).
If no such z can be found, then a new element in Q \ (A+ ∪ B−) can be obtained as
described in the proof of Lemma 4. Otherwise, a decomposition of Qi into a set of
lattices can be obtained, and the algorithm is called recursively as in steps 8 and 10.

4.1.1. Analysis of algorithm LD-A.
Lemma 6. Let C(v) be the total number of recursive calls of procedure LD-A

(Q,A,B) on a problem of size v = |A(Q)||B(Q)| ≥ 1. Then C(v) ≤ R(v) def= vln v/ε,
where ε = 1/(2W lnm).

Proof. If v ≥ 1, but min{|A|, |B|} ≤ δ, then step 4 implies that C(v) = 1 ≤ R(v).
Suppose now that the algorithm proceeds to step 8, and let Q′ = (Qi ∩ z−)×Q and
Qx = (Qi ∩ x+)×Q for x ∈Min(Qi \ z−) be the subposets constructed at that step.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMS FOR DUALIZATION OVER POSETS 501

Then it follows from Lemma 5(iii) that |A(Q′)| ≤ |A| − 1 and |B(Q′)| ≥ ε|B|, and
thus

v(A(Q′),A(Q′)) ≤ (|A| − 1)|B| ≤ v − δ,
v(A(Qx),A(Qx)) ≤ |A|(1 − ε)|B| = (1− ε)v.

Combined with the fact that |Min(Qi \ z−)| ≤W , this leads to the recurrence

C(v) ≤ 1 +W · C((1 − ε)v) + C(v − δ).
We get also a similar recurrence if the algorithm proceeds to step 10 of LD-A. To
evaluate this recurrence, we first apply it k times to get C(v) ≤ k+kW ·C((1− ε)v)+
C(v−kδ). Letting k = � vε

δ � yields C(v) ≤ (1+(W +1)(vε
δ +1))C((1−ε)v), and hence

C(v) ≤ (1 + (W + 1)(vε
δ + 1))ln v/ε = (W + 2 + W+1

δ vε)ln v/ε. Since min{|A|, |B|} ≥ δ,
we have v ≥ δ2 and thus

v

(
1− W + 1

δ
ε

)
≥ δ2

(
1− W + 1

2δW ln(2δ)

)
≥W + 2

for all W ≥ 1, by our selection of δ(W), implying that C(v) ≤ vln v/ε.
Since v ≤ m2, we get by combining Proposition 3 and Lemma 6 that the running

time of the algorithm is O(m8W log2 m+1(nW)
√

(W+3) log(W+2)μ).

4.2. Algorithm B. This algorithm, shown in Figure 7, does not use high-
frequency decomposition; any a ∈ A, b ∈ B, and i ∈ [n] such that ai �� bi can
be used as explained in section 3.2.2 (see step 5 of the algorithm). The algorithm
chooses between Rules (R1), (R2), and (R2′) according to the sizes of the relevant
subsets of A and B. More precisely, define ε(v) = ρ(W)/χ(v), where v = v(A,B),
ρ(W) def= γ(W)/W = 2W ln(W +1) and χ(v) is defined to be the unique positive root
of the equation (

χ(v)
ρ(W)

)χ(v)

=
vW

(1− e−ρ(W))(δW − 1)
,

and observe that ε(v) < 1 for v ≥ δ2, δ ≥ 2. If both εA1
def= |A
�(bi)|/|A| and

εB1
def= |B�(bi)|/|B| are greater than ε(v), then the algorithm uses Rule (R1), but with

the further decomposition of Qi \ b−i , to ensure the lattice property. Otherwise, if
εA1 ≤ ε(v), then the algorithm uses Rule (R2′). If εA1 > ε(v), then there exists an
element z ∈ Qi, such that |A	(z) ≥ εA1 |A|/|Min(Qi \ b−i)| > ε(v)|A|/W . Then again
the algorithm chooses between Rules (R1) and (R2) according to the sizes of the sets
A	(z) and B
	(z) (see steps 15–20).

Finally, it remains to remark that all of the decompositions described above result,
indeed, in dualization subproblems over lattices.

4.2.1. Analysis of algorithm LD-B. Again, we measure the reduction in the
“effective” volume at each recursion level.

Step 7. From the condition min{εA1 , εB1 } > ε(v) and |Min(Qi \ b−i)| ≤ W , we get
the recurrence

C(v) ≤ 1 + C(|A�(bi)||B|) + |Min(Qi \ b−i)|C(|A||B
�(bi)|)
≤ 1 + C((1 − εA1)v) +W · C((1− εB1)v)

≤ 1 + (W + 1)C((1 − ε(v))v).(13)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

502 KHALED M. ELBASSIONI

Procedure LD-B(Q,A,B):
Input: A sublattice Q = Q1 × · · · × Qn ⊆ L and two antichains A,B ⊆ L
Output: true if Q ⊆ (A+ ∪ B−) and false otherwise

1. A ← A(Q), B ← B(Q)
2. A ← PROJECT(Q,A), B ← PROJECT(Q,B)
3. if min{|A|, |B|} < δ = 2 then
4. return POLY-DUAL(Q,A,B)
5. Let a ∈ A, b ∈ B, and i ∈ [n] be such that ai �� bi

6. εA1 ←
|A��(bi)|

|A| and εB1 ←
|B�(bi)|

|B|
7. if min{εA1 , εB1 } > ε(v(A,B)) then

8. return LD-B((Qi ∩ b−i)×Q,A,B) ∧ (
∧

x∈Min(Qi\b−
i

)
LD-B((Qi ∩ x+)×Q,A,B))

9. if εA1 ≤ ε(v(A,B)) then

10. Let x1, . . . , xk be the elements of Qi \ b−i in topologically nondecreasing order

11. d← LD-B((Qi ∩ b−i)×Q,A,B)

12. return d ∧ (∧j∈[k]

∧
(b(y)∈B�(y):y∈(xj)⊥) LD-B

({xj} × [Q ∩ (∧y∈(xj)⊥ b(y)
)−]

,A,B))
13. Let z ∈ Qi be such that |A�(z)| > ε(v(A,B))|A|/W

14. εA2 ←
|A�(z)|

|A| and εB2 ←
|B ��(z)|

|B|
15. if εB2 > ε(v(A,B)) then

16. return LD-B((Qi ∩ z+)×Q,A,B) ∧ (
∧

x∈Max(Qi\z+) LD-B((Qi ∩ x−)×Q,A,B))

17. else
18. Let y1, . . . , yh be the elements of Qi \ z+ in topologically nonincreasing order

19. d← LD-B((Qi ∩ z+) ×Q,A,B)

20. return d ∧ (∧j∈[k]

∧
(a(y)∈A�(x):x∈(yj)�) LD-B

({yj} × [Q ∩ (∨x∈(yj)� a(x)
)+]

,A,B))

Fig. 7. The second dualization procedure for lattices.

Steps 11-12. From εA1 ≤ ε(v) and (11), we get the recurrence

C(v) ≤ 1 + C(|A�(bi)||B|) +
k∑

j=1

⎛
⎝ ∏

y∈(xj)⊥
|B	(y)|

⎞
⎠C(|A=(xj)||B	(xj)|)

≤ 1 + C(|A�(bi)||B|) + |B|W
k∑

j=1

C(|A=(xj)||B	(xj)|)

≤ 1 + C((1− εA1)v) + |B|WC(εA1 v)

≤ 1 + C((1− εA1)v) +
vW

δW
C(εA1 v)

≤ C((1− ε)v) +
vW

δW − 1
C(εv) for some ε ∈ (0, ε(v)],(14)

where the second inequality follows from the fact that |(xj)⊥| ≤W , the third inequal-
ity follows from

∑k
j=1 C(|A=(xj)||B	(xj)|) ≤ C(

∑k
j=1 |A=(xj)||B	(xj)|) = C(|A
�

(bi)||B	(xj)|) since {A=(xj) | j = 1, . . . , k} is a partition of A
�(bi) and the func-
tion C(·) is assumed to be superadditive, the fourth inequality follows from |B|W ≤
v(|A|, |B|)W /δW , and the last inequality follows from the fact that v ≥ δ2 and δ ≥ 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMS FOR DUALIZATION OVER POSETS 503

Step 16. Since εA2 > ε(v)
W by our selection of z ∈ Qi, and εB2 > ε(v), we get

C(v) ≤ 1 + C(|A||B	(z)|) + |Max(Qi \ z+)|C(|A
	(z)||B|)

≤ 1 + C((1 − εB2)v) +W · C((1− εA2)v)

≤ 1 + C((1 − ε(v))v) +W · C
((

1− ε(v)
W

)
v

)
.(15)

Steps 19–20. Symmetric to steps 11–12, we get again (14).

4.2.2. Proof of Theorem 1. We show by induction on v = v(A,B) that re-
currences (13)–(15) imply that C(v) ≤ R(v) def= vχ(v). Since, for min{|A|, |B|} < δ,
step 3 of the algorithm implies that C(v) = 1, we may assume that min{|A|, |B|} ≥ δ,
i.e., v ≥ δ2 = 4.

Let us consider first recurrence (15). Using the induction hypothesis and the
monotonicity of X (v), we obtain

C(v) ≤ 1 + [(1 − ε(v))v]χ(v) +W

[(
1− ε(v)

W

)
v

]χ(v)

≤ 1 +
(
e−ρ(W) +We−ρ(W)/W

)
vχ(v) ≤ vχ(v),(16)

since 1− e−ρ(W) −We−ρ(W)/W ≥ 1/2 for all W ≥ 1.
Let us next consider (13) and note that the monotonicity of C(v) implies that

C((1 − ε(v))v) ≤ C((1 − ε(v)
W)v), concluding by (16) that C(v) ≤ R(v) for this case,

too.
Let us now consider (14) and apply induction to get

C(v) ≤ [(1 − ε)v]χ(v) +
vW

δW − 1
[εv]χ(v) = ψ(ε)vχ(v),

where ψ(ε) def= (1 − ε)χ(v) + vW

δW −1
εχ(v). Since ψ(ε) is convex in ε, ψ(0) = 1, ε ≤ ε(v),

and

ψ(ε(v)) =
(

1− ρ(W)
χ(v)

)χ(v)

+
vW

δW − 1

(
ρ(W)
χ(v)

)χ(v)

≤ e−ρ(W) +
vW

δW − 1

(
ρ(W)
χ(v)

)χ(v)

= 1.

By the definition of χ(v), it follows that ψ(ε) ≤ 1, and hence, C(v) ≤ vχ(v).
Note that, for δ ≥ 2 and W ≥ 1, we have (χ/ρ(W))χ < 3 (v/δ)W , and thus,

χ(v) <
W log(v/δ) + log 3

log(χ/ρ(W))
∼ Wρ(W) log v

log log v
.

As v(A,B) < m2, we get χ(v) = o(Wρ(W) logm), concluding the proof of the theo-
rem.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

504 KHALED M. ELBASSIONI

5. Dualization in products of forests.

5.1. The algorithm. Let P = P1 × · · · × Pn, where the precedence graph of
each poset Pi is a forest, and let A,B ⊆ P be two antichains satisfying (4). The
algorithm is shown in Figure 9.

If the precedence graph of Pi is not connected, for some i ∈ [n], we decompose the
problem into a number of subproblems over posets with connected precedence graphs
(steps 3–4 of FD; cf. Proposition 2).

Starting from step 7 of FD, we decompose Q ⊆ P by picking a ∈ A, b ∈ B, and
an i ∈ [n], such that ai �� bi. If in-deg(Qi) ≤ out-deg(Qi), then we set Q′

i ← Qi ∩ a+
i

and Q′′
i ← Qi \ Q′

i; otherwise, we set Q′′
i ← Qi ∩ b−i and Q′

i ← Qi \ Q′′
i . In the latter

case, we should use the symmetric versions of the decomposition rules used for the
former case, and a brief way to describe this is to replace P by its dual poset P∗ and
exchange the roles of A and B in these rules (step 9 of FD). Assume, without loss of
generality, in the following that the former case holds.

As in the case of lattices, the algorithm uses the effective volume v = v(A,B) to
compute the threshold

ε(v) =
1

χ(v)
, where χ(v)χ(v) = vd, v = v(A,B).

If the minimum of εA def= |A	(ai)|/|A| and εB def= |B
	(ai)|/|B| is bigger than ε(v),
then Rule (R1) is used for decomposition (step 13 of FD). Otherwise, we proceed as
follows. Let Qe

i = {x ∈ Q′
i | x⊥∩Q′′

i �= ∅} be the set of elements in Q′
i with immediate

predecessors in Q′′
i (see Figure 8). Let, for each x ∈ Qe

i , Qi(x) = {y ∈ Q′′
i ∩ x− : y �∈

z− for all z ∈ Qe
i with z ≺ x}, A(x) = A(Qi(x) × Q), and B(x) = B(Qi(x) × Q).

Observe that Qi(x) and Qi(y) are independent posets for x �= y, x, y ∈ Qe
i , and that

B(x) ∩ (Q′
i ×Q) = B	(x) for all x ∈ Qe

i , since the precedence graph of Qi is a tree.
Further, letting Qr

i = Q′′
i \

(⋃
x∈Qe

i
Qi(x)

)
, we can apply Rule (R2) but stop

the decomposition after processing the first layer {y ∈ x⊥ | x ∈ Qe
i }. This gives the

following set of duality testing subproblems (steps 15–17 of FD):

Q′
i ×Q ⊆ A+ ∪ (B	(ai))−,

Qr
i ×Q ⊆ (A
	(ai))+ ∪ (B
	(ai))−,(17)

Qi(x) × (Q∩ a+) ⊆ (A(x))+ ∪ (B(x) \ B	(ai))− ∀a ∈ A�(x), x ∈ Qe
i .

To see the last decomposition in (17), fix an x ∈ Qe
i , and make use of Lemma 1

by taking z ← x and R′′
i ← Qi(x).

Finally, if εA ≤ ε(v) < εB, then we use Rule (R2′); see steps 19–21 of FD.

5.2. Analysis of algorithm FD. As before, we first write the recurrences cor-
responding to the different recursive calls. By steps 3–4 of FD and Proposition 2, we
may assume that the precedence graph of each poset Qi is connected.

Step 13. Suppose that the connected components of Q′′
i are Q1

i , . . . ,Qh
i . Then

C(v(A,B)) ≤ 1 + C(|A||B	(ai)|) +
h∑

j=1

C(|A(Qj
i ×Q)||B|)

≤ 1 + C(|A||B	(ai)|) + C(|A
	(ai)||B|)
= 1 + C((1− εB)v) + C((1 − εA)v) ≤ 1 + 2C((1 − ε(v))v),(18)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMS FOR DUALIZATION OVER POSETS 505

x4 x6

Qi(x
2)

Qi(x
1)

Qr
i

Q′i

Qi(x
3)

x2

x3

x1

Q′′i

x5

Qe
i

Fig. 8. Decomposing the forest Qi.

Procedure FD(Q,A,B):
Input: A subposet of a product of forests Q = Q1 × · · · × Qn ⊆ P and two antichains A,B ⊆ P
Output: true if Q ⊆ (A+ ∪ B−) and false otherwise

1. A ← A(Q), B ← B(Q)
2. A ← PROJECT(Q,A), B ← PROJECT(Q,B)
3. if there is an i ∈ [n] such that Qi can be decomposed into independent

posets Q1
i , . . . ,Qr

i , then

4. return
∧r

j=1 FD(Qj
i ×Q,A,B)

5. if min{|A|, |B|} < δ = 4 then
6. return POLY-DUAL(Q,A,B)
7. Let a ∈ A, b ∈ B, and i ∈ [n] be such that ai �� bi

8. if in-deg(Qi) > out-deg(Qi) then
9. P ← P∗, exchange A and B
10. εA ← |A�(ai)|

|A| and εB ← |B ��(ai)|
|B|

11. Let Q′
i ← Qi ∩ a+

i , Q′′
i ← Qi \ Q′

i
12. if min{εA, εB} > ε(v(A,B)) then

13. return FD(Q′
i ×Q,A,B) ∧ FD(Q′′

i ×Q,A,B)
14. if εB ≤ ε(v(A,B)) then
15. Let Qe

i = {x ∈ Q′
i | x⊥ ∩ Q′′

i �= ∅},
Qi(x) = {y ∈ Q′′

i ∩ x− : y �∈ z− for all z ∈ Qe
i with z ≺ x} for x ∈ Qe

i , and
Qr

i = Q′′
i \

(⋃
x∈Qe

i
Qi(x)

)
16. d1 ← FD(Q′

i ×Q,A,B); d2 ← FD(Qr
i ×Q,A,B)

17. return d1 ∧ d2 ∧ (
∧

x∈Qe
i

∧
a∈A�(x) FD(Qi(x)× (Q∩ a+),A,B))

18. else
19. Let x1, . . . , xk be the elements of Q′

i in topologically nondecreasing order

20. d← FD(Q′′
i ×Q,A,B)

21. return d ∧ (∧j∈[k]

∧
(b(y)∈B�(y):y∈(xj)⊥) FD

({xj} × [Q∩ (⋂y∈(xj)⊥ b(y)−
)]

,A,B))

Fig. 9. The dualization procedure for forests.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

506 KHALED M. ELBASSIONI

since A(Qj
i ×Q), for j = 1, . . . , h, partition A
	(ai).

Steps 16–17 of FD. From (17) and the fact that {A(x) | x ∈ Qe
i} is a partition of

A, we get the recurrence

C(v) ≤ 1 + C(|A||B	(ai)|) + C(|A
	(ai)||B
	(ai)|)(19)

+
∑

x∈Qe
i

|A�(x)|C(|A(x)||B(x) \ B	(ai)|)

≤ 1 + C((1 − εB)v) + (|A|+ 1)C(εBv)

≤ C((1 − ε)v) +
v

2
C(εv) for some ε ∈ (0, ε(v)],

where the last inequality follows from the assumption that min{|A|, |B|} ≥ 4, and
hence |A|+ 1 ≤ |A||B|/3 = v/3.

Steps 20–21 of FD. Since |(xj)⊥| ≤ d for every xj ∈ Q′
i, by our assumption that

in-deg(Qi) ≤ out-deg(Qi) (see steps 8–9 of the algorithm), we get

C(v(A,B)) ≤ 1 + C(|A
	(ai)||B|) +
k∑

j=1

⎛
⎝ ∏

y∈(xj)⊥
|B	(y)|

⎞
⎠C(|A=(xj)||B	(xj)|)

≤ 1 + C(|A
	(ai)||B|) + |B|dC(|A	(ai)||B	(ai)|)

≤ 1 + C((1 − εA)v) +
vd

4
C(εAv)

≤ C((1 − ε)v) +
vd

2
C(εv) for some ε ∈ (0, ε(v)].(20)

Note that this the only place in which the bound d on the degrees appears.
As in subsection 4.2.2, we can show by induction on v that recurrences (18)–(20)

imply C(v) ≤ R(v) def= vχ(v). Noting that χ(v) < 2χ(m) ∼ 2d logm/ log logm, we get
the bound stated in Theorem 2.

6. Dualization algorithm in products of lattices of intervals. Let L =
L1 × · · · × Ln be a product of n lattices of intervals, defined, respectively, by sets of
intervals I1, . . . , In, and denote by li the minimum element of Li. In this section we
prove Theorem 3. We fix ε = 1/(2 lnm) and use v(A,B,L) = |A||B|∑n

i=1 |Li| as a
measure of the volume of the problem.

We begin with the following simple property satisfied by any lattice of intervals.
Proposition 5. Let Li be a lattice of intervals. Then (i) |x�| ≤ 2 for all x �= li

in Li, and (ii) |x⊥| ≤ 2 for all x ∈ Li.
Proof. (i) Assume nonminimum x ∈ Li has |x�| ≥ 3. Let I1, I2, and I3 be 3

immediate successors of x in Li. Let I1 = [a, b], I2 = [c, d], where a, b, c, d ∈ R, and
a < c < b < d. Then x = I1 ∩ I2 = [c, b]. Let I3 = [e, f]. Now, I1 ∩ I3 = x implies
that e = c, and I2 ∩ I3 = x implies that f = b. This gives the contradiction I3 = x.

(ii) Assume x ∈ Li has |x⊥| ≥ 3. Let I1, I2, and I3 be 3 immediate predecessors
of x in Li. Let I1 = [a, b], I2 = [c, d], where a, b, c, d ∈ R, and a < b, c < d, a < c, and
b < d. Then x = Span(I1, I2) = [a, d]. Let I3 = [e, f]. Now, Span(I1, I3) = x implies
that f = d, and Span(I2, I3) = x implies that e = a. This gives the contradiction
I3 = x.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMS FOR DUALIZATION OVER POSETS 507

Given subsets A,B ⊆ L that satisfy (4) and a product of lattices of intervals
Q ⊆ L, we follow the general framework as in Figure 4, but use a high-frequency
based decomposition. More precisely, assuming v(A,B,Q) ≥ 2 at a general recursion
level, we check if either condition (i) or (ii) of Lemma 5 is satisfied. If neither is
satisfied, then we can find an element x ∈ Q\ (A+ ∪B−). Otherwise, we consider the
following cases.

Case 1. If i ∈ [n] and z ∈ Qi satisfy condition (i) of Lemma 5 (with α = 2), then
we consider two subcases.

Case 1.1. If Qi is a total order (chain), then use the following decomposition of
Qi: Q′

i ← z+ ∩Qi, Q′′
i ← Qi \Q′

i. Then |B(Q′
i×Q)| ≤ (1− ε)|B| and |A(Q′′

i ×Q)| ≤
|A| − 1. This reduces the original problem of volume v = |A||B|∑n

i=1 |Qi| into two
subproblems of volumes

v′ ≤ |A||B|(1− ε)
(n∑

i=1

|Qi| − 1
)
≤ (1− ε)v,

v′′ ≤ (|A| − 1)|B|
(n∑

i=1

|Qi| − 1
)
≤ v − 1.

Case 1.2. Otherwise (Qi is not a chain), let w be the largest element, with respect
to the precedence relation on the lattice Qi, such that |w⊥| = 2 (see Figure 10(a)).
Denote by q and y, respectively, the two immediate predecessors of w in Qi, and
assume that, without loss of generality, that |B�(y)| ≥ |B�(q)|. It is not hard to see
that Qi∩y− is a lattice of intervals and that Qi \y− is a chain. (Indeed, let Iq = [a, b]
and Iy = [c, d] be the two intervals represented by q and y, respectively, and assume
that a < c (and therefore b < d). Then the former claim follows from the fact that
every element in y− ⊆ Qi is associated with an interval, which is the intersection or
span of some intervals in Ii, each of which is a subinterval in Iy. The latter claim
follows from the fact that if an element p ∈ q− \y− has two immediate predecessors p′

and p′′ representing intervals Ip′ = [e, f] and Ip′′ = [g, h], where e < g, then we must
have p′′ ∈ y−, for otherwise Iy ⊂ Span(Ip′′ , Iy) ⊂ Span(Ip, Iy), giving a contradiction
with the fact that y is an immediate predecessor of w.)

Now we consider two cases:
(i) if z � w, then we use the decomposition Q′

i ← z+ ∩Qi, Q′′
i ← Qi \ Q′

i;
(ii) z �� w: in this case, we decompose Qi as Q′

i ← Qi ∩ y−, Q′′
i ← Qi \ y−.

In case (i), we again get that |B(Q′
i×Q)| ≤ (1− ε)|B| and |A(Q′′

i ×Q)| ≤ |A|−1, and
consequently, the resulting problems are of respective volumes v′ ≤ (1− ε)v and v′′ ≤
v−1. In case (ii), we know that |B�(y)| ≥ ε

2 |B| and thus get |B(Q′′
i ×Q)| ≤ (1−ε/2)|B|

and |Q′
i| ≤ |Qi|−1, and therefore, the resulting two problems have volumes v′ ≤ v−1

and v′′ ≤ (1− ε/2)v.
Case 2. Now assume that i ∈ [n] and z ∈ Qi satisfy condition (ii) of Lemma 5.

Consider further two subcases.
Case 2.1. If z does not represent the empty interval of Li, then let Iz = [a, b] be

the interval corresponding to z, and letQL
i ⊆ Qi be the lattice of intervals I = [c, d] for

which c < a, and likewise, let QR
i ⊆ Qi be the lattice of intervals I = [e, f] for which

f > b (see Figure 10(b)). Note that these definitions imply that (QL
i ∪{li})∩z− = {li},

(QR
i ∪ {li})∩ z− = {li}, and QL

i ∪ z− ∪QR
i = Q, where li = min(Qi). Note also that

QL
i ∪ QR

i �= ∅ since z �= max(Qi). By our selection of z, either

(i) |{a ∈ A | ai ∈ QL
i \ {li}}| ≥

ε

2
|A|, or (ii) |{a ∈ A | ai ∈ QR

i \ {li}}| ≥
ε

2
|A|.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

508 KHALED M. ELBASSIONI

Q′i
q

li

Q′′i
y

w

(a) Decomposition rule used in Case 1.2
(ii).

z

Q′′i

QR
i

QL
i = Q′i

(b) Decomposition rule used in Case 2.1.

Fig. 10. Decomposing the lattice Li.

(Note that it is possible that li ∈ QL
i if there are two disjoint intervals in Ii whose left

endpoints are strictly to the left of the left endpoint of z.) In case (i), we decomposeQi

as follows: Q′
i ← QL

i , Q′′
i ← (Qi\Q′

i)∪{li}. Note that bothQ′
i andQ′′

i are also lattices
of intervals, that |Q′

i| ≤ |Qi| − 1 since z �∈ Q′
i, and that A(Q′′

i × Q) ≤ (1 − ε/2)|A|,
since w �� y for all w ∈ Q′

i \ {li} and y ∈ Q′′
i \ {li} (indeed, if Iw = [c, d] is the

interval corresponding to w ∈ Q′
i \ {li} and Iy = [e, f] is the interval corresponding

to y ∈ Q′′
i \ {li}, then c < a while e ≥ a and thus Iw �⊆ Iy). Therefore, we get, in

this case, two subproblems of volumes v′ ≤ v − 1 and v′′ ≤ (1 − ε/2)v. In case (ii),
we similarly let Q′

i ← QR
i and Q′′

i ← (Qi \ Q′
i) ∪ {li}, and we decompose the original

problem into two subproblems of volumes v′ ≤ v−1 and v′′ ≤ (1−ε/2)v, respectively.
Case 2.2. Assume now that z = min(Qi) = li represents the empty interval of

Li. Note that all immediate successors of z represent pairwise disjoint intervals, and
that |z�| ≥ 2. Let z′ be the immediate successor of z representing the rightmost such
interval Iz′ = [a, b], and let QL

i ⊆ Qi be the lattice of intervals I = [c, d] for which
c < a. Note in this case that any interval [c, d] in Qi either must be strictly to the
left of Iz′ , i.e., with d < a, or must contain Iz′ (since z′ is the rightmost immediate
successor of z). By our choice of z, one of the sets {a ∈ A : ai ∈ QL

i } or A	(z′)
has a size of at least ε

2 |A|. In the former case we use the decomposition Q′
i ← QL

i ,
Q′′

i ← Qi \ Q′
i, and get two subproblems of volumes v′ ≤ v − 1 and v′′ ≤ (1 − ε/2)v.

In the latter case, we let Q′′
i ⊆ Qi be the lattice of intervals lying strictly to the left

of Iz′ and Q′
i ← ((z′)+ ∩ Qi) ∪ {z}, and get two subproblems of volumes v′ ≤ v − 1

and v′′ ≤ (1− ε/2)v.
Thus, in all cases, we apply the algorithm recursively to the resulting subproblems

and obtain the recurrence

C(v) ≤ 1 + C((1 − ε/2)v) + C(v − 1).

Together with C(v) ≤ 1, for v ≤ 1, this recurrence evaluates to C(v) ≤ v2 log v/ε. Since
v ≤ m2nμ, we get that the running time of the algorithm is O((m2nμ)4 ln m log(m2nμ)).

7. Concluding remarks. It is worth mentioning that each poset Pi belonging
to any of the classes of posets considered in this paper has constant dimension; i.e.,
Pi is isomorphic to a subposet of the product of a constant number of chains. In

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ALGORITHMS FOR DUALIZATION OVER POSETS 509

particular, the poset product P = P1 × · · · × Pn, over which we want to solve the
dualization problem, can be considered as a subposet of a chain product C = C1 ×
· · · × Cn′ , where n′ is linear in n. Although we know from [BEG+02] how to solve
the dualization problem on products of chains, it is not clear how such a result can
be used to solve the original dualization problem on P , since the solution we obtain
on C ⊇ P (that is, the element x ∈ I(A) \ B) might not be an element of P . In
fact, as we have seen, the algorithms presented for these classes of posets depend
heavily on the type of poset under consideration. This naturally raises the question
whether a more general approach can unify these results for posets Pi of bounded
dimension.

It is also not clear whether it is possible to solve the dualization problem in the
products of lattices of intervals in time ko(log k), where k = |A| + |B| + ∑n

i=1 |Li|,
by following a set of decomposition rules, as those used in section 4.2 to solve the
problem for general lattices. It seems that if this is to be achieved, then some new
decomposition rules are needed, since the current rules in section 4.2 depend expo-
nentially on the maximum out-degree of the lattice Li, which is O(|Ii|) in the case of
a lattice of a set of intervals Ii.

Finally, we note that, for the more general case of products of arbitrary posets, it
remains open whether the problem can be solved in quasi-polynomial time, even for
posets Pi of small size.

Acknowledgments. The author is grateful to Endre Boros, Vladimir Gurvich,
Leonid Khachiyan, and Kazuhisa Makino for helpful discussions, and to two anony-
mous reviewers for useful comments.

REFERENCES

[AB92] M. Anthony and N. Biggs, Computational Learning Theory: An Introduction, Cam-
bridge University Press, Cambridge, UK, 1992.

[AIS93] R. Agrawal, T. Imieliński, and A. Swami, Mining association rules between sets of
items in large databases, in SIGMOD ’93: Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, Washington, D.C., ACM, New
York, 1993, pp. 207–216.

[AMS+96] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, Fast
discovery of association rules, in Advances in Knowledge Discovery and Data
Mining, MIT Press, Cambridge, MA, 1996, pp. 307–328.

[BI95] J. C. Bioch and T. Ibaraki, Complexity of identification and dualization of positive
Boolean functions, Inform. and Comput., 123 (1995), pp. 50–63.

[BEGK04] E. Boros, K. Elbassioni, V. Gurvich, and L. Khachiyan, Enumerating minimal
dicuts and strongly connected subgraphs and related geometric problems, in Integer
Programming and Combinatorial Optimization, Lecture Notes in Comput. Sci.
3064, Springer, Berlin, 2004, pp. 152–162.

[BEG+02] E. Boros, K. Elbassioni, V. Gurvich, L. Khachiyan, and K. Makino, Dual-bounded
generating problems: All minimal integer solutions for a monotone system of
linear inequalities, SIAM J. Comput., 31 (2002), pp. 1624–1643.

[BGKM03] E. Boros, V. Gurvich, L. Khachiyan, and K. Makino, On maximal frequent and
minimal infrequent sets in binary matrices, Ann. Math. Artif. Intell., 39 (2003),
pp. 211–221.

[CDL86] B. Chazelle, R. L. Drysdale, and D. T. Lee, Computing the largest empty rectangle,
SIAM J. Comput., 15 (1986), pp. 300–315.

[Col87] C. J. Colbourn, The Combinatorics of Network Reliability, Oxford University Press,
New York, 1987.

[EGLM03] J. Edmonds, J. Gryz, D. Liang, and R. J. Miller, Mining for empty spaces in large
data sets, Theoret. Comput. Sci., 296 (2003), pp. 435–452.

[EG95] T. Eiter and G. Gottlob, Identifying the minimal transversals of a hypergraph and
related problems, SIAM J. Comput., 24 (1995), pp. 1278–1304.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

510 KHALED M. ELBASSIONI

[Elb02a] K. Elbassioni, An algorithm for dualization in products of lattices and its applications,
in ESA, Lecture Notes in Comput. Sci. 2461, Springer, Berlin, 2002, pp. 424–435.

[Elb02b] K. Elbassioni, On dualization in products of forests, in STACS, Lecture Notes in
Comput. Sci. 2285, Springer, Berlin, 2002, pp. 142–153.

[Elb06] K. Elbassioni, Finding all minimal infrequent multi-dimensional intervals, in LATIN
2006, Lecture Notes in Comput. Sci. 3887, Springer, Berlin, 2006, pp. 423–434.

[FK96] M. L. Fredman and L. Khachiyan, On the complexity of dualization of monotone
disjunctive normal forms, J. Algorithms, 21 (1996), pp. 618–628.

[GMKT97] D. Gunopulos, H. Mannila, R. Khardon, and H. Toivonen, Data mining, hyper-
graph transversals, and machine learning (extended abstract), in PODS ’97: Pro-
ceedings of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, Tuscon, AZ, ACM Press, New York, 1997, pp. 209–216.

[Gur75] V. Gurvich, Nash-solvability of games in pure strategies, USSR Comput. Math and
Math. Phys., 15 (1975), pp. 357–371.

[GK99] V. Gurvich and L. Khachiyan, On generating the irredundant conjunctive and dis-
junctive normal forms of monotone Boolean functions, Discrete Appl. Math.,
96/97 (1999), pp. 363–373.

[HCC93] J. Han, Y. Cai, and N. Cercone, Data-driven discovery of quantitative rules in
relational databases, IEEE Trans. Knowledge Data Engrg., 5 (1993), pp. 29–40.

[HF95] J. Han and Y. Fu, Discovery of multiple-level association rules from large databases,
in VLDB ’95: Proceedings of the 21st International Conference on Very Large
Data Bases, Zurich, Switzerland, Morgan Kaufmann, San Francisco, CA, 1995,
pp. 420–431.

[KBE+07] L. Khachiyan, E. Boros, K. Elbassioni, V. Gurvich, and K. Makino, Dual-bounded
generating problems: Efficient and inefficient points for discrete probability dis-
tributions and sparse boxes for multidimensional data, Theoret. Comput. Sci., 379
(2007), pp. 361–376.

[LLK80] E. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, Generating all maximal in-
dependent sets: NP-hardness and polynomial-time algorithms, SIAM J. Comput.,
9 (1980), pp. 558–565.

[LKH97] B. Liu, L.-P. Ku, and W. Hsu, Discovering interesting holes in data, in Proceedings
of the 15th International Conference on Artificial Intelligence (IJCAI), Nagoya,
Japan, 1997, pp. 930–935.

[MR95] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press,
Cambridge, UK, 1995.

[BLQ98] L.-F. Mun, B. Liu, K. Wang, and X.-Z. Qi, Using decision tree induction for dis-
covering holes in data, in PRICAI ’98: Proceedings of the 5th Pacific Rim Inter-
national Conference on Artificial Intelligence, Singapore, Springer, London, 1998,
pp. 182–193.

[Orl90] M. Orlowski, A new algorithm for the largest empty rectangle problem, Algorithmica,
5 (1990), pp. 65–73.

[SA95] R. Srikant and R. Agrawal, Mining generalized association rules, in VLDB ’95: Pro-
ceedings of the 21st International Conference on Very Large Data Bases, Zurich,
Switzerland, Morgan Kaufmann, San Francisco, CA, 1995, pp. 407–419.

[SA96] R. Srikant and R. Agrawal, Mining quantitative association rules in large relational
tables, in SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, Montreal, Canada, ACM, New York, 1996,
pp. 1–12.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 511–516

LINEAR BOUND ON THE IRREGULARITY STRENGTH AND THE
TOTAL VERTEX IRREGULARITY STRENGTH OF GRAPHS∗

JAKUB PRZYBY�LO†

Abstract. Let G be a simple graph of order n with no isolated edges and at most one iso-
lated vertex. For a positive integer w, a w-weighting of G is a function f : E(G) → {1, 2, . . . , w}.
An irregularity strength of G, s(G), is the smallest w such that there is a w-weighting of G for
which

∑
e:u∈e f(e) �= ∑

e:v∈e f(e) for all pairs of different vertices u, v ∈ V (G). We prove that
s(G) < 112 n

δ
+ 28, where δ is the minimum degree of G. For d-regular graphs, we strengthen this to

s(G) < 40 n
d

+11. These upper bounds represent improvements of many existing ones. Similar results
concerning the “total” version of the irregularity strength are also discussed.

Key words. irregularity strength, total vertex irregularity strength, graph weighting, graph
labeling

AMS subject classification. 05C78

DOI. 10.1137/070707385

1. Introduction. All graphs we consider are simple and finite. For a given graph
G and its vertex v, NG(v), dG(v), V (G), E(G), δ(G), and Δ(G) (or simply N(v), d(v),
V , E, δ, and Δ) denote the set of neighbors and the degree of v in G, the set of vertices,
the set of edges, the minimum degree, and the maximum degree ofG, respectively. For a
positive integer w, an (edge) w-weighting of G is a function f : E → {1, . . . , w} = [w],
while a total w-weighting of G is a function f : V ∪E → [w]. We call f(e) and f(v) the
weight of an edge e ∈ E and the weight of a vertex v ∈ V , respectively, and the greatest
value of f is called the strength of f . The induced weight of v ∈ V in turn is defined
as cf (v) =

∑
u∈N(v) f(vu) if f is an edge weighting or cf (v) = f(v) +

∑
u∈N(v) f(vu)

if f is a total weighting of G. We say that a weighting f is irregular if the obtained
induced weights of all vertices are distinct. The smallest strength of an irregular w-
weighting of G is called the irregularity strength of G and is denoted by s(G). If it
does not exist, we write s(G) =∞. It is easy to see that s(G) <∞ iff G contains no
isolated edges and at most one isolated vertex. Analogously, the smallest strength of
an irregular total w-weighting of G is called the total (vertex) irregularity strength of
G and is denoted by tvs(G). It is easy to see that it is well defined for all graphs.

The irregularity strength was introduced by Chartrand et al. [4] and was moti-
vated by the well-known fact that a simple graph of order at least 2 must contain
a pair of vertices with the same degree. On the other hand, a multigraph can be ir-
regular, i.e., the degrees of its vertices can all be distinct. Now suppose we want to
multiply the edges of a graph G in order to create an irregular multigraph of it. Then
s(G) is equal to the smallest maximum multiplicity of an edge in such a multigraph.

Let G be a graph of order n. In [2] Aigner and Triesch proved that s(G) ≤ n− 1
if G is connected and different from a triangle, and s(G) ≤ n + 1 otherwise. In [9]
Nierhoff refined their method and showed that s(G) ≤ n− 1 for all graphs with finite
irregularity strength, except for K3. This bound is tight, e.g., for stars. A natural

∗Received by the editors November 5, 2007; accepted for publication (in revised form) August 19,
2008; published electronically February 4, 2009. This research was supported by MNiSzW grant
N N201 389134.

http://www.siam.org/journals/sidma/23-1/70738.html
†AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

(przybylo@wms.mat.agh.edu.pl).

511

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

512 JAKUB PRZYBY�LO

question rises, What happens if the minimum degree of the graph is (much) greater
than 1? A simple counting argument (see, e.g., [4]) shows that s(G) ≥ ⌈n+d−1

d

⌉
for

all d-regular graphs, where d ≥ 2. On the other hand, Faudree and Lehel conjectured
that n

d is also “almost” sufficient, i.e., that there exists an absolute constant c such
that s(G) ≤ n

d + c for all d-regular graphs with d ≥ 2, but they managed only to show
that s(G) ≤ n

2 + 9 holds for them; see [6]. A similar question was formerly posed by
Jacobson. See also [8] for a survey by Lehel on this parameter.

Note that if a graph is not regular, but “most” of its vertices are of the same, say
minimal, degree δ, then we must expect to have at least about n

δ weights available
to create an irregular weighting. Actually, the same situation exists in the case of the
total irregularity strength, especially if δ is large (since then, the single additional
weight at the vertex does not change too much). For the d-regular graphs, one can
check that tvs(G) ≥ �n+d

d+1 	; see [3].
The total irregularity strength was introduced quite recently by Bača et al. as a

variant of the irregularity strength. In [3] they showed a few simple bounds on this
parameter. Among others, � n+δ

Δ+1	 ≤ tvs(G) ≤ n+ Δ− 2δ+ 1 holds for all graphs and
tvs(G) ≤ n−1−
 n−2

Δ+1� is true for graphs with no isolated vertices or edges. Moreover,
quite obviously, tvs(G) ≤ s(G).

In this paper we prove new upper bounds for s(G) and tvs(G) which are linear
in n

δ and hence improve the result by Nierhoff for graphs with δ large enough. In
the case of regular graphs, the constants in the bounding linear functions are better;
consequently we also obtain the improvement of the result by Faudree and Lehel (in
most of the cases). In the next section we recall the latest results concerning bounds
on s(G) and discuss their consequences for tvs(G). Our main results are formally
stated at the end of that section. In the last part of the paper we present their proofs.

2. Recent results and their consequences. In the paper [7] from 2002, a
sizable step forward in the survey on the irregularity strength was made by Frieze
et al.

Theorem 1 (see [7]). Let G be a graph of order n with no isolated vertices or
edges.

(a) If Δ ≤
(n
ln n)

1
4 �, then s(G) ≤ 7n(1

δ + 1
Δ).

(b) If
(n
ln n)

1
4 �+ 1 ≤ Δ ≤
n 1

2 �, then s(G) ≤ 60n
δ .

(c) If Δ ≥
n 1
2 �+ 1, δ ≥ �6 logn	, then s(G) ≤ 336(logn)n

δ .
A similar theorem, but with better constants, holds in the case of the regular

graphs.
Theorem 2 (see [7]). Let G be a d-regular graph of order n with no isolated

vertices or edges.
(a) If d ≤
(n

ln n)
1
4 �, then s(G) ≤ 10n

d + 1.
(b) If
(n

ln n)
1
4 �+ 1 ≤ d ≤
n 1

2 �, then s(G) ≤ 48n
d + 1.

(c) If d ≥
n 1
2 �+ 1, then s(G) ≤ 240(logn)n

d + 1.
These very nice results were recently supplemented (and improved in some cases)

by Cuckler and Lazebnik.
Theorem 3 (see [5]). Let G be a graph of order n with no isolated vertices or

edges.
(a) If δ ≥ 10n

3
4 log

1
4 n, then s(G) ≤ 48n

δ + 6.

(b) If G is d-regular with d ≥ 10
4
3n

2
3 log

1
3 n, then s(G) ≤ 48n

d + 6.
Let g be a w-weighting of a graph G. To prove a simple lemma, which is crucial

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LINEAR BOUND ON THE IRREGULARITY STRENGTH 513

in our reasoning on the total irregularity strength, let us define

mg = max
X⊆V (G)

{|X | : cg(u) = cg(v) for all u, v ∈ X} .

Lemma 4. Let g be a w-weighting of a graph G, w ≥ 2. Then, there exists an
irregular total (wmg)-weighting of G, or an irregular total ((w − 1)mg + 1)-weighting
of G if G is a regular graph.

Proof. For each vertex v ∈ V (G), denote its weight class as

Cv = {u ∈ V (G) : cg(u) = cg(v)} .

Note that |Cv| ≤ mg for each v. Define a new weighting f : E(G) → {mg, . . . , wmg}
by f(e) = mgg(e). To create a total weighting of it, it is now sufficient to define the
values of f on V (G). Note that the weight classes remained the same under f , and
that cf (u)− cf (v) = 0 or |cf (u)− cf (v)| ≥ mg for every pair u, v ∈ V (G). Therefore,
for each weight class, say C = {v1, . . . , vt} (t ≤ mg), it is sufficient to set f(vi) = i
for i = 1, . . . , t. It is easy to see that such a total weighting is irregular.

Additionally, if G is a d-regular graph, then we can modify f by decreasing the
value of f(e) bymg−1 for each e ∈ E(G). This way, the strength of the total weighting
obtained will be equal to (w − 1)mg + 1. Moreover, this weighting will be irregular,
since the induced weight of each vertex was decreased by d(mg − 1).

It was shown in [7], that “a bit” more weights would also suffice in the case of an
edge weighting.

Lemma 5 (see [7]). Let G be a graph without isolated vertices or edges, and let g
be a w-weighting of G. Then, there exists an irregular ((3w + 1)mg)-weighting of G,
or an irregular ((3w − 1)mg + 1)-weighting of G if G is a regular graph.

Theorems 1 and 2 were thus the consequences of the lemma above and the fol-
lowing probabilistic results; see [7].

Lemma 6 (see [7]). Let G be a graph. If Δ ≤ (n
ln n)

1
4 , then there exists g : E(G)→

{1, 2} such that mg ≤ n
δ + n

Δ .
Lemma 7 (see [7]). Let G be a graph. If Δ ≤ n

1
2 , then there exists g : E(G) →

{1, 2, 3} such that mg ≤ 6n
δ .

Lemma 8 (see [7]). Let G be a graph. If n ≥ 10 and δ ≥ 10 logn, then there exists
g : E(G)→ {1, 2} such that mg ≤ 48(logn)n

δ .
If we now take the total irregularity strength into account, then by the three

lemmas above and Lemma 4, we immediately obtain the following two theorems.
Theorem 9. Let G be a graph of order n with no isolated vertices.
(a) If Δ ≤
(n

ln n)
1
4 �, then tvs(G) ≤ 2n(1

δ + 1
Δ).

(b) If
(n
ln n)

1
4 �+ 1 ≤ Δ ≤
n 1

2 �, then tvs(G) ≤ 18n
δ .

(c) If Δ ≥
n 1
2 �+ 1, δ ≥ �10 logn	, then tvs(G) ≤ 96(logn)n

δ .
Theorem 10. Let G be a d-regular graph of order n with no isolated vertices.
(a) If d ≤
(n

ln n)
1
4 �, then tvs(G) ≤ 2n

d + 1.
(b) If
(n

ln n)
1
4 �+ 1 ≤ d ≤
n 1

2 �, then tvs(G) ≤ 12n
d + 1.

(c) If d ≥
n 1
2 �+ 1, then tvs(G) ≤ 48(logn)n

d + 1.
Observe, however, that neither of the theorems that we have already mentioned

provided the existence of a general linear in n
δ upper bound on s(G) or tvs(G), i.e.,

the one which holds for all ranges of δ, including the cases of regular graphs. Such
bounds are presented in the theorems below, which will be proven in the next section.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

514 JAKUB PRZYBY�LO

The proofs are considerably shorter than the ones from [5] and [7], and are not based
on the probabilistic method.

Theorem 11. Let G be a graph of order n with no isolated vertices or edges.
Then s(G) < 112n

δ + 28.
Theorem 12 (see [10]). Let G be a d-regular graph of order n with no isolated

vertices or edges. Then s(G) < 40n
d + 11.

Theorem 13. Let G be a graph of order n with no isolated vertices. Then
tvs(G) < 32n

δ + 8.
Theorem 14. Let G be a d-regular graph of order n with no isolated vertices.

Then tvs(G) < 8n
d + 3.

Actually, the constants in Theorem 12 can be reduced by a careful construction,
which is quite long, down to 16n

d + 6; see [10] for details. Still, Theorems 1, 2, 3, 9,
and 10 give better bounds in some cases. Theorems 11, 12, 13, and 14 are better in
general, though.

3. Proof of linear bounds. Given a graph G, a powerful tool for us is the
following theorem by Addario-Berry, Dalal, and Reed on the existence of a spanning
subgraph of G with degrees from lists consistent with the specified conditions.

Theorem 15 (see [1]). Given a graph G = (V,E) and for all v ∈ V , integers
a−v , a

+
v such that a−v ≤
d(v)

2 � ≤ a+
v < d(v), and

a+
v ≤ min

(
d(v) + a−v

2
+ 1, 2a−v + 3

)
,(1)

there exists a spanning subgraph H of G such that dH(v) ∈ {a−v , a−v + 1, a+
v , a

+
v + 1}

for every v ∈ V .
Corollary 16. Let G = (V,E) be a graph with δ = δ(G) > 0, Δ = Δ(G), and let

λ =
⌈

δ
4

⌉
. There exists a family of sets Ad, δ ≤ d ≤ Δ, (each) of λ consecutive integers

such that given any numbers av ∈ AdG(v) for each v ∈ V , there exists a spanning
(containing all the vertices of G) subgraph H of G such that dH(v) ∈ {av, av +1, av +
λ+ 1, av + λ+ 2} for every v ∈ V .

Proof. It is sufficient to prove that for each d ∈ {δ, . . . ,Δ}, there exists a set
Ad of λ consecutive integers such that if dG(v) = d for a vertex v ∈ V , then any
a−v ∈ Ad and a+

v := a−v + λ + 1 comply with the requirements of Theorem 15. The
only exceptions occur for d = 1 and d = 2 (hence λ = 1), when a−v = a+

v = 0
and a−v = 0, a+

v = 1, respectively, meet the assumptions of Theorem 15. But then
{a−v , a−v + 1, a+

v , a
+
v + 1} ⊂ {0, 1, 2, 3}; hence it is sufficient to take A1 = A2 = {0}.

Assume then now that v ∈ V , d = dG(v) ≥ 3 and set Ad := {⌈d
2

⌉−λ−1, . . . ,
⌈

d
2

⌉−
2}. Clearly |Ad| = λ. Fix any number av ∈ Ad. Since a−v := av ≤

⌈
d
2

⌉ − 2 ≤ ⌊d
2

⌋
,

a+
v := av + λ+ 1 ≥ ⌊d

2

⌋
and a+

v ≤
⌈

d
2

⌉
+ λ− 1 =

⌈
d
2

⌉
+
⌈

δ
4

⌉− 1 ≤ ⌈ d
2

⌉
+
⌈

d
4

⌉− 1 < d;
hence it is sufficient to prove (1) for a−v and a+

v . Note then that a+
v = a−v + λ + 1 ≤

a−v +
⌈

d
4

⌉
+ 1 = a−v + (

⌈
d
4

⌉ − 2) + 3 ≤ 2a−v + 3 and a+
v = a−

v

2 + a−
v

2 + λ + 1 ≤
a−

v

2 + a−
v

2 +
⌈

d
4

⌉
+ 1 ≤ a−

v

2 + 1
2 (
⌈

d
2

⌉− 2) +
⌈

d
4

⌉
+ 1 ≤ a−

v

2 + d
2 + 1; thus (1) holds.

We shall also make use of the following observation.
Lemma 17. Let I1, . . . , Ik be (each) sets of λ > 0 consecutive integers, and let

S1, . . . , Sk be any finite pairwise disjoint sets. Denote S =
⋃

1≤i≤k Si and n = |S|.
Then, there exists a function F : S → Z such that F (v) ∈ Ii for each v ∈ Si,
i = 1, . . . , k, and

max
j∈Z

|{v ∈ S : F (v) = j}| ≤
⌈n
λ

⌉
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LINEAR BOUND ON THE IRREGULARITY STRENGTH 515

Proof. Let F : S → Z be a function such that F (v) ∈ Ii for each v ∈ Si,
i = 1, . . . , k, and let Cj = {v ∈ S : F (v) = j} for all j ∈ Z. Denote the deficiency of
F as

dF =
∑
j∈Z

max
{
|Cj | −

⌈n
λ

⌉
, 0
}
.

If dF = 0, then F complies with our requirements. Choose then such an F that
minimizes dF and assume that dF > 0. Then there exist i, u, and j such that u ∈ Si,
F (u) = j ∈ Ii, and |Cj | >

⌈
n
λ

⌉
. Note that if there is j′ ∈ Ii such that |Cj′ | <

⌈
n
λ

⌉
,

then setting F (u) = j′ (instead of j) would decrease the deficiency of F ; hence we
may assume that |Cl| ≥

⌈
n
λ

⌉
for each l ∈ Ii. But then we have

n =
∑
l∈Z

|Cl| ≥
∑
l∈Ii

|Cl| > λ ·
⌈n
λ

⌉
≥ n,

a contradiction.
Observe that the result above is the best possible, e.g., if k = 1. Given a set A ⊆ Z

and an integer b, let b+A denote the set {b+ a : a ∈ A}. Note that if we exchanged
(shifted) each set Ii from Lemma 17 with (to) b + Ii, i = 1, . . . , k, then the function
F + b would satisfy the statement of that lemma.

Lemma 18. Let G be a graph of order n with δ = δ(G) > 0. Then there exists a
2-weighting f of G such that

mf < 16
n

δ
+ 4.

The same conclusion also holds for every d-regular graph with

mf < 8
n

d
+ 2.

Proof. Let G = (V,E) be a graph of order n with δ = δ(G) > 0 and Δ = Δ(G),
and set λ =

⌈
δ
4

⌉
. Denote Sd = {v ∈ V : dG(v) = d} and let Ad be the sets from

Corollary 16 (|Ad| = λ), d = δ, . . . ,Δ. Suppose now that we have chosen some av ∈ Ad

for each vertex v ∈ V of degree d, δ ≤ d ≤ Δ. Then, by Corollary 16, there exists a
spanning subgraph H of G, such that

dH(v) ∈ {av, av + 1, av + λ+ 1, av + λ+ 2}(2)

for every v ∈ V . Then, if we set f(e) = 2 for e ∈ E(H), and f(e) = 1 for the rest of
the edges, we will have

cf (v) = dG(v) + dH(v)(3)

for each v ∈ V . Let Id = d+Ad for d = δ, . . . ,Δ. By Lemma 17, there exists a function
F : V → Z such that F (v) ∈ Id if dG(v) = d, and that

max
j∈Z

|{v ∈ V : F (v) = j}| ≤
⌈n
λ

⌉
.(4)

Now for each v ∈ V of degree d, δ ≤ d ≤ Δ, assume that av was chosen in such a way
that d+ av = F (v) (it is possible, since F (v) ∈ Id = d+Ad). By (2), (3) and such a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

516 JAKUB PRZYBY�LO

choice, we have

cf (v) = F (v) ∈ Id or(5)

cf (v) = F (v) + 1 ∈ (1 + Id) or(6)

cf (v) = F (v) + λ+ 1 ∈ ((λ + 1) + Id) or(7)

cf (v) = F (v) + λ+ 2 ∈ ((λ + 2) + Id)(8)

for each vertex v ∈ V of degree d, δ ≤ d ≤ Δ.
Since the inequality (4) holds also if we exchange F with F + 1, F + λ + 1, or

F +λ+2 (and Id with 1+ Id, (λ+1)+ Id, or (λ+2)+ Id, d = δ, . . . ,Δ, respectively),
then by (5)–(8), the following is true:

max
j∈Z

|{v ∈ V : cf (v) = j}| ≤ 4
⌈n
λ

⌉
.(9)

Note that if G is a d-regular graph, then F (v) + 1 < F (u) + λ + 1 for every
v, u ∈ V . This is because F (v), F (u) ∈ Id = d+Ad, where Ad is a set of λ consecutive
integers. Consequently, we obtain the following improved inequality for the d-regular
graphs:

max
j∈Z

|{v ∈ V : cf (v) = j}| ≤ 2
⌈n
λ

⌉
.(10)

Finally, since
⌈

n
λ

⌉ ≤ ⌈4n
δ

⌉
< 4n

δ + 1, by (9) and (10) we obtain the thesis.
Proof of Theorems 11 and 12. The results follow by Lemmas 18 and 5.
Proof of Theorems 13 and 14. The results follow by Lemmas 18 and 4.

REFERENCES

[1] L. Addario-Berry, K. Dalal, and B. A. Reed, Degree constrained subgraphs, in Proceedings
of GRACO2005, Electron. Notes Discrete Math. 19, Elsevier, Amsterdam, 2005, pp. 257–
263.

[2] M. Aigner and E. Triesch, Irregular assignments of trees and forests, SIAM J. Discrete
Math., 3 (1990), pp. 439–449.

[3] M. Bača, S. Jendrol, M. Miller, and J. Ryan, On irregular total labellings, Discrete Math.,
307 (2007), pp. 1378–1388.

[4] G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, and F. Saba,
Irregular networks, Congr. Numer., 64 (1988), pp. 197–210.

[5] B. Cuckler and F. Lazebnik, Irregularity strength of dense graphs, J. Graph Theory, 58
(2008), pp. 299–313.

[6] R. J. Faudree and J. Lehel, Bound on the Irregularity Strength of Regular Graphs, Colloq.
Math. Soc. Jańos Bolyai 52, North–Holland, Amsterdam, 1988, pp. 247–256.

[7] A. Frieze, R. J. Gould, M. Karoński, and F. Pfender, On graph irregularity strength,
J. Graph Theory, 41 (2002), pp. 120–137.

[8] J. Lehel, Facts and quests on degree irregular assignments, in Graph Theory, Combinatorics,
and Applications, Vol. 2, Wiley, New York, 1991, pp. 765–781.

[9] T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math., 13
(2000), pp. 313–323.

[10] J. Przyby�lo, Irregularity strength of regular graphs, Electron. J. Combin., 15 (2008), �R82.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 517–526

A GENERAL LOWER BOUND FOR POTENTIALLY H-GRAPHIC
SEQUENCES∗

MICHAEL J. FERRARA† AND JOHN SCHMITT‡

Abstract. We consider a variation of the classical Turán-type extremal problem as introduced
by Erdős, Jacobson, and Lehel in [Graphs realizing the same degree sequences and their respective
clique numbers, in Graph Theory, Combinatorics, and Applications, Vol. 1, Wiley, New York, 1991,
pp. 439–449]. Let π be an n-element graphic sequence and σ(π) be the sum of the terms in π, that
is, the degree sum. Let H be a graph. We wish to determine the smallest m such that any n-term
graphic sequence π having σ(π) ≥ m has some realization containing H as a subgraph. Denote this
value m by σ(H, n). For an arbitrarily chosen H, we construct a graphic sequence π∗(H, n) such that
σ(π∗(H, n)) + 2 ≤ σ(H, n). Furthermore, we conjecture that equality holds in general, as this is the
case for all choices of H where σ(H, n) is currently known. We support this conjecture by examining
those graphs that are the complement of triangle-free graphs and showing that the conjecture holds
despite the wide variety of structure in this class. We will conclude with a brief discussion of a
connection between potentially H-graphic sequences and H-saturated graphs of minimum size.

Key words. degree sequence, potentially graphic sequence, H-saturated graph

AMS subject classifications. Primary, 05C07; Secondary, 05C35

DOI. 10.1137/080715275

1. Introduction. A good reference for any undefined terms is [1]. Let G be a
simple undirected graph, without loops or multiple edges. Let V (G) and E(G) denote
the vertex set and edge set ofG, respectively, and let d(v) denote the degree of a vertex
v. LetG denote the complement ofG. Denote the complete graph on t vertices and the
complete bipartite graph with partite sets of size r and s by Kt and Kr,s, respectively.
Additionally, let Kt

s denote the complete balanced multipartite graph with t partite
sets of size s. Given any two graphs G and H , their join, denoted G + H , is the
graph with V (G + H) = V (G) ∪ V (H) and E(G + H) = E(G) ∪ E(H) ∪ {gh | g ∈
V (G), h ∈ V (H)}. Additionally, let α(G) denote the independence number of G. If
H is a subgraph of G, we will write H ⊂ G, and if H is an induced subgraph of G,
we will write H < G.

A sequence of nonnegative integers π = (d1, d2, . . . , dn) is called graphic if there
is a (simple) graph G of order n having degree sequence π. In this case, G is said to
realize π, and we will write π = π(G). If a sequence π consists of the terms d1, . . . , dt

having multiplicities μ1, . . . , μt, we may write π = (d μ1
1 , . . . , d μt

t).
For a given graph H , a sequence π is said to be potentially H-graphic if there

is some realization of π which contains H as a subgraph. Additionally, let σ(π)
denote the sum of the terms of π. Define σ(H,n) to be the smallest integer m so
that every n-term graphic sequence π with σ(π) ≥ m is potentially H-graphic. In
this paper, given an arbitrary H , we construct a graphic sequence π∗(H,n) such that
σ(π∗(H,n))+2 ≤ σ(H,n). We then show that equality holds for all graphsH that are
the complement of a triangle-free graph. There have been numerous papers, including

∗Received by the editors February 7, 2008; accepted for publication (in revised form) September
25, 2008; published electronically February 4, 2009.

http://www.siam.org/journals/sidma/23-1/71527.html
†Department of Theoretical and Applied Mathematics, The University of Akron, Akron, OH

44325-4002 (mjf@uakron.edu).
‡Department of Mathematics, Middlebury College, Middlebury, VT 05753 (jschmitt@middlebury.

edu).

517

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

518 MICHAEL J. FERRARA AND JOHN SCHMITT

but certainly not limited to [5], [3], [4], [7], [9], [11], [12], [14], [15], [16], [17], [18], [19],
and [21], that consider the potential problem for specific graphs or narrow families of
graphs. It is our hope that the ideas and results presented in this paper will facilitate
a broader consideration of problems of this type.

2. A short history. In this section, we present the extremal sequences for two
classes of graphs: complete graphs and complete balanced bipartite graphs. Our goal
is to motivate the general constructions in the next section.

2.1. H = Kt. In [7] Erdős, Jacobson, and Lehel conjectured that σ(Kt, n) =
(t−2)(2n− t+1)+2. The conjecture arises from consideration of the graph K(t−2) +
K(n−t+2). It is easy to observe that this graph contains noKt, is the unique realization
of the sequence ((n−1)t−2, (t−2)n−t+2), and has degree sum (t−2)(2n− t+1). The
cases t = 3, 4, and 5 were proved separately (see, respectively, [7], [12], [15], and [16]),
and Li, Song, and Luo [17] proved the conjecture true via linear algebraic techniques
for t ≥ 6 and n ≥ (t

2

)
+ 3. A purely graph-theoretic proof was given in [10] and also

as a corollary to the main result in [4].

2.2. H = Ks,s. The following results appear in [12] and [18]. Here E1, E2, E3,
and E4 are somewhat technical numerical classes which, based on the parity of n and
s, ensure that the given degree sums are even.

Theorem 2.1.

• If s is an odd, positive integer and n ≥ 4s2 + 3s− 8, then

(1) σ(Ks,s, n) =

{
(5
2s− 5

2)n− 11
8 s

2 + 5
2s+ 7

8 if (s, n) ∈ E3,

(5
2s− 5

2)n− 11
8 s

2 + 5
2s+ 15

8 if (s, n) ∈ E4.

• If s is an even, positive integer and n ≥ 4s2 − s− 6, then

(2) σ(Ks,s, n) =

{
(5
2s− 2)n− 11

8 s
2 + 5

4s+ 2 if (s, n) ∈ E1,

(5
2s− 2)n− 11

8 s
2 + 5

4s+ 1 if (s, n) ∈ E2.

In order to establish a lower bound on σ(Ks,s, n), the authors present several
sequences dependent on the parities of s and n.

(i) If s is odd and (s, n) ∈ E3, then

(3) π(Ks,s, n) =
(

(n− 1)s−1, 2s− 2, 2s− 3, . . . ,
3
2
s+

3
2
,
3
2
s+

1
2
,

(
3
2
s− 1

2

) s
2+ 3

2

,

(
3
2
s− 3

2

)n−2s

,
3
2
s− 5

2

)
.

(ii) If s is odd and (s, n) ∈ E4, then

(4) π(Ks,s, n) =
(

(n− 1)s−1, 2s− 2, 2s− 3, . . . ,
3
2
s+

3
2
,
3
2
s+

1
2
,

(
3
2
s− 1

2

) s
2+ 3

2

,

(
3
2
s− 3

2

)n−2s+1)
.

(iii) If s is even and (s, n) ∈ E1, then
(5)

π(Ks,s, n) =

(
(n− 1)s−1, 2s− 2, 2s− 3, . . . ,

3
2
s+ 1,

3
2
s,

(
3
2
s− 1

)n− 3
2 s+2)

)
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A LOWER BOUND FOR POTENTIALLY H-GRAPHIC SEQUENCES 519

(iv) If s is even and (s, n) ∈ E2, then

π(Ks,s, n) =
(

(n− 1)s−1, 2s− 2, 2s− 3, . . . ,
3
2
s+ 1,

3
2
s,(6)

(
3
2
s− 1

)n− 3
2 s+1

,

(
3
2
s− 2

))
.

Each of these sequences can be realized by the join of Ks−1 and some graph H ′.
This H ′ has no vertices of degree s, one vertex of degree s− 1, two vertices of degree
s − 2, and so on. More generally, no choice of H ′ contains x1 vertices of degree x2,
where x1 +x2 = s+1. This implies that H ′ cannot possibly contain a copy of Kx1,x2 .
However, if any of these sequences were to be potentially Ks,s-graphic, at least s+ 1
of the vertices in a copy of Ks,s would have to be chosen from H ′. These vertices, in
turn, would comprise some Kx1,x2 , where x1 + x2 = s+ 1.

3. A general lower bound. We assume that H has no isolated vertices and
furthermore that n is sufficiently large relative to |V (H)|. We define the quantities

u(H) = |V (H)| − α(H)− 1

and

d(H) = min{Δ(F) : F < H, |V (F)| = α(H) + 1}.
Consider the following sequence:

(7) π̂(H,n) = ((n− 1)u(H), (u(H) + d(H)− 1)n−u(H)).

If this sequence is not graphic, that is, if n−u(H) and d(H)−1 are both odd, we
reduce the smallest term by one. To see that this will result in a graphic sequence, we
make two observations. First, (d(H) − 1)-regular graphs of order n − u(H) ≥ d(H)
exist whenever d(H)− 1 and n− u(H) are not both odd. If n and d(H)− 1 are both
odd, it is not difficult to show that the sequence ((d(H) − 1)n−u(H)−1, d(H) − 2) is
graphic.

Every realization of π̂(H,n) is a complete graph on u(H) vertices, joined to a
graph (call it G′) that is either (d(H)−1)-regular or nearly so. Note that the subgraph
induced by any α(H) + 1 vertices of H has maximum degree at least d(H). Thus, no
realization of π̂(H,n) could possibly contain a copy of H , as at least α(H)+1 vertices
of such a subgraph would have to lie in G′.

The degree sum of (7) is

(8) σ(π̂(H,n)) = n(2u(H) + d(H)− 1)− u(H)(u(H) + d(H)),

and if both n− u(H) and d(H)− 1 are odd, the sum will be one smaller.
To gain some additional insight, we will consider first the case H = Kt. Then

u(Kt) = t− 2 and d(Kt) = 1 so that

π̂(Kt, n) = ((n− 1)t−2, (t− 2)n−t+2).

This is exactly the extremal sequence put forth to establish the lower bound for
σ(Kt, n). Similarly, the extremal sequences used to determine σ(kK2, n), σ(C2k+1, n),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

520 MICHAEL J. FERRARA AND JOHN SCHMITT

and σ(K1 +kK2, n) are precisely π̂(kK2, n), π̂(C2k+1, n), and π̂(K1 +kK2, n), respec-
tively (see [12], [14], and [11]). However, σ(π̂(Ks,s, n)) is asymptotically equivalent
to, but smaller than, σ(Ks,s, n). Along these lines, we are able to refine the sequence
given above.

For convenience, let d = d(H), u = u(H), and α = α(H), and let vi(H) denote
the number of vertices of degree i in H . For all i, d ≤ i ≤ α, we define the quantity mi

to be the minimum number of vertices of degree at least i over all induced subgraphs
F of H with |V (F)| = α + 1 and

∑α
j=i vj(F) > 0 and 0 if no such subgraphs exist.

The quantities ni, d ≤ i ≤ α, are defined recursively such that nd = md−1 and either
ni = min{mi−1, ni−1} if mi ≥ 1 or ni = 0 if mi = 0. Finally, we define δα−1 = nα−1,
and for d ≤ i ≤ α− 2 we define δi = ni − ni+1. We do not define δα, as any induced
subgraph composed of a maximum independent set and an additional vertex has at
most one vertex of degree α, and as such nα is always 0.

We now consider the following sequence:

π∗(H,n) = ((n− 1)u, (u+ α− 1)δα−1 , (u + α− 2)δα−2 ,(9)
. . . (u+ d)δd , (u+ d− 1)n−u−Σδi).

The sequence π∗ is constructed so that it contains ni terms that are at least u+ i
and δi terms that are exactly ui.

If this sequence is not graphic, then we will reduce the smallest term which is
strictly greater than u(H) in the sequence by one and redefine π∗(H,n) to be this
graphic sequence instead. The following is the main result of this paper.

Theorem 3.1. Given a graph H, with u(H) and d(H) as above, and n sufficiently
large, then

(10) σ(H,n) ≥ max{σ(π∗(H∗, n)) + 2 | H∗ ⊆ H}.

Proof. Let H∗ be the subgraph of H that realizes the maximum above. Let G be
any realization of π∗(H∗, n). We show that G does not contain a copy of H∗. Note
that this degree sequence implies that G is a copy of Ku(H∗) joined to another graph
G∗ on n− u(H∗) vertices. Assume that there is a copy of H∗ contained in G. There
are at least α(H∗) + 1 vertices from G∗ that must belong to this copy of H . Let H∗∗

denote the subgraph of H∗ induced by these α(H∗) + 1 vertices. Notice, however,
that no α(H∗) + 1 vertices of G∗ have sufficient degree to contain a copy of any H∗∗.
In particular, if

∑
j≥� vj(H∗∗) > 0, then H∗∗ contains at least m� vertices of degree �

or greater. By our construction, there are at most n� ≤ m� − 1 vertices of degree at
least � in G∗. This contradicts the assumption that H∗∗ ⊆ G∗. Thus, G contains no
copy of H∗ and hence no copy of H .

Theorem 3.1 requires that we examine all subgraphs of H . To see that this is
necessary, we consider the split graph Kt + Ks with a pendant vertex v adjacent to
one of the vertices in the independent set of order s. For this choice of H , α(H) = s,
and hence u(H) = (s+ t+ 1)− s− 1 = t and d(H) = 1. However, if we remove v, the
pendant vertex, and consider the split graph, we can see that u(Kt +Ks) = t− 1 but
any (s+1)-vertex subgraph ofKt+Ks must contain some vertex from theKt, implying
that d(Kt +Ks) = s. Therefore, if we choose s ≥ 3, σ(π∗(Kt +Ks, n)) ≥ σ(π∗(H,n)).

The reader should note that for any values of n and s, π∗(Ks,s, n) is exactly those
sequences given in (3)–(6). Additionally, given values of n, s, and t, π∗(Kt

s, n) matches
the extremal sequences given in [23].

We conjecture that equality holds in Theorem 3.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A LOWER BOUND FOR POTENTIALLY H-GRAPHIC SEQUENCES 521

Conjecture 1. Let H be any graph, and let n be a sufficiently large integer.
Then

(11) σ(H,n) = max{σ(π∗(H∗, n)) + 2 | H∗ ⊆ H}.

We also pose the weaker conjecture—that the bound put forth is asymptotically
correct.

Conjecture 2. Let H be any graph, and let ε > 0. Then there exists an
n0 = n0(ε,H) such that for any n > n0

(12) σ(H,n) ≤ max{n(2u(H∗) + d(H∗)− 1 + ε) | H∗ ⊆ H}.

Conjectures 1 and 2 have been verified for a wide variety of graphs. This includes
but is not limited to complete graphs and unions of complete graphs [7], [9], [12], [15],
[16], [17], complete bipartite graphs [3], [12], [18], complete multipartite graphs [5],
[20], matchings [12], cycles [14], (generalized) friendship graphs [2], [9], [11], and split
graphs [4]. At this time we know of no subgraph for which these conjectures do not
hold for sufficiently large n.

While Conjecture 1 seems challenging, we feel that there is a good chance that
Conjecture 2 could be verified. In the following section, we will verify Conjecture 1
for a broad class of graphs.

4. Complements of triangle-free graphs. We now turn our attention to
graphs H of order k ≥ 3 with α(H) = 2, or those graphs that are the complement of
a triangle-free graph. The main result of this section is as follows.

Theorem 4.1. Let H be any graph of order k with α(H) = 2. Then

σ(H,n) = σ(π∗(H,n)) + 2.

Any graph H in this class has u(H) = k − 3 and d(H) ≤ 2. We prove Theorem
4.1 by considering the cases d(H) = 1 and d(H) = 2 separately. In each case we
construct a graph H(d) that contains H as a subgraph and show that σ(H(d), n) =
σ(π∗(H,n))+2. This implies that max{σ(π∗(H∗, n))+2 | H∗ ⊆ H} = σ(π∗(H,n))+2.

The following result from [4] will be very useful.
Theorem 4.2. If n ≥ 3s+ 2t2 + 3t− 3, then

σ(Ks +Kt, n) =
{

(t+ 2s− 3)n− (s− 1)(s+ t− 1) + 2 if t or n− s is odd,
(t+ 2s− 3)n− (s− 1)(s+ t− 1) + 1 if t and n− s are even.

It is not difficult to see that if d(H) = 2, then H is isomorphic to Kk− tK2, where
k is the order of H and t is some positive integer that is at most k

2 . Let H be a graph
of order k ≥ 3 with α(H) = 2 and d(H) = 2, and let n ≥ k be an integer. Then, by
(9), we have the following.

(i) If n ≡ k − 3 (mod 2), then

(13) π∗(H,n) = ((n− 1)k−3, (k − 2)n−k+3).

(ii) If n 	≡ k − 3 (mod 2), then

(14) π∗(H,n) = ((n− 1)k−3, (k − 2)n−k+2, k − 3).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

522 MICHAEL J. FERRARA AND JOHN SCHMITT

Proposition 4.3. Let H be a graph of order k with α(H) = 2 and d(H) = 2,
and let n be a sufficiently large integer. Then

σ(H,n) = σ(π∗(H,n)) + 2 = n(2k − 5)− k2 + 4k − 1−m,

where m = n− k + 3 (mod 2).
Proof. The fact that σ(H,n) ≥ σ(π∗(H,n)) + 2 follows from Theorem 3.1. Note

that any H with α(H) = 2 and d(H) = 2 is a subgraph of Kk−2 + K2 so that
σ(H,n) ≤ σ(Kk−2 +K2, n). Theorem 4.2 implies

σ(Kk−2 +K2, n) = n(2k − 5)− k2 + 4k − 1 +m = σ(π∗(H,n)) + 2.

The proposition follows.
Those graphs H with α(H) = 2 and d(H) = 1 have a considerably wider variety

of structures. Any graph H in this class is the complement of a triangle-free graph
G that is not a matching. The disjoint union of two cliques falls into this class, as
does Kk − tP3 and many other graphs of varying densities. We are able to verify
Conjecture 1 for this diverse class of graphs. Our first observation is that any graph
H with α(H) = 2 and d(H) = 1 must contain K2∪K1 as an induced subgraph, as this
is the only graph on three vertices with maximum degree 1. This also immediately
implies that md = m1 = 2. Therefore, if H is any graph of order k with α(H) = 2
and d(H) = 1 and n ≥ k is an integer, then (9) implies that

(15) π∗(H,n) =
(
(n− 1)k−3, (k − 3)n−k+3

)
.

The following lemma from [12] will be useful in the next proof.
Lemma 4.4. If π is a graphical sequence with a realization G containing H as

a subgraph, then there is a realization G′ of π containing H with the vertices of H
having the |V (H)| largest degrees of π.

We now show that Conjecture 1 holds when α(H) = 2 and d(H) = 1.
Proposition 4.5. Let H be a graph of order k with α(H) = 2 and d(H) = 1,

and let n be a sufficiently large integer. Then

σ(H,n) = σ(π∗(H,n)) + 2 = n(2k − 6)− k2 + 5k − 4.

Proof. Let π be a nonincreasing, n-term graphic sequence with σ(π) ≥ n(2k−6)−
k2 +5k−4. Note that if n is sufficiently large, σ(π) ≥ σ(Kk−1, n) ≥ σ(Kk−3 +K3, n).
We will show that π has a realization containing Kk−3 + (K2 ∪K1) and, as we have
previously observed, that H must contain an induced copy of K2 ∪K1.

Let G be a realization of π that contains a copy of Kk−3 +K3 on the k vertices
of highest degree in G. Such a realization exists by Lemma 4.4. Let S denote this
subgraph, let F denote the complete subgraph of order k − 3, and let I denote the
independent set of order 3 in S so that S = F+I. We can assume that F is comprised
of the k − 3 vertices of highest degree in G. If not, there are vertices x in I and y
in F such that d(y) < d(x). We wish to create a realization of G containing a copy
of Kk−3 + K3 on the k vertices of highest degree such that x is in F and y is in I.
If x is adjacent to all the other vertices in S, we can simply exchange the roles of x
and y. If x was not adjacent to exactly one vertex in I, say, v, then as d(x) > d(y)
there is some vertex w outside of S that is adjacent to x but not to y. We will create
a new realization of π by adding the edges yw and xv and deleting the edges yv
and xw. The case where x is not adjacent to exactly two vertices in I is handled

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A LOWER BOUND FOR POTENTIALLY H-GRAPHIC SEQUENCES 523

similarly. Repeating this process allows us to create a realization of π containing
Kk−3 +K3 = F + I in which the k − 3 highest degree vertices of G lie in F .

Let x1 and x2 be the vertices in I having the highest degrees, and note that
σ(π) ≥ σ(Kk−1, n) implies d(x1) and d(x2) are both at least k − 2. If there is any
edge in the subgraph induced by I, then G contains a copy of Kk−3 + (K2∪K1), and
we are done. Therefore, we may assume that I is an independent set. Let N1 and
N2 denote N(x1) \ S and N(x2) \ S, respectively, and note that both of these sets
are nonempty since d(x1) and d(x2) are both at least k − 2. If y1 and y2 are distinct
vertices in N1 and N2, respectively, then we may assume that y1 and y2 are adjacent.
If they are not, then we would exchange the edges x1y1 and x2y2 for the nonedges
x1x2 and y1y2, creating an edge in I and completing the proof.

The goal of the next part of this proof is to show that we may assume that there
is some vertex v in F such that d(v) ≤ 4k.

Consider first the case where N2 ⊆ N1 (N1 ⊆ N2 is handled identically), and let
w be a vertex in N2. If |N1 \N2| > k, then d(w) > d(x2) since w is adjacent to every
vertex in N1 \N2. We therefore assume that |N1 \N2| ≤ k. Also note that N1 ∩N2

is a clique and hence contains at most k − 2 vertices. There is some vertex v in F
that is not adjacent to w; otherwise, d(w) > d(x1), which contradicts our choice of G.
Let y be a neighbor of v that does not lie in S ∪ N1 ∪ N2. If no such y exists, then
clearly d(v) ≤ 4k. We claim that wy is an edge of G, lest we could exchange the edges
x1w, x2w, and yv for the nonedges wv,wy, and x1x2 (see Figure 1), creating an edge
in I. However, if the degree of v is more than 4k, there are at least k− 1 such choices
for y. This implies that d(w) ≥ k + |N1| > d(x1), which contradicts our choice of G.
Thus we may assume that d(v) ≤ 4k.

1

2F

I

x

x

w N2

y

v

Fig. 1. N2 ⊆ N1.

Assume now that there is some vertex w1 in N1 \ N2 and some vertex w2 in
N2 \ N1. We first show that N1 ∪N2 is complete. To accomplish this, we need only
show that for any w′

1 in N1 \N2, w1w
′
1 is an edge of G (or, symmetrically, if w′

2 is an
element of N2 \ N1, then w2w

′
2 is an edge in G). If not, we can exchange the edges

x1w1, x1w
′
1, and x2w2 for the nonedges w1w

′
1, x1w2, and x1x2, creating an edge in

I and completing the proof. Thus, since N1 ∪ N2 is complete, we may assume that
|N1 ∪N2| ≤ k− 1. Again, there is some v in F such that w2 is not adjacent to v, lest
d(w2) > d(x2). Let y be any neighbor of v not in S∪N1∪N2. Then w1 is adjacent to
y or else we could exchange the edges yv, x1w1, and x2w2 for the nonedges yw1, vw2,
and x1x2 (see Figure 2), creating an edge in I. If d(v) > 3k, then there are at least
k such choices for y, implying that d(w1) ≥ k + |N1 ∪ N2| − 1 > d(x1), which is a
contradiction.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

524 MICHAEL J. FERRARA AND JOHN SCHMITT

y

1

2F

I

x

x

w2

1w
N

N

1

2

v

Fig. 2. N2 �⊆ N1 and N1 �⊆ N2.

Hence, we may assume that there is some vertex v in F such that d(v) ≤ 4k. As
a result, there are at most (k−4)(n−1)+4k edges adjacent to vertices in F , at most
12k edges adjacent to vertices in I, and, as both N1 and N2 have at most 4k vertices
each, at most 4k(8k) = 32k2 edges adjacent to vertices in N1 ∪ N2. This is at most
(k− 4)n+32k2 +15k+ 4 edges. However, there are at least σ(π)/2 = (k− 3 + o(1))n
edges in G, so for n sufficiently large there is some edge yz in G such that y is not
adjacent to any w1 in N1 and z is not adjacent to any w2 in N2, where w1 and
w2 may be the same vertex. We can therefore exchange the edges x1w1, x2w2, and
yz for the nonedges w1y, w2z, and x1x2, creating an edge in I and completing the
proof.

Propositions 4.3 and 4.5 together imply Theorem 4.1. As mentioned above, there
is quite a wide variety to the structures of those graphs H having independence
number 2, and yet we have demonstrated that σ(H,n) for this class depends only on
the value of d(H), as suggested by Conjecture 1.

5. H-saturated graphs. Here we describe the relationship of σ(H,n) to an-
other extremal function sat(n,H). We begin with the relevant terminology and re-
sults.

A graph G is said to be H-saturated if G contains no copy of H as a subgraph and
for any edge e not in G, G+ e does contain a copy of H . The problem of determining
the minimum number of edges in an H-saturated graph, denoted sat(n,H), was first
considered in 1963 by Erdős, Hajnal, and Moon [6] for H = Kt. They determined
that sat(n,Kt) = (t − 2)(n− 1)− (t−2

2

)
, which arises from consideration of the split

graph Kt−2 + Kn−t+2. The best known upper bound for an arbitrary graph H is
given by the following result of Kászonyi and Tuza [13].

Theorem 5.1 (Kászonyi and Tuza [13]). Let u(H) be as defined above, and set

s(H) = min{e(H∗)|α(H∗) = α(H), |V (H∗)| = α(H) + 1, H∗ ⊆ H};

then,

(16) sat(n,H) ≤ n
(
u(H) +

s(H)− 1
2

)
− u(H)

(
u(H) + s(H)

)
2

.

The reader should note that the bound given in Theorem 5.1 reflects the number
of edges in the join of Ku(H) and a graph which is (nearly) (s−1)-regular. Comparing
Theorem 5.1 to the construction of π∗(H,n), we note that d(H) ≤ s(H) and hence

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A LOWER BOUND FOR POTENTIALLY H-GRAPHIC SEQUENCES 525

that if i ≥ s(H), ni = 0. Theorems 5.1 and 3.1 immediately imply the following
result.

Theorem 5.2. Given a graph H, if there exists an H ′ ⊆ H with 2u(H ′)+d(H ′)−
1 ≥ 2u(H) + s(H)− 1, then for n sufficiently large we have

(17) 2sat(n,H) < σ(H,n).

In particular, this result holds if d(H) = s(H).
We strongly believe that the conclusion of Theorem 5.2 holds in general, even

though the hypothesis does not. Therefore, we conjecture the following.
Conjecture 3. Let H be a graph, and let n be a sufficiently large integer. Then

2sat(n,H) < σ(H,n).

As the problem of determining sat(n,H) has proven difficult over time, we are
not able to confirm Conjecture 3 in as many cases as Conjectures 1 and 2. We know
that Conjecture 3 holds for complete graphs [6], [7], tKp, and certain generalized
friendship graphs [8], C4 [12], [22], [24], and K1,t [13].

6. Conclusion. In light of Theorem 4.1, it may be interesting to individually
consider classes of graphs with fixed independence numbers. This may be a fruitful
direction, although the diversity in the structures of the (α(H) + 1) vertex induced
subgraphs of such graphs rapidly increases. We feel that this line of investigation
would move us closer to the goal of verifying either of Conjectures 1 and 2.

Acknowledgment. The authors would like to thank Mike Jacobson for his help-
ful comments and insightful questions that led to Theorem 4.1.

REFERENCES

[1] B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1978.
[2] G. Chen, J. Schmitt, and J. H. Yin, Graphic sequences with a realization containing a

generalized friendship graph, Discrete Math., 308 (2008), pp. 6226–6232.
[3] G. Chen, J. Li, and J. Yin, A variation of a classical Turán-type extremal problem, European

J. Combin., 25 (2004), pp. 989–1002.
[4] G. Chen and J. Yin, On Potentially Kr1,r2,...,rm -graphic Sequences, Util. Math., 72 (2007),

pp. 149–161.
[5] G. Chen, M. Ferrara, R. Gould, and J. Schmitt, Graphic sequences with a realization

containing a complete multipartite subgraph, Discrete Math, 308 (2008), pp. 5712–5721.
[6] P. Erdős, A. Hajnal, and J. W. Moon, A problem in graph theory, Amer. Math. Monthly,

71 (1964), pp. 1107–1110.
[7] P. Erdős, M. S. Jacobson, and J. Lehel, Graphs realizing the same degree sequences and

their respective clique numbers, in Graph Theory, Combinatorics, and Applications, Vol.
1, Alavi, Chartrand, Oellerman, and Schwenk, eds., Wiley, New York, 1991, pp. 439–449.

[8] R. Faudree, M. Ferrara, R. Gould, and M. Jacobson, tKp-saturated graphs, Discrete
Math., to appear.

[9] M. Ferrara, Graphic sequences with a realization containing a union of cliques, Graphs Com-
bin., 23 (2007), pp. 263–269.

[10] M. Ferrara, R. Gould, and J. Schmitt, Using edge swaps to prove the Erdős–Jacobson–
Lehel conjecture, Bull. Inst. Combin. Appl., to appear.

[11] M. Ferrara, R. Gould, and J. Schmitt, Graphic sequences with a realization containing a
friendship graph, Ars Combin., 85 (2007), pp. 161–171.

[12] R. Gould, M. Jacobson, and J. Lehel, Potentially G-graphic degree sequences, in Combina-
torics, Graph Theory, and Algorithms, Vol. I, Alavi, Lick, and Schwenk, eds., John Wiley
& Sons, New York, 1999, pp. 387–400.

[13] L. Kászonyi and Z. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory,
10 (1986), pp. 203–210.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

526 MICHAEL J. FERRARA AND JOHN SCHMITT

[14] C. Lai, The smallest degree sum that yields potentially Ck-graphical sequences, J. Combin.
Math. Combin. Comput., 49 (2004), pp. 57–64.

[15] J. Li and Z. Song, An extremal problem on the potentially Pk-graphic sequences, in Proceedings
of the International Symposium on Combinatorics and Applications, W. Y. C. Chen et.
al., eds., Tanjin, Nankai University, Nankai, 1996, pp. 269–276.

[16] J. Li and Z. Song, The smallest degree sum that yields potentially Pk-graphical sequences, J.
Graph Theory, 29 (1998), pp. 63–72.

[17] J. Li, Z. Song, and R. Luo, The Erdős–Jacobson–Lehel conjecture on potentially Pk-graphic
sequences is true, Sci. China Ser. A, 41 (1998), pp. 510–520.

[18] J. Li and J. Yin, The smallest degree sum that yields potentially Kr,r-graphic sequences, Sci.
China Ser. A, 45 (2002), pp. 694–705.

[19] J. Li and J. Yin, An extremal problem on potentially Kr,s-graphic sequences, Discrete Math.,
260 (2003), pp. 295–305.

[20] J. Li and J. Yin, Potentially Kr1,r2,...,rl,r,s-graphic sequences, Discrete Math., 307 (2007),
pp. 1167–1177.

[21] J. Li and J. Yin, Two sufficient conditions for a graphic sequence to have a realization with
prescribed clique size, Discrete Math., 301 (2005), pp. 218–227.

[22] L. T. Ollmann, K2,2-saturated graphs with a minimal number of edges, in Proceedings of
the 3rd Southeast Conference on Combinatorics, Graph Theory, and Computing (1972),
Utilitas Mathematica Publishing, Winnipeg, Canada, 1973, pp. 367–392.

[23] J. Schmitt, On Potentially P -graphic Degree Sequences and Saturated Graphs, Ph.D. Disser-
tation, Emory University, Atlanta, GA, 2005.

[24] Z. Tuza, C4-saturated graphs of minimum size, Acta Univ. Carolin. Math. Phys., 30 (1989),
pp. 161–167.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 527–559

DISTRIBUTIVE LATTICES DEFINED FOR REPRESENTATIONS OF
RANK TWO SEMISIMPLE LIE ALGEBRAS∗

L. WYATT ALVERSON II† , ROBERT G. DONNELLY† , SCOTT J. LEWIS† , MARTI

MCCLARD‡, ROBERT PERVINE† , ROBERT A. PROCTOR§ , AND N. J. WILDBERGER¶

Abstract. For a rank two root system and a pair of nonnegative integers, using only elementary
combinatorics we construct two posets. The constructions are uniform across the root systems
A1 ⊕ A1, A2, C2, and G2. Examples appear in Figures 3.2 and 3.3. We then form the distributive
lattices of order ideals of these posets. Corollary 5.4 gives elegant quotient-of-products expressions
for the rank generating functions of these lattices (thereby providing answers to a 1979 question of
Stanley). Also, Theorem 5.3 describes how these lattices provide a new combinatorial setting for
the Weyl characters of representations of rank two semisimple Lie algebras. Most of these lattices
are new; the rest of them (or related structures) have arisen in the work of Stanley, Kashiwara,
Nakashima, Littelmann, and Molev. In a future paper, one author shows that the posets constructed
here form a Dynkin diagram-indexed answer to a combinatorially posed classification question. In
a companion paper, some of these lattices are used to explicitly construct some representations of
rank two semisimple Lie algebras. This implies that these lattices are strongly Sperner.

Key words. distributive lattice, rank generating function, rank two semisimple Lie algebra,
representation

AMS subject classifications. 05A15, 05E10, 17B10

DOI. 10.1137/070689887

1. Introduction. One of the earliest combinatorial forays into Lie representa-
tion theory was Stanley’s [Sta1] in 1979. Certain polynomials arising from repre-
sentations which had elegant quotient-of-product forms captured his attention. He
observed that some of these polynomials were the rank generating functions of certain
distributive lattices. In Problem 3 of [Sta1] he asked if further distributive lattices
could be found which would be associated to more of the polynomials. Consider the
poset “2×3” shown in Figure 1.1, the product of chains with two and three elements.
Its lattice L(2, 3) = J(2×3) of order ideals is shown in Figure 1.1. Stanley knew that
the rank generating function for the general case L(k, n+1−k) = J

(
k× (n + 1− k)

)
satisfies the identity

∑
Njq

j =
(1− qn+1)(1 − qn) · · · (1− qn+2−k)

(1− qk)(1− qk−1) · · · (1− q) ,

where Nj is the number of order ideals in k× (n + 1− k) with j elements. The right-
hand side is the “Gaussian coefficient” q-analogue of the binomial coefficient

(
n+1

k

)
.

It is also a shifted version of the principal specialization of the Weyl character for the

∗Received by the editors April 28, 2007; accepted for publication (in revised form) September 26,
2008; published electronically February 4, 2009.

http://www.siam.org/journals/sidma/23-1/68988.html
†Department of Mathematics and Statistics, Murray State University, Murray, KY 42071

(leslie.alverson@murraystate.edu, rob.donnelly@murraystate.edu, scott.lewis@murraystate.edu, bob.
pervine@murraystate.edu).

‡Department of Mathematics, University of Tennessee, Knoxville, TN 37996 (mmcclard@math.
utk.edu).

§Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599 (rap@email.
unc.edu).

¶School of Mathematics, University of New South Wales, Sydney, NSW 2052, Australia
(n.wildberger@unsw.edu.au).

527

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

528 ALVERSON ET AL.

kth fundamental representation of the Lie algebra sl(n+ 1,C), the rank n simple Lie
algebra of type A. These considerations led Stanley to introduce the more general
distributive lattices L(λ, n+ 1), whose elements are semistandard tableaux of shape
λ with entries from {1, 2, . . . , n + 1}. Similar identities hold for the rank generat-
ing functions of these lattices. Stanley was aware that the polynomial associated to
the “last” fundamental representation of the Lie algebra sp(2n,C) specializes to the
(n + 1)st Catalan number 2

n+2

(
2n+1

n

)
when q is set to 1. Thus the principal special-

ization of the Weyl character for that representation is a q-analogue of the (n+ 1)st
Catalan number. The second author of this paper constructed a poset Pn such that
the distributive lattice Ln = J(Pn) of its order ideals has rank generating function

1−q2

1−qn+2

(
2n+1

n

)
q
, a shifted version of the principal specialization. So the total number

of order ideals from Pn is the (n+ 1)st Catalan number. This result now appears as
part (ccc) of Exercise 6.19 of [Sta3]. See Figure 1.1 for the poset P3; it has 14 order
ideals.

2× 3

�

�

�

�

�

�

�
�

���
�

��

�
�

�
�

�
�

L(2, 3) = J(2× 3)

�

�

� �

� �

� �

�

�

�
�

�
�

���
�

��

�
�

�� �
�

���
�

P3

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�� �

�
�� �

�
��

�
�

�
� ∼=

�

�

�

�
�

�

�

�

�

�
�

���
��

��
�

��

��
��

Fig. 1.1. The distributive lattices of order ideals of the posets 2 × 3 and P3 answer Stanley’s
1979 question for certain polynomials.

Here is the motivating question from [Sta1] posed by Stanley in 1979: “Problem
3: Which other of the polynomials [of Theorem 1] are the rank generating functions
for distributive lattices (or perhaps just posets) “naturally associated” with the root
system R?” We supply answers to this question by constructing eight two-parameter
families of distributive lattices. By the proof of Corollary 5.4, their rank generat-
ing functions are the shifted principal specializations of the Weyl characters of the
irreducible finite dimensional representations of the four rank two semisimple Lie al-
gebras A1 ⊕A1, A2, C2, and G2. The answers for C2 and G2 are largely new. Given
a rank two semisimple Lie algebra g and a pair of nonnegative integers, we first con-
struct two “g-semistandard posets.” The “g-semistandard” distributive lattices are
then obtained by ordering the order ideals of these posets by inclusion. For example,
the choices of G2 and nonnegative integer parameters (2, 2) specify the last poset in
each of Figures 3.2 and 3.3. According to Corollary 5.4, both of these posets have
1
5! (3 · 3 · 6 · 9 · 12 · 15) = 729 = 36 order ideals. The rank generating function for both
of the corresponding G2-semistandard lattices is

RGFG2(2, 2, q) ==
(1− q3)(1− q3)(1− q6)(1 − q9)(1 − q12)(1 − q15)

(1 − q)(1− q)(1 − q2)(1 − q3)(1 − q4)(1− q5) .

Hence our lattices Lβα
G2

(2, 2) and Lαβ
G2

(2, 2) are two answers to Problem 3 of [Sta1].
Since the 1970s, the “zoo” of finite sets of combinatorial objects which are enumer-

ated by quotient-of-products formulas has grown to include dozens of species. Here

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISTRIBUTIVE LATTICES 529

Corollary 5.4 adds Lβα
C2

(a, b), Lαβ
C2

(a, b), Lβα
G2

(a, b), and Lαβ
G2

(a, b) to this zoo; they are
analogues to the lattices L(λ, n). Our g-semistandard lattices are uniformly defined
across the four types of rank two semisimple Lie algebras. Corollary 5.4 also notes
that the sequence of rank cardinalities for any g-semistandard lattice is symmetric
and unimodal.

Only familiarity with the most basic Lie representation theory in [Hum] is needed
to read this paper. The central fact needed is that each irreducible finite dimensional
representation of a semisimple Lie algebra of rank n has a unique n-variate Weyl
character.

Some of the rank two g-semistandard lattices constructed here (or related objects)
have appeared in the work of Stanley, Kashiwara, Nakashima, Littelmann, Molev, and
several of the authors. However, taken as a whole, each of the C2- and G2-families
of g-semistandard lattices is new. The A2-family of semistandard lattices here is the
n = 2 case of the L(λ, n+1) lattices introduced in [Sta1]. A certain infinite subfamily
of the C2-semistandard lattices appeared in [DLP] as the n = 2 case of the “Molev
lattices” LMol

B (k, 2n). A certain infinite subfamily of the G2-semistandard lattices was
studied in [DLP].

Let g be a semisimple Lie algebra of rank n. Various data and structures have
been associated to each irreducible finite dimensional representation of g, starting
with its highest weight and dimension. Once certain subalgebras of g have been fixed,
the multiset of weights of a representation is determined. The Weyl character of the
representation is the generating function for this multiset of weights. It is a Laurent
polynomial in n variables. The polynomials that caught Stanley’s eye were shifted
versions of the “principal specializations” of the Weyl characters to the variable q.
A finer version of Stanley’s 1979 question is as follows: For each Weyl character,
find a distributive lattice with weighted vertices such that the sum of these weights
is the Weyl character. If the lattice elements are assigned weights in a reasonable
manner, then a shifted version of the principal specialization will be the lattice’s rank
generating function. An explicit combinatorial answer to this question (such as a
lattice constructed from tableaux) will include a solution to the “labeling problem”
for the character: the lattice elements will be combinatorial objects which can be used
as labels for the weights. The problem considered here is a stronger version of this
finer version of Stanley’s question for n = 2. The “stronger” aspect is described below.

Going further, fixing Chevalley generators for g and basis vectors for the represen-
tation space determines the data consisting of the entries of the representing matrices
for the generators. At this point in several papers (such as [Don1]), the second author
introduces the “supporting graph” combinatorial structure. This is a directed graph
whose edges are colored by the simple roots of g. The edges colored by simple root
αi indicate which basis vectors arise with nonzero coefficients when the Chevalley
generators xi and yi of g act on the various basis vectors. This graph is actually the
Hasse diagram of a poset. Several of the authors have been able to find distribu-
tive lattice supporting graphs for many representations [Don1], [DLP], [ADLP]. The
crystal graph is another combinatorial structure associated to a representation. For
irreducible representations, the crystal graph is a supporting graph when the weight
multiplicities are all one. Such representations have only one supporting graph. But
otherwise the crystal graph has fewer edges than do the most efficient supporting
graphs; then it cannot support its representation.

Our original goal for developing g-semisimple lattices was to supply uniformly
constructed labels and supporting graphs for explicit realizations of all irreducible

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

530 ALVERSON ET AL.

representations of any rank two semisimple Lie algebra g. Suppose a vertex-weighted
edge-colored directed graph is proposed to be a supporting graph of a representation
of g: In addition to its vertex weighting agreeing with the Weyl character, its edge
coloring must also satisfy certain conditions specified by the Cartan matrix of g. (But
these conditions alone are not sufficient for the graph to be a supporting graph.) If
these edge-coloring conditions are also met, the proposed graph is said to be a “split-
ting poset” for the representation. The edge-coloring conditions are the embodiment
of Stanley’s request that the lattices be natural with respect to the Lie theory. Here is
the “stronger” aspect of our main problem: Not only do we require that the weighting
of their elements agree with a given Weyl character, but we also seek edge-colored
distributive lattices which are splitting posets. Our answer to this question consists
of the g-semistandard lattices: Proposition 4.2 verifies that the edge colorings satisfy
the necessary conditions, and our main result Theorem 5.3 verifies that the vertex
weights agree with the character. (The latter verification implies that the order ideals
in the g-semistandard posets can serve as new weight labels for these representations.)

The necessary edge-coloring conditions correspond to the Serre relations (S3)
of Proposition 18.1 of [Hum]; the relations (S1) are also satisfied by any splitting
poset. Given a splitting poset for a representation of g, if edge coefficients for the
actions of the generators xi and yi of g can be found that satisfy the relations (S2),
then a result of Kashiwara implies that the remaining Serre relations (S+

ij) and (S−
ij)

are automatically satisfied. In certain cases the companion paper [ADLP] is able to
attain our original goal by assigning coefficients satisfying (S2) to the edges of the
lattices introduced here. So [ADLP] presents explicit realizations for the following
irreducible representations of rank two simple Lie algebras, indexed by their type and
highest weights: A2(aω1 + bω2), C2(aω1), C2(bω2), C2(ω1 + bω2), G2(aω1), G2(ω2)
for a, b ≥ 0. Since the g-semistandard lattices are supporting graphs here, as in [Pr2]
they can be seen to be “strongly Sperner.” The results of this paper facilitated the
new C2(ω1 + bω2) constructions and made it possible to now present the supporting
lattices for all of these representations in a uniform fashion.

It can be shown that the g-semistandard lattices corresponding to the other rank
two irreducible representations cannot support their corresponding representations.
But to state Corollary 5.4, one needs to know only that the lattice at hand is a splitting
poset for an irreducible representation. Hence the beautiful product identities may
be written down for the rank generating functions of all g-semistandard lattices. The
necessary edge-coloring conditions are so strong that the second author has been
able to prove that the Dynkin diagram-indexed g-semistandard lattices constitute the
entire answer to a purely combinatorial problem [Don2]. See Theorems 6.1 and 6.2.

The positioning of splitting posets (in general; g-semistandard lattices in partic-
ular) in the world of combinatorial structures associated to representations is vaguely
similar in spirit to the positioning of crystal graphs: both the lattices and crystal
graphs superimpose additional combinatorial structure onto the data contained in
the Weyl character, but neither can always support the actions of the corresponding
representations. In section 6 we indicate how some splitting posets may hopefully
someday be used instead of crystal graphs for some purposes, such as computing
tensor products.

Many of the definitions, lemmas, and propositions developed in this paper are
needed in [ADLP]. Some of them will also be used in [DW] to explicitly construct
many families of splitting posets for the simple Lie algebras An, Bn, Cn, Dn, E6, E7,
and G2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISTRIBUTIVE LATTICES 531

Section 2 presents definitions and some preliminary and background results. The
reader should initially browse this section and then consult it as needed. Section 3
further considers “grid posets” which were introduced in [ADLP] and whose defini-
tion is purely combinatorial. Lemma 3.1 is the key decomposition result. It is proved
here and used in [ADLP] and [DW]. Section 4 introduces g-semistandard posets,
g-semistandard lattices, and g-semistandard tableaux. Section 5 shows that the ele-
ments of these lattices match up with tableaux presented in Littelmann’s [Lit]. This
match-up yields our main results. Section 6 contains further remarks and problems.

2. Definitions and preliminary results. The reference for standard combina-
torics material is [Sta2], and the reference for standard representation theory material
is [Hum]. We use “R” (and “Q”) as a generic name for most of the combinatorial struc-
tures defined in this section: “edge-colored directed graph,” “vertex-colored directed
graph,” “ranked poset,” and “splitting poset.” The letter P is reserved for posets and
vertex-colored posets that arise as posets of join irreducibles for distributive lattices.
The letter L is reserved for distributive lattices and edge-colored distributive lattices.
All posets are finite. We identify a poset with its Hasse diagram.

Let I be any set. An edge-colored directed graph with edges colored by the set I is
a directed graph R with vertex set V(R) and directed-edge set E(R) together with a
function edgecolorR : E(R) −→ I assigning to each edge of R a color from the set I.
If an edge s→ t in R is assigned i ∈ I, we write s i→ t. See Figure 2.1. For i ∈ I, we
let Ei(R) denote the set of edges in R of color i, so Ei(R) = edgecolor−1

R (i). If J is a
subset of I, remove all edges from R whose colors are not in J ; connected components
of the resulting edge-colored directed graph are called J-components of R. For any
t in R and any J ⊂ I, we let compJ(t) denote the J-component of R containing t.
The dual R∗ is the edge-colored directed graph whose vertex set V(R∗) is the set of
symbols {t∗}t∈V(R) together with colored edges Ei(R∗) := {t∗ i→ s∗ | s i→ t ∈ Ei(R)}
for each i ∈ I. Let Q be another edge-colored directed graph with edge colors from
I. If R and Q have disjoint vertex sets, then the disjoint sum R⊕Q is the expected
edge-colored directed graph. If V(Q) ⊆ V(R) and Ei(Q) ⊆ Ei(R) for each i ∈ I,
then Q is an edge-colored subgraph of R. Let R×Q denote the expected edge-colored
directed graph with vertex set V(R) × V(Q). The notion of isomorphism for edge-
colored directed graphs is as expected. (See [ADLP] if any “expected” statement is
unclear.) If R is an edge-colored directed graph with edges colored by the set I, and
if σ : I −→ I ′ is a mapping of sets, then we let Rσ be the edge-colored directed graph
with edge color function edgecolorRσ := σ ◦ edgecolorR. We call Rσ a recoloring of
R. Observe that (R∗)σ ∼= (Rσ)∗. We similarly define a vertex-colored directed graph
with a function vertexcolorR : V(R) −→ I that assigns colors to the vertices of R.
In this context, we speak of the dual vertex-colored directed graph R∗, the disjoint
sum of two vertex-colored directed graphs with disjoint vertex sets, the isomorphism
of vertex-colored directed graphs, recoloring, etc. For s and t in a poset R, there is a
directed edge s→ t in the Hasse diagram of R if and only if t covers s. So terminology
that applies to directed graphs (connected, edge-colored, dual, vertex-colored, etc.) will
also apply to posets. The vertex s and the edge s → t are below t, and the vertex t
and the edge s→ t are above s. The vertex s is a descendant of t, and t is an ancestor
of s. All edge-colored and vertex-colored directed graphs in this paper will turn out
to be posets. See Figures 2.1 and 2.2.

For a directed graphR, a rank function is a surjective function ρ : R −→ {0, . . . , l}
(where l ≥ 0) with the property that if s → t in R, then ρ(s) + 1 = ρ(t). If such a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

532 ALVERSON ET AL.

P

�v6 β

�v5 α

�v4 α

�v3 α

�v2 β

�v1 β

�
�

�
�

�
�

�
�

�

�
�

�
�

�
� �

�
�

L

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�t0

�t1 �t2

�t3 �t4 �t5

�t6 �t7 �t8

�t9 �t10 �t11

�t12 �t13

�t14

β α

β α β β

βα α β β

α

β

β β
α

β

α αβ β

β α

Fig. 2.1. A vertex-colored poset P and an edge-colored lattice L.

�t0

�t1

β

�t3

β

�t2

�t4

β

�t6

β

�t5

β

�t8

β β

�t10

β β

�t7

�t9

β

�t11

β

�t13

ββ

�t12

�t14

β

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

⊕ ⊕ ⊕

Fig. 2.2. The disjoint sum of the β-components of the edge-colored lattice L from Figure 2.1.

rank function exists, then R is the Hasse diagram for a poset—a ranked poset. We
call l the length of R with respect to ρ, and the set ρ−1(i) is the ith rank of R. In
an edge-colored ranked poset R, compi(t) will be a ranked poset for each t ∈ R
and i ∈ I. We let li(t) denote the length of compi(t), and we let ρi(t) denote the
rank of t within this component. We define the depth of t in its i-component to be
δi(t) := li(t) − ρi(t). A ranked poset R with rank function ρ and length l is rank
symmetric if |ρ−1(i)| = |ρ−1(l − i)| for 0 ≤ i ≤ l. It is rank unimodal if there is an m
such that |ρ−1(0)| ≤ |ρ−1(1)| ≤ · · · ≤ |ρ−1(m)| ≥ |ρ−1(m+ 1)| ≥ · · · ≥ |ρ−1(l)|.

The distributive lattice of order ideals of a poset P , partially ordered by subset
containment, will be denoted J(P). See [Sta2]. A coloring of the vertices of the poset
P gives a natural coloring of the edges of the distributive lattice L = J(P) as follows:
Given a function vertexcolorP : V(P) −→ I, we assign a covering relation s→ t in
L the color i and write s i→ t if t \ s = {u} and vertexcolorP (u) = i. So L becomes

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISTRIBUTIVE LATTICES 533

an edge-colored distributive lattice with edges colored by the set I; we write L =
Jcolor(P). The edge-colored lattice LG2(0, 1) of Figure 4.3 is obtained from the vertex-
colored poset PG2(0, 1) of Figure 4.2 in this way. Note that Jcolor(P ∗) ∼= (Jcolor(P))∗,
Jcolor(P σ) ∼= (Jcolor(P))σ (recoloring), and Jcolor(P ⊕Q) ∼= Jcolor(P)×Jcolor(Q). An
edge-colored poset P has the diamond coloring property if whenever

�

�

�

���
��

��
��k l

i j

is an edge-colored subgraph of the Hasse diagram for P , then i = l and j = k.
A necessary and sufficient condition for an edge-colored distributive lattice L to be
isomorphic (as an edge-colored poset) to Jcolor(P) for some vertex-colored poset P
is for L to have the diamond coloring property. Then for s ∈ L and i ∈ I, one
can see that compi(s) is the Hasse diagram for a distributive lattice. In particular,
compi(s) is a distributive sublattice of L in the induced order, and a covering relation
in compi(s) is also a covering relation in L.

Let n ≥ 1. Let D be a Dynkin diagram with n nodes which are indexed by
the elements of a set I such that |I| = n. The associated Cartan matrix is denoted
(Di,j)i,j∈I . Throughout this paper g will denote the complex semisimple Lie algebra of
rank n with Chevalley generators {xi, yi, hi}i∈I satisfying the Serre relations specified
by the Cartan matrix for the Dynkin diagram at hand. Usually I = {1, . . . , n}. In any
Cartan matrix, Di,i = 2 for i ∈ I. Figure 2.3 presents the off-diagonal entries Di,j ,
i �= j, for the rank two semisimple Dynkin diagrams A1 ⊕ A1, A2, C2, and G2. Two
Dynkin diagrams D and D′ are isomorphic if under some one-to-one correspondence
σ : I −→ I ′ we have Di,j = D′

σ(i),σ(j) and Dj,i = D′
σ(j),σ(i). Let E denote the

Euclidean space equipped with an inner product 〈·, ·〉 which contains the root system
Φ associated to D. The set of simple roots is denoted {αi}i∈I . For a root α, the
coroot is α∨ := 2α

〈α,α〉 . The (i, j)-element Di,j of the Cartan matrix is 〈αi, α
∨
j 〉. The

fundamental weights {ω1, . . . , ωn} form the basis for E dual to the simple coroots
{α∨

i }ni=1: 〈ωj , α
∨
i 〉 = δi,j . The lattice of weights Λ is the set of all integral linear

combinations of the fundamental weights. We coordinatize Λ to obtain a one-to-one
correspondence with Z

n as follows: identify ωi with the axis vector (0, . . . , 1, . . . , 0),
where “1” is in the ith position. For i ∈ I, αi =

∑
j∈I Di,jωj. So the simple root αi

can be identified with the ith row vector of the Cartan matrix. The Weyl group W is
generated by the simple reflections si : E → E for all i ∈ I: Here si(v) = v−〈v, α∨

i 〉αi

for v ∈ E.

Subgraph � �

i j
� �

i j
� �����
i j

� �����
i j

Di,j , Dj,i 0 , 0 −1 , −1 −1 , −2 −1 , −3

Fig. 2.3.

Vector spaces in this paper are complex and finite dimensional. If V is a g-
module, then there is at least one basis B := {vs}s∈R (where R is an indexing set
with |R| = dimV) consisting of eigenvectors for the actions of the hi’s: for any s in
R and i ∈ I, there exists an integer ki(s) such that hi.vs = ki(s)vs. The weight of the
basis vector vs is the sum wt(vs) :=

∑
i∈I ki(s)ωi. We say that B is a weight basis for

V . If μ is a weight in Λ, then we let Vμ be the subspace of V spanned by all basis
vectors vs ∈ B such that wt(vs) = μ. The subspace Vμ is independent of the choice
of weight basis B. The finite dimensional irreducible g-modules are indexed by their

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

534 ALVERSON ET AL.

“highest weights” λ as these highest weights λ run through the dominant weights Λ+

(the nonnegative linear combinations of the fundamental weights). The Lie algebra g
acts on the dual space V ∗ by the rule (z.f)(v) = −f(z.v) for all v ∈ V , f ∈ V ∗, and
z ∈ g.

Let R be a ranked poset whose Hasse diagram edges are colored with colors taken
from I, |I| = n. For i ∈ I, find the connected components of the subgraph with edges
Ei(R). For i ∈ I and s in R, set mi(s) := ρi(s) − δi(s) = 2ρi(s) − li(s). Let wtR(s)
be the n-tuple (mi(s))i∈I . See Figure 4.4. Given a matrix M = (Mp,q)p,q∈I , then for
fixed i ∈ I let M (i) be the n-tuple (Mi,j)j∈I , the ith row vector for M . We say that
R satisfies the structure condition for M if wtR(s) +M (i) = wtR(t) whenever s i→ t
for some i ∈ I; that is, for all j ∈ I we have mj(s) +Mi,j = mj(t). Following [DLP],
we say that R satisfies the g-structure condition if M is the Cartan matrix for the
Dynkin diagram D associated to g. In this case view wtR : R −→ Λ as the function
given by wtR(s) =

∑
j∈I mj(s)ωj . Then R satisfies the g-structure condition if and

only if for each simple root αi we have wtR(s) + αi = wtR(t) whenever s i→ t in R.
(In [Don1] the edges of R were said to “preserve weights.”) This condition requires
the color structure of R to be compatible with the structure of the set of weights for a
representation of g. The largest edge-colored distributive lattice of Figure 4.4 satisfies
the structure condition for the G2 Cartan matrix (Figure 4.1) and therefore satisfies
the G2-structure condition.

The following obvious lemma is used when the Dynkin diagram has symmetry or
when other numberings of the Dynkin diagram are convenient.

Lemma 2.1. Let D and D′ be Dynkin diagrams with nodes indexed by I and I ′

such that D and D′ are isomorphic under a one-to-one correspondence σ : I −→ I ′.
Let g and g′ be the respective semisimple Lie algebras. Let R be a ranked poset with
edges colored by the set I, and consider the recoloring Rσ. Then R satisfies the g-
structure condition if and only if Rσ satisfies the g′-structure condition.

Let w0 be the longest element of the Weyl group W associated to g, as in Exercise
10.9 of [Hum]. When w0 acts on Λ, then for each i it sends αi �→ −ασ0(i) and
ωi �→ −ωσ0(i), where σ0 : I −→ I is some permutation of the node labels of the
Dynkin diagram D. Here σ0 must be a symmetry of the Dynkin diagram, and since
w2

0 = id in W it is the case that σ2
0 is the identity permutation. For any weight

μ =
∑
aiωi we have −w0μ =

∑
aiωσ0(i). For connected Dynkin diagrams, σ0 is

trivial except in the cases An (n ≥ 2), D2k+1 (k ≥ 2), and E6; in these cases it is
the only nontrivial Dynkin diagram automorphism. Given an edge-colored poset R
with edges colored by the set I of indices for the Dynkin diagram D, we let R	 be
the edge-colored poset (R∗)σ0 and call R	 the σ0-recolored dual of R. Observe that
(R)	 = R. We allow “�” to be applied to any vertex-colored poset Q whose vertex
colors correspond to nodes of a Dynkin diagram.

The group ring Z[Λ] has vector space basis {eμ |μ ∈ Λ} and multiplication rule
eμ+ν = eμeν . The Weyl group W acts on Z[Λ] by the rule σ.eμ := eσμ. The character
ring Z[Λ]W for g is the ring of W -invariant elements of Z[Λ]; elements of Z[Λ]W are
characters for g. If V is a representation of g, then the Weyl character for V is
χ(V) :=

∑
μ∈Λ (dimVμ)eμ ∈ Z[Λ]W . If V is irreducible with highest weight λ, let

χ
λ

:= χ(V). We call χ
λ

an irreducible character. Let Aμ :=
∑

σ∈W det(σ)eσμ. Let
	 := ω1 + · · · + ωn. It is well known that A� = e�Π(1 − e−α), product taken over
the positive roots α. Weyl’s character formula says that χ

λ
is the unique element of

Z[Λ]W for which A�χλ
= A�+λ.

Let V be a representation of g. A splitting system for V (or for χ(V)) is a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISTRIBUTIVE LATTICES 535

pair (T , weight), where T is a set and weight : T −→ Λ is a weight function such
that χ(V) :=

∑
t∈T eweight(t). If R is a ranked poset with edges colored by the set

{1, . . . , n}, if R satisfies the structure condition for g, and if (R,wtR) is a splitting
system for V , then we say that R is a splitting poset for V (or for χ(V)). This concept
appears unnamed on page 266 of [Don1] and as “labeling poset” in Corollary 5.3 of
[ADLP]. An edge-colored ranked poset R for which (R,wtR) is a splitting system for
an irreducible representation can fail to satisfy the structure condition for g. We use
zi to denote eωi . If R is a splitting poset for V , then χ(V) =

∑
t∈R(z1, . . . , zn)wtR(t),

where (z1, . . . , zn)wtR(t) := z
m1(t)
1 · · · zmn(t)

n . Here χ
λ

is a Laurent polynomial in the
indeterminates zi with nonnegative integer coefficients. We denote this polynomial
by charg(λ; z1, . . . , zn).

Lemma 2.2. Let V be a representation for a semisimple Lie algebra g. Let g′ be
a semisimple Lie algebra isomorphic to g obtained from an isomorphism σ of Dynkin
diagrams as in the statement of Lemma 2.1. Suppose R is a splitting poset for V .
Then the edge-colored poset R∗ is a splitting poset for the dual representation V ∗ of
g, Rσ is a splitting poset for the g′-module V , and R	 is a splitting poset for the
g-module V .

Proof. The only assertion that does not immediately follow from the definitions
and Lemma 2.1 is that R	 is a splitting poset for the g-module V . Write V ∼= V1 ⊕
· · · ⊕ Vk, a decomposition of V into irreducible g-modules Vi such that Vi has highest
weight μi. The dual g-module V ∗ has R∗ as a supporting graph; V ∗ decomposes as
V ∗

1 ⊕ · · ·⊕V ∗
k , where each V ∗

i is irreducible with highest weight −w0(μi) (cf. Exercise
21.6 of [Hum]). Recolor R∗ by applying the permutation σ0 to obtain R	. Now view
V ∗ as a new g-module U induced by the action xi.v := xσ0(i).v and yi.v := yσ0(i).v for
each i ∈ I and v ∈ V ∗. It is apparent that R	 is a splitting poset for the g-module
U . Let Ui be the (irreducible) g-submodule of U corresponding to V ∗

i . One can see
that the highest weight of Ui is now −w0(−w0(μi)), which is just μi. Hence U is
isomorphic to V .

Lemma 2.3. Let V be an irreducible g-module. Then there is a connected splitting
poset for V .

Proof. By Lemmas 3.1.A, 3.1.F, and 3.2.A of [Don1], any supporting graph for V
will do.

This paragraph and Proposition 2.4 borrow from sections 5 and 6 of [Pr1]. If we
set

x := 2
n∑

i=1

⎡
⎣ n∑

j=1

2〈ωi, ωj〉
〈αj , αj〉

⎤
⎦ xi, y :=

∑
yi, and h := 2

n∑
i=1

⎡
⎣ n∑

j=1

2〈ωi, ωj〉
〈αj , αj〉

⎤
⎦hi,

then s := span{x, y, h} is a three-dimensional subalgebra of g isomorphic to sl(2,C). It
is called a “principal three-dimensional subalgebra.” Set 	∨ :=

∑n
i=1

2ωi

〈αi,αi〉 . Observe
that 〈αi, 	

∨〉 = 1 for 1 ≤ i ≤ n. Let V be a g-module. Let R be a splitting poset for V .
Then there exists a weight basis for V which can be indexed by the elements of R, say,
{vt}t∈R, so that the weight of the basis vector vt is wtR(t). One can check that h.vt =
2〈wtR(t), 	∨〉vt, so the set {2〈wtR(x), 	∨〉}x∈R consists of the integral weights for V
regarded as an s-module. Choose an element max in R such that 2〈wtR(max), 	∨〉 is
the largest in the set {2〈wtR(x), 	∨〉}x∈R, and choose min such that 2〈wtR(min), 	∨〉
is the smallest. Symmetry of the integral weights for V under the action of s ∼= sl(2,C)
implies that 2〈wtR(max), 	∨〉 = −2〈wtR(min), 	∨〉. Set l := 2〈wtR(max), 	∨〉. Since
R satisfies the g-structure condition, it follows that if s i→ t is an edge in R, then

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

536 ALVERSON ET AL.

wtR(s) + αi = wtR(t); therefore, 〈wtR(s), 	∨〉 + 1 = 〈wtR(t), 	∨〉. Suppose for the
moment that R is connected. Then the weights {2〈wtR(x), 	∨〉}x∈R all have the same
parity. Consider the function ρ : R −→ Z given by ρ(t) := l

2 + 〈wtR(t), 	∨〉. Based
on what we have seen so far, the range of ρ is the set of integers {0, . . . , l}, and
hence ρ is the rank function for R. Next consider the case that V is irreducible with
highest weight λ. Then R need not be connected. However, since V has a connected
splitting poset by Lemma 2.3, then the weights {2〈wtR(x), 	∨〉}x∈R all have the same
parity. Thus the function ρ : R −→ Z given by ρ(t) := l

2 + 〈wtR(t), 	∨〉 will be a
rank function for R with range {0, . . . , l}. Call ρ the natural rank function for R.
Since V is irreducible, we can see that max is the unique element of R with weight
wtR(max) = λ. Hence l = 2〈λ, 	∨〉. Next we define the rank generating function for R
to be RGF g(λ, q) :=

∑l
i=0 |ρ−1(i)|qi =

∑
t∈R q

ρ(t). This is the usual rank generating
function for the ranked poset R. We do not refer to R in the notation RGF g(λ, q)
because we have

∣∣ρ−1(i)
∣∣ =

∣∣{t ∈ R | l
2 + 〈wtR(t), 	∨〉 = i}∣∣ =

∑
μ dim(Vμ), where

the latter sum is over all weights μ such that l
2 + 〈μ, 	∨〉 = i. Thus if R′ is another

naturally ranked splitting poset for V , then corresponding ranks of R and R′ have the
same size. To obtain the rank generating function identity in the following result we
use the “principal specialization” of Weyl’s character formula from section 6 of [Pr1].

Proposition 2.4. Let V be an irreducible g-module with highest weight λ, and let
R be a splitting poset for V with the natural rank function identified in the preceding
paragraph. (If R is connected, then the natural rank function is the unique rank
function.) Then R is rank symmetric and rank unimodal, and

RGF g(λ, q) =
Πα∈Φ+(1− q〈λ+�,α∨〉)
Πα∈Φ+(1− q〈�,α∨〉)

.

Proof. Choose a connected splitting poset R′ for V ; the natural rank function for
R′ is the unique rank function. Then by Proposition 3.5 of [Don1], it follows that R′ is
rank symmetric and rank unimodal. From the observation of the next-to-last sentence
of the paragraph preceding the proposition, we conclude that the naturally ranked
poset R is rank symmetric and rank unimodal. The principal specialization obtained
from [Pr1, pp. 337–338] is for simple Lie algebras, but the same arguments are valid
for semisimple Lie algebras. Apply this to obtain the rank generating function identity
of the proposition statement.

3. Grid posets and two-color grid posets. Here we introduce general grid
posets and two-color grid posets with purely combinatorial definitions. From sec-
tion 4 onward we will consider only the particular two-color grid posets called “g-
semistandard” posets, whose structures are indexed by rank two Dynkin diagrams.
Some (uncolored) grid posets are displayed in Figure 3.1; the poset P in Figure 2.1 is a
two-color grid poset. In the general setting of this section, Lemma 3.1 and its related
definitions provide for the decomposition of two-color grid posets into manageable
pieces. Given m ≥ 1, set [m] := {1, 2, . . . ,m}.

Given a finite poset (P,≤
P
), a chain function for P is a function chain : P −→ [m]

for some positive integer m such that (1) chain−1(i) is a (possibly empty) chain in
P for 1 ≤ i ≤ m, and (2) given any cover u → v in P , it is the case that either
chain(u) = chain(v) or chain(u) = chain(v) + 1. A grid poset is a finite poset
(P,≤

P
) together with a chain function chain : P −→ [m] for some m ≥ 1. Depending

on context, the notation P can refer to the grid poset (P,≤
P
, chain : P −→ [m]) or

the underlying poset (P,≤
P
). The conditions on chain imply that an element in a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISTRIBUTIVE LATTICES 537

grid poset covers no more than two elements and is covered by no more than two
elements.1 Observe that if i is the smallest (respectively, largest) integer such that
chain−1(i) is nonempty and if u is the maximal (respectively, minimal) element of
chain−1(i), then u is a maximal (respectively, minimal) element of the poset P . A
grid poset P is connected if and only if the Hasse diagram for the poset P is connected.
For 1 ≤ i ≤ m we set Ci := chain−1(i). When we depict grid posets, the chains Ci
will be directed from SW to NE. See Figure 3.1.

�

�

�

�
�

�
��

C3

C2

C1

�

�

�

�
��
�

�� C2

C1

�

�

�

�
��
�

��

C2

C1

�

�

�

�
�

�
��

C1

�

�

��
���

�� C2

C1
�

�

�

�
���

��
C2C1

Fig. 3.1. The six nonisomorphic connected grid posets with three elements.

Let (P,≤
P
, chain : P −→ [m]) be a grid poset. The dual grid poset P ∗ is

the dual poset P ∗ together with the chain function chain∗ : P ∗ −→ [m] given by
chain∗(u∗) = m+1− chain(u) for all u ∈ P . For i = 1, 2, let Pi be a grid poset with
chain function chaini : Pi −→ [mi] for some mi ≥ 1. A one-to-one correspondence φ :
P1 −→ P2 is an isomorphism of grid posets if we have u→ v in P1 with chain1(u) =
chain1(v) (respectively, chain1(u) = chain1(v) + 1) if and only if φ(u)→ φ(v) in P2

with chain2(φ(u)) = chain2(φ(v)) (respectively, chain2(φ(u)) = chain2(φ(v)) + 1).
Figure 3.1 depicts each of the isomorphism classes of connected grid posets with three
elements apiece. Given a nonempty grid poset (P,≤

P
, chain : P −→ [m]), there

exists some m′ ≥ 1 and a surjective chain function chain′ : P −→ [m′] such that the
grid poset P is isomorphic to (P,≤

P
,chain′ : P −→ [m′]). If P is connected, then

this surjective chain function chain′ is unique. We say that Q is a grid subposet of a
given grid poset P if (1) Q is a subposet of P in the induced order, and (2) whenever
u→ v is a covering relation in Q then it is also a covering relation in P . In this case,
we regard Q with the chain function chain|Q to be a grid poset on its own.

For a grid poset (P,≤
P
, chain : P −→ [m]), let TP be the totally ordered set

whose elements are the elements of P and whose ordering is given by the following
rule: for distinct u and v in P write u <TP

v if and only if (1) chain(u) < chain(v)
or (2) chain(u) = chain(v) with v <

P
u. Let l := |P |. Number the vertices of P

v1, v2, . . . , vl so that vp <TP
vq whenever 1 ≤ p < q ≤ l. Let L := J(P) be the

distributive lattice of order ideals of P . We simultaneously think of order ideals of P

1Motivation for terminology: For m, n ≥ 1, let G be the directed graph with V(G) = {(p, q) ∈
Z× Z|1 ≤ p ≤ n, 1 ≤ q ≤ m} and with E(G) = {(p, q)→ (r, s) if (r, s)− (p, q) = (1, 0) or (0, 1)}. We
refer to G as a “directed grid graph.” Here G is the Hasse diagram for a poset obtained by rotating
the plane counterclockwise through an angle of 45◦ so that the vertex (1, 1) of G is the minimal
element. A grid poset (P,≤P , chain : P −→ [m]) can be obtained as a subgraph of a directed grid
graph for an appropriately large n by removing some vertices and some “NW” edges.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

538 ALVERSON ET AL.

as subsets of P and as elements of L.
A two-color function for a grid poset (P,≤P , chain : P −→ [m]) is a function

color : P −→ Δ such that (1) |Δ| = 2, (2) color(u) = color(v) if chain(u) =
chain(v), and (3) if u and v are in the same connected component of P with chain(u) =
chain(v) + 1, then color(u) �= color(v). A two-color grid poset is a grid poset
(P,≤

P
, chain : P −→ [m]) together with a two-color function color : P −→ Δ.

In some contexts we will use the notation P to refer to the two-color grid poset
(P,≤

P
, chain : P −→ [m], color : P −→ Δ). Two-color grid posets are vertex-

colored posets. To a two-color grid poset P we associate the edge-colored distributive
lattice L := Jcolor(P), as in section 2. The number of nonempty chains Ci in P of color
γ ∈ Δ gives an upper bound for the number of ancestors (respectively, descendants)
an element in L can have along edges of color γ. One can also see that any color γ com-
ponent of L is poset-isomorphic to a product of chains. The dual two-color grid poset
P ∗ is the dual grid poset P ∗ together with the two-color function color∗ : P ∗ −→ Δ
given by color∗(u∗) = color(u) for all u ∈ P . If Q is a grid subposet of the two-
color grid poset P , then Q is a two-color grid poset with chain function chain|Q
and two-color function color|Q. In this case we call Q a two-color grid subposet of
P . Two two-color grid posets (Pi,≤Pi

, chaini : Pi −→ [mi], colori : Pi −→ Δ)
for i = 1, 2 are isomorphic if there is an isomorphism φ : P1 −→ P2 of grid posets
such that color2(φ(u)) = color1(u) for all u in P1. We will often take Δ := {α, β}.
When we switch (or reverse) the vertex colors of P we replace the color function
color : P −→ {α, β} with the color function color′ : P −→ {α, β} given by
color′(v) = α if color(v) = β, and color′(v) = β if color(v) = α. Similarly, one
can switch (or reverse) the edge colors of L. In Figures 3.2 and 3.3 we depict eight
two-color grid posets; the numbering of the vertices for each poset P follows the total
ordering TP . The vertex-colored poset P of Figure 2.1 is a two-color grid poset. The
lattice L in that figure is Jcolor(P).

In this paper the following definition is needed only for a comment in section 4 and
for preview statements of Theorems 6.1 and 6.2. (It is also needed in [ADLP].) We say
a two-color grid poset P has the max property if P is isomorphic to a two-color grid
poset (Q,≤

Q
, chain : Q −→ [m], color : Q −→ Δ) with a surjective chain function

such that (1) if u is any maximal element in the poset Q, then chain(u) ≤ 2, and (2)
if v �= u is another maximal element in Q, then color(u) �= color(v). Note that the
dual two-color grid poset P ∗ might fail to have the max property. The two-color grid
posets of Figures 2.1, 3.2, and 3.3 have the max property.

Let P be a grid poset with chain function chain : P −→ [m]. Suppose P1 is
a nonempty order ideal such that P1 �= P . Regard P1 and P2 := P \ P1 to be
subposets of the poset P in the induced order. Suppose that whenever u is a maximal
(respectively, minimal) element of P1 and v is a maximal (respectively, minimal)
element of P2, then chain(u) ≤ chain(v). Then we say that P decomposes into
P1 P2, and we write P = P1 P2. If no such order ideal P1 exists, then we say the
grid poset P is indecomposable. See Figure 6.2. Note that if P = P1 P2 and u < v
in P with u ∈ P2, then v ∈ P2. Moreover, if u → v in P with u ∈ P1 and v ∈ P2,
then chain(u) = chain(v). Also, if u → v is a covering relation in the poset Pi for
i ∈ {1, 2}, note that u → v is also a covering relation in P . Hence each Pi is a grid
subposet of P . If P is a grid poset that decomposes into P1 Q, and if Q decomposes
into P2 P3, then P = P1 (P2 P3). But now observe that P = (P1 P2) P3.
So we may write P = P1 P2 P3. In general, if P = P1 P2 · · · Pk, then each
Pi with chain function chain|Pi is a grid subposet of P . Also, an order ideal s of P

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISTRIBUTIVE LATTICES 539

may be expressed as the disjoint union (s∩P1)∪ (s∩P2)∪ · · · ∪ (s∩Pk), where each
s ∩ Pi is an order ideal in Pi. If in addition P = P1 P2 · · · Pk is a two-color grid
poset with two-color function color, then each Pi with chain function chain|Pi and
two-color function color|Pi is a two-color grid subposet of P . Here P1 P2 · · · Pk

is a decomposition of P into two-color grid posets.
Consider a two-color grid poset (P,≤

P
, chain : P −→ [m], color : P −→ {α, β})

with edge-colored distributive lattice L = Jcolor(P). For each s in L we can view the
quantity wtL(s) as the pair (2ρα(s) − lα(s) , 2ρβ(s) − lβ(s)) in Z × Z. The mapping
wtL : L −→ Z× Z is the lattice weight function for L. If P = P1 P2 · · · Pk, then
for each i we let Li := Jcolor(Pi) be the edge-colored lattice for the two-color grid
subposet Pi of P . Then wtLi denotes the lattice weight function for Li. We let ρ(i)

α

and l
(i)
α (respectively, ρ(i)

β and l
(i)
β) denote the rank and length functions for color α

(respectively, color β) for Li.
Lemma 3.1. Let (P,≤

P
, chain : P −→ [m], color : P −→ {α, β}) be a two-color

grid poset, and suppose P decomposes into P = P1 P2 · · · Pk. Keep the notation
of the preceding paragraph.

(1) Let γ ∈ Δ = {α, β}, and let s be an element of L = Jcolor(P). Then

ργ(s) =
k∑

i=1

ρ(i)
γ (s ∩ Pi), lγ(s) =

k∑
i=1

l(i)γ (s ∩ Pi), and wtL(s) =
k∑

i=1

wtLi(s ∩ Pi).

(2) Consequently, if there is a 2× 2 matrix M = (Mι,κ)(ι,κ)∈Δ×Δ such that each
edge-colored distributive lattice Li = Jcolor(Pi) satisfies the structure condition for M ,
then L satisfies the structure condition for M as well.

Proof. First we show how (2) follows from (1). Given an edge s
γ→ t in L, then

it is the case that for some j with 1 ≤ j ≤ k we have s ∩ Pj
γ→ t ∩ Pj in Lj, while

for 1 ≤ i ≤ k with i �= j we have s ∩ Pi = t ∩ Pi. Since Lj satisfies the structure
condition, we see that wtLj (s ∩ Pj) + M (γ) = wtLj (t ∩ Pj). For i �= j we have
wtLi(s ∩ Pi) = wtLi(t ∩ Pi). By (1) it follows that wtL(s) +M (γ) = wtL(t).

The results in (1) for general k follow by induction once we prove the results
for k = 2. So let k = 2, s ∈ L, and γ ∈ {α, β}. It suffices to show that ργ(s) =
ρ
(1)
γ (s ∩ P1) + ρ

(2)
γ (s ∩ P2) and lγ(s) = l

(1)
γ (s∩ P1) + l

(2)
γ (s ∩ P2). Let r0, r1, . . . be the

sequence with r0 := s and rj+1 := rj \ {vij+1}, where j ≥ 0 and vij+1 is the smallest
vertex in TP of color γ that can be removed from rj so that rj+1 is an order ideal of P .
Let rq be the terminal element of the sequence. Observe that i1 < i2 < · · · < iq. We
have rq

γ→ rq−1
γ→ · · · γ→ r1

γ→ r0 = s. Similarly define a sequence u0,u1, . . ., where
u0 := s and us+1 := us∪{vrs+1}, where s ≥ 0 and vrs+1 is the largest element in TP of
color γ not in us that can be added to us so that us+1 is an order ideal of P . Let up

be the terminal element of the sequence. Observe that r1 > r2 > · · · > rp. We have
s = u0

γ→ · · · γ→ up−1
γ→ up. Since compγ(s) is the Hasse diagram for a distributive

lattice, and since rq and up are, respectively, a minimal and a maximal element in
compγ(s), then it follows that rq and up are, respectively, the unique minimal and
the unique maximal elements of compγ(s). Then ργ(s) = q and lγ(s) = p+ q.

Reorganize the sequence (vi1 , . . . , viq) as follows: write (vk1 , . . . , vkq′ , vkq′+1
, . . . , vkq),

where the vertices vk1 , . . . , vkq′ are all in P2 with k1 < · · · < kq′ , and the vertices
vkq′+1

, . . . , vkq are all in P1 with kq′+1 < · · · < kq. Set r′0 := s and for j ≥ 0
set r′j+1 := r′j \ {vkj+1}. We claim that each r′j+1 is an order ideal of P , and if
0 ≤ j < q′ (respectively, q′ ≤ j < q), then vkj+1 is the smallest element in TP of
color γ that is also in P2 (respectively, P1) that can be removed from r′j so that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

540 ALVERSON ET AL.

g = A1 ⊕A1

�v4 α

�v3 α

�v2 β

�v1 β

�
��

�
��

C1 C2
⊕

g = A2

�v8 β

�v7 β

�v6 α

�v5 α

�v4 α

�v3 α

�v2 β

�v1 β

�
�

�
�

�
�

�

�
��

�
��

�
��

�
�� �

��

�
��

C1

C2
C3

g = C2

�v14 α

�v13 α

�v12 β

�v11 β

�v10 β

�v9 β

�v8 α

�v7 α

�v6 α

�v5 α

�v4 α

�v3 α

�v2 β

�v1 β

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

� �
�

�
�

�
�

�
�

�
�

�
�

C1

C2

C3

C4

g = G2

�v30 β

�v26 α

�v25 α

�v16 β �v24 α �v29 β

�v10 α �v15 β �v23 α

�v9 α �v22 α �v32 α

�v8 α �v14 β �v21 α �v28 β

�v2 β �v7 α �v13 β �v20 α �v31 α

�v6 α �v19 α �v27 β

�v5 α �v12 β �v18 α

�v1 β �v4 α �v17 α

�v11 β

�v3 α

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�

�
��

�
�

�
��

�
�

�
��

�
��

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
��

�
�

�
��

�
�

�
��

�
�

�
��

C6

C5

C4

C3

C2

C1

Fig. 3.2. Depicted above are four two-color grid posets each possessing the max property.

(Each is the g-semistandard poset P βα
g (2, 2) of section 4 for the indicated rank two semisimple Lie

algebra g.)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISTRIBUTIVE LATTICES 541

g = A1 ⊕A1

�v4 β

�v3 β

�v2 α

�v1 α

�
��

�
��

C1 C2
⊕

g = A2

�v8 α

�v7 α

�v6 β

�v5 β

�v4 β

�v3 β

�v2 α

�v1 α

�
�

�
�

�
�

�

�
��

�
��

�
��

�
�� �

��

�
��

C1

C2
C3

g = C2

�v1 α

�v2 α

�v3 β

�v4 β

�v5 β

�v6 β

�v7 α

�v8 α

�v9 α

�v10 α

�v11 α

�v12 α

�v13 β

�v14 β

�
��

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

��

�
�

�
��

�
�

�
��

�
�

�
��

�
��

�
��

�
��

�
��

C1

C2
C3

C4

g = G2

�v1 α

�v2 α

�v3 β

�v4 β

�v5 β

�v6 β

�v7 α

�v8 α

�v9 α

�v10 α

�v11 α

�v12 α

�v13 α

�v14 α

�v15 α

�v16 α

�v17 β

�v18 β

�v19 β

�v20 β

�v21 β

�v22 β

�v23 α

�v24 α

�v25 α

�v26 α

�v27 α

�v28 α

�v29 α

�v30 α

�v31 β

�v32 β�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
��

�
�

�
��

�
�

�
��

�
��

�
��

�
�

�
��

�
�

�
��

�
��

C6

C5

C4

C3

C2

C1

Fig. 3.3. Depicted above are four two-color grid posets each possessing the max property.

(Each is the g-semistandard poset P αβ
g (2, 2) of section 4 for the indicated rank two semisimple Lie

algebra g.)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

542 ALVERSON ET AL.

r′j+1 is an order ideal of P . (If so, we have a path rq = r′q
γ→ r′q−1

γ→ · · · γ→
r′1

γ→ r′0 = r0 = s in L.) Proceed by induction on j. The statement follows if we
can show that vkj+1 is maximal in r′j . First suppose 0 ≤ j < q′. If vkj+1 is not
maximal in r′j , then vkj+1 < v for some other maximal element v in r′j . It must
be the case that v is one of (vkj+2 , . . . , vkq′ , vkq′+1

, . . . , vkq); otherwise one could not
descend from r′j to rq in L = Jcolor(P) along edges corresponding to vertices from
(vkj+2 , . . . , vkq′ , vkq′+1

, . . . , vkq). It cannot be the case that v is one of (vkj+2 , . . . , vkq′);
otherwise k1 < · · · < kj+1 < kj+2 < · · · < kq′ implies that v is larger than vkj+1 in
the total order TP , violating the fact that vkj+1 < v in P . And it cannot be the case
that v is one of (vkq′+1

, . . . , vkq) since these are elements of P1 and vkj+1 is in P2. So
for 0 ≤ j < q′, the vertex vkj+1 is maximal in r′j . Second, suppose that q′ ≤ j < q. If
vkj+1 is not maximal in r′j , then by reasoning similar to the preceding case we have
vkj+1 < v for some element v from (vkj+2 , . . . , vkq). But this violates the fact that
vkj+1 precedes v in the total order TP since kq′ < · · · < kj+1 < kj+2 < · · · < kq. So
for q′ ≤ j < q, the vertex vkj+1 is maximal in r′j . This concludes our induction on j.

Let r(1) be the unique minimal element in the γ-component comp(1)
γ (s ∩ P1)

of s ∩ P1 in the edge-colored distributive lattice L1 = Jcolor(P1). We claim that
r(1) = x, where x := (s ∩ P1) \ {vkq′+1

, . . . , vkq}. Now x is an order ideal of P1 since

x = r′q ∩ P1 = rq ∩ P1. Also, x ∈ comp(1)
γ (s ∩ P1) since s ∩ P1 = r′q′ ∩ P1 and the

path x
γ→ (r′q−1 ∩ P1)

γ→ · · · γ→ (r′q′+1 ∩ P1)
γ→ (r′q′ ∩ P1) stays in comp(1)

γ (s ∩ P1). If
r(1) �= x, then r(1) < x. In this case let u ∈ x be any color γ vertex such that x \ {u}
is an order ideal of P1. Let Ci be the chain in P that contains u. Note that u is not
maximal in rq ⊆ P , and hence u → u′ is a covering relation in P for some u′ in rq.
We refer to the following as observation (*): If w is any element of P such that u→ w
and w ∈ rq, then w ∈ P2. (Otherwise w ∈ P1, so that w ∈ x, and then x \ {u} cannot
be an order ideal of P1.) In particular, u′ ∈ P2. We claim that u′ �∈ {vk1 , . . . , vkq′ }.
Indeed, if u′ ∈ {vk1 , . . . , vkq′ }, then since u �∈ {vkq′+1

, . . . , vkq}, it must be the case
that u → u′′ for some u′′ ∈ rq in Ci−1. By observation (*), the element u′′ is in P2.
But a covering relation in P between elements of P1 and elements of P2 can occur
only along the chains C1, . . . , Cm. Therefore, u′′ ∈ Ci, which contradicts the fact that
u′′ ∈ Ci−1. So it must be the case that u′ �∈ {vk1 , . . . , vkq′ }. It follows that u′ < u′′

for some u′′ ∈ rq in Ci−1. Let v be a maximal element in P such that u′′ ≤ v. Note
that v ∈ P2 since u′′ ∈ P2. Moreover, v ∈ Cj with j ≤ i − 1. Next suppose u → z
for some z ∈ P1. Since z ∈ P1, then z �= u′. Therefore, z ∈ Ci−1. Therefore, z ≤ u′′.
But since u′′ is in the order ideal rq, it follows that z ∈ rq. But by observation (*), it
now follows that z ∈ P2. This contradicts our hypothesis that z ∈ P1. In particular,
u must be a maximal element in P1. So u ∈ Ci is a maximal element in P1 and v ∈ Cj
is a maximal element in P2, and j < i. This violates the fact that P decomposes into
P1 P2. So r(1) = x, and hence ρ(1)

γ (s ∩ P1) = q − q′.
Let r(2) be the unique minimal element in the γ-component comp(2)

γ (s ∩ P2)
of s ∩ P2 in the edge-colored distributive lattice L2 = Jcolor(P2). We claim that
r(2) = y, where y := (s ∩ P2) \ {vk1 , . . . , vkq′ }. Now y is an order ideal of P2 since

y = r′q′ ∩P2 = rq ∩P2. Also, y ∈ comp(2)
γ (s∩P2) since the path y

γ→ (r′q′−1 ∩P2)
γ→

· · · γ→ (r′1 ∩ P2)
γ→ (r′0 ∩ P2) stays in comp(2)

γ (s ∩ P2). If r(2) �= y, then r(2) < y.
In this case let u ∈ y be any color γ vertex such that y \ {u} is an order ideal of
P2. In particular, u is a maximal element in y. Let w be any element of rq with
u �= w. If w ∈ P2, then w ∈ y, so u �< w. If w ∈ P1, then by properties of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISTRIBUTIVE LATTICES 543

the decomposition of P into P1 P2, it cannot be the case that u < w. Therefore,
u is a maximal element of rq of color γ. But this contradicts the fact that rq is
the minimal element in compγ(s). So it is not the case that r(2) < y. Therefore,

r(2) = y, and so ρ(2)
γ (s∩P2) = q′. Combine this with ρ(1)

γ (s∩P1) = q− q′ to see that
ργ(s) = q = (q − q′) + q′ = ρ

(1)
γ (s ∩ P1) + ρ

(2)
γ (s ∩ P2).

The dual P ∗ may be viewed as a two-color grid poset that decomposes into P ∗
2 P

∗
1 .

Order ideals of P ∗ are complements of order ideals of P . Then arguments analogous to
those above apply to the complements of elements of the sequence s = u0,u1, . . . ,up.
So we obtain ρ∗γ(P \ s) = ρ

∗(2)
γ ((P \ s) ∩ P2) + ρ

∗(1)
γ ((P \ s) ∩ P1). Note that (P \

s) ∩ Pi = Pi \ (s ∩ Pi) for i ∈ {1, 2}. Now lγ(s) = ργ(s) + ρ∗γ(P \ s), l(1)γ (s ∩ P1) =

ρ
(1)
γ (s∩P1)+ ρ

∗(1)
γ (P1 \ (s∩P1)), and l(2)γ (s∩P2) = ρ

(2)
γ (s∩P2) + ρ

∗(2)
γ (P2 \ (s∩P2)).

Therefore, lγ(s) = l
(1)
γ (s ∩ P1) + l

(2)
γ (s ∩ P2).

It can be shown that if either of the conditions on the maximal and minimal
elements on P1 and P2 required for the statement “P = P1 P2” fail, then so does at
least one of the decomposition equations in Lemma 3.1 for ργ(s) and lγ(s).

4. g-semistandard posets, lattices, and tableaux. We define special two-
color grid posets P as the “g-semistandard” posets. Then we define corresponding
lattices L = Jcolor(P) as the “g-semistandard” lattices. In the second half of the
section, “g-semistandard” tableau descriptions of the elements of these lattices are
developed.

For the remainder of this paper, g denotes a rank two semisimple Lie algebra:
g ∈ {A1 ⊕A1, A2, C2, G2}. We identify α with a short simple root for g and β as the
other simple root. The vertex colors for the posets and the edge colors for the lattices
which we now introduce correspond to the simple roots of g. So here the index set
I of section 2 becomes I = {α, β}. Let ωα = ω1 = (1, 0) and ωβ = ω2 = (0, 1),
respectively, denote the corresponding fundamental weights. Then any weight μ in Λ
of the form μ = pωα + qωβ (where p and q are integers) is now identified with the
pair (p, q) in Z× Z. In particular, α and β are, respectively, identified with the first
and second row vectors from the Cartan matrix M for g. These matrices, displayed
in Figure 4.1, specify the g-structure condition of section 2 for edge-colored ranked
posets.

The g-fundamental posets Pg(1, 0) and Pg(0, 1) are defined to be the two-color
grid posets of Figure 4.2. The corresponding g-fundamental lattices are defined to be
the edge-colored lattices Lg(1, 0) := Jcolor(Pg(1, 0)) and Lg(0, 1) := Jcolor(Pg(0, 1)).
See Figure 4.3. For the remainder of this section, everything presented for the simple
cases (A2, C2, and G2) has an easy A1 ⊕ A1 analogue. The details for A1 ⊕ A1 are
omitted to save space, beginning with Figure 4.3.

Let λ = (a, b), with a, b ≥ 0. The g-semistandard poset P βα
g (λ) associated to λ is

defined to be the two-color grid poset P which has the decomposition P1P2· · ·Pa+b,

A1 ⊕A1 A2 C2 G2

(
2 0
0 2

) (
2 −1
−1 2

) (
2 −1
−2 2

) (
2 −1
−3 2

)

Fig. 4.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

544 ALVERSON ET AL.

Algebra g Pg(1, 0) Pg(0, 1)

A1 ⊕A1
v1 � α v1 � β

A2

v2
� β

v1
� α

�
�

�

v2
� α

v1
� β

�
�

�

C2

v3
� α

v2
� β

v1
� α

�
�

�
�

�
�

v4
� β

v3
� α

v2
� α

v1
� β

�
�

�

�
�

�

�
�

�

G2

v6
� α

v5
� β

v4
� α

v3
� α

v2
� β

v1
� α

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

v10
�

β

v9
� α

v8
� α

v6
� β v7

� α

v4
� α v5

� β

v3
� α

v2
� α

v1
� β

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

Fig. 4.2. g-fundamental posets.

where Pi is vertex-color isomorphic to Pg(0, 1) for 1 ≤ i ≤ b and to Pg(1, 0) for 1+b ≤
i ≤ a + b. It can be seen that P is unique up to isomorphism. For each semisimple
Lie algebra g, the poset P βα

g (2, 2) is depicted in Figure 3.2. The g-semistandard poset
Pαβ

g (λ) associated to λ is analogously defined, except with Pi vertex-color isomorphic
to Pg(1, 0) for 1 ≤ i ≤ a and to Pg(0, 1) for a + 1 ≤ i ≤ a + b. See Figure 3.3
for the corresponding Pαβ

g (2, 2). Note that P βα
g (1, 0) = Pαβ

g (1, 0) = Pg(1, 0), and
P βα

g (0, 1) = Pαβ
g (0, 1) = Pg(0, 1). If a = b = 0, then P βα

g (λ) and Pαβ
g (λ) are the

empty set. The g-semistandard lattices associated to λ are the edge-colored lattices

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISTRIBUTIVE LATTICES 545

A2

LA2(1, 0)

�

�

�

∅

〈2〉

〈1〉

β

α

LA2(0, 1)

�

�

�

∅

〈2〉

〈1〉

α

β

C2

LC2(1, 0)

�

�

�

�

∅

〈3〉

〈2〉

〈1〉

α

β

α

LC2(0, 1)

�

�

�

�

�

∅

〈4〉

〈3〉

〈2〉

〈1〉

β

α

α

β

G2

LG2(1, 0)

�

�

�

�

�

�

�

∅

〈6〉

〈5〉

〈4〉

〈3〉

〈2〉

〈1〉

α

β

α

α

β

α

LG2(0, 1)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

〈1〉

〈2〉

〈3〉

〈4, 5〉

〈4, 7〉〈5〉

〈6, 7〉 〈4〉

〈7〉 〈6〉

〈8〉

〈9〉

〈10〉

∅

�
�

��

�
�

��
�

�
�

�
�

��

�
�

�
�

�
��
�

�
��

�
�

��

�
�

��
�

�
��

β

α

α

α β

β α α

β α α

α β

α

α

β

Fig. 4.3. Elements of g-fundamental lattices as order ideals of g-fundamental posets. (Each
order ideal is identified by the indices of its maximal vertices.)

Lβα
g (λ) := Jcolor(P

βα
g (λ)) and Lαβ

g (λ) := Jcolor(P
αβ
g (λ)). Note that Lβα

g (1, 0) =
Lαβ

g (1, 0) = Lg(1, 0), and Lβα
g (0, 1) = Lαβ

g (0, 1) = Lg(0, 1). We will not consider
“mixed” concatenations, where some copies of Pg(0, 1) are interlaced amongst copies
of Pg(1, 0). Any such concatenation will not have the max property, which is possessed
by all of the g-semistandard posets.

Each g-semistandard lattice is an edge-colored poset. From now on we write wt(s)
for wtL(s) when L is g-semistandard. Let s ∈ L. Let γ ∈ {α, β}. By definition, the
γ-entry of the 2-tuple wt(s) is the rank of s within the γ-colored connected component
of s diminished by the depth of s in that component.

Lemma 4.1. Let s
γ→ t be an edge of color γ ∈ {α, β} in a g-fundamental lattice

L. Then wt(s)+γ = wt(t). Hence each g-fundamental lattice satisfies the g-structure
condition.

Proof. Note that s and t are in the same γ-component. Since t covers s in this
component, the γ-entry of wt(t) is 2 more than the γ-entry of wt(s). But adding the
simple root γ to wt(s) adds 2 to the γ-entry of wt(s), since Mγ,γ = 2 always. Let γ′

in I be such that γ′ �= γ. Using Figure 4.4, one can quickly check by hand that the
γ′-entry of wt(s) changes by Mγ,γ′ or by Mγ′,γ (as appropriate) for each edge within
each γ-component of a g-fundamental lattice.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

546 ALVERSON ET AL.

Proposition 4.2. Let λ = (a, b), with a, b ≥ 0. Let L be one of the g-
semistandard lattices Lβα

g (λ) or Lαβ
g (λ). Let s

γ→ t be an edge of color γ ∈ {α, β} in
L. Then wt(s) + γ = wt(t), and hence L satisfies the g-structure condition.

Proof. In light of Lemma 4.1, apply part (2) of Lemma 3.1.
Remark 4.3. If g = A1 ⊕ A1, then we have P βα

g (λ) ∼= Pαβ
g (λ) as vertex-colored

posets: their Hasse diagrams are vertex-color isomorphic to P βα
g (a, 0) ⊕ P βα

g (0, b) ∼=
a⊕b. Hence Lβα

g (λ) and Lαβ
g (λ) are edge-color isomorphic to Lβα

g (a, 0)×Lβα
g (0, b) ∼=

(a + 1)× (b + 1). For g = C2 or g = G2, observe that Pαβ
g (λ) is vertex-color isomor-

phic to (P βα
g (λ))∗, and thus Lαβ

g (λ) and (Lβα
g (λ))∗ are isomorphic as edge-colored

posets. For g = A2, P
αβ
g (λ) and (P βα

g (λ))∗ are isomorphic as posets, but their vertex
colors are reversed; disregarding edge colors, it follows that Lαβ

g (λ) and (Lβα
g (λ))∗ are

isomorphic as posets. In all cases, Lαβ
g (λ) ∼= (Lβα

g (λ))	.
The easy proof of the following statement will be omitted.
Lemma 4.4. Let λ = (a, b), with a, b ≥ 0. If g is simple, then Lβα

g (λ) ∼= Lαβ
g (λ)

as edge-colored posets if and only if a = 0 or b = 0.
Now we develop tableau labels for the elements of half of the g-semistandard

lattices, the Lβα
g (λ). Comments relating these tableaux to tableaux developed by

some of us and other authors appear in section 5. We associate to the fundamental
weight ωα = (1, 0) the shape shape(1, 0) = ; we associate to ωβ = (0, 1) the

shape shape(0, 1) = . For a, b ≥ 0, we associate to λ = (a, b) the shape (Ferrers
diagram) with b columns of length two and a columns of length one. A tableau of
shape λ is a filling of the boxes of shape(λ) with entries from some totally ordered
set. For a tableau T of shape λ, we write T = (T (1), . . . , T (a+b)), where T (i) is
the ith column of T from the left. We let T (i)

j denote the jth entry of the column
T (i), counting from the top. The tableau T is semistandard if the entries weakly
increase across rows and strictly increase down columns. To each element t of a g-
fundamental lattice from Figure 4.3 we associate the one-column semistandard tableau
tableau(t) of Figure 4.4. For an order ideal t of P βα

g (λ), let tableau(t) be the tableau
T = (T (1), . . . , T (a+b)) with T (i) = tableau(t∩Pi). A tableau T of shape λ obtained
in this way is a g-semistandard tableau of shape λ. We let Sg(λ) denote the set of all
g-semistandard tableaux of shape λ. The function tableau : Lβα

g (λ) −→ Sg(λ) is a
one-to-one correspondence. See Figure 6.1 for a C2 example.

Proposition 4.5. Let a, b ≥ 0, and let λ = (a, b). Then

SA2(λ) =
{
semistandard tableau T of shapeλ with entries from {1, 2, 3}

}
,

SC2(λ) =
{
semistandard tableau T of shape λ with entries from {1, 2, 3, 4}

∣∣∣
1
4 is not a column of T , and

2
3 appears at most once in T

}
SG2(λ) =

{
semistandard tableau T of shape λ with entries from {1, 2, 3, 4, 5, 6, 7}

∣∣∣
the column 4 appears at most once in T ;

2
3 ,

2
4 ,

3
4 ,

3
5 ,

4
5 ,

4
6 , and

5
6 are not columns of T ; plus the restrictions of Figure 4.5

}
.

Proof. The association of one-column g-semistandard tableaux with order ideals
of g-fundamental posets is given in Figures 4.3 and 4.4. Consider the g = C2 case.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISTRIBUTIVE LATTICES 547

A2

LA2(1, 0)

�

�

�

3

2

1

(0,-1)

(-1,1)

(1,0)

β

α

LA2(0, 1)

�

�

�

2
3

1
3

1
2

(-1,0)

(1,-1)

(0,1)

α

β

C2

LC2(1, 0)

�

�

�

�

4

3

2

1

(-1,0)

(1,-1)

(-1,1)

(1,0)

α

β

α

LC2(0, 1)

�

�

�

�

�

3
4

2
4

2
3

1
3

1
2

(0,-1)

(-2,1)

(0,0)

(2,-1)

(0,1)

β

α

α

β

G2

LG2(1, 0)

�

�

�

�

�

�

�

7

6

5

4

3

2

1

(-1,0)

(1,-1)

(-2,1)

(0,0)

(2,-1)

(-1,1)

(1,0)

α

β

α

α

β

α

LG2(0, 1)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1
2

1
3

1
4

1
5

1
6

2
5

2
6

1
7

3
6

2
7

3
7

4
7

5
7

6
7

(0,1)

(3,-1)

(1,0)

(-1,1)

(2,-1)(-3,2)

(0,0) (0,0)

(3,-2) (-2,1)

(1,-1)

(-1,0)

(-3,1)

(0,-1)

�
�

��

�
�

��
�

�
�

�
�

��

�
�

�
�

�
��
�

�
��

�
�

��

�
�

��
�

�
��

β

α

α

α β

β α α

β α α

α β

α

α

β

Fig. 4.4. Weights and tableaux for g-fundamental lattices.

We want to show that the set SC2(λ) is the same as the stated set, which we denote
S. Let T ∈ SC2(λ), so T = tableau(t) for some order ideal t of P βα

C2
(λ). Write

P βα
C2

(λ) = P1 · · · Pa+b, as depicted in Figure 4.6. Following Figure 4.2, we label
the vertices of Pj as w1,j , w2,j , w3,j , and w4,j with w1,j > w2,j > w3,j > w4,j

whenever 1 ≤ j ≤ b, and we label the vertices of Pj as z1,j, z2,j, and z3,j with
z1,j > z2,j > z3,j whenever 1 + b ≤ j ≤ a + b. By definition, T = (T (1), . . . , T (a+b))
with T (i) = tableau(t ∩ Pi). The entries for T (i) are from the set {1, 2, 3, 4}, and no

T (i) is the column
1
4 . To see how the semistandard and other restrictions occur,

suppose (for example) that T (i) is the column
2
3 for some 1 ≤ i ≤ b. Note that

t ∩ Pi = {w3,i, w4,i}. It follows that w1,j , w2,j , and w3,j are not in t for i < j ≤ b,
and moreover z1,j is not in t for 1 + b ≤ j ≤ a + b. In particular, it follows that

T (i+1) cannot be
1
2 ,

1
3 ,

2
3 , or 1 , assuming the column T (i+1) exists. That is,

the pair of columns T (i) and T (i+1) meets the requirements for inclusion in the set S.
The other eight cases for T (i) can be handled in a similar fashion. We conclude that
T ∈ S. So SC2(λ) ⊆ S.

In the other direction, suppose T = (T (1), . . . , T (a+b)) is in S. For each i, let
Qi be the order ideal of Pi corresponding to the one-column tableau T (i), and let
t := ∪iQi. By examining cases as in the previous paragraph, one can check that the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

548 ALVERSON ET AL.

Column T (i) of T Then the succeeding column T (i+1) of T cannot be. . .

4 4

1
4

1 ,
1
4 ,

1
5 ,

1
6 ,

1
7

1
5

1 ,
1
5 ,

1
6 ,

1
7

1
6

1 , 2 ,
1
6 ,

1
7 ,

2
6 ,

2
7

2
6

2 ,
2
6 ,

2
7

1
7

1 , 2 , 3 , 4 ,
1
7 ,

2
7 ,

3
7 ,

4
7

2
7

2 , 3 , 4 ,
2
7 ,

3
7 ,

4
7

3
7

3 , 4 ,
3
7 ,

4
7

4
7

4 ,
4
7

Fig. 4.5. Some restrictions for any given G2-semistandard tableau T .

restrictions on T as an element of S guarantee that t will be an order ideal of P βα
C2

(λ)
with Qi = t ∩ Pi for each i. Hence T ∈ SC2(λ). It follows that S ⊆ SC2(λ), which
completes the proof for the C2 case. The A2 and G2 cases can be handled by similar
arguments.

Remark 4.6. In passing we note that the partial ordering and the covering
relations in Lβα

g (λ) are easy to describe with the “coordinates” of g-semistandard
tableaux. For s and t in Lβα

g (λ), let S := tableau(s) and T := tableau(t). Then
s ≤ t if and only if S(i)

j ≥ T (i)
j for all i, j. (This is the “reverse componentwise” order

on tableaux.) Moreover, s → t is a covering relation in the poset Lβα
g (λ) if and only

if for some i and j we have S(i)
j = T

(i)
j + 1 while S(p)

q = T
(p)
q for all (p, q) �= (i, j). For

g = A2, the edge gets color α if T (i)
j is 1 and color β if T (i)

j is 2; for g = C2, the edge

gets color α if T (i)
j is 1 or 3 and color β if T (i)

j is 2; for g = G2, the edge gets color α

if T (i)
j is 1 or 3 or 4 or 6 and color β if T (i)

j is 2 or 5.
For a tableau T of shape λ = (a, b) and a positive integer k, we define nk(T)

to be the number of times the entry k appears in the tableau T . Observe that
nk(T) =

∑a+b
i=1 nk(T (i)). Define a function tableauwt : Sg(λ) −→ Z×Z by the rules:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISTRIBUTIVE LATTICES 549

� β

� α

� α

� β

� β

� α

� α

� β

� β

� α

� α

� β

� α

� β

� α

� α

� β

� α

� α

� β

� α

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

...
...

...
...

...
...

...
...

..
...

...
...

...
...

...

...
...

..
...

...
..

...
...

..

P1

Pb−1

Pb P1+b

P2+b

Pa+b

Fig. 4.6. P βα
C2

(λ) = P1 � · · · � Pa+b.

tableauwt(T) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
n1(T) − n2(T), n2(T) − n3(T)

)
if g = A2,(

n1(T) − n2(T) + n3(T) − n4(T), n2(T) − n3(T)
)

if g = C2,(
n1(T) − n2(T) + 2n3(T) − 2n5(T) + n6(T) − n7(T),

n2(T) − n3(T) + n5(T) − n6(T)
)

if g = G2.

The function wt(s) defined on Lβα
g (λ) in terms of the color components of Lβα

g (λ)
can be expressed in terms of the tableau entry counts when the elements s of Lβα

g (λ)
are viewed as tableaux t in Sg(λ).

Proposition 4.7. Let λ = (a, b), with a, b ≥ 0. For t ∈ Lβα
g (λ), consider

T := tableau(t) ∈ Sg(λ). Then wt(t) = tableauwt(T).
Proof. With the help of Figures 4.4 and 4.5, one can easily confirm the result

by hand whenever λ is a fundamental weight. Then, more generally, one can apply
Lemma 3.1 to wt(t), noting that tableauwt(T) =

∑a+b
i=1 tableauwt(T (i)).

This concludes our self-contained development of g-semistandard posets, g-semi-
standard lattices, and g-semistandard tableaux in sections 3 and 4.

5. Weyl characters; Littelmann’s tableaux; main results. Our main re-
sult, Theorem 5.3, expresses the Weyl characters for the irreducible representations of
the rank two semisimple Lie algebras as generating functions for g-semistandard lat-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

550 ALVERSON ET AL.

Algebra Simple roots Positive roots Weyl group W
(By generators and relations; as reduced words)

A2
α = 2ωα − ωβ

β = −ωα + 2ωβ
α, β, α + β

〈sα, sβ |s2
α = s2

β = id, (sαsβ)3 = id〉
{id, sα, sβ , sαsβ , sβsα, sαsβsα = sβsαsβ}

C2
α = 2ωα − ωβ

β = −2ωα + 2ωβ

α, β, α + β,
2α + β

〈sα, sβ |s2
α = s2

β = id, (sαsβ)4 = id〉
{id, sα, sβ , sαsβ , sβsα, sαsβsα, sβsαsβ ,

sαsβsαsβ = sβsαsβsα}

G2
α = 2ωα − ωβ

β = −3ωα + 2ωβ

α, β, α + β,
2α + β,
3α + β,

3α + 2β

〈sα, sβ |s2
α = s2

β = id, (sαsβ)6 = id〉
{id, sα, sβ , sαsβ , sβsα, sαsβsα, sβsαsβ ,

sαsβsαsβ , sβsαsβsα, sαsβsαsβsα,
sβsαsβsαsβ , sαsβsαsβsαsβ = sβsαsβsαsβsα}

Fig. 5.1. Roots and Weyl groups for the rank two simple Lie algebras.

tices. We begin by recording some explicit data on roots, weights, Weyl groups, and
irreducible characters for the rank two semisimple Lie algebras. Then we describe
certain tableaux obtained by Littelmann in [Lit], and in Proposition 5.2 we match
these with our g-semistandard tableaux. Corollary 5.4 gives the product expressions
for the rank generating functions.

In rank two we denote the elements eωα and eωβ
of the group ring Z[Λ] by x

and y. Then, in the notation of section 2, the irreducible Weyl character χ
λ

for g is a
Laurent polynomial in the variables x and y denoted charg(λ;x, y). The reflections sα

and sβ in W act on the fundamental weights as follows: sαωα = ωα − α, sαωβ = ωβ ,
sβωα = ωα, and sβωβ = ωβ − β. Figure 5.1 has data for the simple roots, positive
roots, and Weyl group for each of the rank two simple Lie algebras. Recall from
section 2 that the denominator A� of the Weyl character formula can be expressed
as a product over the positive roots. Also recall that the numerator A�+λ is an
alternating sum over the elements of the Weyl group. Using the data of Figure 5.1
one obtains for A2

A� = xy(1− x−2y)(1− xy−2)(1 − x−1y−1)
= xy − x−1y2 − x2y−1 + x−2y + xy−2 − x−1y−1,

A�+λ = xa+1yb+1 − x−(a+1)ya+b+2 − xa+b+2y−(b+1)

+ x−(a+b+2)ya+1 + xb+1y−(a+b+2) − x−(b+1)y−(a+1).

For C2 we get

A� = xy(1 − x−2y)(1 − x2y−2)(1 − y−1)(1 − x−2)
= xy − x−1y2 − x3y−1 + x−3y2 + x3y−2 − x−3y1 − xy−2 + x−1y−1,

A�+λ = xa+1yb+1 − x−(a+1)ya+b+2 − xa+2b+3y−(b+1) + x−(a+2b+3)ya+b+2

+ xa+2b+3y−(a+b+2) − x−(a+2b+3)yb+1 − xa+1y−(a+b+2) + x−(a+1)y−(b+1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISTRIBUTIVE LATTICES 551

And for G2 we have

A� = xy(1− x−2y)(1− x3y−2)(1− xy−1)(1− x−1)(1− x−3y)(1− y−1)
= xy − x−1y2 − x4y−1 + x−4y3 + x5y−2 − x−5y3 − x5y−3 + x−5y2 + x4y−3

− x−4y − xy−2 + x−1y−1,

A�+λ = xa+1yb+1 − x−(a+1)ya+b+2 − xa+3b+4y−(b+1) + x−(a+3b+4)ya+2b+3

+ x2a+3b+5y−(a+b+2)

− x−(2a+3b+5)ya+2b+3 − x2a+3b+5y−(a+2b+3) + x−(2a+3b+5)ya+b+2

+ xa+3b+4y−(a+2b+3)

− x−(a+3b+4)yb+1 − xa+1y−(a+b+2) + x−(a+1)y−(b+1).

We now seek a correspondence between our g-semistandard tableaux and certain
tableaux of Littelmann [Lit]. Littelmann’s tableaux are “translations” of the standard
monomial theory tableaux of Lakshmibai and Seshadri. The roles of his columns and
rows are reversed with respect to this paper. We preprocess Littelmann’s tableaux
in two steps. First, we reflect them across the main diagonal i = j. Then we group
k of his columns at a time into a “block” of k columns, where k = 1 for A2, k = 2
for C2, and k = 6 for G2. We define shape(k × λ) := shape(μ), where μ = kaωα +
kbωβ = (ka, kb). A k-tableau of shape λ is a filling of shape(k × λ) with entries
from some totally ordered set. The semistandard condition on k-tableaux is the same
as the semistandard condition of section 4. For a k-tableau T of shape λ, we write
T = (T (1), . . . , T (a+b)), where T (i) is the ith block of k columns of T counting from
the left. Only certain fillings of these k-column blocks will be “admissible.” Here are
our processed versions of Littelmann’s tableaux.

Definition 5.1. Let λ = (a, b), with a, b ≥ 0. Then

LT A2(λ) :=
{
semistandard 1-tableau T of shape λ with entries from {1, 2, 3}

∣∣∣
admissible 1-column blocks of T come from Figure 5.2

}
,

LT C2(λ) :=
{
semistandard 2-tableau T of shape λ with entries from {1, 2, 3, 4}

∣∣∣
admissible 2-column blocks of T come from Figure 5.2

}
,

LT G2(λ) :=
{
semistandard 6-tableau T of shape λ with entries from {1, 2, 3, 4, 5, 6}

∣∣∣
admissible 6-column blocks of T come from Figure 5.2

}
.

Moreover, the weight wtLit(T) of a Littelmann tableau T is given by

wtLit(T) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
n1(T) − n2(T)

)
ωα +

(
n2(T) − n3(T)

)
ωβ if g = A2,

1
2

[(
n1(T) − n2(T) + n3(T) − n4(T)

)
ωα +

(
n2(T) − n3(T)

)
ωβ

]
if g = C2,

1
6

[(
n1(T) − n2(T) + 2n3(T) − 2n4(T) + n5(T) − n6(T)

)
ωα

+
(
n2(T) − n3(T) + n4(T) − n5(T)

)
ωβ

]
if g = G2.

To obtain these tableaux for A2, see section 2 of [Lit]; for C2, see the appendix of
[Lit]; and for G2 see section 3 of that paper. Littelmann expresses his weight function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

552 ALVERSON ET AL.

in terms of a basis {ε1, ε2} for Λ, where ε1 = ωα and ε2 = ωβ − ωα. A consequence
of standard monomial theory is the following theorem.

Theorem (Littelmann, Lakshmibai, Seshadri). Let λ = (a, b), with a, b ≥ 0. Let
g be a rank two simple Lie algebra. Then (LT g(λ), wtLit) is a splitting system for the
irreducible character χ

λ
.

Next we describe a weight-preserving bijection φ : Sg(λ) −→ LT g(λ). For funda-
mental weights, the correspondence between the g-semistandard tableaux of section
4 and Littelmann k-tableaux of this section is given in Figure 5.2. Given a rank two
simple Lie algebra g, a dominant weight λ = aωα + bωβ = (a, b), and a tableau T in
Sg(λ), we let U = φ(T) be the Littelmann k-tableau of shape λ whose ith k-column
block U (i) corresponds to the ith column T (i) of T . Keeping in mind the restric-
tions on which columns can follow T (i) to form a g-semistandard tableau T in Sg(λ),
one can check that U (i) followed by U (i+1) obeys the semistandard requirement for
Littelmann k-tableaux. Hence U is in LT g(λ). Similarly, given U in LT g(λ), let
T = ψ(U) be the tableau of shape λ whose ith column T (i) corresponds to the ith
k-column block U (i) of U . Keeping in mind the semistandard condition on the Lit-
telmann k-tableaux in LT g(λ), one can check that T (i) followed by T (i+1) obeys the
restrictions for g-semistandard tableaux in Sg(λ), and hence T is in Sg(λ). Clearly
the mappings φ and ψ are inverses.

Proposition 5.2. Keep the notation of the previous paragraph. The mapping
φ : Sg(λ) −→ LT g(λ) described above is a weight-preserving bijection: for any T ∈
Sg(λ), wtLit(φ(T)) = tableauwt(T).

Proof. We must check that φ is weight-preserving. If λ is a fundamental
weight, simply inspect Figure 5.2. If λ is a dominant weight and T is in Sg(λ),
then tableauwt(T) =

∑
tableauwt(T (i)) =

∑
wtLit(φ(T (i))). The characterization

of wtLit in Definition 5.1 implies that wtLit(φ(T)) =
∑
wtLit(φ(T (i))).

Theorem 5.3. Let g be a semisimple Lie algebra of rank two. Let λ = (a, b),
with a, b ≥ 0. Let L be one of the g-semistandard lattices Lβα

g (λ) or Lαβ
g (λ). Then

L is a splitting poset for an irreducible representation of g with highest weight λ. In
particular,

charg(λ;x, y) =
∑
s∈L

(x, y)wt(s).

Proof. Proposition 4.2 states that L satisfies the g-structure condition. Suppose
g is simple. Since (LT g(λ), wtLit) is a splitting system for χ

λ
, it follows from Propo-

sition 5.2 that (Sg(λ), tableauwt) is as well. From Proposition 4.7 it now follows
that (Lβα

g (λ), wt) is a splitting system for χ
λ
. Since Lαβ

g (λ) ∼= (Lβα
g (λ))	, then by

Lemma 2.2 the result holds for Lαβ
g (λ) as well. The case A1 ⊕A1 can be handled by

constructing the corresponding representation.
The main results of [Mc] and [Alv] were closely related to Theorem 5.3 for the

cases of G2 and C2, respectively. For these rank two simple Lie algebras g, the
lattices Lβα

g (λ) were obtained by taking natural partial orders on the corresponding
g-semistandard tableaux of section 4, and case analysis arguments were used to show
that the mapping φ preserves weights and that the g-structure condition is satisfied.
However, g-semistandard posets did not arise in their approach. If one is willing to
depend entirely upon [Lit], then in this manner one can obtain Propositions 4.2 and
4.7 from Proposition 5.2 and Littelmann’s analogue to Theorem 5.3 without using
Lemma 3.1. But this approach would take at least as much (related) work and would
not be as uniformly stated.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISTRIBUTIVE LATTICES 553

A2

Admissible
1-block T

Weight
wtLit(T)

Corresponding
A2-semistandard

tableau

1 ωα 1

2 −ωα + ωβ 2

3 −ωβ 3

1
2

ωβ
1
2

1
3

ωα − ωβ
1
3

2
3

−ωα
2
3

C2

Admissible
2-block T

Weight
wtLit(T)

Corresponding
C2-semistandard

tableau

1 1 ωα 1

2 2 −ωα + ωβ 2

3 3 ωα − ωβ 3

4 4 −ωα 4

1 1
2 2

ωβ
1
2

1 1
3 3

2ωα − ωβ
1
3

1 2
3 4

0ωα + 0ωβ
2
3

2 2
4 4

−2ωα + ωβ
2
4

3 3
4 4

−ωβ
3
4

G2

Admissible
6-block T

Weight
wtLit(T)

Corresponding
G2-semistandard

tableau

1 1 1 1 1 1 ωα 1

2 2 2 2 2 2 −ωα + ωβ 2

3 3 3 3 3 3 2ωα − ωβ 3

3 3 3 4 4 4 0ωα + 0ωβ 4

4 4 4 4 4 4 −2ωα + ωβ 5

5 5 5 5 5 5 ωα − ωβ 6

6 6 6 6 6 6 −ωα 7

Fig. 5.2. Admissible k-column blocks for Littelmann tableau, their weights, and their corre-
sponding g-semistandard columns.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

554 ALVERSON ET AL.

G2

Admissible
6-block T

Weight
wtLit(T)

Corresponding
G2-semistandard

tableau

1 1 1 1 1 1
2 2 2 2 2 2

ωβ
1
2

1 1 1 1 1 1
3 3 3 3 3 3

3ωα − ωβ
1
3

1 1 1 1 2 2
3 3 3 3 4 4

ωα
1
4

1 1 2 2 2 2
3 3 4 4 4 4

−ωα + ωβ
1
5

2 2 2 2 2 2
4 4 4 4 4 4

−3ωα + 2ωβ
2
5

1 1 2 3 3 3
3 3 4 5 5 5

2ωα − ωβ
1
6

2 2 2 3 3 3
4 4 4 5 5 5

0ωα + 0ωβ
2
6

1 1 2 3 4 4
3 3 4 5 6 6

0ωα + 0ωβ
1
7

3 3 3 3 3 3
5 5 5 5 5 5

3ωα − 2ωβ
3
6

2 2 2 3 4 4
4 4 4 5 6 6

−2ωα + ωβ
2
7

3 3 3 3 4 4
5 5 5 5 6 6

ωα − ωβ
3
7

3 3 4 4 4 4
5 5 6 6 6 6

−ωα
4
7

4 4 4 4 4 4
6 6 6 6 6 6

−3ωα + ωβ
5
7

5 5 5 5 5 5
6 6 6 6 6 6

−ωβ
6
7

Fig. 5.2 (continued). Admissible k-column blocks for Littelmann tableaux, their weights, and
their corresponding g-semistandard columns.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISTRIBUTIVE LATTICES 555

Our final result presents the g-semistandard lattices as answers to Stanley’s Prob-
lem 3 [Sta1].

Corollary 5.4. Let g be a simple Lie algebra of rank two. Let λ = (a, b), with
a, b ≥ 0. Then the g-semistandard lattices Lβα

g (λ) and Lαβ
g (λ) are rank symmetric

and rank unimodal. Moreover, the rank generating functions for these lattices are

RGFA2(λ, q) =
(1 − qa+1)(1 − qb+1)(1 − qa+b+2)

(1 − q)(1 − q)(1 − q2)
,

RGFC2(λ, q) =
(1 − qa+1)(1 − qb+1)(1 − qa+b+2)(1 − qa+2b+3)

(1 − q)(1 − q)(1 − q2)(1 − q3)
,

RGFG2(λ, q) =
(1 − qa+1)(1 − qb+1)(1 − qa+b+2)(1 − qa+2b+3)(1 − qa+3b+4)(1 − q2a+3b+5)

(1 − q)(1 − q)(1 − q2)(1 − q3)(1 − q4)(1 − q5)
.

In each case |Lβα
g (λ)| = |Lαβ

g (λ)|, and these counts may be found by letting q → 1.
Proof. In light of Theorem 5.3, apply Proposition 2.4. We have specialized the

right-hand side quotient there using the data from Figure 5.1.

6. Remarks. Stanley’s Exercises 4.25 and 3.27 on Gaussian and pleasant posets
have attracted some attention [Sta2]. A poset P with p elements is Gaussian if there
exist positive integers h1, . . . , hp such that for all m ≥ 0, the rank generating function
of the lattice J(P × m) is Πp

i=1(1 − qm+hi)/(1 − qhi). In [Pr1], the sixth author
and Stanley gave a uniform proof of the Gaussian property for all known Gaussian
posets. That proof used an analogue of Theorem 5.3; it was based upon Seshadri’s
standard monomial basis theorem for the irreducible representations Xn(mωk), where
the representations Xn(ωk) are “minuscule.” Now let P be our G2-fundamental poset
PG2(0, 1) of Figure 4.2. Please use Figure 3.2 to help visualize the G2-semistandard
poset P βα

G2
(0,m) for m ≥ 0. Note that P βα

G2
(0,m) consists of P ×m together with

some additional order relations. By Corollary 5.4, the rank generating function for
Lβα

G2
(0,m) = Jcolor(P

βα
G2

(0,m)) is

(1− qm+1)(1− qm+2)(1− q2m+3)(1 − q3m+4)(1 − q3m+5)
(1− q1)(1 − q2)(1 − q3)(1 − q4)(1− q5) .

One could introduce a more general notion of “quasi-Gaussian” for a poset P by
requiring that the elements of P ×m remain distinct when some additional (if any)
order relations are introduced, and by allowing a more general product form for the
generating function identity. Then the fundamental posets PC2(0, 1) and PG2(1, 0) of
Figure 4.2 would also be quasi-Gaussian, but not Gaussian. In [DW] more will be said
about the order relations added to P ×m above and the juxtaposition rules for the
fundamental posets shown in Figures 3.2 and 3.3. For now, we note that these added
order relations are similar to those added in the following example: The Catalan poset
P3 of Figure 1.1 can be obtained by adding order relations to the Gaussian poset 3×3;
this corresponds to the restriction of sl6(ω3) to sp6(ω3).

Here is the C2 example promised in the middle of section 4: The C2-semistandard
poset P βα

C2
(1, 1) is displayed in Figure 6.1. Also displayed is the corresponding C2-

semistandard lattice Lβα
C2

(1, 1), with vertices labeled by the C2-semistandard tableaux
of shape (1, 1). The lattice Lβα

C2
(1, 1) shown in Figure 6.1 looks similar in structure

to the edge-colored lattice L displayed in Figure 6.2. In fact, this L = Jcolor(P) for
the two-color grid poset P displayed in Figure 6.2. Moreover, P = Q1 Q2 with
Q1
∼= P1 and Q2

∼= P2 for the indecomposable two-color grid posets P1 and P2

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

556 ALVERSON ET AL.

P βα
C2

(1, 1)

� α

� β

� β

� α

� α

� α� β

�
�

�
��

�
�

�
��

�
��

�
�� �

�
�

��

Lβα
C2

(1, 1)

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
��

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

α β

β α α

β α α α

α β α α β

α β β α

α β β

β α

�

� �

� �

� � �

� � �

� �

� �

�

1
2

1

1
3

1 1
2

2

1
3

2 1
2

3

2
3

2 1
3

3 1
2

4

2
4

2 2
3

3 1
3

4

2
4

3 2
3

4

3
4

3 2
4

4

3
4

4

Fig. 6.1. P βα
C2

(1, 1) and Lβα
C2

(1, 1). (Vertices of Lβα
C2

(1, 1) are indexed by C2-semistandard

tableaux.)

displayed in Figure 6.2. And P1 and P2 look similar in structure to the fundamental
g-semistandard posets presented in Figure 4.2. But it can be seen that L does not
satisfy the structure condition for any 2 × 2 matrix M . Therefore, L cannot be a
splitting poset for a representation, and so there is no hope of applying Proposition
2.4 to L. But L does have a “symmetric chain decomposition,” and hence it is rank
symmetric, rank unimodal, and “strongly Sperner.”

It is possible to prove that the g-semistandard lattices, g ∈ {A1⊕A1, A2, C2, G2},
are the only lattices of the kind we have been considering which can have the M -
structure property for any 2× 2 integer matrix M .

Theorem 6.1 (see [Don2]). Let P be a two-color grid poset which has the max
property. If L = Jcolor(P) has the M -structure property for some 2×2 integer matrix
M , then L is a g-semistandard lattice, g ∈ {A1 ⊕A1, A2, C2, G2}.

Theorem 6.2 (see [Don2]). Let P be an indecomposable two-color grid poset. If
L = Jcolor(P) has the M -structure property for some 2× 2 integer matrix M , then L
is a g-fundamental lattice, g ∈ {A1 ⊕A1, A2, C2, G2}.

These two statements are combinatorial Dynkin diagram classification theorems:
No Lie theory or algebraic concepts of any kind appear in their hypotheses, but the
short list of Dynkin diagram-indexed rank two Cartan matrices plays the central role
in their conclusions.

To apply Corollary 5.4 via Theorem 5.3, Proposition 5.2 was required: the ele-
ments of the g-semistandard lattices were matched up with tableaux of Littelmann.
(But it is possible to directly obtain the total count results mentioned at the end of
Corollary 5.4 with elementary combinatorial reasoning [ADLP].) The precise match-
up required here should make one pessimistic about obtaining rank generating func-
tion identities similar to Corollary 5.4 for lattices L = Jcolor(P) for general two-color
grid posets P . This pessimism is intuitively heightened by the classification results
above, which emphasize how special the g-semistandard lattices are. After representa-
tions for the cases listed in the introduction to this paper are constructed, Corollary 5.3
of [ADLP] notes that the g-semistandard lattices in those cases are strongly Sperner.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISTRIBUTIVE LATTICES 557

P1

� β

� α

� α

� α

� α

� β

�
�

�
�

�
�

�

�
��

�
��

P2

� α

� β

� β

� β

� α

�
�

�
��
�

��

�
��

P

�α

� β

� β

� β

� β

�α

�α

�α

�α

�α� β

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��

�
��

�
��

�
��

�
��

L

�

� �

� �

� � �

� � � �

� � � � �

� � � � �

� � � �

� � �

� �

� �

�

�
��α

�
��β

�
��β

�
��α

�
��α

�
��β

�
��α

�
��α

�
��α

�
��β

�
��α

�
��β

�
��α

�
��α

�
��α

�
��β

�
��α

�
��β

�
��α

�
��β

�
��α

�
��α

�
��α

�
��α

�
��β

�
��α

�
��β

�
��α

�
��β

�
��α

�
��α

�
��β

�
��α

�
��β

�
��α

�
��β

�
��α

�
��β

�
��β

�
��α

�
��α

�
��β

�
��α

�
��β

�
��β

�
��β

�
��α

�
��β

�
��β

�
��β

�
��α

�
��β

�
��β

�
��β

�
��α

Fig. 6.2. We can write P = Q1 � Q2 with Qi
∼= Pi (i = 1, 2). Below, L = Jcolor(P).

Although this approach cannot be used for the rest of the g-semistandard lattices,
it is natural to hope that those lattices have this property. When addressing these
extremal set theory issues, here it would now seem reasonable to attempt a combina-
torial approach: Can one find symmetric chain decompositions of L = Jcolor(P) for
certain two-color grid posets P?

Although the rank two cases in Lie theory are much simpler than the general
rank cases, it is also true in Lie theory that the key aspect of a higher rank case often
reduces to consideration of that aspect for just the rank two cases. Various aspects of
this rank two paper will be used for many higher rank cases in [DW]. The forms of the
g-semistandard tableaux of section 4 may seem unmotivated to readers who are famil-
iar only with [Hum]. Space and time permitting, much motivation could be supplied.
Strict columns of length two arise because the second fundamental representation in
each simple case can be realized as the “big piece” of the second exterior power of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

558 ALVERSON ET AL.

the first fundamental representation. Standard monomial theory (and earlier papers
concerning algebras with straightening laws) explain how the restricted concatenation
of columns corresponds to the multiplication of “Plücker coordinates” for flag mani-
folds. Going further, it may be possible to “explain” the simple root colorings of the
elements of the posets P in the spirit of the heaps of Stembridge, along the lines of
Theorem 11.1 of [Pr1].

Our main result states that the g-semistandard lattices are splitting posets for
their representations. For any representation, the crystal graph (of Kashiwara) is a
splitting poset (cf. Lemma 3.6 of [Don1]). More generally, this is true for Stembridge’s
overarching crystal graph-like “admissible systems” [Stem]. The second author has
observed that any admissible system for a given representation is “edge minimal”
within the set of splitting posets for the representation: It contains no splitting poset
for the representation as a proper subgraph. For all irreducible representations of
types A2 and C2, it can be seen from [KN] that Kashiwara’s crystal graphs are sub-
graphs of the corresponding g-semistandard lattices. The first, second, third, and
fifth authors have recently shown that all g-semistandard lattices give rise to admis-
sible systems. By replacing the step in section 5 of matching lattice elements with
Littelmann’s tableaux, this approach yields another proof Theorem 5.3. In [DW]
we will consider most simple Lie algebras of arbitrary rank and uniformly define g-
fundamental posets for their fundamental weights which have the following property:
the longest element in the associated Bruhat order is “fully commutative.” This def-
inition is type-independent. Using these fundamental posets, as in section 4 we build
g-semistandard posets and lattices for many representations. Along with this paper,
this should start a new program: Find modular lattice splitting posets for all irre-
ducible representations of all semisimple Lie algebras and show that they give rise to
admissible systems. If these hopes are realized, these modular lattices (including the
g-semistandard lattices) would in general contain “extra” edges with respect to the
admissible system. But the lattices might be more combinatorially interesting than
most or all admissible systems’ directed graphs, and hopefully more accessible. One
consequence might be the formulation of analogues of the Littlewood–Richardson ten-
sor product rule in terms of manipulations of the underlying g-semistandard posets
(or their analogues in the modular/nondistributive cases).

REFERENCES

[Alv] L. W. Alverson II, Distributive Lattices and Representations of the Rank Two Simple
Lie Algebras, Master’s thesis, Murray State University, Murray, KY, 2003.

[ADLP] L. W. Alverson II, R. G. Donnelly, S. J. Lewis, and R. Pervine, Constructions of
representations of rank two semisimple Lie algebras with distributive lattices, Electron.
J. Combin., 13 (2006), R109 (44 pp).

[Don1] R. G. Donnelly, Extremal properties of bases for representations of semisimple Lie alge-
bras, J. Algebraic Combin., 17 (2003), pp. 255–282.

[Don2] R. G. Donnelly, Dynkin diagram classification results satisfying certain structural prop-
erties, in preparation.

[DLP] R. G. Donnelly, S. J. Lewis, and R. Pervine, Constructions of representations of
o(2n + 1, C) that imply Molev and Reiner–Stanton lattices are strongly Sperner, Dis-
crete Math., 263 (2003), pp. 61–79.

[DW] R. G. Donnelly and N. J. Wildberger, Distributive lattice models for certain families
of irreducible semisimple Lie algebra representations, in preparation.

[Hum] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-
Verlag, New York, 1972.

[KN] M. Kashiwara and T. Nakashima, Crystal graphs for representations of the q-analogue
of classical Lie algebras, J. Algebra, 165 (1994), pp. 295–345.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DISTRIBUTIVE LATTICES 559

[Lit] P. Littelmann, A generalization of the Littlewood–Richardson rule, J. Algebra, 130 (1990),
pp. 328–368.

[Mc] M. McClard, Picturing Representations of Simple Lie Algebras of Rank Two, Master’s
thesis, Murray State University, Murray, KY, 2000.

[Pr1] R. A. Proctor, Bruhat lattices, plane partition generating functions, and minuscule rep-
resentations, European J. Combin., 5 (1984), pp. 331–350.

[Pr2] R. A. Proctor, Solution of a Sperner conjecture of Stanley with a construction of Gelfand,
J. Combin. Theory Ser. A, 54 (1990), pp. 225–234.

[Sta1] R. P. Stanley, Unimodal sequences arising from Lie algebras, in Young Day Proceedings,
T. V. Narayana et al., eds., Marcel Dekker, New York, 1980, pp. 127–136.

[Sta2] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth and Brooks/Cole, Mon-
terey, CA, 1986.

[Sta3] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cam-
bridge, UK, 1999.

[Stem] J. Stembridge, Combinatorial models for Weyl characters, Adv. Math., 168 (2002), pp.
96–131.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 2, pp. 561–570

n-ARY QUASIGROUPS OF ORDER 4∗

DENIS S. KROTOV† AND VLADIMIR N. POTAPOV†

Abstract. We characterize the set of all n-ary quasigroups of order 4: every n-ary quasigroup
of order 4 is permutably reducible or semilinear. Permutable reducibility means that an n-ary quasi-
group can be represented as a composition of k-ary and (n− k + 1)-ary quasigroups for some k from
2 to n−1, where the order of arguments in the representation can differ from the original order. The
set of semilinear n-ary quasigroups has a characterization in terms of Boolean functions.

Key words. Latin hypercube, n-ary quasigroup, reducibility

AMS subject classifications. 05B15, 20N05, 20N15, 94B25

DOI. 10.1137/070697331

1. Introduction. An algebraic system consisting of a finite set Σ of cardinality
|Σ| = q and an n-ary operation f : Σn → Σ uniquely invertible in each place is called
an n-ary quasigroup of order q. The function f can also be referred to as an n-ary
quasigroup of order q or, for short, an n-quasigroup. The value array of an n-qua-
sigroup of order q is known as a Latin n-cube of order q (if n = 2, a Latin square).
Furthermore, there is a one-to-one correspondence between the n-quasigroups and the
distance 2 MDS codes in Σn+1.

It is known that for every n there exist exactly two equivalent n-quasigroups of
order 2 and 3 · 2n n-quasigroups of order 3, which constitute one isotopy class (see,
e.g., [LM98]). So, 4 is the first order for which a rich class of n-quasigroups exists.
On the other hand, this order is of special interest for different areas of mathematics
close to information theory. For example,

• the class of 1-perfect codes in {0, 1}n of rank at most n − log2(n + 1) + 2
(the minimum rank is n− log2(n+ 1) for 1-perfect codes) is characterized in terms of
n-quasigroups of order 4; see [AHS04] (so, our work completes this characterization);

• order 4 is the first order that is applicable for use in quasigroup stream
ciphers; and

• from n-quasigroups of order 4, n-quasigroups of other orders can be con-
structed, giving examples of n-quasigroups with nontrivial properties (see, e. g.,
[Kro08a]).

In this paper, we show that every n-quasigroup of order 4 is permutably reducible
or semilinear. Permutable reducibility means that the n-quasigroup can be repre-
sented as a repetition-free composition of quasigroups of smaller arities where the
ordering of the arguments in the representation can differ from the original (see Defini-
tion 2.4). Semilinearity (Definition 2.5) means that the n-quasigroup can be obtained
as a direct product of two n-quasigroups of order 2 modified by a Boolean function
{0, 1}n → {0, 1} (sometimes this construction is referred to as the wreath product

∗Received by the editors July 16, 2007; accepted for publication (in revised form) October 6, 2008;
published electronically February 6, 2009.

http://www.siam.org/journals/sidma/23-2/69733.html
†Sobolev Institute of Mathematics, prosp. Akademika Koptyuga, 4, Novosibirsk, 630090, Russia

(krotov@math.nsc.ru, vpotapov@math.nsc.ru). The research of the first author was supported in
part by the Russian Foundation for Basic Research, grant 08-01-00673. The research of the second
author was supported in part by the Russian Foundation for Basic Research, grant 08-01-00671.

561

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

562 DENIS S. KROTOV AND VLADIMIR N. POTAPOV

construction, but we should remember that this does not agree with the concept of
the wreath product of groups).

In section 2 we introduce main concepts and notation. In section 3 we formulate
the result (Theorem 3.1) and divide the proof into four subcases, Lemmas 3.2–3.5.
Lemmas 3.4 and 3.5 are proved in sections 5 and 4, while Lemmas 3.2 and 3.3 follow
from previous papers.

2. Main definitions.
Definition 2.1. An n-ary operation Q : Σn → Σ, where Σ is a nonempty

set, is called an n-ary quasigroup or n-quasigroup (of order |Σ|) if in the equality
z0 = Q(z1, . . . , zn) knowledge of any n elements of z0, z1, . . . , zn uniquely specifies the
remaining element [Bel72].

The definition is symmetric with respect to the variables z0, z1, . . . , zn, and some-
times it is convenient to use a symmetric form for the relation z0 = Q(z1, . . . , zn).
For this reason, we will denote by Q〈z0, z1, . . . , zn〉 the corresponding predicate, i.e.,
the characteristic function of this relation. (In coding theory, the set corresponding
to this predicate is known as a distance 2 MDS code.)

Given ȳ = (y1, . . . , yn), we denote

ȳ[i][x] � (y1, . . . , yi−1, x, yi+1, . . . , yn);

similarly, we define ȳ[i1,i2,...,ik][xi1 , xi2 , . . . , xik
].

Definition 2.2. If we assign some fixed values to l ∈ {1, . . . , n} variables in the
predicate Q〈z0, . . . , zn〉, then the (n− l + 1)-ary predicate obtained corresponds to an
(n − l)-quasigroup. Such a quasigroup is called a retract or (n − l)-retract of Q. If
z0 is not fixed, the retract is principal.

Definition 2.3. By an isotopy we shall mean a collection of n + 1 permuta-
tions τi : Σ → Σ, i ∈ {0, 1, . . . , n}. n-quasigroups f and g are called isotopic if for
some isotopy τ̄ = (τ0, τ1, . . . , τn) we have f(x1, . . . , xn) ≡ τ−1

0 g(τ1x1, . . . , τnxn), i.e.,
f〈x0, x1, . . . , xn〉 ≡ g〈τ0x0, τ1x1, . . . , τnxn〉.

Definition 2.4. An n-quasigroup f is termed permutably reducible (in [PK06],
the term “decomposable” was used) if there exist m ∈ {2, . . . , n− 1}, an (n−m+ 1)-
quasigroup h, an m-quasigroup g, and a permutation σ : {1, . . . , n} → {1, . . . , n} such
that

f(x1, . . . , xn) ≡ h(g(xσ(1), . . . , xσ(m)), xσ(m+1), . . . , xσ(n))

(i.e., f is a composition of h and g). For short, we will omit the word “permutably”
(with the exception of the main statements). If an n-quasigroup is not reducible, then
it is irreducible. (In particular, all 2-quasigroups are irreducible.)

Definition 2.5. We say that an n-quasigroup f : {0, 1, 2, 3}n → {0, 1, 2, 3} is
standardly semilinear if

f〈x̄〉 � L〈x̄〉,
where

L〈x0, . . . , xn〉 � l(x0)⊕ · · · ⊕ l(xn)⊕ 1, l(0) = l(1) = 0, l(2) = l(3) = 1

(� means “≤ everywhere”; ⊕ means “modulo-2 addition”); see, e.g., Figure 1. An n-
quasigroup of order 4 is called semilinear if it is isotopic to some standardly semilinear
n-quasigroup.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

n-ARY QUASIGROUPS OF ORDER 4 563

f(x, y) :

0 1 2 3
1 0 3 2
3 2 0 1
2 3 1 0

f〈z, x, y〉 :
��������

�������� ��������
��������

��������
�������� ��������

��������

�������� ��������
�������� ��������

�������� ��������
�������� ��������

�
��������

�������� ��������
��������

��������
�������� ��������

��������

�������� ��������
�������� ��������

�������� ��������
�������� ��������

Fig. 1. A standardly semilinear 2-quasigroup and the function L〈·〉.

The set of standardly semilinear n-quasigroups has a simple characterization.
Proposition 2.6. The following relation is a bijection between the standardly

semilinear n-quasigroups f and the Boolean functions λ : {0, 1}n → {0, 1}:

f〈x0, x1, . . . , xn〉 ≡ L〈x0, x1, . . . , xn〉 ·
(
x0⊕x1⊕ · · ·⊕x1⊕λ(l(x1), . . . , l(xn))

)
.(1)

Proof. Consider a standardly semilinear n-quasigroup. Consider a set H consist-
ing of 2n+2 points of {0, 1, 2, 3}n+1 with fixed values l(x1), . . . , l(xn).

The number of 1’s of f〈·〉 in H is 2n (indeed, by the definition of an n-quasigroup,
every n-tuple x1, . . . , xn corresponds to exactly one 1). Moreover, since f is standardly
semilinear, all these 1’s belong to H1 � (x̄ ∈ H | L〈x̄〉 = 1). Since there are no two
1’s that differ in only one coordinate, all these 1’s simultaneously have either an even
or an odd coordinate sum. In the even case, define λ(l(x1), . . . , l(xn)) = 1; in the odd
case, λ(l(x1), . . . , l(xn)) = 0. Then (1) is automatically true.

So, the number of the standardly semilinear n-quasigroups is 22n

. Multiplying
by the number 3n+12 of different functions isotopic to L, we obtain an approximate
number of the semilinear n-quasigroups. The exact number is 3n+122n+1−8·6n [PK06,
Theorem 1], where −8 · 6n is explained by the fact that affine Boolean functions (and
only affine, i.e., of type λ(z1, . . . , zn) = b0 ⊕ b1z1 ⊕ · · · ⊕ bnzn, bi ∈ {0, 1}) correspond
to n-quasigroups majorized by more than one isotope of L.

In the rest of the paper, unless otherwise stated, we consider only order 4 n-qua-
sigroups over Σ = {0, 1, 2, 3}.

3. Main result. The main result is the following theorem.
Theorem 3.1. Every n-quasigroup of order 4 is permutably reducible or semi-

linear.
The basic characteristic of an n-quasigroup f , which divides our proof into four

subcases, is the maximum arity of its irreducible retract. Denote this value by κ(f);
then, 2 ≤ κ(f) < n. The line of reasoning in the proof of Theorem 3.1 is inductive,
so we can assume that the irreducible retracts are semilinear.

Lemma 3.2 (case κ = n− 1 [PK06, Lemma 4]). If an n-quasigroup f of order 4
has a semilinear (n− 1)-retract, then it is permutably reducible or semilinear.

Lemma 3.3 (case 2 < κ ≤ n−3 [Kro08b]). Let f be an n-quasigroup of arbitrary
order and κ(f) ∈ {3, . . . , n− 3}. Then f is permutably reducible.

In [Kro08a], an example of an irreducible n-quasigroup of order 4 whose (n− 1)-
retracts are all reducible is constructed for every even n ≥ 4. So, the assumption of
Lemma 3.3 cannot be extended to the case κ = n − 2. Nevertheless, in section 5 we
will prove the following.

Lemma 3.4 (case κ = n − 2). Let n ≥ 5. If an n-quasigroup f of order 4 has
a semilinear permutably irreducible (n − 2)-retract and all the (n − 1)-retracts are
permutably reducible, then f is permutably reducible or semilinear.

The last case, announced in [Pot06], will be proved in section 4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

564 DENIS S. KROTOV AND VLADIMIR N. POTAPOV

Lemma 3.5 (case κ = 2). Let n ≥ 5; let f be an n-quasigroup of order 4, and
let all its k-retracts with 2 < k < n be permutably reducible. Then f is permutably
reducible.

Proof of Theorem 3.1. The validity of the theorem for n ≤ 4 (and even for n ≤ 5)
is proved by exhaustion. Assume, by induction, that all m-quasigroups of order 4 with
m < n are reducible or semilinear. Consider an n-quasigroup f of order 4. It has an
irreducible κ(f)-retract, which is semilinear by inductive assumption. Depending on
the value of κ(f) = 2, 3 . . . n−3, n−2, n−1, the statement of the theorem follows from
one of Lemmas 3.5, 3.3, 3.4, and 3.2.

4. Proof of Lemma 3.5. We will prove a stronger variant (Lemma 4.2) of the
statement. It uses the following concept.

Definition 4.1. An n-quasigroup f is called completely reducible if it is per-
mutably reducible and all its principal retracts of arity more than 2 are permutably
reducible (equivalently, f can be represented as a composition of n − 1 binary quasi-
groups; e.g., f(x1, x2, x3, x4, x5) = f1(f2(x1, x3), f3(f4(x2, x5), x4))).

Lemma 4.2. Let all the principal 3- and 4-retracts of an n-quasigroup f of order
4 (n ≥ 5) be permutably reducible. Then f is completely reducible.

Definition 4.3. An n-quasigroup f is called normalized if for all i ∈ {1, . . . , n}
and a ∈ Σ it is true that f(0̄[i][a]) = a.

Denote by Γ the set of all (four) normalized binary quasigroups of order 4. It is
straightforward that the operations from Γ are associative and commutative (they are
isomorphic to the additive groups Z2

2 and Z4), and we will use the form a � b instead
of �(a, b) to write the result of � ∈ Γ.

Let Kn = 〈V (Kn), E(Kn)〉 be the complete graph with n vertices associated with
the arguments x1, . . . , xn of an n-ary operation. For the edges, we will use the short
notation like xixj . For any normalized n-quasigroup f we define the edge coloring
μf : E(Kn)→ Γ in the following way: the color μf (xixj) of an edge xixj ∈ E(Kn) is
defined as the binary operation � such that f(0̄[i,j][xi, xj]) ≡ xi � xj .

Proposition 4.4. Let f be an n-quasigroup, n ≥ 5, and let all 3- and 4-retracts
of f be reducible. Then the coloring μf of Kn satisfies the following:

(A) Every triangle is colored by at most two colors.
(B) If a tetrahedron is colored by two colors with three edges of each color, then

it includes a one-color triangle; i.e., the following fragment is forbidden:

Proof. Every 3-retract of f is a composition of two binary operations which
yields (A).

Consider the 4-retract f4 of f that corresponds to some four vertices (the other
variables are fixed by 0). Since it is reducible and normalized, it can be represented
as a composition of some normalized 2-quasigroup and 3-quasigroup. The 3-quasi-
group is a 3-retract of f and, in its turn, can be represented as a composition of two
normalized 2-quasigroups. So, f4(x, y, z, u), up to permutation of arguments, has the
form (x � y) ◦ (u � v) or x ◦ (y � (u � v)) for some �, ◦, � ∈ Γ. As follows from the
hypothesis of (B), two of these three operations coincide. Thus, there are only four
types of decomposition of f4: (x�y)◦(u�v), x�(y◦u◦v), x�y�(u◦v), x◦(y�(u◦v)).
In any case, (B) holds.

Proposition 4.5. Assume that an edge coloring μ of Kn satisfies (A) and (B).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

n-ARY QUASIGROUPS OF ORDER 4 565

Then for each pairwise different a, b, c, d ∈ V (Kn) the condition μ(ab) = μ(ac) �=
μ(bc) = μ(bd) �= μ(cd) implies μ(ad) = μ(ab). That is,

b

a

d

c

⇒
b

a

d

c

and
b

a

d

c

⇒
b

a

d

c

Proof. Obviously, any other variant for μ(ad) contradicts (A) or (B).
The following proposition is easy to check.
Proposition 4.6. Let f and g be reducible 3-quasigroups of order 4, and let

f(x, y, 0) ≡ g(x, y, 0), f(x, 0, z) ≡ g(x, 0, z), and f(0, y, z) ≡ g(0, y, z). Then f ≡ g.
Remark. Indeed, Proposition 4.6 holds for every order with the extra condition

that f is a composition of two different or associative 2-quasigroups. The similar
statement for n-quasigroups with n > 3 holds for an arbitrary order without extra
conditions [KPS08, Theorem 1]: if two reducible n-quasigroups coincide on every
n-tuple with one zero, then they are identical.

Corollary 4.7. Let f and g be n-quasigroups of order 4 (n ≥ 3) whose principal
3-retracts are all reducible. Assume that f(0̄[i,j][y, z]) ≡ g(0̄[i,j][y, z]) for every i, j ∈
{1, . . . , n} and y, z ∈ Σ. Then f ≡ g.

Proof. The equality f(x̄) ≡ g(x̄) is proved by induction on the number of nonzero
elements in x̄, using the reducibility of 3-retracts and Proposition 4.6.

For example, to prove that f(1, 2, 3, 2, 1, 0̄) = g(1, 2, 3, 2, 1, 0̄) we can consider
the 3-retracts f3(x, y, z) � f(1, 2, x, y, z, 0̄) and g3(x, y, z) � g(1, 2, x, y, z, 0̄). By
the induction assumption f3 and g3 meet the hypothesis of Proposition 4.6. Thus,
f3 ≡ g3, and, in particular, f3(3, 2, 1) = g3(3, 2, 1).

The following proposition is the key statement in the proof of Lemma 4.2.
Proposition 4.8. Assume that an edge coloring μ : E(Kn) → Γ of the graph

Kn meets (A) and (B). Then there exists a completely reducible n-quasigroup f such
that μf = μ.

Before proving Proposition 4.8 by induction, we consider one auxiliary statement,
which will be used in the induction step. We say that an edge xy ∈ E(Kn) is inner
with respect to some edge coloring μ of Kn if for any z ∈ V (Kn) \ {x, y} it is true
that μ(xz) = μ(yz).

Proposition 4.9. Assume that an edge coloring μ of Kn meets (A) and (B).
Then Kn contains an inner edge.

Proof. Consider an arbitrary sequence of edges e1, e2, . . . , ek that satisfies the
following:

(C) for every j ∈ {1, . . . , k − 1} the edges ej and ej+1 are adjacent and μ(ej) =
μ(ej�ej+1) �= μ(ej+1) (where � means the symmetrical difference between
two sets).

Denote by aj the element from ej \ ej+1.
Claim (∗). We claim that for every i, j, 1 ≤ i < j ≤ k, and d ∈ ej the vertices ai

and d are different and μ(aid) = μ(ei) (see Figure 2). We will show this by induction
on j − i.

If j − i = 1, the claim follows from (C). If j − i = 2, the claim follows from
Proposition 4.5 (a := ai, b := ai+1). Assume j − i > 2. By the inductive assumption,

μ(ei) = μ(aiai+1) = μ(aiai+2)
�= μ(ei+1) = μ(ai+1ai+2) = μ(ai+1d)
�= μ(ei+2) = μ(ai+2d).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

566 DENIS S. KROTOV AND VLADIMIR N. POTAPOV

�
�

�

�

�

�

�

e2
e3
e4
e5

e6

e1 ⇒ �
�

�

�

�

�

�

a1 a2

a3 a5

a4

Fig. 2. An example of a sequence e1, . . . , ek from the proof of Proposition 4.8.

Consequently, ai �= d, and, by Proposition 4.5 (a := ai, b := ai+1, c := ai+2), we have
μ(aid) = μ(ei). Claim (*) is proved.

So, all a1, . . . , ak−1 are mutually different, and thus there exists a maximum
sequence e1, e2, . . . , ek satisfying (C). Then, its maximality and (*) imply that the
edge ek is inner.

Proof of Proposition 4.8. We will proceed by induction on n. If n = 3, then the
statement is trivially true. Assume that Proposition 4.8 holds for (n−1)-quasigroups.
Consider an inner edge e ∈ E(Kn). Without loss of generality we can assume e =
xn−1xn, μ(e) = �. Denote by μn−1 the restriction of the coloring μ on Kn−1 ⊂ Kn.
By the inductive assumption, there exists a completely reducible (n−1)-quasigroup g
such that μg = μn−1. Then f(x1, . . . , xn) � g(x1, x2, . . . , xn−2, xn−1 �xn) is a desired
n-quasigroup (indeed, μf (xn−1xn) = � = μ(xn−1xn); if i < j < n, then μf (xixj) =
μg(xixj) = μ(xixj); if i < n−1, then μf (xixn) = μg(xixn−1) = μ(xixn−1) = μ(xixn),
where the last equality follows from the innerness of xn−1xn).

Proof of Lemma 4.2. Let f be an n-quasigroup of order 4 whose 3- and 4-retracts
are all reducible. Without loss of generality we assume that f is normalized (other-
wise, we can normalize it, applying an appropriate isotopy). Then, by Proposition 4.4,
the corresponding edge coloring μf of the graph Kn satisfies (A) and (B). By Propo-
sition 4.8, there exists a completely reducible n-quasigroup g with μg ≡ μf . By
Corollary 4.7, f and g are identical.

5. Proof of Lemma 3.4. In the proof, we will use the following three proposi-
tions. The first simple one, on a representation of a reducible n-quasigroup with an
irreducible (n− 1)-retract, holds for an arbitrary order.

Proposition 5.1. Assume that a reducible n-quasigroup D (n ≥ 3) of an arbi-
trary order has an irreducible (n − 1)-retract F 〈x0, . . . , xn−1〉 ≡ D〈x0, . . . , xn−1, 0〉.
Then there are i ∈ {0, . . . , n} and a 2-quasigroup h such that h(x, 0) ≡ x and

D〈x0, . . . , xn〉 ≡ F 〈x0, . . . , xi−1, h(xi, xn), xi+1, . . . , xn−1〉.(2)

Proof. Since D is reducible, D〈x0, . . . , xn〉 can be represented as H〈f(x̄′), x̄′′〉,
where x̄′ and x̄′′ are disjoint groups of variables, each containing at least two variables.
If xn is grouped with more than one other variable, then fixing xn gives a reducible
retract, which contradicts the irreducibility of F . So, we conclude that for some
i ∈ {0, . . . , n− 1} there exists one of the following two representations of D:

D〈x0, . . . , xn〉 ≡ G〈g(xi, xn), x̃〉,(3)
D〈x0, . . . , xn〉 ≡ g〈G(x̃), xi, xn〉,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

n-ARY QUASIGROUPS OF ORDER 4 567

where x̃ � (x0, . . . , xi−1, xi+1, . . . , xn−1) and G and g are (n− 1)- and 2-quasigroups.
Moreover, the existence of a representation of the first type implies the existence of a
representation of the second type, and vice versa:

g〈G(x̃), xi, xn〉 ≡
{

1 if G(x̃) = g(xi, xn)
0 if G(x̃) �= g(xi, xn) ≡ G〈g(xi, xn), x̃〉.

So, we can assume that (3) holds. Put γ(xi) � g(xi, 0). Then, F 〈x0, . . . , xn−1〉 ≡
G〈γ(xi), x̃〉, and (2) holds with h(xi, xn) � γ−1g(xi, xn).

In what follows, permutations σ : Σ → Σ will be denoted by the value lists
(σ(0), σ(1), σ(2), σ(3)); denote Id � (0,1,2,3).

Proposition 5.2 (on autotopies of a semilinear n-quasigroup). Assume f is a
standardly semilinear n-quasigroup. Denote by π the permutation (1,0,3,2). Then for
every different i, j ∈ {0, . . . , n} the following hold:

(a) f〈x̄〉 ≡ f〈x̄[i,j][πxi, πxj]〉, where x̄ � (x0, . . . , xn);
(b) if f〈x̄〉 ≡ f〈x̄[i,j][μxi, νxj]〉 holds for some other pair of nonidentity permu-

tations (μ, ν) �= (π, π) and n ≥ 3, then f is reducible.
Proof. (a) It is straightforward that f〈x̄[i][πxi]〉 ≡ L〈x̄〉−f〈x̄〉, where L〈·〉 is from

Definition 2.5. So, f〈x̄[i,j][πxi, πxj]〉 ≡ L〈x̄〉 − (L〈x̄〉 − f〈x̄〉) ≡ f〈x̄〉.
(b) Without loss of generality assume that i = 1, j = 2. Put

α(x, y) � f(x, y, 0̄),
β(x, z̄) � f(x, 0, z̄), z̄ � (z1, . . . , zn−2),
γ(x) � f(x, 0, 0̄).

Assume there exists a pair (μ, ν) that satisfies the hypothesis of (b). Then α(x, y) ≡
α(μx, νy). It is easy to see that the permutation ν does not have fixed points. So, ν
is either a cyclic permutation or an involution ((2,3,0,1) or (3,2,1,0)) different from
π = (1,0,3,2). In any case, we can derive the following.

Claim (∗). For each v ∈ Σ there exist permutations ρv, τv : Σ → Σ such that
f(x, y, z̄) ≡ f(ρvx, τvy, z̄) and τvv = 0 (in other words, the group of permutations τ
admitting f(x, y, z̄) ≡ f(ρx, τy, z̄) for some ρ acts transitively on Σ, i.e., has only one
orbit).

Case 1. If ν is a cyclic permutation, then v, νv, ν2v, ν3v are pairwise different;
so, one of the pairs (Id, Id), (μ, ν), (μ2, ν2), (μ3, ν3) can be chosen as (ρv, τv), proving
(*).

Case 2. If ν is (2,3,0,1) or (3,2,1,0), then v, νv, πv, νπv are pairwise different,
and (ρv, τv) can be chosen from (Id, Id), (μ, ν), (π, π), (μπ, νπ).

Claim (*) is proved. Then,

f(x, y, z̄) ≡ f(ρyx, τyy, z̄) ≡ f(ρyx, 0, z̄) ≡ β(ρyx, z̄)
≡ β(γ−1α(ρyx, 0), z̄) ≡ β(γ−1α(ρyx, τyy), z̄) ≡ β(γ−1α(x, y), z̄),

and thus f is reducible provided n ≥ 3.
The next proposition concerns 2-quasigroups of order 4, and the proof is straight-

forward.
Proposition 5.3. Let s and t be 2-quasigroups. Denote si(x) � s(x, i) and

ti(x) � t(x, i). Let s0 = t0 = Id, and let for every i either tis−1
i = Id or tis−1

i =
(1,0,3,2). Then either s ≡ t or for some permutation φ the 2-quasigroup s′(x, y) �
s(x, φy) is standardly semilinear.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

568 DENIS S. KROTOV AND VLADIMIR N. POTAPOV

Proof. Denote π � (1,0,3,2); observe that π = π−1. Assume that s �≡ t. Then
there are at least two different elements i, j ∈ {1, 2, 3} for which tis−1

i = π. Denote by
k the third element, i.e., {i, j, k} = {1, 2, 3}. The permutation ti has no fixed points;
otherwise there is a contradiction with t0; similarly, si = πti has no fixed points. So,
ti and, similarly, tj belong to {(2,3,0,1), (2,3,1,0), (3,2,0,1), (3,2,1,0)}. The only
variant for tk is (1,0,3,2). Then, s′(x, y) � s(x, φy) is standardly semilinear with
φ � (0,k,i,j).

Proof of Lemma 3.4. Assume C is an n-quasigroup of order 4. Assume all the
(n− 1)-retracts of C are reducible and C has a semilinear irreducible (n− 2)-retract
E. Without loss of generality assume that

E〈x0, . . . , xn−2〉 ≡ C〈x0, . . . , xn−2, 0, 0〉
and E is standardly semilinear. We will use the following notation for retracts of
C (the table illustrates their mutual arrangement, where the last and second-to-last
coordinates of Σn+1 are thought of as ordinate and abscissa, respectively; for example,
B2 corresponds to fixing the abscissa by (2):

Ea,b〈x0, . . . , xn−2〉 � C〈x0, . . . , xn−2, a, b〉,
Ab〈x0, . . . , xn−2, y〉 � C〈x0, . . . , xn−2, y, b〉,
Ba〈x0, . . . , xn−2, z〉 � C〈x0, . . . , xn−2, a, z〉.

E0,3 E1,3 E2,3 E3,3

E0,2 E1,2 E2,2 E3,2

E0,1 E1,1 E2,1 E3,1

E0,0 E1,0 E2,0 E3,0

y

z

B2

A1

C

A0

A2

A3

B0 B1 B3

Since A0 is reducible and fixing y := 0 leads to the irreducible E, by Proposi-
tion 5.1 we have

A0〈x0, . . . , xn−2, y〉 ≡ E〈x0, . . . , xi−1, h(xi, y), xi+1, . . . , xn−2〉(4)

for some i ∈ {0, . . . , n− 2} and 2-quasigroup h such that h(xi, 0) ≡ xi.
From (4), we see that all the retracts Ea,0, a ∈ Σ, are isotopic to E. Similarly,

we can get the following.
Claim (∗). All the retracts Ea,b, a, b ∈ Σ are isotopic to E.
Then, we conclude that a representation similar to (4) is valid for every b ∈ Σ:

Ab〈x0, . . . , xn−2, y〉 ≡ E0,b〈x0, . . . , xib−1, hb(xib
, y), xib+1, . . . , xn−2〉

for some i ∈ {0, . . . , n− 2} and 2-quasigroup hb such that hb(x, 0) ≡ x.
Claim (∗∗). We claim that ib does not depend on b. Indeed, assume, for example,

that i1 = 0 and i2 = 1, i.e.,

A1〈x0, . . . , xn−2, y〉 ≡ E0,1〈h1(x0, y), x1, x2, . . . , xn−2〉,
A2〈x0, . . . , xn−2, y〉 ≡ E0,2〈x0, h2(x1, y), x2, . . . , xn−2〉.

Then, fixing x0 in the first case leads to a retract isotopic to E; fixing x0 in the second
case leads to a reducible retract (recall that n ≥ 5). But, analogously to (*), these
two retracts are isotopic; this contradicts the irreducibility of E and proves (**).

Without loss of generality we can assume that ib = 0, i.e.,

Ab〈x0, x1, x̃2, y〉 ≡ E0,b〈hb(x0, y), x1, x̃2〉;(5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

n-ARY QUASIGROUPS OF ORDER 4 569

here and later x̃2 � (x2, . . . , xn−2). Similarly, we can assume without loss of generality
that either

Ba〈x0, x1, x̃2, z〉 ≡ Ea,0〈ga(x0, z), x1, x̃2〉(6)

or

Ba〈x0, x1, x̃2, z〉 ≡ Ea,0〈x0, ga(x1, z), x̃2〉,(7)

where 2-quasigroups ga satisfy ga(x, 0) ≡ x.
Using (5) and (6), we derive

C〈x0, x1, x̃2, y, z〉 ≡ Az〈x0, x1, x̃2, y〉
≡ E0,z〈hz(x0, y), x1, x̃2〉
≡ B0〈hz(x0, y), x1, x̃2, z〉(8)
≡ E0,0〈g0(hz(x0, y), z), x1, x̃2〉,

which means that C is reducible, because f(x, y, z) � g0(hz(x, y), z) must be a 3-qua-
sigroup. So, it remains to consider the case (7). Consider two subcases.

Case 1. The 2-quasigroup ga does not depend on a; denote g � ga. Then,
repeating the first three steps of (8) and applying (7), we derive that

C〈x0, x1, x̃2, y, z〉 ≡ E0,0〈h0(x0, y), g(x1, z), x̃2〉,

and C is reducible.
Case 2. For some fixed a we have g0 �= ga; denote si(x) � g0(x, i), ti(x) � ga(x, i),

and ri(x) � hi(x, a). From (5), we see that

Ea,0〈x0, x1, x̃2〉 ≡ E0,0〈r0(x0), x1, x̃2〉,(9)
Ea,b〈x0, x1, x̃2〉 ≡ E0,b〈rb(x0), x1, x̃2〉.(10)

From (7), we see that

E0,b〈x0, x1, x̃2〉 ≡ E0,0〈x0, sb(x1), x̃2〉,(11)
Ea,b〈x0, x1, x̃2〉 ≡ Ea,0〈x0, tb(x1), x̃2〉.(12)

Applying consecutively (11), (10), (12), and (9), we find that for each b the retract
E = E0,0 satisfies

E〈x0, x1, x̃2〉 ≡ E0,b〈. . .〉 ≡ Ea,b〈. . .〉 ≡ Ea,0〈. . .〉 ≡ E〈r0r−1
b x0, tbs

−1
b x1, x̃2〉.

By Proposition 5.2, the irreducibility of E means that tbs−1
b ∈ {Id, (1,0,3,2)} for every

b. By Proposition 5.3, for some permutation φ the 2-quasigroup s(x, z) � g0(x, φz) is
standardly semilinear. Since a composition of standardly semilinear quasigroups is a
standardly semilinear quasigroup, we see that B0 is a semilinear (n− 1)-quasigroup.
Lemma 3.2 completes the proof.

Acknowledgments. The authors thank the referees for their work in reviewing
the manuscript and the audience of the seminar “Coding Theory” in the Sobolev
Institute of Mathematics for their patience during the reporting of this result.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

570 DENIS S. KROTOV AND VLADIMIR N. POTAPOV

REFERENCES

[AHS04] S. V. Avgustinovich, O. Heden, and F. I. Solov’eva, The classification of some perfect
codes, Des. Codes Cryptogr., 31 (2004), pp. 313–318.

[Bel72] V. D. Belousov, n-Ary Quasigroups, Shtiintsa, Kishinev, 1972 (in Russian).
[Kro08a] D. S. Krotov, On irreducible n-ary quasigroups with reducible retracts, European J.

Combin., 29 (2008), pp. 507–513.
[Kro08b] D. S. Krotov, On reducibility of n-ary quasigroups, Discrete Math., 308 (2008),

pp. 5289–5297.
[KPS08] D. S. Krotov, V. N. Potapov, and P. V. Sokolova, On reconstructing reducible n-ary

quasigroups and switching subquasigroups, Quasigroups Related Systems, 16 (2008),
pp. 55–67.

[LM98] C. F. Laywine and G. L. Mullen, Discrete Mathematics Using Latin Squares, Wiley,
New York, 1998.

[Pot06] V. N. Potapov, On completely commutatively reducible n-quasigroups, in Proceedings of
the 16th International School-Seminar on Synthesis and Complexity of Controlling
Systems, St. Petersburg, Russia, 2006, pp. 88–91 (in Russian).

[PK06] V. N. Potapov and D. S. Krotov, Asymptotics for the number of n-quasigroups of
order 4, Siberian Math. J., 47 (2006), pp. 720–731.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 2, pp. 571–595

PARTIAL GRÖBNER BASES FOR MULTIOBJECTIVE INTEGER
LINEAR OPTIMIZATION∗

VÍCTOR BLANCO† AND JUSTO PUERTO†

Abstract. This paper presents a new methodology for solving multiobjective integer linear
programs (MOILP) using tools from algebraic geometry. We introduce the concept of partial Gröbner
basis for a family of multiobjective programs where the right-hand side varies. This new structure
extends the notion of Gröbner basis for the single objective case to the case of multiple objectives,
i.e., when there is a partial ordering instead of a total ordering over the feasible vectors. The main
property of these bases is that the partial reduction of the integer elements in the kernel of the
constraint matrix by the different blocks of the basis is zero. This property allows us to prove that
this new construction is a test family for a family of multiobjective programs. An algorithm “á
la Buchberger” is developed to compute partial Gröbner bases, and two different approaches are
derived, using this methodology, for computing the entire set of Pareto-optimal solutions of any
MOILP problem. Some examples illustrate the application of the algorithm, and computational
experiments are reported on several families of problems.

Key words. multiple objective optimization, integer programming, Gröbner bases, test sets

AMS subject classifications. 90C29, 90C10, 13P10

DOI. 10.1137/070698051

1. Introduction. The multiobjective paradigm appeared in economic theory in
the nineteenth century in the seminal works by Edgeworth [14] and Pareto [30] to
define an economic equilibrium. Mathematically, the multiobjective optimization ap-
proach consists of determining the maximal (minimal) elements of a partially ordered
set. This problem was already addressed by Cantor [7], Cayley [8], and Hausdorff [21]
at the end of the nineteenth century. Since then, multiobjective programming (includ-
ing multicriteria optimization) has been a fruitful research field within the areas of
applied mathematics, operations research, and economic theory. Excellent textbooks
and survey papers are available in the literature; the interested reader is referred to
the books by Sawaragi, Nakayama, and Tanino [32], Chankong and Haimes [9], Yu
[45], Miettinen [28], or Ehrgott, Figueira, and Gandibleux [19], and to the surveys in
[17, 18].

The importance of multiobjective optimization is not due only to its theoretical
implications but also to its many applications. Witnesses of that are the large number
of real-world decision problems that appear in the literature formulated as multiobjec-
tive programs. These include flowshop scheduling [24], analysis in finance [17], railway
network infrastructure capacity [13], vehicle routing problems [25, 34], or trajectory
optimization [36], among many others.

Multiobjective programs are formulated as optimization (without lost of gener-
ality, we restrict ourselves to the minimization case) problems over feasible regions
with at least two objective functions. Usually, it is not possible to minimize all of
the objective functions simultaneously, since the objective functions induce a partial

∗Received by the editors July 23, 2007; accepted for publication (in revised form) October 17,
2008; published electronically February 6, 2009. This research was partially supported by Ministerio
de Educación y Ciencia under grant MTM2007-67433-C02-01.

http://www.siam.org/journals/sidma/23-2/69805.html
†Departmento de Estad́ıstica e Investigación Operative, Universidad de Sevilla, 41012 Sevilla,

Spain (vblanco@us.es, puerto@us.es).

571

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

572 VÍCTOR BLANCO AND JUSTO PUERTO

order over the vectors in the feasible region, so a different notion of solution is needed.
A feasible vector is said to be Pareto-optimal (or nondominated) if no other feasible
vector has componentwise smaller objective values, with at least one strict inequality.

This paper studies multiobjective integer linear programs (MOILP). Thus, we
assume that all objective functions and constraints that define the feasible region are
linear and that the feasible vectors have nonnegative integer components.

There are nowadays several exact methods to solve MOILP problems. Two of
them, multiobjective implicit enumeration [46, 47] and multiobjective dynamic pro-
gramming [26], claim to be of general use and have attracted the attention of re-
searchers in the last several years. Nevertheless, although, in principle, they may be
applied to any number of objectives, one can mainly find, in the literature, applica-
tions to biobjective problems. Moreover, some other methods even do not provide
the entire set of Pareto-optimal solutions, but provide the supported ones (those that
can be obtained as solutions of linearly scalarized programs).

On the other hand, there are several methods that apply to biobjective problems
but that do not extend to the general case. Thus, one can see that there are two
thresholds in multiobjective programming: a first step from one to two objectives,
and a second, and deeper one, from two to more than two objectives.

In terms of complexity, it is worth noting that most MOILP problems are NP-
hard [16]. Even when the single-objective problem is polynomially solvable, the mul-
tiobjective version may become NP-hard. This is the case of spanning tree [20] and
minimum-cost flow problems [15], among others. Therefore, computational efficiency
is not an issue when analyzing MOILP. The important point is to develop tools that
can handle these problems and that give insights into their intrinsic nature. The
goal of this paper is to present a new general methodology for solving MOILP using
tools borrowed from algebraic geometry. The usage of algebraic geometry tools in
integer programming (single criterion) is not new (see [10], [22], [41], [23], [44], [43]).
The main idea is to compute a Gröbner basis for certain toric ideals (related to the
constraints matrix) with a monomial order induced by the objective function.

Gröbner bases were introduced by Buchberger in 1965 in his Ph.D. thesis [6]. He
named them Gröbner bases paying tribute to his advisor Wolfgang Gröbner. This
theory emerged as a generalization, from the one variable case to the multivariate
polynomial case, of the greatest common divisor. One of the outcomes of Gröbner
bases theory was its application to integer programming, first published by Conti and
Traverso [10]. This paper opened a new research line, followed by a number of authors,
consisting of the application of algebraic geometry tools for solving integer programs.

In [22], Hoşten and Sturmfels gave two ways to implement the Conti and Traverso
algorithm that improve in some cases the branch–and-bound algorithm to exactly
solve integer programs. Thomas presented in [41] a geometric point of view of the
Buchberger algorithm as a method to obtain solutions of an integer program. Later,
Thomas and Weismantel [43] improved the Buchberger algorithm in its application
to solve integer programs introducing truncated Gröbner bases. At the same time,
Urbaniak, Weismantel, and Ziegler [44] published a clear geometric interpretation of
the reduction steps of this kind of algorithm in the original space (decision space).
The interested reader can find excellent descriptions of this methodology in the books
by Adams and Loustaunau [2], Sturmfels [37], Cox, Little, and O’Shea [12], or Bert-
simas and Weismantel [5], and in the papers by Aardal, Weismantel, and Wolsey [1],
Sturmfels [38, 39], Sturmfels and Thomas [40], and Thomas [42].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

p-GRÖBNER BASES FOR MOILP 573

Our main contribution is to adapt some of the above-mentioned tools from alge-
braic geometry to solve MOILP problems. We present an algorithm to exactly solve
multiobjective problems, i.e., providing the whole set of Pareto-optimal solutions (sup-
ported and nonsupported ones). One of the main advantages of our approach is that
the number of objective functions does not significantly increase the difficulty. A new
geometric approach of the notion of reduction based on a partial ordering is given.
This reduction allows us to extend the concept of Gröbner basis when a partial order-
ing rather than a total ordering is considered over Nn. We call these new structures
partial Gröbner bases or p-Gröbner bases. We prove that p-Gröbner bases can be
generated in a finite number of steps by a variation of the Buchberger algorithm. The
main property of a p-Gröbner basis being that, for each pair in Zn × Zn

+ with first
component in Ker(A), the reduction by maximal chains in the basis is the zero set.

We propose two versions of the same algorithm to solve multiobjective integer
programs based on this new construction. Our first approach consists of three stages.
The first one uses only the constraint matrix of the problem, and it produces a system
of generators for the toric ideal �A (or its geometric representation IA). In the second
step, a p-Gröbner basis is built using the initial basis given by the system of generators
computed in the first step. This step requires us to fix the objective matrix, since
it induces the partial order used in the reduction steps. Once the right-hand side
vector is fixed, in the third step, the Pareto-optimal solutions are obtained. This
computation uses the new concept of partial reduction of an initial feasible solution
by the p-Gröbner basis.

This algorithm extends, to some extent, Hoşten and Sturmfels’ algorithm [22] for
integer programs because if we apply our method to single-objective problems, partial
reductions and p-Gröbner bases coincide with the standard notions of reductions and
Gröbner bases, respectively.

Our second approach is based on the original idea by Conti and Traverso [10]. It
consists of using the big-M method that results in an increasing number of variables, in
order to have an initial system of generators. Moreover, this approach also provides an
initial feasible solution. Therefore, the first step in the former variant of the algorithm
can be ignored, and the third step is highly simplified. In any case, our first version
(the one extending the Hoşten and Sturmfels approach) has proved to be more efficient
than this second one, since the computation of a p-Gröbner basis is highly sensitive
to the number of variables.

Both algorithms have been implemented in MAPLE 10. We report on some
computational experiments based on the first version of the algorithm and on two
different families of problems with different number of objective functions.

The rest of the paper is organized as follows. In section 2 we give the notation, the
formulation of the problem, and its algebraic codification. We also introduce here the
notion of test family and its geometric description. Section 3 presents the definition
of p-Gröbner basis, based on the notion of partial reduction. Here, we also state the
relationship between test families and p-Gröbner bases: the reduced p-Gröbner basis
for a family of multiobjective programs varying the right-hand side coincides with the
minimal test family for that family. At the end of the section, an example illustrates
all of the above concepts. Section 4 is devoted to the results of the computational
experiments and its analysis. Here, we solve several families of MOILP, report on the
performance of the algorithms, and draw some conclusions on its results and their
implications.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

574 VÍCTOR BLANCO AND JUSTO PUERTO

2. The problem and its translation. The goal is to solve the MOILP in its
standard form:

min (c1 x, . . . , ck x)

subject to (s.t.)
n∑

j=1

aij xj = bii = 1, . . . ,m,(1)

xj ∈ Z+, j = 1, . . . , n,

with bi nonnegative integers for i = 1, . . . ,m, cl ∈ Zn
+ for l = 1, . . . , k, x = (x1, . . . , xn),

and the constraints define a polytope (bounded). For the sake of simplicity, at times,
we use a vector notation and denote A = (aij) ∈ Zm×n, b = (bi) ∈ Zm

+ , and
C = (cij) ∈ Zk×n

+ . In the following, problem (1) is referred to as MIPA,C(b), and
we denote by MIPA,C the family of multiobjective problems where the right-hand
side varies.

The reader may note that there is no loss of generality in our approach to multiob-
jective integer linear programming, since any general MOILP problem with inequality
constraints and rational components in A, b, and C can be transformed to a problem
in the above standard form.

It is clear that the problem MIPA,C(b) is not a usual optimization problem since
the objective function is a vector, thus inducing a partial order among its feasible so-
lutions. Hence, solving the above problem requires an alternative concept of solution,
namely, the set of nondominated or Pareto-optimal points (vectors).

A feasible vector x̂ ∈ Rn is said to be a Pareto-optimal or nondominated solution
of MIPA,C(b) if there is no other feasible vector y such that

cj y ≤ cj x̂ for all j = 1, . . . , k

with at least one strict inequality for some j.
If x is a Pareto-optimal solution, the vector (c1 x, . . . , ck x) ∈ Rk is called efficient.
We say that a feasible point y is dominated by a feasible point x if ci x ≤ ci y for

all i = 1, . . . , k, with at least one strict inequality. According to the above concept,
solving a multiobjective problem consists of finding its entire set of Pareto-optimal
solutions, including those that have the same objective values.

From the objective function C, we obtain a partial order over Zn as follows:

x ≺C y :⇐⇒ C x � C y or x = y,

where Cx � Cy stands for Cx ≤ Cy and Cx �= Cy.
Observe that since C ∈ Zk×n

+ , the above relation is not complete. Hence, there
may exist incomparable vectors (those x, y ∈ Zn

+ such that neither x ≺C y nor
y ≺C x). We use this partial order induced by the objective function of problem
MIPA,C as the input for the multiobjective integer programming algorithm developed
in this paper.

Remark 2.1. Note that distinct solutions with the same objective values are
incomparable under ≺C . This order can be refined so that those solutions with the
same objective values are comparable. Consider the binary relation

x 	C y :⇐⇒
{
C x � C y, or
Cx = Cy and x ≺lex y.

This alternative order allows us to rank those solutions that have the same objective
values using the lexicographical order of their components.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

p-GRÖBNER BASES FOR MOILP 575

The above partial order 	C permits us to solve a simplified version of the multi-
objective problem after introducing the following equivalence relation in Zn:

x ∼C y :⇐⇒ Cx = Cy.

In this version, we obtain solutions in Zn/ ∼C . The reader may note that when solving
the problem with the order	C , one would obtain only a representative element of each
class of Pareto-optimal solutions (the lexicographically smallest). With those efficient
values {v1, . . . , vt}, the remaining solutions can be obtained solving the following
system of diophantine equations, in x, for each vi, i = 1, . . . , t:⎧⎨

⎩
Cx = vi,
Ax = b,
x ∈ Zn

+.

Remark 2.2. In some cases, the order ≺C can be refined to be adapted to specific
problems. This is the case when slack variables appear in mathematical programs.
Two feasible solutions (x, s1) and (x, s2), where s1 and s2 are the slack components,
have the same objective values. The order ≺C considers both solutions as incompa-
rable, although they are the same because we are looking just for the x-component of
the solution. In these cases, we consider the following refined partial order in Zn×Zr:

(x, s) ≺s
C (y, s

′
) :⇐⇒

{
C x � C y, or
Cx = Cy and s ≺lex s

′
,

where x, y ∈ Zn
+ are the actual decision variables and s, s

′ ∈ Zr
+ are the slack variables

of our problem.
In the following, we will use partial order ≺C unless it is explicitly specified.
Our matrix A is encoded in the set

(2) JA = {{u, v} : u, v ∈ Nn, u− v ∈ Ker(A)}.
Let π : Nn −→ Zn denote the map x �→ Ax. Given a right-hand side vector b in
Zn, the set of feasible solutions to MIPA,C(b) constitutes π−1(b), the preimage of b
under this map. In the rest of the paper, we identify the discrete set of points π−1(b)
with its convex hull, and we call it the b-fiber of MIPA,C . Thus, π−1(b) or the b-fiber
of MIPA,C is the polyhedron defined by the convex hull of all feasible solutions to
MIPA,C(b).

For any pair {u, v}, with u, v ∈ Nn, we define the set setlm(u, v) as follows:

setlm(u, v) =

⎧⎨
⎩
{u} if v ≺C u,
{v} if u ≺C v,
{u, v} if u and v are incomparable by ≺C .

The reader may note that setlm(u, v) is the set of degrees of the leading monomials
according to identification {u, v} �→ xu− xv ∈ R[x1, . . . , xn], induced by partial order
≺C .

From the above definition, setlm(u, v) may have more than one leading term,
since ≺C is only a partial order. To account for all this information, we denote by
F(u, v) the set of triplets

F(u, v) = {(u, v, w) : w ∈ setlm(u, v)}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

576 VÍCTOR BLANCO AND JUSTO PUERTO

The above concept extends to any finite set of pairs of vectors in Nn, accordingly. For
a pair of sets u = {u1, . . . , ut} and v = {v1, . . . , vt}, the corresponding set of ordered
pairs is

F(u,v) = {(ui, vi, w) : w ∈ setlm(ui, vi), i = 1, . . . , t}.
F(u,v) can be partially ordered based on the third component of its elements. There-
fore, we can see F(u,v) as a directed graph G(E, V), where V is identified with the
elements of F(u,v) and ((ui, vi, w

′
), (uj , vj , w)) ∈ E if (ui, vi, w), (uj , vj , w

′
) ∈ V and

w
′ ≺C w. We are interested in the maximal ordered chains of G. Note that they can

be efficiently computed by different methods, e.g., [4], [33].
The above concepts are clarified in the following example.
Example 2.1. Let u = {(2, 3), (0, 2), (3, 0), (2, 1), (1, 1)}, v = {(1, 4), (1, 3), (4, 2),

(1, 2), (1, 0)}, and ≺C be the partial order induced by the matrix

C =
[

2 1
3 5

]
,

then, setlm((2, 3), (1, 4)) = {(2, 3),(1, 4)}, setlm((0, 2), (1, 3)) = {(1, 3)}, setlm((3, 0),
(4, 2)) = {(4, 2)}, setlm((2, 1), (1, 2)) = {(2, 1),(1, 2)}, and setlm((1, 1), (1, 0)) = {(1,
1)}. Now, by definition, we have

F(u,v) = {((2, 3), (1, 4), (2, 3)
)
,
(
(2, 3), (1, 4), (1, 4)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,(

(3, 0), (4, 2), (4, 2)
)
,

(
(2, 1), (1, 2), (2, 1)

)
,
(
(2, 1), (1, 2), (1, 2)

)
,(

(1, 1), (1, 0), (1, 1)
)}.

Figure 1 corresponds to the directed graph associated with F(u,v), according to the
partial ordering induced by C. There are four maximal chains:
M1 = {((3, 0), (4, 2), (4, 2)

)
,
(
(2, 3), (1, 4), (2, 3)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,
(
(2, 1), (1, 2),

(2, 1)
)
,
(
(1, 1), (1, 0), (1, 1)

)},
M2 = {((3, 0), (4, 2), (4, 2)

)
,
(
(2, 3), (1, 4), (2, 3)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,
(
(2, 1), (1, 2),

(1, 2)
)
,
(
(1, 1), (1, 0), (1, 1)

)},
M3 = {((2, 3), (1, 4), (1, 4)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,
(
(2, 1), (1, 2), (2, 1)

)
,
(
(1, 1), (1, 0),

(1, 1)
)},

M4 = {((2, 3), (1, 4), (1, 4)
)
,
(
(0, 2), (1, 3), (1, 3)

)
,
(
(2, 1), (1, 2), (1, 2)

)
,
(
(1, 1), (1, 0),

(1, 1)
)}.

For any pair of sets u = {u1, . . . , ut} and v = {v1, . . . , vt}, with {ui, vi} ∈ JA, for
all i = 1, . . . , t, the corresponding set F(u,v) may also be seen as a set of pairs in
Zn × Zn

+ through the following map:

φ : Nn × Nn × Nn −→Zn × Zn
+

(u, v, w) �→(u− v, w).

We denote by IA = φ(F(JA)), i.e.,

IA = {(u− v, w) : u− v ∈ Ker(A), w = setlm(u, v)}.
It is clear that the maximal chains F1, . . . , Fr of the image of F(u,v) under φ with

respect to the order ≺C over the second components satisfy the following properties:
1. Fi is totally ordered by the second components with respect to ≺C for i =

1, . . . , r.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

p-GRÖBNER BASES FOR MOILP 577

(
(3, 0), (4, 2), (4, 2)

) (
(2, 3), (1, 4), (1, 4)

)

(
(2, 3), (1, 4), (2, 3)

)
≺C

��

(
(0, 2), (1, 3), (1, 3)

)

≺C

���������������������������
≺C

������������������

(
(2, 1), (1, 2), (2, 1)

)
≺C

������������������ (
(2, 1), (1, 2), (1, 2)

)
≺C

������������������

(
(1, 1), (1, 0), (1, 1)

) ≺C

������������������
≺C

������������������

Fig. 1. Hasse diagram of the graph associated with the data in Example 2.1.

2. For all (α, β) ∈ Fi, i = 1, . . . , r, A (β − α) = Aβ.
The map φ and the above properties allow us to define the notion of test family for
MIPA,C . This notion is analogous to the concept of test set for a family of single
objective integer programs when we have a partial order rather than a total order
over Nn [41]. Test families are instrumental for finding the Pareto-optimal set of
each member MIPA,C(b) of the family of MOILP.

Definition 2.1 (test family). A finite collection G = {G1
C , . . . ,Gr

C} of sets in
Zn × Zn

+ is a test family for MIPA,C if and only if
(1) Gj

C is totally ordered by the second component with respect to ≺C for j =
1, . . . , r.

(2) For all (g, h) ∈ Gj
C , j = 1, . . . , r, A (h− g) = Ah.

(3) If x ∈ Nn is a dominated solution for MIPA,C(b), with b ∈ Zn
+, there is some

Gj
C in the collection, and (g, h) ∈ Gj

C such that x− g ≺C x.
(4) If x ∈ Nn is a Pareto-optimal solution for MIPA,C(b), with b ∈ Zn

+, then for
all (g, h) ∈ Gj

C and for all j = 1, . . . , r, either x − g is infeasible or x − g is
incomparable to x.

Given a test family for MIPA,C , there is a natural approach for finding the entire
Pareto-optimal set. Suppose we wish to solve MIPA,C(b) for which x∗ is a feasible
solution.

If x∗ is dominated, then there is some j and (g, h) ∈ Gj
C such that x∗−g is feasible

and x∗−g ≺C x∗, whereas, for the remaining chains, there may exist some (g, h) such
that x∗ − g is feasible but incomparable to x∗. We keep track of all of them.

If x∗ is nondominated, we have to keep it as an element in our current solution set.
Then, reducing x∗ by the chains in the test family, we can only obtain either incom-
parable feasible solutions, that we maintain in our structure, or infeasible solutions
that are discarded.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

578 VÍCTOR BLANCO AND JUSTO PUERTO

The above two cases lead us to generate the following set. From x∗, we compute
the set of incumbent solutions:

IS(x∗) := {y∗ : y∗ = x∗ − gji , (gji , hji) is the largest element (g, h) in the chain
Gi

C such that x∗ − g is feasible , i = 1, . . . , r}.
Now, the scheme proceeds recursively on each element of the set IS(x∗). Finite-

ness of the above scheme is clear, since we are generating a search tree with bounded
depth (cardinality of the test family) and bounded width, each element in the tree has
at most r (number of chains) followers. The correctness of this approach is ensured,
since any pair of Pareto-optimal solutions must be connected by a reduction chain
through elements in the test family (see Theorem 2.1 and Corollary 2.1).

The above approach assumes that a feasible solution to MIPA,C(b) is known
(thus implying that the problem is feasible). Methods to detect infeasibility and to
get an initial feasible solution are connected to solving diophantine systems of linear
equations; the interested reader is referred to [31] for further details.

The following lemmas help us in describing the geometric structure of a test family
for multiobjective integer linear problems.

Lemma 2.1 (Gordan–Dickson lemma, Theorem 5 in [11]). If P ⊆ Nn, P �= ∅,
then there exists a minimal subset {p1, . . . , pm} ⊆ P that is finite and unique such
that p ∈ P implies pj ≤ p (componentwise) for at least one j = 1, . . . ,m.

Lemma 2.2. There exists a unique, minimal, finite set of vectors α1, . . . , αk ∈ Nn

such that the set LC of all dominated solutions in all fibers of MIPA,C is a subset of
Nn of the form

LC =
k⋃

j=1

(αj + Nn).

Proof. The set of dominated solutions of all problems MIPA,C is

LC = {α ∈ Nn : ∃β ∈ Nn, with Aβ = Aα and β ≺C α}.
Let α be an element in LC and β a Pareto-optimal point in the fiber π−1(Aα) that
satisfies β ≺C α. Then, for any γ ∈ Nn, A(α + γ) = A(β + γ), α + γ, β + γ ∈ Nn,
and β + γ ≺C α + γ, because the cost matrix C has only nonnegative coefficients.
Therefore, α+ γ is a feasible solution dominated by β+ γ in the fiber π−1(A(α+ γ)).
Then, α + γ ∈ LC for all γ ∈ Nn, so α + Nn ⊆ LC . By Lemma 2.1, we conclude
that there exists a minimal set of elements α1, . . . , αk ∈ Nn such that LC =

⋃k
j=1(αj

+ Nn).
Once elements α1, . . . , αk generating LC (in the sense of the above result) have

been obtained, one can compute the maximal chains of the set {α1, . . . , αk} with
respect to the partial order ≺C . We denote by C1

C , . . . , Cμ
C these maximal chains and

set Li
C =

⋃ki

t=1(α
i
t + Nn), where αi

t ∈ Ci
C for t = 1, . . . , ki and i = 1, . . . , μ. For details

about maximal chains, upper bounds on its cardinality and algorithms to compute
them for a partially ordered set, the reader is referred to [4].

It is clear that, with this construction, we have LC =
⋃μ

i=1 Li
C .

Next, we describe a finite family of sets G≺C ⊆ Ker(A) ∩ Zn and prove that it is
indeed a test family for MIPA,C .

Let G≺C = {Gi≺C
}μi=1, being

(3) Gi
≺C

= {(gk
ij , h

k
ij) = (αi

j − βk
ij , α

i
j), j = 1, . . . ki, k = 1, . . . ,mij}, i = 1, . . . , μ

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

p-GRÖBNER BASES FOR MOILP 579

the maximal chains of G≺C (with respect to the order ≺C over the second components)
and where αi

1, . . . , α
i
ki

are the unique minimal elements of Li≺C
and β1

ij , . . . , β
mij

ij are
the Pareto-optimal solutions to the problem MIPA,C(Aαi

j).
In the next section, we give an algorithm that explicitly constructs G≺C . Notice

that for fixed i, j and k, gk
ij = (αi

j−βk
ij) is a point in the subspace S = {x ∈ Qn : Ax =

0}, i.e., in the 0-fiber of MIPA,C . Geometrically we think of (αi
j − βk

ij , α
i
j) as the ori-

ented vector −→g k
ij =

−−−−−→
[βk

ij , α
i
j] in the Aαi

j-fiber of MIPA,C . The vector is directed from
the Pareto-optimal point βk

ij to the nonoptimal point αi
j due to the minimization

criterion in MIPA,C , which requires us to move away from expensive points. Sub-
tracting the point −→g k

ij = αi
j − βk

ij from the feasible solution γ gives the new solution
γ − αi

j + βk
ij , which is equivalent to translating −→g k

ij by a nonnegative integer vector.
Consider an arbitrary fiber of MIPA,C and a feasible lattice point γ in this fiber.

For each vector −→g k
ij in G≺C , check whether γ − gk

ij is in Nn. At γ, draw all such
possible translations of vectors from G≺C . The head of the translated vector is also
incident at a feasible point in the same fiber as γ, since gk

ij is in the 0-fiber of MIPA,C .
We do this construction for all feasible points in all fibers of MIPA,C . From Lemma
2.2 and the definition of G≺C , it follows that no vector (αi

j − βk
ij , α

i
j) in G≺C can be

translated by a ν in Nn such that its tail meets a Pareto-optimal solution on a fiber
unless the obtained vector is incomparable to the Pareto-optimal point βk

ij .
Theorem 2.1. The above construction builds a connected directed graph in every

fiber of MIPA,C . The nodes of the graph are all the lattice points in the fiber, and
(γ, γ

′
) is an edge of the directed graph if γ

′
= γ − gk

ij for some i, j, and k. Any
directed path of this graph is nonincreasing with respect to the partial order ≺C.

Proof. Pick a fiber of MIPA,C and, at each feasible lattice point, construct all
possible translations of the vector −→g k

ij from the set Gi
≺C

as described above. Let α
be a lattice point in this fiber. By Lemma 2.2, α = αi

j + ν for some i ∈ {1, . . . , t} and
ν ∈ Zn

+. Now, since the point α
′
k defined as α

′
k = βk

ij + ν also lies in the same fiber as
α, then α

′
k ≺C α or α

′
k and α are incomparable. Therefore, −→g k

ij translated by ν ∈ Nn

is an edge of this graph, and we can move along it from α to a point α
′

in the same
fiber such that α

′ ≺C α or α and α
′

are incomparable. This proves that, from every
dominated point in the fiber, we can reach an improved or incomparable point (with
respect to ≺C) in the same fiber by moving along an edge of the graph.

We call the graph in the b-fiber of MIPA,C built from elements in G≺C the ≺C-
skeleton of that fiber.

The reader may note that, from each dominated solution α, one can easily build
paths to its comparable Pareto-optimal solutions subtracting elements in G≺C . Indeed,
let β a Pareto-optimal solution in the Aα-fiber such that β dominates α. Then, let
αi be a minimal element of LC such that α = αi + γ, with γ ∈ Nn, and let βi be the
Pareto-optimal solution in the Aαi-fiber that is comparable to αi and such that βi +γ
is comparable to β. Then α

′
= βi+γ is a solution in the Aα-fiber with β ≺C α

′ ≺C α.
Now, one repeats this process but starting with α

′
and β, until α

′
= β. Moreover, the

case where α and β are incomparable reduces to the previous one by finding a path
from α to any intermediate point β

′
that compares with β. This analysis leads us to

the following result.
Corollary 2.1. In the ≺C-skeleton of a fiber, there exists a directed path from

every feasible point α to each Pareto-optimal point β in the same fiber. The vectors of
objective function values of successive points in the path do not increase componentwise
from α to β.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

580 VÍCTOR BLANCO AND JUSTO PUERTO

g2
1

���
��

��
��

��
��

��
��

�

g2
2

��
g1
1

��

g1
2

��

Elements in G≺C = {G1
≺C

, G2
≺C
}

�������	�������	�������	�������	
������

�������	�������	�������	�������	
������

�������	�������	�������	�������	
������

�������	�������	�������	�������	
������

�������	�������	�������	�������	
������

�������	�������	�������	�������	
������

						
(4, 5, 1, 1)

		

						
(5, 4, 1, 3)

		

						
(6, 3, 1, 5)

		

						
(7, 2, 1, 7)

		

						
(8, 1, 1, 9)

		

						
(9, 0, 1, 11)

		

���������

���������

���������

���������

���������

��

��

��

��

������������������������������������ ���������

��

��

��

���������

��

���������

��

���������������������������

��

��

��������� ������������������������������������ ��

���������
���������

���������
���������

���������

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

Fig. 2. The ≺C -skeleton of the (17, 11)t-fiber of MIPA,C projected on the (x1, x2)-plane.

Corollary 2.2. The family G≺C is the unique minimal test family for MIPA,C .
It depends only on the matrix A and the cost matrix C.

Proof. By the definition of G≺C , conditions 1 and 2 of Definition 2.1 are satisfied.
From Theorem 2.1, it follows that conditions 3 and 4 are also satisfied, so G≺C is a test
family for MIPA,C . Minimality is due to the fact that removing any element (gk

ij , h
k
ij)

from G≺C results in G≺C \ {(gk
ij , h

k
ij)}. However, this new set is not a test family,

since no oriented vector in G≺C \ {(gk
ij , h

k
ij)} can be translated through a nonnegative

vector in Nn such that its tail meets αi
j . It is clear by definition that G≺C depends

only on A and C.
Example 2.2. Let MIPA,C be the family of multiobjective problems, with the

following constraints and objective function matrices:

A =
[

2 2 −1 0
0 2 0 1

]
, C =

[
10 1 0 0
1 10 0 0

]
.

Let (x1, x2, s1, s2) be the vector of variables, where s1 and s2 are slack variables.
In this example, using order ≺s

C (see Remark 2.2), G≺C = {G1≺C
,G2≺C

}, where G1≺C

= {−→g 1
1 = ((0, 1, 2,−1), (0, 1, 2, 0)), −→g 1

2 = ((−1, 1, 0,−2), (0, 1, 0, 0))}, and G2
≺C

=
{−→g 2

1 = ((1, 0, 2, 0), (1, 0, 2, 0)), −→g 2
2 = ((1,−1, 0, 2), (1, 0, 0, 2))}.

Figure 2 shows, on the (x1, x2)-plane, the ≺C -skeleton of the fiber corresponding
to the right-hand side vector (17, 11)t. In the box over the graph of the ≺C-skeleton,
we show the second components of the elements of G≺C . The reader may note that,
in the graph, the arrows have opposite directions due to the fact that the directed
paths (improving solutions) are built subtracting the elements in G≺C . We describe
how to compute the sets G1≺C

and G2≺C
in section 3.

Given G≺C , there are several ways to build a path from each feasible point in a
fixed fiber to any Pareto-optimal solution. However, there is a canonical way to do

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

p-GRÖBNER BASES FOR MOILP 581

�������	�������	�������	�������	
������

•�������	�������	�������	
������

�������	�������	�������	�������	
������

�������	�������	�������	�������	
������

�������	�������	�������	�������	
������

�������	�������	�������	�������	
������

x1 ��

x2��

						
(4, 5, 1, 1)

		

						
(5, 4, 1, 3)

		

						
(6, 3, 1, 5)

		

						
(7, 2, 1, 7)

		

						
(8, 1, 1, 9)

		

						
(9, 0, 1, 11)

		

���������

���������

���������

���������

(9, 4, 9, 3)

���������

��

��

��

��

������������������
���������������������������

��

��

��

���������������������������
������������������

��

��

������������������������������������
��������� ��

��������
��������

��������
��������

��������

�������	�������	�������	�������	
������

•�������	�������	�������	
������

������

������

������

������

						
(4, 5, 1, 1)

		

								
(9, 4, 9, 3)

���������

���������

���������

���������

��������
(5, 4, 1, 3)

��

(6, 3, 1, 5)
��

(7, 2, 1, 7)
��

(8, 1, 1, 9)
��

(9, 0, 1, 11)
��

Fig. 3. Different ways to compute paths from (9, 4, 9, 3) to the Pareto-optimal solutions in its
fiber.

it: Fix σ a permutation of the set {1, . . . , μ} and subtract from the initial point the
elements of Gσ(i)

≺C
, for i = 1, . . . , μ. Add this element to an empty list. After each

subtraction by elements in Gσ(i)
≺C

, i = 1, . . . , μ, remove from the list those elements
dominated by the new element. We prove in Section 3 that this result does not depend
on the permutation σ.

Example 2.2 (continuation). This example shows the above-mentioned different
ways to compute paths from dominated solutions to any Pareto-optimal solution. The
vector (9, 4, 9, 3) is a feasible solution for MIPA,C in the (17, 11)t-fiber. Figure 3 shows
the sequence of Pareto-optimal points obtained from the feasible point (9, 4, 9, 3) using
the permutation σ1 = (1, 2) (on the left) and using σ2 = (2, 1) (on the right).

Remark 2.3. Let ≺C be the partial order induced by C. Then, a directed path
from a dominated point α to each Pareto-optimal point β in a fiber, applying the
above method, cannot pass through any lattice point in this fiber more than μ times
(recall that μ is the number of maximal chains in G≺C). This implies that obtaining
the Pareto-optimal solutions of a given MIPA,C using G≺C cannot cycle.

3. Test families and partial Gröbner bases. In the previous section, we
motivated the importance of having a test family for MIPA,C , since this structure
allows us to obtain the entire set of Pareto-optimal solutions of the above family of
multiobjective integer programs (when the right-hand side varies). Our goal in this
section is to provide the necessary tools to construct test families for any multiobjec-
tive integer problem. Our construction builds upon an extension of Gröbner bases on
partial orders.

In order to introduce this structure, we define the reduction of a pair (g, h) ∈
Zn×Zn

+ by a finite set of ordered pairs in Zn×Zn
+. Given is a collection GC ⊆ Zn×Zn

+,
where GC = {(g1, h1), . . . , (gl, hl) : hk+1 ≺C hk, k = 1, . . . , l − 1}.

The reduction of (g, h) by GC consists of the process described in Algorithm
1. The above reduction process extends to the case of a finite collection of ordered
sets of pairs in Zn × Zn

+ by establishing the sequence in which the sets of pairs are
considered. We denote by pRem((g, h),G)σ the reduction of the pair (g, h) by the
family G = {Gi}ti=1 for a fixed sequence of indices σ.

From now on, we denote by pRem((g, h),G) the set of remainders of (g, h) by the
family G = {Gi}ti=1 for the natural sequence of indices (1, . . . , t), i.e., when σ is the
identity.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

582 VÍCTOR BLANCO AND JUSTO PUERTO

Algorithm 1: Partial reduction algorithm.

input : R = {(g, h)}, S = {(g, h)},
GC = {(g1, h1), . . . , (gl, hl) : hk+1 ≺C hk, k = 1, . . . , l− 1}.

Set i := 1, So = {}.
repeat

for (g̃, h̃) ∈ S \ So do
while h̃− hi ≥ 0 do

if h̃− gi and h̃− g̃ are comparable by ≺C then
Ro = {(g̃ − gi,max≺C{h̃− gi, h̃− g̃})}

else
Ro = {(g̃ − gi, h̃− gi), (g̃ − gi, h̃− g̃)}

end
For each r ∈ Ro and s ∈ R:
if r ≺C s then

R = R\{s};
end
S = Ro.
R = R ∪Ro.
So = So ∪ {(g̃, h̃)}.

end
end
i = i+ 1.

until i ≤ t ;
output: R, the partial reduction set of (g, h) by GC .

The reduction of a pair that represents a feasible solution by a test family gives
the entire set of Pareto-optimal solutions. In order to obtain that test family, we
introduce the notion of p-Gröbner basis. This name has been motivated by the fact
that when the ordering in Nn is induced by a single cost vector, a Gröbner basis
is a test set for the family of integer programs IPA,c (see [10] or [41] for extended
details). In the single objective case, the Buchberger algorithm computes a Gröbner
basis. However, in the multiobjective case, the cost matrix induces a partial order, so
division or the Buchberger algorithm are not applicable. Using the above reduction
algorithm (Algorithm 1), we present an “á la Buchberger” algorithm to compute the
so called p-Gröbner basis to solve MOILP problems.

Definition 3.1 (partial Gröbner basis). A family G = {G1, . . . ,Gt} ⊆ IA
is a partial Gröbner basis (p-Gröbner basis) for the family of problems MIPA,C if
G1, . . . ,Gt are the maximal chains for the partially ordered set

⋃t
i=1 Gi and for any

(g, h) ∈ Zn × Zn
+, with h− g ≥ 0

g ∈ Ker(A)⇐⇒ pRem((g, h),G)σ = {0}
for any sequence σ.

A p-Gröbner basis is said to be reduced if every element in each maximal chain
cannot be obtained by reducing any other element of the same chain.

Given a p-Gröbner basis, computing a reduced p-Gröbner basis is done by deleting
the elements that can be reduced by other elements in the basis. After the removing
process, the family is a p-Gröbner basis having only nonredundant elements. It is easy
to see that the reduced p-Gröbner basis for MIPA,C is unique and minimal, in the sense
that no element can be removed from it, maintaining the p-Gröbner basis structure.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

p-GRÖBNER BASES FOR MOILP 583

This definition clearly extends to p-Gröbner bases for the ideal IA induced by A,
once we fix the partial order ≺C induced by C.

In the following, we present algorithms to solve multiobjective problems analogous
to the methods that solve the single objective case using usual Gröbner basis. These
methods are based on computing the reduction of a feasible solution by the basis.
The key for that result is the fact that the reduction of any pair of feasible solutions
is the same, therefore, the algorithm is valid for any initial feasible solution. After
the following theorem, Lemma 3.1 ensures the same statement for the multiobjective
case and p-Gröbner bases.

Theorem 3.1. Let G be the reduced p-Gröbner basis for MIPA,C and α a feasi-
ble solution for MIPA,C(Aα). Then, pRem((α, α),G)σ = pRem((α, α),G)σ′ for any
sequences σ and σ′.

Proof. We first observe that the elements in pRem((α, α),G)σ are of the form
(β, β). Indeed, since the first step of Algorithm 1 reduces the element (α, α), then
h̃− g̃ = α−α = 0. Therefore, h̃− g̃ is always dominated by h̃−gi because 0 ≺C h̃−gi,
so that the remainders are of the form (α − gi, α− gi).

On other hand, let (β, β) be an element in pRem((α, α),G)σ , then α−β ∈ Ker(A)
and by Definition 3.1, pRem((α− β, α),G)σ′ = pRem((α − β, β),G)σ′ = {0} for any
σ′.

The above result ensures that without loss of generality reductions of elements
of the form (α, α) by p-Gröbner bases are independent of the permutation of indices
used. Therefore, we do not make reference to σ in the notation, referring always to
the natural sequence σ = (1, . . . , t).

Lemma 3.1. Let G be the reduced p-Gröbner basis for MIPA,C and α1, α2 two
different feasible solutions in the same fiber of MIPA,C. Then, pRem((α1, α1),G) =
pRem((α2, α2),G).

Proof. Let (β, β) ∈ pRem((α1, α1),G), then since Aα1 = Aα2, β is in the same
fiber that α2. Next, since β cannot be reduced, then (β, β) ∈ pRem((α2, α2),G).

The following theorem states the relationship between the three structures intro-
duced before: test families, reduced p-Gröbner bases, and the family G≺C .

Theorem 3.2. The reduced p-Gröbner basis for MIPA,C is the unique minimal
test family for MIPA,C . Moreover, G≺C , introduced in (3), is the reduced p-Gröbner
basis for MIPA,C.

Proof. Let G = {G1, . . . ,Gt} be the reduced p-Gröbner basis for MIPA,C . We
have to prove that G satisfies the four conditions in Definition 2.1. By the definition
of p-Gröbner basis, it is clear that each Gi is totally ordered by its second component
with respect to ≺C (condition 1). Condition 2 follows because, for each i and for
each (g, h) ∈ Gi ⊆ Zn × Zn

+, clearly pRem((g, h),G) = {0}, so g ∈ Ker(A) and then
A(h− g) = Ah.

Now, let x ∈ Nn be a dominated solution for MIPA,C(b). Then, there is a
Pareto-optimal solution β such that β ≺C x. By Lemma 3.1, pRem((x, x),G) =
pRem((β, β),G) and by construction of the set of partial remainders, β ∈ pRem((β,
β), G), thus x �∈ pRem((x, x),G). This implies that there exists (g, h) ∈ Gi, for some
i = 1, . . . , t such that x− g ≺C x. This proves condition 3 of Definition 2.1.

On the other hand, if x is a Pareto-optimal solution for MIPA,C(b), x ∈ pRem((x,
x), G), then there exists no (g, h) in any Gi such that x−g ≺C x. Therefore, for every
i and for each (g, h) ∈ Gi, either x− g is infeasible or incomparable to x, which proves
condition 4 of Definition 2.1.

Minimality is due to the fact that removing an element from the reduced p-
Gröbner basis, that is, the minimal partial Gröbner basis that can be built for MIPA,C ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

584 VÍCTOR BLANCO AND JUSTO PUERTO

we cannot guarantee to have a test family because there may exist a pair (g, h) ∈
Zn × Zn

+, with g ∈ Ker(A) that cannot be reduced to the zero set.
Finally, the second statement of the theorem follows from Corollary 2.2.
Next, we describe an extended algorithm to compute a p-Gröbner basis for IA,

with respect to the partial order induced by C. First, for any (g, h), (g
′
, h

′
) in Zn×Zn

+,
we denote by S1((g, h), (g

′
, h

′
)) and S2((g, h), (g

′
, h

′
)) the pairs

S1((g, h), (g
′
, h

′
)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(g − g
′ − 2(h− h

′
), γ + g − 2h) if γ + g − 2h ≺C γ + g

′ − 2h
′
,

(g
′ − g − 2(h

′ − h), γ + g
′ − 2h

′
) if γ + g

′ − 2h
′ ≺C γ + g − 2h,

(g − g
′ − 2(h− h

′
), γ + g − 2h) if γ + g

′ − 2h
′

and γ + g − 2h,
are incomparable,

and

S2((g, h), (g
′
, h

′
)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(g − g
′ − 2(h− h

′
), γ + g − 2h) if γ + g − 2h ≺C γ + g

′ − 2h
′
,

(g
′ − g − 2(h

′ − h), γ + g
′ − 2h

′
) if γ + g

′ − 2h
′ ≺C γ + g − 2h,

(g
′ − g − 2(h

′ − h), γ + g
′ − 2h

′
) if γ + g

′ − 2h
′

and γ + g − 2h,
are incomparable,

where γ ∈ Nn and γi = max{hi, h
′
i}, i = 1, . . . , n.

The pairs S1((g, h), (g
′
, h

′
)) and S2((g, h), (g

′
, h

′
)) are called 1−Svector and 2−

Svector of (g, h) and (g
′
, h

′
), respectively. The reader may note that S1((g, h), (g

′
, h

′
))

and S2((g, h), (g
′
, h

′
)) coincide, provided that the resulting pairs are comparable under

≺C , whereas they correspond with the two possible choices of the new pair in the case
when the vectors γ + g

′ − 2h
′
and γ + g − 2h are incomparable.

The name is due to the analogy with the algebraic-geometrical notion of S-
polynomial for a pair of polynomials with a given term order. Since we consider
a partial order, it may happen that in the standard construction of an Svector [41],
we cannot decide which is the leading term. Therefore, in our definitions of Svec-
tors, we must consider all possible combinations of leading terms, with respect to the
partial order ≺C .

The original Buchberger criterion was stated in a polynomial language. Therefore,
we adapt our notation to follow the line of that proof. Let leadmonC(f) denote the
set of leading monomials with respect to the order induced by C for any multivariate
polynomial f ∈ R[x1, . . . , xn]. We identify the set JA introduced in (2), with �A =
〈xu − xv : u − v ∈ Ker(A)〉, and therefore, the set setlm(u, v) is identified with the
elements in leadmonC(xu−xv). Moreover, each pair (g, h) ∈ Zn×Zn

+, with g ∈ Ker(A)
and h − g ≥ 0 is identified with the binomial xh − xh−g. Then, we associate with
G = {G1, . . . ,Gt} the polynomial set G∗ = {G∗1 , . . . ,G∗t } identifying one–to-one each
pair in G with the corresponding binomial in G∗. In this way, we adapt accordingly
the definition of pRem((f, p),G∗), the set of partial remainders of f ∈ R[x1, . . . , xn]
with leading monomial p and with respect to G∗.

Moreover, we define the 1-Spolynomial and 2-Spolynomial as the binomial tran-
scriptions of the 1-Svector and 2-Svector. For any two binomials xα1 − xβ1 and
xα2 − xβ2 , the k-Spolynomial with respect to the leading monomials xα1 , xα2 is

Sk((xα1 − xβ1 , xα1), (xα2 − xβ2 , xα2)) = xγ−α2+β2 − xγ−α1+β1 , k = 1, 2,

where γ ∈ Nn and γi = max{(α1)i, (α2)i}, i = 1, . . . , n. The difference between the
1-Spolynomial and the 2-Spolynomial is the choice of the leading term: They coincide
when the monomials are comparable and differ when the monomials are incomparable,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

p-GRÖBNER BASES FOR MOILP 585

and in this case, each k-Spolynomial corresponds with the two possible choices of the
leading term.

The following lemma is used in the proof of our extended criterion, and it is an
adaptation of the analogous result for total orders and usual S-polynomials.

Lemma 3.2. Let f1, . . . , fs ∈ R[x1, . . . , xn] be such that there exists p ∈ ⋂s
i=1

leadmonC(fi). Let f =
∑s

i=1 ci fi, with ci ∈ R. If there exists q ∈ leadmonC(f) such
that q ≺C p, then f is a linear combination with coefficients in R of the k-Spolynomial,
k = 1, 2, of fi and fj, 1 ≤ i < j ≤ s.

Proof. By hypothesis, fi = ai p+ other smaller or incomparable terms, with
ai ∈ R for all i. Then, f can be rewritten as f =

∑s
i=1 ci fi =

∑s
i=1 ci ai p+ other

smaller or incomparable terms. Since q ≺C p, then
∑s

i=1 ci ai = 0.
By definition, for k = 1, 2, Sk((fi, p), (fj , p)) = 1

ai
fi − 1

aj
fj, thus,

f = c1 f1 + · · ·+ cs fs = c1 a1

(
1
a1
f1

)
+ · · ·+ cs as

(
1
as
fs

)

= c1 a1

(
1
a1
f1 − 1

a2
f2

)
+ (c1 a1 + c2 a2)

(
1
a2
f2 − 1

a3
f3

)
+ · · ·

+ (c1 a1 + · · ·+ cs−1 as−1)
(

1
as−1

fs−1 − 1
as
fs

)
+ (c1 a1 + · · ·+ cs as)

1
as
fs

= dk
1 Sk((f1, p), (f2, p)) + · · ·+ dk

s−1 Sk((fs−1, p), (fs, p)) +

(
1
as

s∑
i=1

ci ai

)
fs

=
s−1∑
i=1

dk
i Sk((fi, p), (fi−1, p)),

where dk
i =

∑i
j=1 cj aj for i = 1, . . . , s and k = 1, 2. This proves the lemma.

The algorithm to compute standard Gröbner bases is based on the Buchberger
criterion. Its analogous for a partial order states that it suffices to check that the
partial remainders are zero for Svectors and for any fixed sequence of indices.

Theorem 3.3 (extended Buchberger’s criterion). Let G = {G1, . . . ,Gt}, with
Gi ⊆ IA for all i = 1, . . . , t, be the maximal chains of the partially ordered set {gi :
gi ∈ Gi for some i = 1, . . . , t} and such that G∗, the polynomial transcription of G, is
a system of generators of �A. Then the following statements are equivalent:

(1) G is a p-Gröbner basis for the family MIPA,C .
(2) For each i, j = 1, . . . , t and (g, h) ∈ Gi, (g

′
, h

′
) ∈ Gj, pRem(Sk((g, h),

(g
′
, h

′
)),G) = {0} for k = 1, 2.

Proof. Let G be a p-Gröbner basis for IA and (g, h) ∈ Gi, (g
′
, h

′
) ∈ Gj for any

i, j ∈ {1, . . . , t}. Then, Sk((g, h), (g
′
, h

′
)), for k = 1, 2, is in IA so by the definition of p-

Gröbner basis, pRem(Sk((g, h), (g
′
, h

′
)),G)σ = {0}, for any sequence σ, in particular,

for σ = (1, . . . , t).
Conversely, assume that for each (g, h) ∈ Gi and (g

′
, h

′
) ∈ Gj for any i, j ∈

{1, . . . , t}, pRem(Sk((g, h), (g
′
, h

′
)),G) = {0} for k = 1, 2. Let (g̃, h̃) ∈ Zn×Zn

+, with
g̃ ∈ Ker(A) and h̃− g̃ ≥ 0. We define f = xh̃ − xh̃−g̃ ∈ Z[x1, . . . , xn], and we denote
by G∗ = {g∗1 , . . . , g∗d} the polynomial set associated with G.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

586 VÍCTOR BLANCO AND JUSTO PUERTO

Then, by hypothesis f , can be written as a linear combinations of the elements
in G∗ (this representation is not unique):

f =
d∑

i=1

pi g
∗
i

for some pi ∈ R[x1, . . . , xn] for i = 1, . . . , d.
Let X = {X1, . . . , XN} be the set of maximal elements of the set {PiRi : Pi ∈

leadmonC(pi), Ri ∈ leadmonC(g∗i)} with respect to ≺C .
If X ⊇ leadmonC(f), the polynomial f can be partially reduced by the elements

in G∗. This proves the result.
Otherwise, there must exist l ∈ leadmonC(f)\X . We will prove by contradiction

that this case is not possible. Indeed, if l ∈ leadmonC(f), it must come from some
simplification (reduction) of the linear combination defining f . Then, the construction
ensures that there must exist at least one element Xi ∈ X such that l ≺C Xi.

Set J(Xi) = {j : Pj Rj = Xi, with Pj ∈ leadmonC(pj), Rj ∈ leadmonC(g∗j)}. For
any j ∈ J(Xi), we can write pj = Pj + other terms and define q =

∑
j∈J(Xi)

Pj g
∗
j .

Then, Xi ∈ leadmonC(Pj g
∗
j) for all j ∈ J(Xi). However, by hypothesis, there exists

Q ∈ leadmonC(q), with Q ≺C Xi.
Hence, by Lemma 3.2, there exist dk

s,r ∈ R, k = 1, 2 such that

q =
∑

r,s∈J(Xi),r �=s,g∗
s ,g∗

r∈G∗
dk

s,r Sk((Ps g
∗
s , Ls), (Pr g

∗
r , Ls)), k = 1, 2

for some Lj ∈ leadmonC(Pj g
∗
j) for all g∗j ∈ G∗.

Now, for any r, s ∈ J(Xi), we have that Xi = lcm(Lr, Ls) for some Lr ∈
leadmonC(Pr g

∗
r) and Ls ∈ leadmonC(Ps g

∗
s), and therefore, we can write

Sk((Pr g
∗
r , Lr), (Ps g

∗
s , Ls)) =

Xi

Lr
Pr g

∗
r −

Xi

Ls
Ps g

∗
s

=
Xi

lr
g∗r −

Xi

ls
g∗s =

Xi

Pr,s
Sk((g∗r , lr), (g

∗
s , ls)),

where lr = Lr

Pr
, ls = Lr

Ps
, Pr,s = lcm(lr, ls), and k = 1, 2.

By hypothesis, pRem(Sk((g∗r , lr), (g
∗
s , ls)),G∗) = {0}. Thus, from the last equa-

tion we deduce that

pRem(Sk((Pr g
∗
r , Lr), (Ps g

∗
s , Ls)),G) = {0}.

This gives a representation:

Sk((Pr g
∗
r , Lr), (Ps g

∗
s , Ls)) =

∑
g∗

ν∈G∗
pk,ν

r,s g
∗
ν ,

with pk,ν
r,s ∈ R[x1, . . . , xn] and k = 1, 2.

Then, {P k,ν
r,s Rν : g∗ν ∈ G∗, P k,ν

r,s ∈ leadmonC(pk,ν
r,s), Rν ∈ leadmonC(g∗ν) and do

not exist P k,ν̃
r,s and Rν̃ satisfying P k,ν̃

r,s ∈ leadmonC(pk,ν̃
r,s), Rν̃ ∈ leadmonC(g∗ν̃) such

that P k,ν
r,s Rν ≺C P k,ν̃

r,s Rν̃} = leadmonC(Sk(Pr g
∗
r , Ps g

∗
s)).

To simplify the notation, denote Sk
r,s = leadmonC(Sk(Pr g

∗
r , Ps g

∗
s)).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

p-GRÖBNER BASES FOR MOILP 587

By construction of S-polynomials, we have that there exists p ∈ Sk
r,s such that

p ≺C Xi, so, substituting these expressions into q above, we have

f =
∑

j �∈J(Xi)

pj g
∗
j +

∑
j∈J(Xi)

pj g
∗
j =

∑
j �∈J(Xi)

pj g
∗
j + q

=
∑

j �∈J(Xi)

pj g
∗
j +

∑
r,s

dk
r,s Sk((Ps g

∗
s , Ls), (Pr g

∗
r , Lr)) =

∑
j �∈J(Xi)

pj g
∗
j +

∑
r,s

∑
ν

pk,ν
r,s g

∗
ν .

Thus, we have expressed f as

f =
d∑

i=1

p′i g
∗
i ,

with one leading term p smaller than Xi. However, this is a contradiction, and the
theorem is proved.

This criterion (the one in Theorem 3.3) allows us to describe a geometric algorithm
which constructs a p-Gröbner basis GC for MIPA,C , and therefore, a test family for
that family of multiobjective problems.

The first approach to compute a p-Gröbner basis for a family of multiobjective
programs is based on the Conti and Traverso method for the single objective case
[10]. For this algorithm, the key is transforming the given multiobjective program
into another one where computations are easier and so that an initial set of generators
for IA is known.

Notice that finding an initial set of generators for IA can be done by a straight-
forward modification of the Big-M method [3].

Given the program MIPA,C(b), we consider the associated extended multiobjec-
tive program EMIPA,C(b) as the problem MIPÃ,C̃(b), where

Ã =

⎛
⎜⎝

−1

Idm

... A
−1

⎞
⎟⎠ ∈ Zm×(m+1+n),

C̃ = (M · 1|C) ∈ Z(m+1+n)×k, Idm stands for the m × m identity matrix, M is a
large constant, and 1 is the (m + 1) × k matrix whose components are all 1. This
problem adds m+ 1 new variables, whose weights in the multiobjective function are
big, and so solving this extended minimization program allows us to solve directly
the initial program MIPA,C . Indeed, any feasible solution to the original problem
is a feasible solution to the extended problem with the first m components equal
to zero, so any feasible solution of the form (0,m+1. . . , 0, α1, . . . , αn) is nondominated,
upon the order ≺C̃ , by any solution without zeros in the first m components. Then,
computing a p-Gröbner basis for the extended program using the partial Buchberger
Algorithm (Algorithm 2) allows detecting infeasibility of the original problem. Fur-
thermore, a trivial feasible solution x̃0 = (b1, . . . , bm, 0, n+1. . . , 0) is known, and the
initial set of generators for IA is given by {{Mi − Pi,Mi} : i = 0 . . . , n}, where Mi =
(a1i−min{0,minj{aji}}, . . . , ami−min{0,minj{aji}},−min{0,minj{aji}}, 0, n. . ., 0),
Pi = (0,m+1. . . , 0|ei), for all i = 1, . . . , n, M0 = (1,m+1. . . , 1, 0, n. . ., 0), and P0 = 0,
Mi, Pi,M0, P0 ∈ Zn+m+1

+ (see [2] for further details). Then, we can state the fol-
lowing result.

Theorem 3.4. Let G = {Gi}ti=1 be a p-Gröbner basis for EMIPA,C and b =
(b1, . . . , bm). The entire set of Pareto-optimal solutions for MIPA,C(b) consists

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

588 VÍCTOR BLANCO AND JUSTO PUERTO

Algorithm 2: Partial Buchberger algorithm I.

input : F1 = {M0,M1, . . . ,Mn} and F2 = {P0, P1, . . . , Pn},
Mi = (a1i −min{0,minj{aji}}, . . . , ami −
min{0,minj{aji}},−min{0,minj{aji}}, 0, n. . ., 0) (i > 0),
Pi = (0,m+1. . . , 0|ei) ∈ Nm+n+1 (i > 0),
M0 = (1,m+1. . . , 1, 0, n. . ., 0),
P0 = (0, n+m+1. . . , 0).

repeat
Compute, G1, . . . ,Gt, the maximal chains for G = φ(F(F1, F2)).
for i, j ∈ {1, . . . , t}, i �= j, and each pair (g, h) ∈ Gi, (g′, h′) ∈ Gj do

Compute Rk = pRem(Sk((g, h), (g
′
, h

′
)),G), k = 1, 2.

if Rk = {0} then
Continue with other pair.

else
Add φ(F(r)) to G for each r ∈ Rk.

end
end

until Rk = {0} for every pairs;
output: G = {G1, . . . ,GQ} p-Gröbner basis for IA with respect to ≺C .

of the vectors α = (α1, . . . , αn) such that (0,m+1. . . , 0, α1, . . . , αn) ∈ pRem(((b, 0, n+1. . . , 0),
(b, 0, n+1. . . , 0)),G). Moreover, if there is no α′ in the set pRem(((b, 0, n+1. . . , 0),
(b, 0, n+1. . . , 0)),G) whose m+ 1 first components are zero MIPA,C(b) is infeasible.

Proof. Let α be a vector obtained by successive reductions over G. It is clear that
α is feasible because ((0, α), (0, α)) is in the set of remainders of ((b,0), (b,0)) by G
and then in the same fiber. Besides, α is a Pareto-optimal solution because G is a test
family for the problem (Theorem 3.2).

Now, if β∗ is a Pareto-optimal solution, by Lemma 3.1 pRem(((0, β∗), (0, β∗)),
G) = pRem(((0,b), (0,b)),G), but since β∗ is a Pareto-optimal solution, it cannot be
reduced so ((0, β∗), (0, β∗)) ∈ pRem(((0, β∗), (0, β∗)),G) and then ((0, β∗), (0, β∗))
also belongs to the list of partial remainders of ((b,0), (b,0)) by G.

Hoşten and Sturmfels [22] improved the method by Conti and Traverso to solve
single-objective programs using standard Gröbner bases. Their improvement is due
to the fact that it is not necessary to increase the number of variables in the problem,
as Conti and Traverso’s algorithm does. Hoşten and Sturmfels’s algorithm allows
decreasing the number of steps in the computation of the Gröbner basis, but, on
the other hand, it needs an algorithm to compute an initial feasible solution, which
was trivial in the Conti and Traverso algorithm. We have modified this alternative
algorithm to compute the entire set of Pareto-optimal solutions. The first step in the
algorithm is computing an initial basis for the polynomial toric ideal �A = 〈xu − xv :
u−v ∈ Ker(A)〉 that we can identify with JA. This step does not depend on the order
induced by the objective function, so it can be used to solve multiobjective problems.
Details can be seen in [22]. Algorithm 3 implements the computation of the set of
generators of �A. This procedure uses the notion of Lenstra–Lenstra–Lovàsz (LLL)-
reduced basis (see [27] for further details). In addition, we use a ω-graded reverse
lexicographic term order ≺gri

ω induced by xi+1 > · · · > xi−1 > xi (with xn+1 := x1)
that is defined as follows:

α ≺gri
ω β :⇐⇒

n∑
j=1

ωjαj <

n∑
j=1

ωjβj or
n∑

j=1

ωjαj =
n∑

j=1

ωjβj and α ≺lex β,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

p-GRÖBNER BASES FOR MOILP 589

Algorithm 3: setofgenerators(A).
input : A ∈ Zm×n

1. Find a lattice basis B for Ker(A) (using Hermite normal form).
2. Replace B by the LLL-reduced lattice basis Bred.

Let J0 := 〈xu+ − xu− : u ∈ Bred〉.
for i = 1, . . . , n do

Compute Ji = (Ji−1 : x∞i) as
(a) Compute Gi−1 the reduced Gröbner basis for Ji−1 with respect to ≺gri

ω .
(b) Divide each element f ∈ Gi−1 by the highest power of xi that divides f .

output: �A := Jn = {xu1 − xv1 , . . . , xus − xvs} system of generators for IA.

Algorithm 4: pgrobner(F1, F2).
input : F1 = {M1, . . . ,Ms} and F2 = {P1, . . . , Ps}.
repeat

Compute G1, . . . ,Gt the maximal chains for G = φ(F(F1, F2)).
for i, j ∈ {1, . . . , t}, i �= j, and each pair (g, h) ∈ Gi, (g′, h′) ∈ Gj do

Compute Rk = pRem(Sk((g, h), (g
′
, h

′
)),G), k = 1, 2.

if Rk = {0} then
Continue with other pair.

else
Add φ(F(r)) to G for each r ∈ Rk.

end
end

until Rk = {0} for every pairs;
output: G = {G1, . . . ,GQ} p-Gröbner basis for MIPA,C .

where ω ∈ Rn
+ is chosen such that xi+1 > · · · > xi−1 > xi. Finally, for any a ∈ R, we

denote by a+ = max{a, 0} and a− = −min{a, 0}.
�A consists of binomials xui −xvi with ui− vi ∈ Ker(A) for i = 1, . . . , s. Coming

back to our notation, each binomial xu − xv in �A is identified with {u, v} ∈ JA,
so computing a set of generators for �A gives us, in some sense, a finite number of
generators for the set that represents the constraints matrix. We compute in the next
step a partial Gröbner basis from initial sets F1 = {u1, . . . , us} and F2 = {v1, . . . , vs}
using our extended Buchberger algorithm (Algorithm 4).

Once we have obtained the partial Gröbner basis using the above algorithm, we
can compute the entire set of Pareto-optimal solutions for MIPA,C(b) by Algorithm 5.

There are some interesting cases where our methodology is highly simplified due
to the structure of the set of constraints. One of these cases is when the dimension of
the set of constraints is n− 1. The next remark explains how the algorithm simplifies
in this case.

Remark 3.1. Let A be an m × n integer matrix with rank n − 1. Then, since
dim(Ker(A)) = 1, the system of generators for IA (Step 2) has just one element,
(g, h) and the p-Gröbner basis (Step 3) is the family G = {{(g, h)}} because no Svector
appears during the computation of the Buchberger algorithm. In this case, Pareto-
optimal solutions are obtained as partial remainders of an initial feasible solution
(α, α) by (g, h), i.e., the entire set of Pareto-optimal solutions is a subset of Γ =
{α−λg : λ ∈ Z+}. More explicitly, the set of Pareto-optimal solutions for MIPA,C(b)
is the set of minimal elements (with respect to ≺C) of Γ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

590 VÍCTOR BLANCO AND JUSTO PUERTO

Algorithm 5: Pareto-optimal solutions computation for MIPA,C(b).
input : MIPA,C(b).
Step 1. Compute an initial feasible solution αo for MIPA,C(b) (a solution for

the diophantine system of equations Ax = b, x ∈ Zn).
Step 2. Compute a system of generators for IA: {{ui, vi} : i = 1, . . . , s} using

setofgenerators(A).
Step 3. Compute the partial reduced Gröbner basis for MIPA,C , GC =

{G1, . . . ,Gt} using pgrobner(F1, F2), where F1 = {ui : i = 1, . . . , r}
and F2 = {vi : i = 1, . . . , r}.

Step 4. Calculate the set of partial remainders: R := pRem(αo,GC).
output: Pareto-optimal Solutions : R.

To illustrate the above approach, we present an example of MOILP with two
objectives where all the computations are done in detail.

Example 3.1.

(4)

min {10x+ y, x+ 10y}
s.t.

2x+ 2y � 17,
2y � 11,
x � 10,

x, y ∈ Z+.

Transforming the problem to the standard form results in

(5)

min {10x+ y + 0z + 0t+ 0q, x+ 10y + 0z + 0t+ 0q}
s.t.

2x+ 2y − z = 17,
2y + t = 11,
x+ q = 10,

x, y, z, t, q ∈ Z+.

Step 1. Feasible solution for MIPA,C(b): u = (9, 4, 9, 3, 1).
Step 2. Following the steps of Algorithm 3:

1. Basis for Ker(A) : B := {(0, 1, 2,−2, 0), (−1, 0,−2, 0, 1)}.
2. LLL-reduced basis for B : Bred := B := {(−1, 0,−2, 0, 1), (−1, 1, 0,−2, 1)}.
3. J0 := 〈xu+ − xu− : u ∈ Bred〉 = 〈x5 − x1x

2
3, x2x5 − x1x

2
4〉.

4. Ji+1 := (Ji : x∞i).
(a) G̃0 := {x5−x1x

2
3, x2x5−x1x

2
4, x2x

2
3−x2

4} ⇒ J1 := 〈x5−x1x
2
3, x2x5−

x1x
2
4, x2x

2
3 − x2

4〉.
(b) G̃1 := {x5−x1x

2
3, x2x5−x1x

2
4, x2x

2
3−x2

4} ⇒ J2 := 〈x5−x1x
2
3, x2x5−

x1x
2
4, x2x

2
3 − x2

4〉.
(c) G̃2 := {x5−x1x

2
3, x2x5−x1x

2
4, x2x

2
3−x2

4} ⇒ J3 := 〈x5−x1x
2
3, x2x5−

x1x
2
4, x2x

2
3 − x2

4〉.
(d) G̃3 := {x5−x1x

2
3, x2x5−x1x

2
4, x2x

2
3−x2

4} ⇒ J4 := 〈x5−x1x
2
3, x2x5−

x1x
2
4, x2x

2
3 − x2

4〉.
5. �A = 〈x5 − x1x

2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4, x1x
2
3 − 1〉 �→

IA = 〈{((1, 0, 0, 0, 1), (0, 1, 0, 2, 0)
)
,
(
(1, 0, 2, 0, 0), (0, 0, 0, 0, 1)

)
,(

(0, 1, 2, 0, 0), (0, 0, 0, 2, 0)
)}〉.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

p-GRÖBNER BASES FOR MOILP 591

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x

y

Fig. 4. Feasible region, Pareto-optimal solutions, and improvement cone for Example 3.1.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x

y

Fig. 5. Feasible region, Pareto-optimal solutions, and improvement cone for Example 3.1 with
C = [[10,−1], [−1, 10]].

Step 3. Computing a p-Gröbner basis for IA, using order ≺s
C (Remark 2.2) and fol-

lowing Algorithm 4, we obtain G, whose maximal chains are
G1 = {((0, 1, 2, 0, 0), (0, 0, 0, 2, 0), (0, 1, 2, 0, 0)

)
,
(
(0, 1, 0, 0, 2), (2, 0, 2, 2, 0),

(0, 1, 0, 0, 2)
)
,
(
(0, 1, 0, 0, 1), (1, 0, 0, 2, 0), (0, 1, 0, 0, 1)

)} and
G2 = {((1, 0, 0, 4, 0), (0, 2, 2, 0, 1), (1, 0, 0, 4, 0)

)
,
(
(1, 0, 2, 0, 0), (0, 0, 0, 0, 1),

(1, 0, 2, 0, 0)
)
,
(
(1, 0, 0, 2, 0), (0, 1, 0, 0, 1), (1, 0, 0, 2, 0)

)}.
Step 4. Partial remainders. Reducing first by G1,

pRem((9, 4, 9, 3, 1),G1) = {(9, 0, 1, 11, 1)}.
Then, reducing each remainder by G2,
pRem((9, 0, 1, 11, 1),G2) = {(9, 0, 1, 11, 1), (8, 2, 3, 7, 2), (7, 2, 1, 9, 3),
(6, 3, 1, 5, 4), (5, 4, 1, 3, 5), (4, 5, 1, 1, 6)}.

The entire set of Pareto-optimal solutions is

{(9, 0, 1, 11, 1), (8, 1, 1, 9, 2), (7, 2, 1, 7, 3), (6, 3, 1, 5, 4), (5, 4, 1, 3, 5), (4, 5, 1, 1, 6)}.
Figure 4 shows the feasible region and the Pareto-optimal solutions of the example
above. In addition, we have evaluated the problem with the same feasible region but
choosing a cost matrix such that the respective normal vectors of each of the rows in
the matrix form an acute angle. Then, nonsupported solutions appear in the set of
Pareto-optimal solutions. Figure 5 shows the Pareto-optimal solutions for the same
feasible region and C =

[
10 −1
−1 10

]
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

592 VÍCTOR BLANCO AND JUSTO PUERTO

Table 1

Summary of computational experiments for knapsack problems.

problem sogt pgbt post tott |pos| |maxch| steps act_pGB

knap4_2 0.063 249.369 1.265 250.697 11 20 2 164.920
knap4_3 0.063 1002.689 2.012 1004. 704 5 46 2 772.772
knap4_4 0.063 1148.574 2.374 1151.011 16 98 2.4 763.686
knap5_2 0.125 1608.892 0.875 609.892 3 29 2 1187.201
knap5_3 0.125 3500.831 2.035 3503.963 2 30 2.2 2204.123
knap5_4 0.125 3956.534 2.114 3958.773 9 45.4 3 3044.157
knap6_2 0.185 2780.856 2.124 2783.165 18 156 2.4 2241.091
knap6_3 0.185 3869.156 2.018 3871.359 16.4 189 2.4 2790.822
knap6_4 0.185 4598.258 3.006 4601.449 26 298 3.2 3096.466

4. Computational results. A series of computational experiments have been
performed in order to evaluate the behavior of the proposed solution method. Pro-
grams have been coded in MAPLE 10 and executed in a PC with an Intel Pentium 4
processor at 2.66GHz and 1 GB of RAM. In the implementation of Algorithm 4 to ob-
tain the p-Gröbner basis, the package poset for Maple [35] has been used to compute,
at each iteration, the maximal chains for the p-Gröbner basis. The implementation
has been done in a symbolic programming language, available upon request, in order
to make the access easy to both optimizers and algebraic geometers.

The performance of the algorithm was tested on randomly generated instances for
knapsack and transportation [29] multiobjective problems for 2, 3, and 4 objectives.
For the knapsack problems, 4, 5, and 6 variables, programs have been considered, and,
for each group, the coefficients of the constraint were randomly generated in [0, 20],
whereas the coefficients of the objective matrices range in [0, 20]. Once the constraint
vector (a1, . . . , an) is generated, the right-hand side is fixed as b = � 12

∑n
i=1 ai� to

ensure feasibility.
The computational tests for each number of variables have been done in the

following way: (1) Generate five constraint vectors and compute the initial system of
generators for each of them using Algorithm 3; (2) Generate five random objective
matrices for each number of objectives (2, 3, and 4) and compute the corresponding p-
Gröbner basis using Algorithm 4; and (3) with b = � 12

∑n
i=1 ai� and for each objective

matrix, compute the Pareto-optimal solutions using Algorithm 5.
Table 1 contains a summary of the average results obtained for the considered

knapsack multiobjective problems. The second, third, and fourth columns show the
average CPU times for each stage in the algorithm: sogt is the CPU time for com-
puting the system of generators, pgbt is the CPU time for computing a p-Gröbner
basis, and post is the time for computing a feasible solution and partially reducing it
to obtain the set of Pareto-optimal solutions. The fifth column shows the total time
for computing the set of Pareto-optimal solutions for the problem. Finally, the sixth
and seventh columns show the average number of Pareto-optimal solutions and the
number of maximal chains in the p-Gröbner basis for the problem, respectively. The
problems have been named as knapN_O, where N is the number of variables and O is
the number of objectives. For the transportation problems, instances with 3 origins
× 2 destinations, 3 origins × 3 destinations, and 4 origins × 2 destinations have been
considered. In this case, for each fixed numbers of origins s and destinations d, the
constraint matrix A ∈ Z(s+d)×(sd) is fixed. Then, we have generated five instances
for each problem of size s× d. Each of these instances is combined with five different
right-hand side vectors. The procedure is analogous to the knapsack computational

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

p-GRÖBNER BASES FOR MOILP 593

Table 2

Summary of computational experiments for the battery of multiobjective transportation problems.

problem sogt pgbt post tott |pos| |maxch| steps act_pGB

tr3x2_2 0.015 11.813 0.000 11.828 5.2 6 2 7.547
tr3x2_3 0.015 7.218 13.108 30.341 12 2.6 2 6.207
tr3x2_4 0.015 6.708 15.791 21.931 6 5 2.2 4.561
tr3x3_2 0.047 1545.916 1.718 1547.681 5 92 2 928.222
tr3x3_3 0.047 3194.333 11.235 3205.615 9 122 2.4 2172.146
tr3x3_4 0.047 3724.657 7.823 3732.527 24 187.4 2.2 2112.287
tr4x2_2 0.046 675.138 2.122 677.306 3.4 35.2 2 398.093
tr4x2_3 0.046 1499.294 6.288 1505.628 5.8 42.4 2.2 119.519
tr4x2_4 0.046 2285.365 7.025 2292.436 12 59 2.2 1654.048

test: a first step where a system of generators is computed, a second one where the
p-Gröbner basis is built, and in the last step, the set of Pareto-optimal solutions is
computed using partial reductions. Table 2 shows the average CPU times and the
average number of Pareto-optimal solutions and maximal chains in the p-Gröbner
basis for each problem. The steps column shows the average number of steps in the
p-Gröbner computation, and act_pGB is the average CPU time in the computation of
the p-Gröbner basis elapsed since the last element was added to the basis until the end
of the process. The problems have been named as trNxM_O, where N is the number
of origins, M is the number of destinations, and O is the number of objectives. As can
be seen in Tables 1 and 2, the overall CPU times are clearly divided into three steps,
the most costly being the computation of the p-Gröbner basis. In all of the cases,
more than 99% of the total time is spent computing the p-Gröbner basis. Once this
structure is computed, obtaining the Pareto-optimal solutions is done very efficiently.

The CPU times and sizes in the different steps of the algorithm are highly sensitive
to the number of variables. However, our algorithm is not very sensitive to the
number of objectives, since the increment of CPU times with respect to the number
of objectives is much smaller than the one with respect to the number of variables.

It is clear that one can not expect fast algorithms for solving MOILP, since all
these problems are NP-hard. Nevertheless, our approach provides exact tools that,
apart from solving these problems, give insights into the geometric and algebraic
nature of the problem.

As mentioned above, using our methodology one can identify the common alge-
braic structure within any MOILP problem. This connection allows us to improve the
efficiency of our algorithm, making use of any advance that improves the computation
of Gröbner bases. In fact, any improvements of the standard Gröbner bases theory
may have an impact in improving the performance of this algorithm. In particular,
one can expect improvements in the efficiency of our algorithm based on the special
structure of the integer program (see, for instance, Remark 3.1). In addition, we have
to mention another important issue in our methodology. As shown in Theorem 3.2,
solving MOILP with the same constraint and objective matrices requires computing
only once the p-Gröbner basis. Therefore, once this is done, we can solve different
instances varying the right-hand side very quickly.

Finally, we have observed from our computational tests that a significant amount
of the time, more than 60% (see column act_pGB) for the computation of the p-
Gröbner basis is spent checking that no new elements are needed in this structure.
This implies that the actual p-Gröbner basis is obtained much earlier than when the
final test is finished. A different truncation strategy may be based on the number
of steps required to obtain the p-Gröbner basis. According to the exact method, the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

594 VÍCTOR BLANCO AND JUSTO PUERTO

algorithm stops once in a step; no new elements are added to the structure. Our
tables show that, in most cases, the number of steps is two, actually, only one step is
required to generate the entire p-Gröbner basis (see column steps). These facts can
be used to accelerate the computational times at the price of obtaining only heuristic
Pareto-optimal solutions. This idea may be considered an alternative primal heuristic
in MOILP and will be the subject of further research.

REFERENCES

[1] K. Aardal, R. Weismantel, and L. Wolsey, Non-standard approaches to integer program-
ming, Discrete Appl. Math., 123 (2002), pp. 5–74.

[2] W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Grad. Stud. Math. 3,
AMS, Providence, RI, 1994.

[3] M.A. Bazaraa, H.D. Sherali, and C.M. Shetty, Nonlinear Programming: Theory and Al-
gorithms, John Wiley and Sons, New York, 1993.

[4] R.M. Baer and O. Østerby, Algorithms over partially ordered sets, J. BIT Numer. Math., 9
(1969), pp. 97–118.

[5] D. Bertsimas and R. Weismantel, Optimization Over Integers, Dynamic Ideas, Belmont,
MA, 2005.

[6] B. Buchberger, An Algorithm for finding the basis elements of the residue class ring of a
zero-dimensional polynomial ideal, J. Symb. Comp., 4 (2005), pp. 475–511.

[7] G. Cantor, Beiträge zur Begründung der transfiniten Mengenlehre (Zweiter Artikel), Math.
Ann., 49 (1897), pp. 207–246.

[8] A. Cayley, A theorem on trees, Q. J. Math., 23 (1889), pp. 376–378.
[9] V. Chankong and Y.Y. Haimes, Multiobjective Decision Making Theory and Methodology.

Elsevier Science, New York, 1983.
[10] P. Conti and C. Traverso, Buchberger algorithm and integer programming, in Proceedings

of the AAECC-9, New Orleans, Lect. Notes Comput. Sci. 539, H. F. Mattson, T. Mora,
and T. R. N. Rao, eds., Springer, New York, 1991, pp. 130–139.

[11] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms: An Introduction to
Computational Algebraic Geometry and Commutative Algebra, 1st ed., Springer, New
York, 1992.

[12] D. Cox, J. Little, and D. O’Shea, Using Algebraic Geometry, 1st ed., Springer, New York,
1998.

[13] X. Delorme, X. Gandibleux, and F. Degoutin, Resolution approché du probleme de set
packing bi-objectifs, in Proceedings of de L’ecole d’Automne de Recherche Operationnelle
de Tours (EARO), 2003, pp. 74–80.

[14] F.Y. Edgeworth, Mathematical Psychics, P. Keagan, London, 1881.
[15] M. Ehrgott, Multicriteria Optimization, Lecture Notes in Econom. Math. Systems 491,

Springer, Berlin, 2000.
[16] M. Ehrgott and X. Gandibleux, A survey and annotated bibliography of multicriteria com-

binatorial optimization, OR Spectrum, 22 (2000), pp. 425–460.
[17] M. Ehrgott and X. Gandibleux, eds., Multiple Criteria Optimization. State of the Art

Annotated Bibliographic Surveys, Kluwer, Boston, 2002.
[18] M. Ehrgott, J. Figueira, and S. Greco, eds., Multiple Criteria Decision Analysis. State of

the Art Surveys, Springer, New York, 2005.
[19] M. Ehrgott, J. Figueira, and X. Gandibleux, eds., Multiobjective discrete and combinato-

rial optimization, Ann. Oper. Res., 147 (2006), pp. 1–3.
[20] H. Hamacher and G. Ruhe, On spanning tree problems with multiple objectives, Ann. Oper.

Res., 52 (1994), pp. 209–230.
[21] F. Hausdorff, Untersuchungen über Ordungtypen, Berichte über die Verhandlungen der

königlich sächsischen Gesellschaft der Wissenschaften zu Leipzig, Matematisch - Physische
Klasse, 58 (1906), pp. 106–169.

[22] S. Hoşten and B. Sturmfels, GRIN: An implementation of Gröbner bases for integer pro-
gramming, in Proceedings of the 4th International IPCO Conference, Integer Programming
and Combinatorial Optimization, Lect. Notes Comput. Sci. 920, E. Balas and J. Clausen,
eds., Springer, Berlin, 1995, pp. 267–276.

[23] S. Hoşten, Degrees of Gröbner bases of integer programs, Ph.D. thesis, Cornell University,
Ithaca, NY, 1997.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

p-GRÖBNER BASES FOR MOILP 595

[24] H. Ishibuchi and T. Murata, A multi-objective genetic local search algorithm and its appli-
cation to flowshop scheduling, IEEE Trans. Syst. Man Cybern. C, 28 (1998), pp. 392–403.

[25] N. Jozefowiez, F. Semet, and E-G. Talbi, A multi-objective evolutionary algorithm for the
covering tour problem, Applications of Multi-Objective Evolutionary Algorithms, C. A.
Coello and G. B. Lamont, eds., World Scientific, River Edge, NJ, 2004, pp. 247–267.

[26] M.H. Karwan and B. Villarreal, Multicriteria dynamic programming with an application
to the integer case, J. Optim. Theory Appl., 31 (1982), pp. 43–69.

[27] A.K. Lenstra, H.W. Lenstra, and L. Lovàsz, Factoring polynomials with rational coeffi-
cients, Math. Ann., 261 (1982), pp. 515–534.

[28] K. Miettinen, Nonlinear Multiobjective Optimization, Kluwer, Boston, 1999.
[29] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, John Wiley

and Sons, New York, 1988.
[30] V. Pareto, Manual d’Economie Politique, F. Rouge, Lausanne, 1896.
[31] L. Pottier, Minimal solutions of linear diophantine systems: Bounds and algorithms, in Pro-

ceedings of the Fourth International Conference on Rewriting Techniques and Applications,
1991, Como, Italy, pp. 162–173.

[32] Y. Sawaragi, H. Nakayama, and T. Tanino, Theory of Multiobjective Optimization, Aca-
demic Press, New York, 1985.

[33] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, New York,
2003.

[34] N. El-Sherbeny, Resolution of a Vehicle Routing Problem with Multiobjective Simulated An-
nealing Method, Ph.D. thesis, Faculte Polytechnique de Mons, Mons, Belgium, 2001.

[35] J.R. Stembridge, A Maple Package for Posets, http://www.math.lsa.umich.edu/˜jrs.
[36] R.E. Steuer, Multiple Criteria Optimization: Theory, Computation and Application, John

Wiley and Sons, New York, 1985.
[37] B. Sturmfels, Gröbner Bases and Convex Polytopes, AMS, Univ. Lectures Ser. 8, Providence,

RI, 1996.
[38] B. Sturmfels, Solving Systems of Polynomial Equations, CBMS Reg. Conf. Ser. 97, AMS,

Providence, RI, 2002.
[39] B. Sturmfels, Algebraic Recipes for Integer Programming, Proc. Sympos. Appl. Math., 61,

AMS, Providence. RI, 2004.
[40] B. Sturmfels and R.R. Thomas, Variation of cost functions in integer programming, Math.

Program., 77 (1997), pp. 357–387.
[41] R.R. Thomas, A geometric Buchberger algorithm for integer programming, Math. Oper. Res.,

20 (1995), pp. 864–884.
[42] R.R. Thomas, Applications to integer programming, in Applications of Computational Alge-

braic Geometry, D. A. Cox and B. Sturmfels, eds., Proceedings of the 53rd Symposium in
Applied Mathematics, AMS, 1997, pp. 119–142.

[43] R.R. Thomas and R. Weismantel, Truncated Groebner bases for integer programming, Appl.
Algebra Engrg., Comm. Comput., 8 (1997), pp. 241–257.

[44] R. Urbaniak, R. Weismantel, and G.M. Ziegler, A variant of the Buchberger algorithm
for integer programming, SIAM J. Discrete Math., 10 (1997), pp. 96–108.

[45] P.L. Yu, Cone convexity, cone extreme points and nondominated solutions in decision problems
with multiobjectives, J. Optim. Theory Appl., 14 (1974), pp. 319–377.

[46] S. Zionts, A survey of multiple criteria integer programming methods, Ann. Discrete Math.,
5 (1979), pp. 389–398.

[47] S. Zionts and J. Wallenius, Identifying efficient vectors: Some theory and computational
results, Oper. Res., 23 (1980), pp. 785–793.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 2, pp. 596–608

FOURIER SPECTRA OF BINOMIAL APN FUNCTIONS∗

CARL BRACKEN† , EIMEAR BYRNE† , NADYA MARKIN† , AND GARY MCGUIRE†

Abstract. In this paper we compute the Fourier spectra of some recently discovered binomial
almost perfect nonlinear (APN) functions. One consequence of this is the determination of the nonlin-
earity of the functions, which measures their resistance to linear cryptanalysis. Another consequence
is that certain error-correcting codes related to these functions have the same weight distribution as
the 2-error-correcting Bose–Chaudury–Hocquenghem (BCH) code. Furthermore, for field extensions
of F2 of odd degree, our results provide an alternative proof of the APN property of the functions.

Key words. almost perfect nonlinear, APN, Fourier spectrum

AMS subject classifications. 11T23, 11T71, 94B05

DOI. 10.1137/080717079

1. Introduction. Highly nonlinear functions on finite fields are interesting from
the point of view of cryptography as they provide optimum resistance to linear and
differential attacks. A function that has the almost perfect nonlinear (APN) (resp.,
almost bent (AB)) property, as defined below, has optimal resistance to a differential
(resp., linear) attack. For more on relations between linear and differential cryptanal-
ysis, see [11].

Highly nonlinear functions are also of interest from the point of view of coding
theory. The weight distribution of a certain error-correcting code is equivalent to the
Fourier spectrum (including multiplicities) of f . The code having three particular
weights is equivalent to the AB property, when n is odd. The minimum distance of
the dual code being 5 is equivalent to the APN property holding for f . We give more
details on the connections to coding theory in section 2.

For the rest of the paper, let L = GF (2n), and let L∗ denote the set of nonzero
elements of L. Let Tr : L→ GF (2) denote the trace map from L to GF (2).

Definition 1.1. A function f : L → L is said to be almost perfect nonlinear
(APN) if for any a ∈ L∗, b ∈ L, we have

|{x ∈ L : f(x+ a)− f(x) = b}| ≤ 2.

Definition 1.2. Given a function f : L → L, the Fourier transform of f is the
function f̂ : L× L∗ → Z given by

f̂(a, b) =
∑
x∈L

(−1)Tr(ax+bf(x)).

∗Received by the editors February 28, 2008; accepted for publication (in revised form) October 28,
2008; published electronically February 6, 2009.

http://www.siam.org/journals/sidma/23-2/71707.html
†School of Mathematical Sciences, University College Dublin, Dublin 4, Ireland (carlbracken@

yahoo.com, ebyrne@ucd.ie, nadyaomarkin@gmail.com, gary.mcguire@ucd.ie). The research of the
first author was supported by the Irish Research Council for Science, Engineering and Technology
Postdoctoral Fellowship. The research of the second and fourth authors and the Postdoctoral Fel-
lowship of the third author were supported by the Claude Shannon Institute, Science Foundation
Ireland grant 06/MI/006.

596

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOURIER SPECTRA OF BINOMIAL APN FUNCTIONS 597

The Fourier spectrum of f is the set of integers

Λf = {f̂(a, b) : a, b ∈ L, b �= 0}.

The nonlinearity of a function f on a field L = GF (2n) is defined as

NL(f) := 2n−1 − 1
2

max
x∈Λf

|x|.

The nonlinearity of a function measures its distance to the set of all affine maps
on L. We thus call a function maximally nonlinear if its nonlinearity is as large as
possible. If n is odd, its nonlinearity is upper-bounded by 2n−1 − 2

n−1
2 , while for n

even an upper bound is 2n−1−2
n
2 −1. For odd n, we say that a function f : L −→ L is

AB when its Fourier spectrum is {0,±2
n+1
2 }, in which case it is clear from the upper

bound that f is maximally nonlinear. We have the following connection (for odd n)
between the AB and APN properties: every AB function on L is also APN [11], and,
conversely, if f is quadratic and APN, then f is AB [10]. In particular, quadratic
APN functions have optimal resistance to both linear and differential attacks. On
the other hand, there appears to be no relation between the nonlinearity NL(f) and
the APN property of a function f when n is even. The reader is referred to [8] for a
comprehensive survey on APN and AB functions. APN functions were first introduced
in Nyberg [14].

Recently, the first nonmonomial families of APN functions have been discovered.
Below we list the families of quadratic functions known at this time. We remark that,
in a sense to be qualified in the next section (namely, Carlet–Charpin–Zinoviev (CCZ)
equivalence [10]), these families are all pairwise inequivalent.

(1)

f(x) = x2s+1 + αx2ik+2mk+s

,

where n = 3k, (k, 3) = (s, 3k) = 1, k ≥ 3, i ≡ skmod 3, m ≡ −i mod 3,
α = t2

k−1, and t is primitive (see Budaghyan et al. [6], [4]).

(2)

f(x) = x2s+1 + αx2ik+2mk+s

,

where n = 4k, (k, 2) = (s, 2k) = 1, k ≥ 3, i ≡ skmod 4, m = 4− i, α = t2
k−1,

and t is primitive (see Budaghyan, Carlet, and Leander [5]). This family
generalizes an example found for n = 12 by Edel, Kyureghyan, and Pott [13].

(3)

f(x) = αx2s+1 + α2k

x2k+s+2k

+ βx2k+1 +
k−1∑
i=1

γix
2k+i+2i

,

where n = 2k, α and β are primitive elements of GF (2n), γi ∈ GF (2k) for
each i, (k, s) = 1, k is odd, and s is odd (see Bracken et al. [1]).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

598 C. BRACKEN, E. BYRNE, N. MARKIN, AND G. MCGUIRE

(4)

f(x) = x3 + Tr(x9),

over GF (2n), for any n (see Budaghyan, Carlet, and Leander [7]).

(5)

f(x) = ux2−k+2k+s

+ u2k

x2s+1 + vx2k+s+2s

,

where n = 3k, u is primitive, v ∈ GF (2k), (s, 3k) = 1, (3, k) = 1, and 3
divides k + s (see Bracken et al. [1]).

In this paper we calculate the Fourier spectra of families (1) and (2). The deter-
mination of the Fourier spectra of families (3) and (4) has been given in [2] and [3],
respectively, using other methods. The Fourier spectrum for family (5) has not yet
been found and is an open problem. We will show here that the Fourier spectra of
the functions (1) and (2) are 5-valued for fields of even degree and 3-valued for fields
of odd degree. In this sense they resemble the Gold functions x2d+1, (d, n) = 1. For
fields of odd degree, our result provides another proof of the APN property. This does
not hold for fields of even degree; as we stated earlier, there appears to be no relation
between the Fourier spectrum and the APN property for fields of even degree. Thus,
the fact that f has a 5-valued Fourier spectrum for fields of even degree does not
follow from the fact that f is a quadratic APN function. Indeed, there is one example
known (due to Dillon [12]) of a quadratic APN function on a field of even degree
whose Fourier spectrum is more than 5-valued; if u is primitive in GF (26), then

g(x) = x3 + u11x5 + u13x9 + x17 + u11x33 + x48

is a quadratic APN function on GF (26) whose Fourier transform takes seven distinct
values.

The layout of this paper is as follows. In section 2 we review the connections
between APN functions, nonlinearity, and coding theory. Section 3 gives the proof of
the Fourier spectrum for family (1), and section 4 gives the proof for family (2). In
section 5 we simply state for completeness the results from other papers on families
(3) and (4), and section 6 has some open problems for further work.

2. Preliminaries on coding theory. Fix a basis of L over F2. For each element
x ∈ L we write x = (x1, . . . , xn) to denote the vector of coefficients of x with respect
to this basis. Given a map f : L −→ L, we write f(x) to denote the representation of
f(x) ∈ L as a vector in Fn

2 , and we consider the 2n× (2n − 1) binary matrix

Af =
[· · · x · · ·
· · · f(x) · · ·

]
,

where the columns are ordered with respect to some ordering of the nonzero elements
of L.

The function f is APN if and only if the binary error-correcting code of length
2n − 1 with Af as parity check matrix has a minimum of distance 5. This is because
codewords of weight 4 correspond to solutions of

a+ b+ c+ d = 0,
f(a) + f(b) + f(c) + f(d) = 0,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOURIER SPECTRA OF BINOMIAL APN FUNCTIONS 599

and this system has no nontrivial solutions if and only if f is APN. We refer the reader
to [9] for more on the connection between coding theory and APN functions.

The dual code hasAf as a generator matrix. The weights w in this code correspond
to values V in the Fourier spectrum of f via V = n − 2w. Thus, when we compute
the Fourier spectrum of an APN function, as we do in this paper, we are computing
the weights occurring in the code.

Suppose f is APN. Let Cf denote the code with generator matrix Af . Let aw

denote the number of times the weight w occurs in Cf . Let bj denote the number of
codewords of weight j in C⊥

f . If there are five or fewer weights in Cf , the MacWilliams
(or Pless) identities yield five independent equations, b0 = 1, b1 = b2 = b3 = b4 = 0,
for the unknowns aV , which can be solved uniquely. Thus the distribution of values is
determined for an APN function whenever there are five or fewer values in its Fourier
spectrum. In particular, if Λf ⊆ {0,±2

n
2 ,±2

n+2
2 } for even n, or Λf ⊆ {0,±2

n+1
2 } for

odd n, then the distribution is completely determined. This is indeed the case for the
functions studied in this paper. Solving for the distribution in this case must yield
the same values and distribution as the double-error-correcting BCH code, which
corresponds to the APN function x3. This function has Λf = {0,±2

n
2 ,±2

n+2
2 } for

even n, and Λf = {0,±2
n+1
2 } for odd n.

Consider the extended code of C⊥
f , which has parity check matrix

Pf =

⎡
⎣ 1 · · · 1 1 1
· · · x · · · 0
· · · f(x) · · · 0

⎤
⎦ .

Two functions f and g are said to be CCZ equivalent [10] if and only if the codes
with parity check matrices Pf and Pg are equivalent (as binary codes). This is not
the original definition of CCZ equivalence, but it is an equivalent definition, as was
shown in [1].

The new APN functions presented in the introduction are known to be pairwise
CCZ inequivalent. One consequence of the results in this paper is that further invari-
ants (beyond the code weight distribution) are needed to show that families (1)–(4)
are inequivalent.

3. Family (1), binomials over GF (23k). We will make good use of the fol-
lowing standard result from Galois theory, which allows us to bound the number of
solutions of a linearized polynomial. We include a proof for the convenience of the
reader.

Lemma 3.1. Let F be a field, and let K,H be finite Galois extensions of F of
degrees n and s, respectively, whose intersection is F . Let M = KH be the compositum
of K and H. Let k1, . . . , kt be F -linearly independent elements of K. Then k1, . . . , kt

are H-linearly independent when regarded as elements of M .
Proof. Since K and H are Galois extensions of F and K

⋂
H = F , we have

[M : H] = [K : F] = n. Let {k1, . . . , kn} be an F -basis of K as a vector space over
F , and let {h1, . . . , hs} be an F -basis of H as a vector space over F . Then the set
{ki · hj | 1 ≤ i ≤ n, 1 ≤ j ≤ s} generates M as a vector space over F . It is clear that
the set {k1 · h1, . . . , kn · h1} generates M as a vector space over the field H . Without
loss of generality we can assume that h1 = 1. Since [M : H] = n, we conclude that
{k1, . . . , kn} is indeed a basis of M over H .

Let {k1, . . . , kt} be a set of F -linearly independent elements of K. We can extend
this set to a basis {k1, . . . , kt, . . . , kn}. Since this set forms an H-basis of M , its subset
{k1, . . . , kt} is a fortiori linearly independent over H .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

600 C. BRACKEN, E. BYRNE, N. MARKIN, AND G. MCGUIRE

Note that for Galois extensions K,H in the lemma above, (s, n) = 1 implies that
K
⋂
H = F , and in the case when the fields K,H,F are finite, we have (s, n) = 1 if

and only if K
⋂
H = F .

We will apply Lemma 3.1 to obtain an estimate on the number of zeroes of
linearized polynomials. This idea has appeared in the literature before, such as in
Trachtenberg’s Ph.D. thesis [15].

Corollary 3.2. Let s be an integer satisfying (s, n) = 1, and let f(x) =∑d
i=0 rix

2si

be a polynomial in L[x]. Then f(x) has at most 2d zeroes in L.
Proof. Let V denote the set of zeroes of f(x) in L. We may assume that V �=

{0}. Since f(x) is a linearized polynomial, V is a vector space over GF (2) of finite
dimension v for some positive integer v. Let V ′ ⊂ GF (2sn) denote the vector space
generated by the elements of V over the field GF (2s). Since (s, n) = 1, we have
L
⋂
GF (2s) = GF (2), and by Lemma 3.1, V ′ is a v-dimensional vector space over

GF (2s). Furthermore, for all c ∈ GF (2s) and w ∈ GF (2sn) we have f(cw) = cf(w).
Therefore all the elements of V ′ are also zeroes of f(x). Since the dimension of V over
GF (2) is v, the size of V ′ is 2sv, and it follows that there are at least 2sv zeroes of
f(x) in GF (2sn). On the other hand, polynomials of degree 2ds can have at most 2ds

solutions. We conclude that v ≤ d.
Theorem 3.3. Let

f(x) = x2s+1 + αx2ik+2mk+s

,

where n = 3k, (k, 3) = (s, 3k) = 1, k ≥ 3, i ≡ skmod 3, m ≡ −imod 3, α = t2
k−1,

and t is primitive in L.
The Fourier spectrum of f(x) is {0,±2

n+1
2 } when n is odd and {0,±2

n
2 ,±2

n+2
2 }

when n is even.
Proof. By the restrictions on i, s, k, there are two possibilities for our function

f(x):

f1(x) = x2s+1 + αx2−k+2k+s

, sk ≡ −1 mod 3

and

f2(x) = x2s+1 + αx2k+2−k+s

, sk ≡ 1 mod 3.

Let us consider the first case, when f = f1. By definition, the Fourier spectrum
of f is

fW (a, b) =
∑

u

(−1)Tr(ax+bf(x)).

Squaring gives

fW (a, b)2 =
∑
x∈L

∑
y∈L

(−1)Tr(ax+bf(x)+ay+bf(y))

=
∑
x∈L

∑
u∈L

(−1)Tr(ax+bf(x)+a(x+u)+bf(x+u))

from the substitution y = x+ u.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOURIER SPECTRA OF BINOMIAL APN FUNCTIONS 601

This becomes

fW (a, b)2 =
∑

u

(−1)Tr(au+bu2s+1+bαu2−k+2k+s
)
∑

x

(−1)Tr(xLb(u)),

where Lb(u) := bu2s

+ (bu)2
−s

+ (bα)2
k

u2−k+s

+ (bα)2
−k−s

u2k−s

.
Using the fact that

∑
x(−1)Tr(cx) is 0 when c �= 0 and 2n otherwise, we obtain

fW (a, b)2 = 2n
∑
u∈K

(−1)Tr(au+bu2s+1+bαu2−k+2k+s
),

where K denotes the kernel of Lb(u). If the size of the kernel is at most 4, then clearly

0 ≤
∑
u∈K

(−1)Tr(au+bu2s+1+bαu2−k+2k+s
) ≤ 4.

Since fW (a, b) is an integer, this sum can be only 0, 2, or 4 if n is even, and 1 or 3 if
n is odd. The set of permissible values of fW (a, b) is then

fW (a, b) ∈
{
{0,±2

n+1
2 }, 2 � n,

{0,±2
n
2 ,±2

n+2
2 }, 2 | n.

We must now demonstrate that |K| ≤ 4, which is sufficient to complete the proof.
Note that since α is a (2k − 1)nd power, we have α22k+2k+1 = 1. Now suppose

that Lb(u) = 0. Then we have the following equations:

(bα)−2k

Lb(u) + b1−2k−2−k

αLb(u)2
k

+ b−2−k

Lb(u)2
2k

= 0,

b−2−s

Lb(u) + b2
−k−s−2k−s−2−s

α2−k−s

Lb(u)2
k

+ b−2k−s

α−2k−s

Lb(u)2
−k

= 0.

Substituting the definition of Lb(u) into the above equations and gathering the terms
gives

(3.1) c1u
2−s

+ c2u
2k−s

+ c3u
2−k−s

= 0,

(3.2) d1u
2s

+ d2u
2k+s

+ d3u
2−k+s

= 0,

where the coefficients ci, dj are defined by

c1 = b2
−s−2k

α−2k

+ b2
k−s−2−k

α2k−s

,

c2 = (bα)2
−k−s−2k

+ b2
k−s+1−2−k−2k

α,

c3 = b2
−s+1−2k−2−k

α2−s+1 + b2
−k−s−2−k

,

d1 = b1−2−s

+ b2
−k−s+2−k−2−s−2k−s

α2−k−s+2−k

,

d2 = b2
−k−s+2k−2−s−2k−s

α2−k−s

+ b1−2k−s

α2−k−s+2−s+1,

d3 = b2
k−2−s

α2k

+ b2
−k−2k−s

α2−k−s+2−s

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

602 C. BRACKEN, E. BYRNE, N. MARKIN, AND G. MCGUIRE

First we demonstrate that the coefficients ci, dj in (3.1) and (3.2) do not vanish.
Suppose that c1 = 0. We then have

α2k−s+2k

= b−2k−s+2−k+2−s−2k

,

and taking the 2−knd power of both sides yields

α2−s+1 = b(2
k+s−1)(2−s−2−k−s).

Let α = t2
k−1, where t is primitive in GF (23k). Substituting t into the previous

equation and rearranging gives

t2
k−s−1 = t2

−s(1−2k+s)b(2
k+s−1)(2−s−2−k−s).

The multiplicative order of 2 modulo 7 is equal to 3; therefore for any r we have that
7 divides 2r − 1 if and only if r is divisible by 3. Since sk ≡ −1, 3 � k − s, and we
conclude that 7 � 2k−s − 1. Therefore the left-hand side is not a seventh power, while
the right-hand side is. We conclude that the coefficient of u2−s

in (3.1) is not 0 and use
the same type of argument to conclude that all the coefficients in (3.1) are nonzero.
A similar argument holds for (3.2).

We will next combine (3.1) and (3.2) to obtain an equation of the form

Au+Bu2k

= 0.

Raise (3.1) to the power of 2s, (3.2) to the power of 2−s, and combine the two expres-
sions, cancelling the terms in u2−k

, to obtain

(3.3) Au+Bu2k

= 0,

where A = (c1
c3

)2
s

+ (d1
d3

)2
−s

and B = (c2
c3

)2
s

+ (d2
d3

)2
−s

.
For now assume that both A,B are nonzero. We obtain the following equalities

by applying the appropriate powers of the Frobenius automorphism to (3.3):

u2−k+s

= A−2−k+s

B2−k+s

u2s

,

u2k−s

= B−2−s

A2−s

u2−s

.

Substituting the two identities above into our expression for Lb(u) = 0 gives

(3.4) (b+ (bα)2
k

A−2−k+s

B2−k+s

)u2s

+ (b2
−s

+ (bα)2
−k−s

B−2−s

A2−s

)u2−s

= 0.

Raising this equation to the power of 2s gives a polynomial of degree 22s which is
GF (2s) linear. By Corollary 3.2, the dimension of the kernel of this polynomial over
GF (2) is at most 2, unless the left-hand side of (3.4) is identically 0. We conclude
that rs ≤ 2s, and hence r ≤ 2. It therefore remains to show that the polynomial in
(3.4) is not identically 0. Assuming that both coefficients are zero, we get

Ab2
k−s

+ (bα)2
−k−s

B = 0,

Bb+ (bα)2
−k

A = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOURIER SPECTRA OF BINOMIAL APN FUNCTIONS 603

We combine the equations above to obtain

Bb+ (bα)2
−k

b2
−k−s−2k−s

α2−k−s

B = 0.

So we have b1−2−k+2k−s−2−k−s

= α2−k−s+2−k

. Substituting α with t2
k−1, rear-

ranging, and factoring the powers gives

b(2
k+s−1)(1−2−k)t1−2k+s

= t2
s(2k−s−1).

Here we observe that only the left-hand side of the above equation is a seventh
power, thus obtaining the desired contradiction. We conclude that the size of the
kernel K is less than 4. This finishes the argument.

It finally remains to show that the coefficients A,B are nonzero. Setting A to 0
gives rise to the equation

α2k−2s+2k+s

=

(
b1−2−k+s

+ (bα)2
k+2k+s

b2−s+2k−2s + b2−k+2−k−sα2−k−2s+2−k−s

)(
(bα)2

k−s+2k−2s

+ b2
−k−s−2k−2s

(bα)2s+1 + b2−k+2k+s

)
.

Substituting α with t2
k−1 and rearranging gives the equation

t2
k−2s+1(2k−1) = t2

k−2s−2−k−2s(23s−1)R22k+2s−1T 1−22k+2s

,

where

R = b2
−s+2k−2s

+ b2
−k+2−k−s

α2−k−2s+2−k−s

and

T =
(
(bα)2

k−s+2k−2s

+ b2
−k−s−2−k−2s

)
.

Reducing the powers of 2 modulo 3 shows that the right-hand side of the equation
above is a seventh power, while the left-hand side is not. We conclude that A �= 0.

Suppose B = 0; then the only solution of (3.3) is u = 0. We can therefore assume
that both A and B are nonzero.

This completes the proof of the theorem for the case when f = f1. When f = f2,
a similar proof applies. We interchange k and −k in all equations and use the fact
that in this case 3 divides k − s.

4. Family (2), binomials over GF (24k). We now compute the Fourier spec-
trum for family (2).

Theorem 4.1. Let L = GF (2n) and f(x) = x2s+1 +αx2ik+2mk+s

, where n = 4k,
(k, 2) = (s, 2k) = 1, k ≥ 3, i ≡ skmod 4, m = 4 − i, α = t2

k−1, and t is primitive.
Then f has Fourier spectrum {0,±2n/2,±2

n+2
2 }.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

604 C. BRACKEN, E. BYRNE, N. MARKIN, AND G. MCGUIRE

Proof. As discussed in the proof of the previous theorem, since f is APN, it suffices
to demonstrate that the equation

Lb(u) = bu2s

+ (bu)2
−s

+ (bα)2
mk

u22k+s

+ (bα)2
ik−s

u22k−s

= 0

has at most four solutions for all nonzero b in L.
Since s, k are chosen to be odd, sk ≡ ±1 mod 4. Therefore there are two possibil-

ities for our function f(x):

f1(x) = x2s+1 + αx2−k+2k+s

, sk ≡ −1 mod 4

and

f2(x) = x2s+1 + αx2k+2−k+s

, sk ≡ 1 mod 4.

Let us consider the first case, when f = f1, so that

Lb(u) = bu2s

+ (bu)2
−s

+ (bα)2
k

u22k+s

+ (bα)2
−k−s

u22k−s

.

All the solutions of Lb(u) = 0 are also solutions of the equation

b−22k

Lb(u)2
2k

+ (bα)−2k

Lb(u) = 0.

Taking this sum results in an elimination of the term in u22k+s

. Now multiply by
b2

k+22k

α2k

to obtain

(b2
2k+1 + (bα)2

k+2−k

)u2s

+ (b2
2k+2−s

+ (bα)2
k+2k−s

)u2−s

(4.1) + (b2
k+22k−s

α22k

+ b2
2k+2−k−s

α2−k−s

)u22k−s

= 0.

We also compute b−2−s+2k

Lb(u)2
2k

+ (bα)−2−k−s

Lb(u) = 0 to obtain

(b2
2k−s

+ (bα)2
−k−s+2−k

)u2s

+ (b2
2k−s+2−s

+ (bα)2
k−s+2−k−s

)u2−s

(4.2) + (b2
2k−s+2k

α2k

+ b2
2k+2−k−s

α2−k−s

)u22k+s

= 0.

Writing (4.2) as

(4.3) cu2s

+ du2−s

+ eu22k+s

= 0,

we see that (4.1) becomes

(4.4) d2s

u2s

+ c2
2k

u2−s

+ eu22k−s

= 0.

We combine (4.3) and (4.4) to cancel the third term from each expression. This
yields the equation

(4.5) G(u) := (e2
s

c2
−s

+ e2
−s

c2
2k+s

)u + e2
s

d2−s

u2−2s

+ e2
−s

d22s

u22s

= 0.

Now for some nonzero v in the kernel of G(u), we consider the equation

(4.6) Gv(u) := uG(u) + vG(v) + (u+ v)G(u + v) = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOURIER SPECTRA OF BINOMIAL APN FUNCTIONS 605

Substituting gives

(4.7) e2
s

d2−s

(u2−2s

v + v2−2s

u) + e2
−s

d22s

(u22s

v + v22s

u) = 0.

Note that ker(G(u)) is contained in ker(Gv(u)).
We now show that Lb(u) = 0 has at most four solutions. This will be done in five

steps as follows, which completes the proof:
(i) We show that d �= 0 implies that d2s−1 is not a cube.

Recall that d = b2
2k−s+2−s

+ b2
k−s+2−k−s

t2
2k−s+2−s−2k−s−2−k−s

. This implies
that

d2s−1 = t−2−s−k(22k+1)(2s−1)A2s−1,

where A = b2
2k−s+2−s

t2
k−s+2−k−s

+ b2
k−s+2−k−s

t2
2k−s+2−s

. As A = A2k

, we
have A ∈ GF (2k). Furthermore, as k is odd, all elements of GF (2k) are
cubes. We conclude that A2s−1 is a cube. Now if d2s−1 is a cube, then so is
t(2

2k+1)(2s−1). But this is impossible, as (22k + 1)(2s− 1) is not divisible by 3
and t is primitive.

(ii) We show that if c, d, e �= 0 and d2s−1 is not a cube, then (4.7) has at most
four solutions.
Assume that the coefficients e, c, d are nonzero and that d2s−1 is not a cube.
Now u22s

v+v22s

u = 0 if and only if uv−1 ∈ GF (4)∩GF (22s) = GF (4), since
(s, 2k) = 1. Therefore we have exactly four solutions in u, namely, u = vw for
each w ∈ GF (4). If, on the other hand, u22s

v + v22s

u �= 0, we can rearrange
(4.7) to obtain

d2s−1 = (u2−2s

v + v2−2s

u)2
2s−1e2

−s−2s

d22s−1.

Using the fact that 3 divides 2r − 1 if and only if r is even, we see that the
right-hand side of this expression is a cube, while the left-hand side is not.
Thus, the kernel of Lb has at most four elements.

(iii) We demonstrate that e �= 0.
For the sake of contradiction suppose that e = 0. Then we have

b2
2k−s+2k−22k−2−k−s

t2
2k−s−2−s−2k+2−k−s

= 1,

and hence

(bt−1)2
2k−s+2k−22k−2−k−s

t2
2k−s−2−s

= 1.

Further rearrangement gives

(4.8) (bt−1)(1−2k)(22k−s+2k) = t2
−s(1−22k).

As 4 divides k + s, 2k+s ≡ 1 mod 5. Also 22k + 1 ≡ 0 mod 5 for any odd k.
Therefore 5 divides 2k+s +22k, and hence 5 divides 2k +22k−s. The left-hand
side of (4.8) is a fifth power, while the right-hand side is not because t is
primitive and 2−s(1− 22k) is not a multiple of 5. We conclude that e �= 0.

(iv) We next rule out the case c = 0.
Suppose c = 0. Then we have

b2
2k−s+1−2−k−s−2−k

t2
−k−s+2−k−2−s−1 = 1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

606 C. BRACKEN, E. BYRNE, N. MARKIN, AND G. MCGUIRE

from which we derive

(bt−1)(2
k−1)(2−k−22k−s) = t2

−s(22k−1).

By similar observations as before we can demonstrate that only the left-
hand side of the expression above is a fifth power. This gives us the desired
contradiction, and we conclude that c �= 0.

(v) We show that if d = 0, then Lb(u) = 0 has at most four solutions.
Suppose that d = 0. Then (4.4) becomes

(4.9) c2
2k

u2−s

+ eu22k−s

= 0.

Let H(u) := c2
−s

u + e2
−s

u22k

, so that the solutions to (4.9) make up the
kernel of H(u). For some v �= 0 in the kernel of H(u), consider the equation

Hv(u) := uH(u) + vH(v) + (u+ v)H(u + v) = 0.

This yields Hv(u) = e2
−s

(u22k

v + v22k

u) = 0, from which we obtain u22k

=
v22k−1

u. Applying this relation to Lb(u) = 0 gives us the equation

Lb(u) = (b + (bα)2
k

v22k+s−2s

)u2s

+ (b2
−s

+ (bα)2
−k−s

v22k−s−2−s

)u2−s

= 0.

If both coefficients in the above expression are nonzero, then, by Corollary
3.2, it has at most four solutions. If exactly one of the coefficients is 0, then
u = 0 is the unique solution. If both coefficients vanish, then taking the first
to the 2−snd power and the second to the 2snd power gives the equations

b2
−s

+ (bα)2
k−s

v22k−1 = 0

and

b+ (bα)2
−k

v22k−1 = 0,

respectively, from which we derive

v22k−1 = b2
−k−2k−s

α−2k−s

= b1−2−k

α−2−k

,

which implies that e = 0, a previously established contradiction.
This completes the proof of the theorem for the case when f = f1. When f = f2,

a near identical proof applies. We simply interchange k and −k in all equations and
use the fact that in this case 5 divides 2k−s− 1 to achieve the required contradictions
concerning fifth powers.

5. Families (3) and (4). For proofs of the following theorems, which compute
the Fourier spectra of families (3) and (4), see [2] and [3], respectively. We state the
results here for completeness.

Theorem 5.1. Let n = 2k and let

f(x) = αx2s+1 + α2k

x2k+s+2k

+ βx2k+1 +
k−1∑
i=1

γix
2k+i+2i

,

where α and β are primitive elements of L, and γi ∈ GF (2k) for each i and (k, s) = 1.
Then the Fourier spectrum of f(x) is {0,±2

n
2 ,±2

n+2
2 }.

Theorem 5.2. Let

f(x) = x3 + Tr(x9)

on L. Then the Fourier spectrum of f(x) is {0,±2
n+1
2 } when n is odd and is {0,±2

n
2 ,

±2
n+2
2 } when n is even.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOURIER SPECTRA OF BINOMIAL APN FUNCTIONS 607

6. Closing remarks and open problems. For each of the above quadratic
APN functions considered, the Fourier spectrum turned out to be the same as the
Gold functions. The example of Dillon on GF (26) cited in the introduction of this
paper is the only known example of a quadratic APN function that does not have this
spectrum. This means that the dual code of this function (as defined in section 2) has
the same minimum distance as the double error-correcting BCH code (the dual code
corresponding to the function x3), but has a different weight distribution.

Open problem 1. Find other examples of quadratic APN functions for even n
that do not have the same Fourier spectrum as the Gold function x3.

In [1] the following trinomial function (family (5) in the introduction) overGF (23k)
was shown to be APN:

f(x) = ux2−k+2k+s

+ u2k

x2s+1 + vx2k+s+2s

,

where u is primitive, v ∈ GF (2k), (s, 3k) = 1, (3, k) = 1, and 3 divides k + s.
Open problem 2. Determine the Fourier spectrum of the above APN function.

Acknowledgments. The authors would like to thank the anonymous referees,
whose helpful comments greatly improved the presentation of this paper.

REFERENCES

[1] C. Bracken, E. Byrne, N. Markin, and G. McGuire, New families of quadratic almost
perfect nonlinear trinomials and multinomials, Finite Fields Appl., 14 (2008), pp. 703–
714.

[2] C. Bracken, E. Byrne, N. Markin, and G. McGuire, Determining the nonlinearity of a new
family of APN functions, in Applied Algebra, Algebraic Algorithms and Error Correcting
Codes, Lecture Notes in Comput. Sci. 4851, Springer-Verlag, New York, 2007, pp. 72–79.

[3] C. Bracken, E. Byrne, N. Markin, and G. McGuire, On the Walsh spectrum of a new
APN function, in Cryptography and Coding, Lecture Notes in Comput. Sci. 4887, Springer-
Verlag, New York, 2007, pp. 92–98.

[4] L. Budaghyan, C. Carlet, and G. Leander, A Class of Quadratic APN Binomials In-
equivalent to Power Functions, preprint, 2006. Available online at http://eprint.iacr.org/
2006/445.pdf.

[5] L. Budaghyan, C. Carlet, and G. Leander, Another class of quadratic APN binomials
over F2n : The case n divisible by 4, in Proceedings of WCC’07, Versailles, France, 2007,
pp. 49–58.

[6] L. Budaghyan, C. Carlet, P. Felke, and G. Leander, An infinite class of quadratic APN
functions which are not equivalent to power mappings, in Proceedings of the ISIT 2006,
Seattle, 2006.

[7] L. Budaghyan, C. Carlet, and G. Leander, Constructing New APN Functions from Known
Ones, preprint, 2007. Available online at http://eprint.iacr.org/2007/063.pdf.

[8] C. Carlet, Vectorial Boolean functions for cryptography, to appear in Boolean Methods and
Models, P. Hammer and Y. Crama, eds., Cambridge University Press, Cambridge, UK.
Available online at http://www-rocq.inria.fr/secret/Claude.Carlet/chap-vectorial-fcts.pdf.

[9] A. Canteaut, P. Charpin, and H. Dobbertin, Weight divisibility of cyclic codes, highly
nonlinear functions on F2m , and crosscorrelation of maximum-length sequences, SIAM J.
Discrete Math., 13 (2000), pp. 105–138.

[10] C. Carlet, P. Charpin, and V. Zinoviev, Codes, bent functions and permutations suitable
for DES-like cryptosystems, Des. Codes Cryptogr., 15 (1998), pp. 125–156.

[11] F. Chabaud and S. Vaudenay, Links between differential and linear cryptanalysis, Advances
in Cryptology (EUROCRYPT’94), Lecture Notes in Comput. Sci. 950, Springer-Verlag,
Berlin, 1995, pp. 356–365.

[12] J. Dillon, Slides from Talk Given at Polynomials over Finite Fields and Applications, at Banff
International Research Station, Banff, AB, Canada, 2006.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

608 C. BRACKEN, E. BYRNE, N. MARKIN, AND G. MCGUIRE

[13] Y. Edel, G. Kyureghyan, and A. Pott, A new APN function which is not equivalent to a
power mapping, IEEE Trans. Inform. Theory, 52 (2006), pp. 744–747.

[14] K. Nyberg, Differentially uniform mappings for cryptography, in Advances in Cryptology
(EUROCRYPT’93), Lecture Notes in Comput. Sci. 765, Springer, Berlin, 1994, pp. 55–64.

[15] H. M. Trachtenberg, On the Cross-Correlation Functions of Maximal Linear Sequences,
Ph.D. dissertation, University of Southern California, Los Angeles, 1970.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 2, pp. 609–633

AN ARBITRARY STARTING HOMOTOPY-LIKE SIMPLICIAL
ALGORITHM FOR COMPUTING AN INTEGER POINT IN A

CLASS OF POLYTOPES∗

CHUANGYIN DANG†

Abstract. An arbitrary starting homotopy-like simplicial algorithm is developed for computing
an integer point in a polytope given by P = {x | Ax ≤ b} satisfying that each row of A has at most
one positive entry. The algorithm is derived from an introduction of an integer labeling rule and
an application of a triangulation of the space Rn × [0, 1]. It consists of two phases, one of which
forms an (n+ 1)-dimensional pivoting procedure and the other an n-dimensional pivoting procedure.
Starting from an arbitrary integer point in Rn × {0}, the algorithm interchanges from one phase to
the other, if necessary, and follows a finite simplicial path that either leads to an integer point in the
polytope or proves that no such point exists.

Key words. integer point, polytope, integer programming, integer labeling, triangulation,
homotopy-like simplicial algorithm, pivoting procedure

AMS subject classification. 90C10

DOI. 10.1137/07069715X

1. Introduction. The problem we consider is as follows. Determine whether
there is an integer point in a polytope given by

(1) P = {x ∈ Rn | Ax ≤ b},
where

A =

⎛
⎜⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞
⎟⎟⎟⎟⎠

satisfies that each row of A has at most one positive entry and b = (b1, b2, . . . , bm)�.
The simultaneous Diophantine approximation problems in [19] and the problem of
finding an integer point satisfying a system of monotone inequalities in [13] are special
cases of (1). Under some further restrictions, the problem was studied in [27]. The
problem is NP-complete (see, e.g., [22, 28]) and very general although it looks special.
It is well known that integer programming is equivalent to determining whether there
is an integer point in a polytope. By aggregations, integer programming can be
reduced in polynomial time to determining whether there is an integer point in a
simplex [14]. A simplex is a special polytope given by P = {x | Ax ≤ b} with A being
an (n + 1) × n matrix. For any given integer (n + 1) × n matrix A satisfying that
ρ�A = 0 for some positive vector ρ and that any n×n submatrix of A is nonsingular,
a procedure in [23] shows that, by applying the following three elementary column
operations to A:

∗Received by the editors July 13, 2007; accepted for publication (in revised form) October 28,
2008; published electronically February 6, 2009. This work was partially supported by CERG: CityU
101003 of the Government of Hong Kong SAR.

http://www.siam.org/journals/sidma/23-2/69715.html
†Department of Manufacturing Engineering and Engineering Management, City University of

Hong Kong, Kowloon, Hong Kong (mecdang@cityu.edu.hk).

609

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

610 CHUANGYIN DANG

1. interchange two columns,
2. multiply a column by −1, and
3. add any integer multiple of a column to another column,

one can transform A in polynomial time into a matrix such that each row has at most
one positive entry.

To compute an integer point in a simplex, simplicial algorithms were developed
in [4, 5, 6]. The idea of developing a simplicial algorithm for integer programming
was stimulated from the seminal work of Scarf [26]. Such an approach to integer
programming has its foundations in simplicial algorithms for computing fixed points
of a continuous or upper semicontinuous mapping that were originated by Scarf [24]
and substantially developed in the literature (see, e.g., [1, 2, 3, 7, 8, 9, 10, 12, 15, 16,
17, 18, 20, 21, 25, 29, 30, 31]). The basic idea of a simplicial algorithm for computing
an integer point in a simplex is as follows. The algorithm assigns an integer label
to each point of the space and applies a triangulation to subdivide the space into
simplices in such a way that every integer point of the space is a vertex of a simplex
of the triangulation and every vertex of a simplex of the triangulation is an integer
point of the space. Starting from an arbitrary integer point, the algorithm follows a
finite simplicial path that either leads to an integer point in the simplex or proves
that no such point exists.

In this paper, an arbitrary starting homotopy-like simplicial algorithm is devel-
oped for computing an integer point in the polytope given by (1). The algorithm
is derived from an introduction of an integer labeling rule and an application of a
triangulation of the space Rn × [0, 1]. It consists of two phases, one of which forms
an (n + 1)-dimensional pivoting procedure and the other an n-dimensional pivoting
procedure. Starting from an arbitrary integer point in Rn × {0}, the algorithm in-
terchanges from one phase to the other, if necessary, and follows a finite simplicial
path that either leads to an integer point in the polytope or proves that no such point
exists.

The rest of this paper is organized as follows. In section 2, we introduce an integer
labeling rule and study its properties. In section 3, based on the integer labeling rule
and a triangulation of Rn × [0, 1], we develop an algorithm for computing an integer
point in the polytope given by (1) and prove its finite convergence.

2. An integer labeling rule and its properties. For i = 1, 2, . . . ,m, let
a�i denote the ith row of A. Then, A = (a1, a2, . . . , am)�. Let M = {1, 2, . . . ,m},
N = {1, 2, . . . , n}, andN0 = {1, 2, . . . , n+1}. Let η = (η1, η2, . . . , ηn)� be an arbitrary
integer point of Rn, which will be the starting point of the algorithm. We assume
that P is bounded and has an interior point. As a result of this assumption, using
the well-known separation theorem, one can easily obtain the following lemma.

Lemma 1. There is a positive vector ρ = (ρ1, ρ2, . . . , ρm)� satisfying that ρ�A =
0.

To implement the algorithm, we need a triangulation of Rn × [0, 1], which subdi-
vides Rn × [0, 1] into simplices in such a way that every integer point of Rn × [0, 1]
is a vertex of a simplex of the triangulation, and every vertex of a simplex of the
triangulation is an integer point of Rn × [0, 1]. There exist several triangulations of
Rn×[0, 1] suitable for the purpose in the literature, which include theK1-triangulation
in Freudenthal [11], the J1-triangulation in Todd [29], and the D1-triangulation in
Dang [2]. The choice of a triangulation of Rn × [0, 1] plays no dominant rule at all in
this paper, although the efficiency of the algorithm depends critically on the underly-
ing triangulation. For simplicity of the algorithm, we choose the D1-triangulation as

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A SIMPLICIAL ALGORITHM FOR INTEGER PROGRAMMING 611

an underlying triangulation of the algorithm. For completeness of the algorithm, we
also introduce the D1-triangulation here.

For j = 1, 2, . . . , n + 1, let uj denote the jth unit vector of Rn+1. A simplex of
the D1-triangulation of Rn× [0, 1] is the convex hull of n+2 vectors, y0, y1, . . . , yn+1,
given as follows. If p = 0, then y0 = y and yk = y + sπ(k)u

π(k), k = 1, 2, . . . , n + 1,
and, if p ≥ 1, then y0 = y + s, yk = yk−1 − sπ(k)u

π(k), k = 1, 2, . . . , p − 1, and
yk = y + sπ(k)u

π(k), k = p, p + 1, . . . , n + 1, where y = (η, 0)� + (z1, z2, . . . , zn, 0)�

with zi being an even number for i = 1, 2, . . . , n, π = (π(1), π(2), . . . , π(n + 1)) a
permutation of the elements of N0 = {1, 2, . . . , n+ 1}, s = (s1, s2, . . . , sn+1)� a sign
vector with every component being a number in {−1, 1} and sn+1 = 1, and p an
integer with 0 ≤ p ≤ n. Let D1 be the set of all such simplices. Then, D1 is a
triangulation of Rn× [0, 1]. Since a simplex of the D1-triangulation is determined by
y, π, s, and p, we use D1(y, π, s, p) to denote it.

We say that two simplices of D1 are adjacent if they share a common facet. We
show in the following how to generate all the adjacent simplices of a simplex of the D1-
triangulation of Rn× [0, 1]. For a given simplex σ = D1(y, π, s, p) with vertices y0, y1,
. . . , yn+1, its adjacent simplex opposite to a vertex, say yi, is given by D1(ȳ, π̄, s̄, p̄),
where ȳ, π̄, s̄, and p̄ are generated according to the pivot rules given in Table 1.

Table 1

Pivot rules of the D1-triangulation of Rn × [0, 1].

i ȳ s̄ π̄ p̄
0 p ≤ 1 y s π 1− p

2 ≤ p π(1) �= n + 1 y s− 2sπ(1)u
π(1) π p

π(1) = n + 1 The facet opposite to yi is contained in Rn × {0}
1 ≤ i p = 0 π(i) �= n + 1 y s− 2sπ(i)u

π(i) π p

π(i) = n + 1 The facet opposite to yi is contained in Rn × {0}
i < p− 1 y s π1 p
i = p− 1 y s π p− 1

p− 1 < i 1 ≤ p < n y s π2 p + 1

i = n 1 ≤ p = n π(n + 1) �= n + 1 y + 2sπ(n+1)u
π(n+1) s− 2sπ(n+1)u

π(n+1) π p

π(n + 1) = n + 1 The facet opposite to yi is contained in Rn × {1}
i = n + 1 1 ≤ p = n π(n) �= n + 1 y + 2sπ(n)u

π(n) s− 2sπ(n)u
π(n) π p

π(n) = n + 1 The facet opposite to yi is contained in Rn × {1}
π1 = (π(1), . . . , π(i + 1), π(i), . . . , π(n + 1)),
π2 = (π(1), . . . , π(p− 1), π(i), π(p), . . . , π(i− 1), π(i + 1), . . . , π(n + 1)).

Let D1 be the set of faces of simplices of D1. A q-dimensional simplex of D1

with vertices y0, y1, . . . , yq is denoted by 〈y0, y1, . . . , yq〉. The restriction of the D1-
triangulation of Rn × [0, 1] on Rn × {0} is given by

D1|Rn × {0} = {σ ∈ D1 | σ ⊂ Rn × {0} and dim(σ) = n},
and the restriction of the D1-triangulation of Rn × [0, 1] on Rn × {1} is given by

D1|Rn × {1} = {σ ∈ D1 | σ ⊂ Rn × {1} and dim(σ) = n},
where dim(·) stands for the dimension of a set.

From the definition of the D1-triangulation of Rn× [0, 1], we know that D1|Rn×
{0} is the same as theD1-triangulation of Rn. For j = 1, 2, . . . , n, let uj denote the jth
unit vector of Rn. A simplex of the D1-triangulation of Rn is the convex hull of n+1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

612 CHUANGYIN DANG

vectors, y0, y1, . . . , yn, given as follows. If p = 0, then y0 = y and yk = y+sπ(k)u
π(k),

k = 1, 2, . . . , n, and, if p ≥ 1, then y0 = y+s, yk = yk−1−sπ(k)u
π(k), k = 1, 2, . . . , p−1,

and yk = y+ sπ(k)u
π(k), k = p, p+ 1, . . . , n, where y = η+ z with every component of

z being an even number, π = (π(1), π(2), . . . , π(n)) a permutation of the elements of
N = {1, 2, . . . , n}, s a sign vector with every component being a number in {−1, 1},
and p an integer with 0 ≤ p ≤ n− 1. Let D1 be the set of all such simplices. Then,
D1 is a triangulation of Rn. Since a simplex of the D1-triangulation is determined
by y, π, s, and p, we use D1(y, π, s, p) to denote it. How to generate all the adjacent
simplices of a simplex of the D1-triangulation of Rn is as follows. For a given simplex
σ = D1(y, π, s, p) with vertices y0, y1, . . . , yn, its adjacent simplex opposite to a
vertex, say yi, is given by D1(ȳ, π̄, s̄, p̄), where ȳ, π̄, s̄, and p̄ are generated according
to the pivot rules given in Table 2.

Table 2

Pivot rules of the D1-triangulation of Rn.

i ȳ s̄ π̄ p̄

0 n = 1 y + 2sπ(1)u
π(1) s− 2sπ(1)u

π(1) π p
n ≥ 2 p ≤ 1 y s π 1− p

2 ≤ p y s− 2sπ(1)u
π(1) π p

1 ≤ i p = 0 y s− 2sπ(i)u
π(i) π p

i < p− 1 y s π1 p
i = p− 1 y s π p− 1

p− 1 < i 1 ≤ p < n− 1 y s π2 p + 1

i = n− 1 1 ≤ p = n− 1 y + 2sπ(n)u
π(n) s− 2sπ(n)u

π(n) π p

i = n 1 ≤ p = n− 1 y + 2sπ(n−1)u
π(n−1) s− 2sπ(n−1)u

π(n−1) π p

π1 = (π(1), . . . , π(i + 1), π(i), . . . , π(n)),
π2 = (π(1), . . . , π(p− 1), π(i), π(p), . . . , π(i− 1), π(i + 1), . . . , π(n)).

From the definition of the D1-triangulation of Rn× [0, 1], we know that D1|Rn×
{1} is the same as the J1-triangulation of Rn. For j = 1, 2, . . . , n, let uj denote the
jth unit vector of Rn. A simplex of the J1-triangulation of Rn is the convex hull of
n + 1 vectors, y0, y1, . . . , yn, given as follows. y0 = y + s, yk = yk−1 − sπ(k)u

π(k),
k = 1, 2, . . . , n, where y = η + z with every component of z being an even number,
π = (π(1), π(2), . . . , π(n)) a permutation of the elements of N = {1, 2, . . . , n}, and
s a sign vector with every component being a number in {−1, 1}. Let J1 be the
set of all such simplices. Then, J1 is a triangulation of Rn. Since a simplex of the
J1-triangulation is determined by y, π, and s, we use J1(y, π, s) to denote it. How
to generate all the adjacent simplices of a simplex of the J1-triangulation of Rn is as
follows. For a given simplex σ = J1(y, π, s) with vertices y0, y1, . . . , yn, its adjacent
simplex opposite to a vertex, say yi, is given by J1(ȳ, π̄, s̄), where ȳ, π̄, and s̄ are
generated according to the pivot rules given in Table 3.

Table 3

Pivot rules of the J1-triangulation of Rn.

i ȳ s̄ π̄

0 y s− 2sπ(1)u
π(1) π

0 < i < n y s (π(1), . . . , π(i + 1), π(i), . . . , π(n))

n y + 2sπ(n)u
π(n) s− 2sπ(n)u

π(n) π

For σ ∈ D1, let grid(σ) = max{‖x − y‖ | x ∈ σ and y ∈ σ}, where ‖ · ‖ denotes
the infinity norm. We define mesh(D1) = maxσ∈D1 grid(σ). Then, mesh(D1) = 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A SIMPLICIAL ALGORITHM FOR INTEGER PROGRAMMING 613

For any x ∈ Rn, we define

f(x) = (f1(x), f2(x), . . . , fn(x))� =

⎧⎨
⎩

0 ∈ Rn if x ∈ P ,∑
j∈J(x)

a�
j x−bj

a�
j aj

aj otherwise,

where J(x) = {j ∈M | a�j x− bj > 0}.
Let

d = Aη.

For any x ∈ Rn, we define

f0(x) = (f0
1 (x), f0

2 (x), . . . , f0
n(x))� =

⎧⎨
⎩

0 ∈ Rn if Ax ≤ d,∑
j∈J0(x)

a�
j x−dj

a�
j aj

aj otherwise,

where J0(x) = {j ∈M | a�j x− dj > 0}.
Lemma 2. The integer point η is a unique point satisfying that Ax ≤ d.
Proof. From the boundedness assumption on P , we know that A has a nonsingular

n× n submatrix. Then, x = η for any x ∈ Rn with Ax = Aη. Suppose that there is
a point y ∈ Rn such that Ay ≤ d and y 	= η. Then, there is at least one index i ∈M
satisfying that a�i y < di. By Lemma 1, we derive that

0 = ρ�A(y − η) < 0.

A contradiction occurs. The lemma follows.
From the definitions of f(x) and f0(x), we obtain that

f(x) =

⎛
⎝ ∑

j∈J(x)

aja
�
j

a�j aj

⎞
⎠x−

∑
j∈J(x)

bj

a�j aj
aj

and

f0(x) =

⎛
⎝ ∑

j∈J0(x)

aja
�
j

a�j aj

⎞
⎠x−

∑
j∈J0(x)

dj

a�j aj
aj.

Clearly, both f : Rn → Rn and f0 : Rn → Rn are continuous piecewise linear
mappings, each of which is composed of a finite number of linear pieces since there is
only a finite number of different J(x)’s and J0(x)’s on Rn.

Lemma 3. For any x and y in Rn,

(2) ‖f(x)− f(y)‖ ≤ m‖x− y‖

and

(3) ‖f0(x) − f0(y)‖ ≤ m‖x− y‖.

Proof. Let x and y be any two points in Rn. Then, for any j ∈ J(x) and j /∈ J(y),

a�j (x− y) ≥ a�j x− bj > 0,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

614 CHUANGYIN DANG

and for any j /∈ J(x) and j ∈ J(y),

a�j (y − x) ≥ a�j y − bj > 0.

Thus,

‖f(x)− f(y)‖ =
∥∥∥∥∑j∈J(x)

a�
j x−bj

a�
j aj

aj −
∑

j∈J(y)

a�
j y−bj

a�
j aj

aj

∥∥∥∥
=
∥∥∥∥∑j∈J(x)∩J(y)

a�
j x−a�

j y

a�
j aj

aj +
∑j∈J(x)

j /∈J(y)

a�
j x−bj

a�
j aj

aj −
∑j∈J(y)

j /∈J(x)

a�
j y−bj

a�
j aj

aj

∥∥∥∥
≤
∥∥∥∥∑j∈J(x)∩J(y)

a�
j (x−y)

a�
j aj

aj

∥∥∥∥+
∑j∈J(x)

j /∈J(y)

a�
j (x−y)

a�
j aj

‖aj‖+
∑j∈J(y)

j /∈J(x)

a�
j (y−x)

a�
j aj

‖aj‖

≤∑j∈J(x)∩J(y)
‖aj‖2‖x−y‖

a�
j aj

+
∑j∈J(x)

j /∈J(y)
‖aj‖2‖x−y‖

a�
j aj

+
∑j∈J(y)

j /∈J(x)
‖aj‖2‖x−y‖

a�
j aj

= (|J(x) ∩ J(y)|+ |J(x)\J(y)| + |J(y)\J(x)|)‖x− y‖
≤m‖x− y‖,

where | · | denotes the cardinality of a set. Similarly, one can derive that ‖f0(x) −
f0(y)‖ ≤ m‖x− y‖ for any x and y in Rn. The lemma follows.

Clearly, for any y ∈ Rn, we have, for any j ∈ J(y) and j /∈ J0(y),

0 < a�j y − bj ≤ dj − bj,

and for any j /∈ J(y) and j ∈ J0(y),

0 < a�j y − dj ≤ bj − dj .

Thus, for any y ∈ Rn, we have

(4)

‖f0(y)− f(y)‖

=
∥∥∥∥∑j∈J0(y)∩J(y)

bj−dj

a�
j aj

aj +
∑j∈J0(y)

j /∈J(y)

a�
j y−dj

a�
j aj

aj −
∑j∈J(y)

j /∈J0(y)

a�
j y−bj

a�
j aj

aj

∥∥∥∥
≤∑j∈J0(y)∩J(y)

|bj−dj|
a�

j aj
‖aj‖+

∑j∈J0(y)
j /∈J(y)

a�
j y−dj

a�
j aj

‖aj‖+
∑j∈J(y)

j /∈J0(y)

a�
j y−bj

a�
j aj

‖aj‖

≤∑j∈J0(y)∩J(y)
|bj−dj|
‖aj‖ +

∑j∈J0(y)
j /∈J(y)

bj−dj

‖aj‖ +
∑j∈J(y)

j /∈J0(y)
dj−bj

‖aj‖

≤∑j∈M
|dj−bj |
‖aj‖ .

Therefore, for any x and y in Rn, as a result of (2) and (4), we have

(5)

‖f(x)− f0(y)‖= ‖f(x)− f(y) + f(y)− f0(y)‖
≤ ‖f(x)− f(y)‖+ ‖f(y)− f0(y)‖
≤m‖x− y‖+

∑
j∈M

|dj−bj |
‖aj‖ .

For any (x, t) ∈ Rn × [0, 1], we define

h(x, t) = (h1(x, t), h2(x, t), . . . , hn(x, t))� = tf(x) + (1 − t)f0(x).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A SIMPLICIAL ALGORITHM FOR INTEGER PROGRAMMING 615

Then, for any (x, t1) and (y, t2) in Rn× [0, 1], as a result of (2), (3), and (5), we have

(6)

‖h(x, t1)− h(y, t2)‖
= ‖t1f(x) + (1− t1)f0(x)− (t2f(y) + (1− t2)f0(y))‖
= ‖t2(f(x)− f(y)) + (1− t1)(f0(x)− f0(y)) + (t1 − t2)(f(x) − f0(y))‖
≤‖f(x)− f(y)‖+ ‖f0(x) − f0(y)‖ + ‖f(x)− f0(y)‖
≤m‖x− y‖+m‖x− y‖+m‖x− y‖+

∑
j∈M

|dj−bj |
‖aj‖

=3m‖x− y‖+
∑

j∈M
|dj−bj |
‖aj‖ .

Lemma 4. For any given x∗ ∈ Rn, as ‖x‖ → ∞, (x−x∗)�f(x)
‖x‖ →∞, (x−x∗)�f0(x)

‖x‖
→ ∞ and (x−x∗)�h(x,t)

‖x‖ →∞ for any t ∈ [0, 1].
Proof. Let x0 be any given point of P . Because P is bounded, there is a ball

B(x0, r) strictly containing P . Let S(x0, r) be the sphere of the ball. Then, for any
x /∈ B(x0, r), there are some point y ∈ S(x0, r) and some number ρ > 1 satisfying
that x = x0 + ρ(y − x0). Thus, for any k,

a�k x− bk = a�k (x0 + ρ(y − x0))− bk
= ρ(a�k y − bk) + (ρ− 1)(bk − a�k x0)

≥ ρ(a�k y − bk),

where the last inequality comes from bk ≥ a�k x
0 and ρ > 1. Therefore, for any

k ∈ J(y), as a result of a�k y − bk > 0, we obtain that a�k x − bk approaches infinity
as ρ → ∞. Observe that, for any y ∈ S(x0, r), J(y) is not empty and that, for any
x /∈ P with x 	= 0,

(x−x∗)�f(x)
‖x‖ =

∑
j∈J(x)

a�
j x−bj

a�
j aj‖x‖a

�
j (x− x∗)

=
∑

j∈J(x)

(a�
j x−bj)

2

a�
j aj‖x‖ +

∑
j∈J(x)

(a�
j x−bj)(bj−a�

j x∗)

a�
j aj‖x‖ .

Thus, (x−x∗)�f(x)
‖x‖ →∞ as ‖x‖ → ∞. Similarly, one can show that (x−x∗)�f0(x)

‖x‖ →∞
as ‖x‖ → ∞.

For any t ∈ [0, 1], since

(x− x∗)�h(x, t)
‖x‖ = t

(x − x∗)�f(x)
‖x‖ + (1− t) (x− x∗)�f0(x)

‖x‖ ,

hence, (x−x∗)�h(x,t)
‖x‖ →∞ as ‖x‖ → ∞. The lemma follows.

From an application of f(x) and f0(x), we obtain the following integer labeling
rule for assigning an integer to each integer point of Rn × [0, 1].

Definition 1. For (x, 1) ∈ Rn ×{1}, we assign to (x, 1) an integer l(x, 1) given
by l(x, 1) = 0 if f(x) = 0, and

l(x, 1) =

{
max{k | fk(x) = max1≤j≤n fj(x)} if fj(x) > 0 for some j ∈ N ,
n+ 1 if f(x) ≤ 0 and f(x) 	= 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

616 CHUANGYIN DANG

For (x, 0) ∈ Rn × {0}, we assign to (x, 0) an integer l(x, 0) given by

l(x, 0) =

{
max{k | f0

k (x) = max1≤j≤n f
0
j (x)} if f0

j (x) > 0 for some j ∈ N ,

n+ 1 if f0(x) ≤ 0.

From Definition 1, one can see that there is no point in the artificial level Rn×{0}
that carries integer label 0.

The next definition gives us a few notations that will be used in our further
developments.

Definition 2.

• A q-dimensional simplex σ = 〈y0, y1, . . . , yq〉 of D1 is complete if l(yi) 	= l(yj)
for 0 ≤ i < j ≤ q, and l(yk) 	= 0, k = 0, 1, . . . , q.
• A q-dimensional simplex σ = 〈y0, y1, . . . , yq〉 of D1 is 0-complete if l(yi) 	=
l(yj) for 0 ≤ i < j ≤ q, and there is some k satisfying that l(yk) = 0.
• A q-dimensional simplex σ = 〈y0, y1, . . . , yq〉 of D1 is almost complete if labels

of q + 1 vertices of σ consist of q different nonzero integers.
From Definition 2, it is easy to see the following lemma.
Lemma 5. An almost complete simplex has exactly two complete facets.
For any y = (y1, y2, . . . , yn+1)� ∈ Rn × [0, 1], we define

p(y) = (y1, y2, . . . , yn)�.

Theorem 1. There is a finite number of complete n-dimensional simplices in
D1.

Proof. Let σ = 〈y0, y1, . . . , yn〉 be a complete n-dimensional simplex in D1. With-
out loss of generality, we assume that l(y0) = n+1 and l(yi) = i, i = 1, 2, . . . , n. Then,
from Definition 1, we know that

(7) h(y0) ≤ 0

and

(8) hi(yi) > 0, i = 1, 2, . . . , n.

Let y be an arbitrary point of σ. Then, as a result of (7), (8), (6), and mesh(D1) = 1,
we have, for i = 1, 2, . . . , n,

(9)

hi(y)=hi(y)− hi(y0) + hi(y0)

≤hi(y)− hi(y0)

≤ 3m‖y − y0‖+
∑

j∈M
|dj−bj |
‖aj‖

≤ 3m+
∑

j∈M
|dj−bj |
‖aj‖

and

(10)

hi(y)=hi(y)− hi(yi) + hi(yi)

≥hi(y)− hi(yi)

≥−
(
3m‖y − yi‖+

∑
j∈M

|dj−bj |
‖aj‖

)
≥−

(
3m+

∑
j∈M

|dj−bj |
‖aj‖

)
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A SIMPLICIAL ALGORITHM FOR INTEGER PROGRAMMING 617

Thus, (9) and (10) together implies that σ is contained in

Wc =
{
y ∈ Rn × [0, 1] | ‖h(y)‖ ≤ 3m+

∑
j∈M

|dj − bj|
‖aj‖

}
.

Clearly, for any y ∈ Wc,

−|yi|
(

3m+
∑
j∈M

|dj − bj|
‖aj‖

)
≤ yihi(y) ≤ |yi|

(
3m+

∑
j∈M

|dj − bj |
‖aj‖

)
,

i = 1, 2, . . . , n. Thus, for any y ∈Wc,

−
(

3m+
∑
j∈M

|dj − bj|
‖aj‖

) n∑
i=1

|yi| ≤ p(y)�h(y) ≤
(

3m+
∑
j∈M

|dj − bj|
‖aj‖

) n∑
i=1

|yi|.

Therefore, for any y ∈Wc,

(11) −
(

3m+
∑
j∈M

|dj − bj|
‖aj‖

)
≤ p(y)�h(y)
‖p(y)‖1 ≤ 3m+

∑
j∈M

|dj − bj|
‖aj‖ ,

where ‖p(y)‖1 =
∑n

i=1 |yi|. Combining Lemma 4 and (11) together, one can see that
Wc is bounded. The theorem follows.

As a corollary of Theorem 1, we have the following.
Corollary 1. There is a finite number of almost complete (n+ 1)-dimensional

simplices in D1.
Lemma 6. It holds that

x̄ = (max{x1
1, x

2
1},max{x1

2, x
2
2}, . . . ,max{x1

n, x
2
n})� ∈ P

if x1 = (x1
1, x

1
2, . . . , x

1
n)� ∈ P and x2 = (x2

1, x
2
2, . . . , x

2
n)� ∈ P .

Proof. Let x1 = (x1
1, x

1
2, . . . , x

1
n)� and x2 = (x2

1, x
2
2, . . . , x

2
n)� be two arbitrary

points of P . Let x̄ = (max{x1
1, x

2
1},max{x1

2, x
2
2}, . . . ,max{x1

n, x
2
n})�. Let j be an

arbitrary index of M . From the assumption on A, we know that each row of A has
at most one positive entry. If aj ≤ 0, then

a�j x̄ ≤ a�j x1 ≤ bj .

Consider aj with a positive entry, say aji. Without loss of generality, we assume that
x̄i = x1

i . Since ajk ≤ 0 for any k 	= i,

a�j x̄ = ajix̄i +
∑
k 	=i

ajkx̄k = ajix
1
i +

∑
k 	=i

ajkx̄k ≤ ajix
1
i +

∑
k 	=i

ajkx
1
k = a�j x

1 ≤ bj.

Thus, x̄ ∈ P . The lemma follows.
Let xmax denote the unique solution of maxx∈P e

�x.
Lemma 7. For any x ∈ P , x ≤ xmax.
Proof. Suppose that there is a point x̂ ∈ P satisfying x̂q > xmax

q for some
q ∈ N . Let x̄ = (max{x̂1, x

max
1 },max{x̂2, x

max
2 }, . . . ,max{x̂n, x

max
n })�. Then, from

Lemma 6, we know that x̄ ∈ P . Clearly, e�x̄ > e�xmax, which contradicts that
e�xmax = maxx∈P e

�x. The lemma follows.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

618 CHUANGYIN DANG

Lemma 8. Let

Q =

⎛
⎜⎜⎜⎜⎝

q11 q12 · · · q1n

q21 q22 · · · q2n

...
...

. . .
...

qn1 qn2 · · · qnn

⎞
⎟⎟⎟⎟⎠

be a matrix such that qij ≤ 0 for any i 	= j and qii > 0, i = 1, 2, . . . , n. If there is
some ρ = (ρ1, ρ2, . . . , ρn)� > 0 satisfying that ρ�Q > 0, then Q is nonsingular and
Q−1 ≥ 0.

Proof. We prove the lemma by the mathematical induction.
1. When n = 1, Q = (q11). Since q11 > 0, Q is nonsingular and Q−1 = (1/q11) ≥

0. The lemma is true.
2. Assume that the lemma is true for 1 ≤ k ≤ n− 1. Consider k = n. Let

U =

⎛
⎜⎜⎜⎜⎝

1
−q21/q11 1

...
. . .

−qn1/q11 1

⎞
⎟⎟⎟⎟⎠

and

W =

⎛
⎜⎜⎜⎜⎝

1 −q12/q11 · · · −q1n/q11

1
. . .

1

⎞
⎟⎟⎟⎟⎠ .

The inverse matrix of U is given by

U−1 =

⎛
⎜⎜⎜⎜⎝

1
q21/q11 1

...
. . .

qn1/q11 1

⎞
⎟⎟⎟⎟⎠ .

Note that −qi1/q11 ≥ 0 and −q1i/q11 ≥ 0, i = 2, 3, . . . , n. Multiplying U to
the left-hand side of Q, we obtain that

UQ =

⎛
⎜⎜⎜⎜⎜⎝

q11 q12 · · · q1n

0 q22 − q21q12
q11

· · · q2n − q21q1n

q11

...
...

. . .
...

0 qn2 − qn1q12
q11

· · · qnn − qn1q1n

q11

⎞
⎟⎟⎟⎟⎟⎠ .

Clearly, all the entries of UQ except its diagonal entries are nonpositive.
Multiplying ρ to U−1, we obtain that

ρ�U−1 =
(
ρ1 +

n∑
i=2

qi1ρi

q11
, ρ2, . . . , ρn

)�
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A SIMPLICIAL ALGORITHM FOR INTEGER PROGRAMMING 619

From 0 < q11 and 0 < ρ�Q = (ρ�U−1)(UQ), we derive that

ρ1 +
n∑

i=2

qi1ρi

q11
> 0,

and all the diagonal entries of UQ are positive. Let ρ̄ = (ρ2, . . . , ρn)�. By
deleting the first row and the first column of UQ, we obtain an (n−1)×(n−1)
matrix,

Q̄ =

⎛
⎜⎜⎝

q22 − q21q12
q11

· · · q2n − q21q1n

q11

...
. . .

...
qn2 − qn1q12

q11
· · · qnn − qn1q1n

q11

⎞
⎟⎟⎠ .

Since 0 < ρ̄, 0 < ρ̄�Q̄, and Q̄ is an (n− 1)× (n − 1) matrix, it follows from
the hypothesis that Q̄ is nonsingular and Q̄−1 ≥ 0. Multiplying W to the
right-hand side of UQ, we obtain

UQW =

(
q11 0
0 Q̄

)
.

Thus, Q is nonsingular and

Q−1 = W

(
1/q11 0

0 Q̄−1

)
U.

Therefore, Q−1 ≥ 0 since q11 > 0, Q̄−1 ≥ 0, U ≥ 0, and W ≥ 0. The lemma
follows.

As a corollary of Lemma 8, we obtain the following result.
Corollary 2. For any x ∈ Rn, if 0 < f(x), then 0 < x− x0 for any x0 ∈ P .
Proof. Let Ji(x) = {j ∈ J(x) | aji > 0}, i = 1, 2, . . . , n, and Jn+1(x) = {j ∈

J(x) | aj ≤ 0}. Then, J1(x), J2(x), . . . , Jn+1(x) forms a partition of J(x). Since
f(x) > 0, hence, Ji(x) 	= ∅, i = 1, 2, . . . , n. Let

ri(x) =
∑

j∈Ji(x)

(a�j x− bj)2
a�j aj

,

i = 1, 2, . . . , n, and r(x) = (r1(x), r2(x), . . . , rn(x))�. Clearly, r(x) > 0. Let

āi(x) =

∑
j∈Ji(x)

a�
j x−bj

a�
j aj

aj

ri(x)
,

i = 1, 2, . . . , n, and Ā(x) = (ā1(x), ā2(x), . . . , ān(x)). Since 0 < f(x) and
∑

j∈Jn+1(x)

a�
j x−bj

a�
j aj

aj ≤ 0, hence,

0<f(x)−∑j∈Jn+1(x)

a�
j x−bj

a�
j aj

aj =
∑

j∈J(x)

a�
j x−bj

a�
j aj

aj −
∑

j∈Jn+1(x)

a�
j x−bj

a�
j aj

aj

=
∑n

i=1

∑
j∈Ji(x)

a�
j x−bj

a�
j aj

aj =
∑n

i=1

∑
j∈Ji(x)

a�
j

x−bj

a�
j

aj
aj

ri(x) ri(x)

=
∑n

i=1 āi(x)ri(x) = Ā(x)r(x).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

620 CHUANGYIN DANG

From the definition of Ā(x), we know that each row and each column of Ā(x) have
exactly one positive entry. Then, by Lemma 8, we obtain that Ā(x) is nonsingular
and Ā(x)−1 ≥ 0. From the definition of r(x), we obtain that

r(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
j∈J1(x)

a�
j x−bj

a�
j aj

(a�j (x− x0) + a�j x
0 − bj)∑

j∈J2(x)

a�
j x−bj

a�
j aj

(a�j (x− x0) + a�j x
0 − bj)

...∑
j∈Jn(x)

a�
j x−bj

a�
j aj

(a�j (x− x0) + a�j x
0 − bj)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
j∈J1(x)

a�
j x−bj

a�
j aj

a�j∑
j∈J2(x)

a�
j x−bj

a�
j aj

a�j
...∑

j∈Jn(x)

a�
j x−bj

a�
j aj

a�j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(x − x0) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
j∈J1(x)

a�
j x−bj

a�
j aj

(a�j x
0 − bj)∑

j∈J2(x)

a�
j x−bj

a�
j aj

(a�j x
0 − bj)

...∑
j∈Jn(x)

a�
j x−bj

a�
j aj

(a�j x
0 − bj)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let

s(x0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
j∈J1(x)

a�
j x−bj

a�
j aj

(a�j x
0 − bj)∑

j∈J2(x)

a�
j x−bj

a�
j aj

(a�j x
0 − bj)

...∑
j∈Jn(x)

a�
j x−bj

a�
j aj

(a�j x
0 − bj)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, s(x0) ≤ 0 since x0 ∈ P . Thus,

0 < r(x) − s(x0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
j∈J1(x)

a�
j x−bj

a�
j aj

a�j∑
j∈J2(x)

a�
j x−bj

a�
j aj

a�j
...∑

j∈Jn(x)

a�
j x−bj

a�
j aj

a�j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(x− x0).

Let

R(x) =

⎛
⎜⎜⎜⎜⎝

r1(x)
r2(x)

. . .

rn(x)

⎞
⎟⎟⎟⎟⎠ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A SIMPLICIAL ALGORITHM FOR INTEGER PROGRAMMING 621

Then,

R(x)Ā(x)� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
j∈J1(x)

a�
j x−bj

a�
j aj

a�j∑
j∈J2(x)

a�
j x−bj

a�
j aj

a�j
...∑

j∈Jn(x)

a�
j x−bj

a�
j aj

a�j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore, since Ā(x)−1 ≥ 0,

x− x0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
j∈J1(x)

a�
j x−bj

a�
j aj

a�j∑
j∈J2(x)

a�
j x−bj

a�
j aj

a�j
...∑

j∈Jn(x)

a�
j x−bj

a�
j aj

a�j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

(r(x) − s(x0))

= (Ā(x)−1)�R(x)−1(r(x) − s(x0)) > 0.

The corollary follows.
For any x0 ∈ Rn and K ⊆ N , let

H(x0,K) = {x0 + x ∈ Rn | 0 ≤ xi, i ∈ K, and xi = 0, i /∈ K},
and for any x0 ∈ Rn, let C(x0) denote the closure of Rn\H(x0, N). Then, as a direct
result of Lemma 7, one can see that H(xmax, N) ∩ P = xmax and for any x0 ∈ Rn

with x0 ≥ xmax and x0 	= xmax, H(x0, N)∩P = ∅. These sets will play an important
role in the following discussions.

Lemma 9. Both C(x0)× {1} and C(x0)× {0} contain a finite number of almost
complete n-dimensional simplices of D1 that carry only integer labels in N .

Proof. We will show only that C(x0) × {1} contains a finite number of almost
complete n-dimensional simplices of D1 that carry only integer labels in N . The result
for C(x0)× {0} can be obtained by replacing f with f0 in the proof.

Let σ = 〈(y0, 1), (y1, 1), . . . , (yn, 1)〉 with yi ∈ Rn, i = 0, 1, . . . , n, be an arbi-
trary almost complete n-dimensional simplex of D1 that carries only integer labels
in N . Without loss of generality, we assume that l(yi, 1) = i, i = 1, 2, . . . , n. From
Definition 1, we know that, for i = 1, 2, . . . , n, fi(yi) > 0 and

(12) 0 ≥ fj(yi)− fi(yi),

j = 1, 2, . . . , n. Let k be an index of N such that

(13) 0 ≤ fi(yi)− fk(yk),

i = 1, 2, . . . , n. Let (x, 1) be an arbitrary point of σ. Then, as a result of (12), (13),
Lemma 3, and mesh(D1) = 1, we have, for i = 1, 2, . . . , n,

fi(x) − fk(yk)= fi(x) − fi(yk) + fi(yk)− fk(yk)

≤ fi(x) − fi(yk)

≤m‖x− yk‖
≤m

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

622 CHUANGYIN DANG

and

fi(x)− fk(yk) = fi(x) − fi(yi) + fi(yi)− fk(yk)

≥ fi(x) − fi(yi)

≥−m‖x− yi‖
≥−m.

Thus,

‖f(x)− fk(yk)e‖ ≤ m,
where e = (1, 1, . . . , 1)� ∈ Rn. Therefore, σ is contained in W × {1} with

W = {x | ‖f(x)− μe‖ ≤ m for some μ > 0}.
Let x be an arbitrary point of W satisfying f(x) > 0. Then, from Corollary 2,

we know that x > y for any y ∈ P . Thus, a�j x ≤ bj for any j ∈ M with aj ≤ 0. Let
Ji(x) = {j ∈ J(x) | aji > 0}, i = 1, 2, . . . , n. Then, Ji(x) 	= ∅, i = 1, 2, . . . , n, and
J(x) = ∪i∈NJi(x). For i = 1, 2, . . . , n, let ji be any given index of Ji(x) satisfying
that

a�ji
x− bji = max

j∈Ji(x)
a�j x− bj.

Clearly, for any j ∈ Ji(x), there exists uniquely 0 < rj ≤ 1 satisfying that a�j x− bj =
rj(a�ji

x− bji). For i = 1, 2, . . . , n, let

di =
∑

j∈Ji(x)

rj

a�j aj
aj =

1
a�ji
aji

aji +
∑

j∈Ji(x) & j 	=ji

rj

a�j aj
aj .

Let D = (d1, d2, . . . , dn), Ā� = (aj1 , aj2 , . . . , ajn), and b̄ = (bj1 , bj2 , . . . , bjn)�. Then,

Āx− b̄ = (a�j1x− bj1 , a�j2x− bj2 , . . . , a�jn
x− bjn)� > 0

and

(14)

0 < f(x) =
∑

j∈J(x)

a�
j x−bj

a�
j aj

aj

=
∑n

i=1

∑
j∈Ji(x)

a�
j x−bj

a�
j aj

aj

=
∑n

i=1

(∑
j∈Ji(x)

rj

a�
j aj

aj

)
(a�ji

x− bji)

=
∑n

i=1(a
�
ji
x− bji)di

=D(a�j1x− bj1 , a�j2x− bj2 , . . . , a�jn
x− bjn)�

=D(Āx− b̄)
=DĀx−Db̄.

For i = 1, 2, . . . , n, let

d̄i =
1

a�ji
aji

aji +
∑

j∈Ji(x) & j 	=ji

tj

a�j aj
aj ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A SIMPLICIAL ALGORITHM FOR INTEGER PROGRAMMING 623

with tj being an arbitrary number in [0, 1] for any j ∈ Ji(x) and j 	= ji. Let D̄ =
(d̄1, d̄2, . . . , d̄n). Clearly, D̄ = D when tj = rj for any j ∈ Ji(x) and j 	= ji, i =
1, 2, . . . , n. For any i ∈ N and x ∈ W with f(x) > 0, we have

(15)

d̄�i x=
a�

ji
x

a�
ji

aji

+
∑

j∈Ji(x) & j 	=ji

tja�
j x

a�
j aj

=
a�

ji
x

a�
ji

aji

+
∑

j∈Ji(x) & j 	=ji

tjbj

a�
j aj

+
∑

j∈Ji(x) & j 	=ji

tj(a
�
j x−bj)

a�
j aj

≥ a�
ji

x

a�
ji

aji

+
∑

j∈Ji(x) & j 	=ji

tjbj

a�
j aj

.

From the definitions of D̄, we know that D̄ has exactly one positive entry in each row
and each column and is bounded on {x | 0 < f(x)}. Therefore, by (14) and (15),
we obtain that there exists a sufficiently large positive number δ satisfying that both
Āx > 0 and x�D̄ > 0 whenever f(x) ≥ δe.

Let

W− = {x | ‖f(x)− μe‖ ≤ m for some μ with 0 < μ ≤ m+ δ + 1}
and

W+ = {x | ‖f(x)− μe‖ ≤ m for some μ with m+ δ + 1 ≤ μ}.
Then, W = W− ∪W+. As follows, we show that both C(x0) ∩W− and C(x0)∩W+

are bounded.
From W , one can see that, for any x ∈W ,

−m|xi| ≤ xifi(x)− μxi ≤ m|xi|, i = 1, 2, . . . , n.

Thus, for any x ∈W ,

−m ≤ x�f(x)
‖x‖1 − μ e

�x
‖x‖1 ≤ m.

By Lemma 4, we derive that W− is bounded. Therefore, C(x0) ∩W− is bounded.
Consider C(x0) ∩W+. Let x be an arbitrary point of W+. Then,

(δ + 1)e ≤ (μ−m)e ≤ f(x) ≤ (μ+m)e.

From Lemma 8, we obtain that Ā and D̄ are nonsingular and Ā−1 ≥ 0 and D̄−1 ≥ 0.
From the definition of D̄, we obtain that D̄−1 is bounded on W+. Since D̄ = D when
tj = rj for any j ∈ Ji(x) and j 	= ji, i = 1, 2, . . . , n, hence, D is nonsingular and D−1

is bounded on W+. From (14), we obtain that

x = Ā−1D−1f(x) + Ā−1b̄.

Since (μ−m)e ≤ f(x) ≤ (μ−m)e and Ā−1D−1 ≥ 0, hence,

(16) (μ−m)Ā−1D−1e ≤ x− Ā−1b̄ ≤ (μ+m)Ā−1D−1e.

From (16), Ā−1D−1e > 0, and the boundedness of D−1 on W+, we derive that
C(x0) ∩W+ is bounded. The lemma follows.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

624 CHUANGYIN DANG

Lemma 10. If f(x) ≤ 0 and f(x) 	= 0, then, for any x0 ∈ P , there is some k
satisfying xk − x0

k < 0.
Proof. Suppose that x− x0 ≥ 0. Then,

0 ≥ (x− x0)�f(x)=
∑

j∈J(x)

a�
j x−bj

a�
j aj

a�j (x − x0)

=
∑

j∈J(x)

a�
j x−bj

a�
j aj

(a�j x− bj + bj − a�j x0)

≥∑j∈J(x)

a�
j x−bj

a�
j aj

(a�j x− bj) > 0.

A contradiction occurs. The lemma follows.
Lemma 11. If z0 is an integer point of P , then, for any K ⊆ N , (x, 1) ∈

H(z0,K)× {1} carries a label of either 0 or an integer in K.
Proof. From Lemma 10, we derive that no point of H(z0,K)×{1} carries integer

label n + 1. For x ∈ H(z0,K), let λ = x − z0. Then, 0 ≤ λj , j ∈ K, and λj = 0,
j /∈ K. Thus, for every index i with aij ≤ 0 for any j ∈ K,

a�i x= a�i z
0 + a�i λ

≤ bi + a�i λ

= bi +
∑

j∈K aijλj

≤ bi.
Therefore, by Definition 1, we obtain that no point in H(z0,K)×{1} carries an integer
label in N0\K. The lemma follows.

As a corollary of Lemma 11, we have the following result.
Corollary 3. If z0 is an integer point of P , then there is no complete n-

dimensional simplex in H(z0, N)× {1} and there is no complete (n− 1)-dimensional
simplex in ∪j∈NH(z0, N\{j})× {1} that carries all integer labels in N .

Lemma 12. For any subset K of N , (x, 0) ∈ H(η,K) × {0} with x 	= η carries
an integer label in K.

Proof. For x ∈ H(η,K), let λ = x− η. Then, 0 ≤ λj , j ∈ K, and λj = 0, j /∈ K.
Thus, for every index i with aij ≤ 0 for any j ∈ K,

a�i x= a�i η + a�i λ

= di + a�i λ

= di +
∑

j∈K aijλj

≤ di.

Therefore, from Definition 1, we obtain that no point in H(η,K) × {0} with the
exception of (η, 0) carries an integer label in N0\K. The lemma follows.

As a corollary of Lemma 12, we have the following.
Corollary 4. There is no complete (n−1)-dimensional simplex that is contained

in ∪j∈NH(η,N\{j})× {0} and carries all integer labels in N .

3. An arbitrary starting homotopy-like simplicial algorithm. For any
number α, let �α� denote the greatest integer less than or equal to α. We define
xu = (xu

1 , x
u
2 , . . . , x

u
n)� with xu

i = �xmax
i �, i = 1, 2, . . . , n. Then, �x� ≤ xu for any

x ∈ P .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A SIMPLICIAL ALGORITHM FOR INTEGER PROGRAMMING 625

Lemma 13. Let y = (η, 0), π = (1, 2, . . . , n + 1), s = (1, 1, . . . , 1)� ∈ Rn+1,
p = 0, and σ0 = D1(y, π, s, p) = 〈y0, y1, . . . , yn+1〉 with y0 = y and yk = y + uk,
k = 1, 2, . . . , n+ 1. Let τ0 be the facet of σ0 opposite to the vertex yn+1. Then, τ0 is
a unique complete n-dimensional simplex that is contained in H(η,N)× {0}.

Proof. From Definition 1, we obtain that l(y0) = n + 1 and l(yk) = k, k =
1, 2, . . . , n. Thus, τ0 is a complete n-dimensional simplex that is contained inH(η,N)×
{0}. From Lemma 12, we know that no point of H(η,N) × {0} carries integer label
n+1 with the exception of (η, 0). From the definition of the D1-triangulation, one can
see that τ0 is a unique n-dimensional simplex in D1 that is contained in H(η,N)×{0}
and has (η, 0) as a vertex. The lemma follows.

Based on the integer labeling rule in Definition 1 and the D1-triangulation of
Rn × [0, 1], an arbitrary starting homotopy-like simplicial algorithm is developed for
computing an integer point in P of (1), which is as follows.
Initialization. Let y = (η, 0), π = (1, 2, . . . , n + 1), s = (1, 1, . . . , 1)� ∈ Rn+1, and

p = 0. Then, σ0 = D1(y, π, s, p) = 〈y0, y1, . . . , yn+1〉 is a unique (n + 1)-
dimensional simplex in Rn × [0, 1] having τ0 as a facet. Let y+ be the vertex
of σ0 opposite to τ0, q = 1, and k = 0. Go to Step 1.

Step 1. Compute l(y+). If l(y+) = 0, then the algorithm terminates and an integer
point of P has been found. Otherwise, let y− be the vertex of σk other than
y+ and carrying integer label l(y+), and τk+1 the facet of σk opposite to y−.
Go to Step 2.

Step 2. If τk+1 ⊂ Rn × {t} for some t ∈ {0, 1}, go to Step 3. Otherwise, let σk+1 be
the unique (n + 1)-dimensional simplex that is adjacent to σk and has τk+1

as a facet, y+ the vertex of σk+1 opposite to τk+1, and k = k + 1, and go to
Step 1.

Step 3. If q is odd, then let q = q+1, σk+1 = τk+1, y− be the vertex of σk+1 carrying
integer label n + 1, τk+2 the facet of σk+1 opposite to y−, and k = k + 1,
and go to Step 4. If q is even, then let q = q + 1, τk+1 = σk, σk+1 be the
unique (n+ 1)-dimensional simplex in Rn × [0, 1] having τk+1 as a facet, y+

the vertex of σk+1 opposite to τk+1, and k = k + 1, and go to Step 1.
Step 4. Let σk+1 be the unique n-dimensional simplex in Rn × {t} that is adjacent

to σk and has τk+1 as a facet, y+ the vertex of σk+1 opposite to τk+1, and
k = k + 1. Go to Step 5.

Step 5. Compute l(y+). If l(y+) = 0, then the algorithm terminates and an integer
point of P has been found. If (xu, 1) ≤ y+, then the algorithm terminates
and there is no integer point in P . If l(y+) = n + 1, then go to Step 3. If
l(y+) 	= n + 1, then let y− be the vertex of σk other than y+ and carrying
integer label l(y+), and τk+1 the facet of σk opposite to y−, and go to Step 4.

We remark that the algorithm consists of two phases. Steps 1–2 form one phase
of the algorithm and Steps 4–5 form the other. Step 3 plays a bridge role for the
algorithm to interchange from one phase to the other. As one may observe, the phase
of Steps 1–2 comes from the well-known homotopy simplicial algorithm in [7, 9, 21]
for computing fixed points.

Theorem 2. Within a finite number of iterations, the algorithm either yields an
integer point of P or proves that no such point exists.

To prove Theorem 2, we need to show first that the algorithm does not cycle. To
accomplish this task, we will rely on an undirected graph. The way of defining the
graph is similar in some aspects to that in [29].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

626 CHUANGYIN DANG

For convenience of our further discussions, we introduce several shorthand nota-
tions, which are as follows:

1. for any t ∈ {0, 1}, a CnS(t) stands for a complete n-dimensional simplex that
is contained in Rn × {t};

2. a ZCnS stands for a 0-complete n-dimensional simplex that is contained in
Rn × {1} and carries all integer labels in N ;

3. for any t ∈ {0, 1}, an ACnS(t) stands for an almost complete n-dimensional
simplex that is contained in Rn × {t} and carries only integer labels in N ;

4. a ZC(n+ 1)S stands for a 0-complete (n+ 1)-dimensional simplex; and
5. an AC(n+ 1)S stands for an almost complete (n+ 1)-dimensional simplex.

Let G be a graph given as follows.
• Nodes of G consist of

1. all CnS(0)’s,
2. all CnS(1)’s,
3. all ZCnS’s,
4. all ACnS(0)’s,
5. all ACnS(1)’s,
6. all ZC(n+ 1)S’s, and
7. all AC(n+ 1)S’s.

• There is an edge between two nodes of G if one is a complete n-dimensional
facet of the other or they have either a common complete (n−1)-dimensional
facet that carries all integer labels in N , or a common complete n-dimensional
facet.

We say two nodes of a graph are adjacent if there is an edge between them. The
degree of a node of a graph is equal to the number of nodes adjacent to it.

From the algorithm, one can see that when the phase of Steps 1–2 is executed, all
the simplices generated by the algorithm are AC(n+1)S’s before either a ZC(n+1)S or
a CnS(t) for some t ∈ {0, 1} is met, and that for any given t ∈ {0, 1}, when the phase
of Steps 4–5 is executed, all the simplices generated by the algorithm are ACnS(t)’s
before one of a ZCnS, a CnS(t), or a vertex y+ ∈ Rn × {t} with y+ ≥ (xu, 1) is met.
Thus, each simplex generated by the algorithm is exactly one of a CnS(0), a CnS(1),
a ZCnS, an ACnS(0), an ACnS(1), a ZC(n+1)S, or an AC(n+1)S. Therefore, every
simplex generated by the algorithm is a node of G and the algorithm moves from one
node to one of its adjacent nodes along a connected component of G. To characterize
the structure of a connected component of G, we need to determine the degree of each
node of G, which is as follows.

1. Consider node σ of G given by a CnS(0). One can observe that node σ is
adjacent only to a pair of nodes given by one of the following four pairs:
(a) a CnS(0) and a ZC(n+ 1)S,
(b) a CnS(0) and an AC(n+ 1)S,
(c) an ACnS(0) and a ZC(n+ 1)S, or
(d) an ACnS(0) and an AC(n+ 1)S.

Thus, node σ has degree two. This is illustrated in Figure 1.
2. Consider node σ of G given by a CnS(1). One can observe that node σ is

adjacent only to a pair of nodes given by one of the following three pairs:
(a) a CnS(1) and an AC(n+ 1)S,
(b) a ZCnS and an AC(n+ 1)S, or
(c) an ACnS(1) and an AC(n+ 1)S.

Thus, node σ has degree two. This is illustrated in Figure 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A SIMPLICIAL ALGORITHM FOR INTEGER PROGRAMMING 627

Fig. 1. Illustration of the degree of node σ given by a CnS(0) for n = 2.

Fig. 2. Illustration of the degree of node σ given by a CnS(1) for n = 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

628 CHUANGYIN DANG

Fig. 3. Illustration of the degree of node σ given by a ZCnS for n = 2.

3. Consider node σ of G given by a ZCnS. One can observe that node σ is
adjacent only to the node given by one of
(a) a ZCnS,
(b) a CnS(1), or
(c) an ACnS(1).

Thus, node σ has degree one. This is illustrated in Figure 3.
4. Consider node σ of G given by an ACnS(0). One can observe that node σ is

adjacent only to a pair of nodes given by one of the following three pairs:
(a) two CnS(0)’s,
(b) a CnS(0) and an ACnS(0), or
(c) two ACnS(0)’s.

Thus, node σ has degree two. This is illustrated in Figure 4.
5. Consider node σ of G given by an ACnS(1). One can observe that node σ is

adjacent only to a pair of nodes given by one of the following six pairs:
(a) two ZCnS’s,
(b) a ZCnS and a CnS(1),
(c) a ZCnS and an ACnS(1),
(d) two CnS(1)’s,
(e) a CnS(1) and an ACnS(1), or
(f) two ACnS(1)’s.

Thus, node σ has degree two. This is illustrated in Figure 5.
6. Consider node σ of G given by a ZC(n+ 1)S. One can observe that node σ is

adjacent only to the node given by one of
(a) a ZC(n+ 1)S,
(b) a CnS(0), or
(c) an AC(n+ 1)S.

Thus, node σ has degree one. This is illustrated in Figure 6.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A SIMPLICIAL ALGORITHM FOR INTEGER PROGRAMMING 629

Fig. 4. Illustration of the degree of node σ given by an ACnS(0) for n = 2.

Fig. 5. Illustration of the degree of node σ given by an ACnS(1) for n = 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

630 CHUANGYIN DANG

Fig. 6. Illustration of the degree of node σ given by a ZC(n + 1)S for n = 2.

7. Consider node σ of G given by an AC(n+ 1)S. One can observe that node σ
is adjacent only to a pair of nodes given by one of the following five pairs:
(a) two ZC(n+ 1)S’s,
(b) a ZC(n+ 1)S and a CnS(t) for some t ∈ {0, 1},
(c) a ZC(n+ 1)S and an AC(n+ 1)S,
(d) an AC(n+ 1)S and a CnS(t) for some t ∈ {0, 1}, or
(e) two AC(n+ 1)S’s.

Thus, node σ has degree two. This is illustrated in Figure 7.
From the definition of G, one can see that each node of G belongs uniquely to
one of these seven categories. The above results show that the degree of each
node of G is at most two. Therefore, we come to the following conclusions.
Lemma 14. Each connected component of graph G has one of the following
forms:
• A simple circuit, in which each of its nodes has degree two.
• A simple path, in which each of its end nodes (if it has any) has degree

one and is given by either a ZCnS or a ZC(n+ 1)S.
Consider the starting simplex of the algorithm, τ0, given in Lemma 13. Since
τ0 is a CnS(0), hence, τ0 is a node of G with degree two and there is a unique
connected component of G that has τ0 as a node. As a result of Corollary 4,
one can obtain that the complete facet of τ0 carrying all integer labels in N
is not contained in ∪j∈NH(η,N\{j}) × {0}. Thus, the pair of nodes of G
adjacent to τ0 is given by one of the following two pairs:
• a ZC(n+ 1)S and an ACnS(0) contained in H(η,N)× {0}, or
• an AC(n+ 1)S and an ACnS(0) contained in H(η,N)× {0}.

This is illustrated in Figure 8.
Let Pτ0 be the unique connected component of G that has τ0 as a node. Consider

nodes of Pτ0 that are contained in H(η,N) × {0}. From Lemma 13, we know that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A SIMPLICIAL ALGORITHM FOR INTEGER PROGRAMMING 631

Fig. 7. Illustration of the degree of node σ given by an AC(n + 1)S for n = 2.

Fig. 8. Illustration of the pair of nodes adjacent to τ0 for n = 2.

with the exception of τ0, all the nodes of Pτ0 that are contained in H(η,N)×{0} are
ACnS(0)’s. Applying Corollary 4, we derive that with the exception of τ0, not one of
the nodes of Pτ0 that are contained in H(η,N) × {0} is connected to any node that
is not contained in H(η,N) × {0}. Thus, all the nodes of Pτ0 that are contained in
H(η,N)× {0} form an infinite simple path of G. Therefore, Pτ0 is an infinite simple
path of G.

Let P 0
τ0

be the part of Pτ0 that starts from τ0 and has no nodes in H(η,N)×{0}
with the exception of τ0. Then, one can see that the algorithm exactly follows the
path P 0

τ0
to move from one node to another before it terminates. Therefore, we come

to the conclusion that the algorithm does not cycle.
Proof of Theorem 2. From the above results, we know that the algorithm does not

cycle. Thus, all the simplices generated by the algorithm are different from each other.
1. Assume that the phase of Steps 1–2 is executed. From the algorithm, we

know that before the interchanging of two phases, all the simplices generated

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

632 CHUANGYIN DANG

by the algorithm in an execution of the phase of Steps 1–2 are AC(n+ 1)S’s.
Thus, as a result of Corollary 1, we obtain that, within a finite number of
iterations, an execution of the phase of Steps 1–2 terminates with either an
integer point of P or a CnS(t) for some t ∈ {0, 1}. If an execution of the
phase of Steps 1–2 generates a CnS(t) for some t ∈ {0, 1}, then the algorithm
interchanges from the phase of Steps 1–2 to the phase of Steps 4–5.

2. Assume that the phase of Steps 4–5 is executed. Let σ be the starting simplex,
which must be a CnS(t) for some t ∈ {0, 1} generated by the algorithm in
the phase of Steps 1–2.
Consider the case of t = 0. From the algorithm, one can see that all the
simplices generated by the algorithm in the phase of Steps 4–5 are ACnS(0)’s
before a CnS(0) is obtained. By Lemma 13, we know that σ is contained in
C(η) × {0}. Applying Corollary 4, we derive that all the ACnS(0)’s gener-
ated by the algorithm in the phase of Steps 4–5 are contained in C(η)×{0}.
As a result of Lemma 9, we obtain that, within a finite number of itera-
tions, an execution of Steps 4–5 terminates with a CnS(0), and the algorithm
interchanges from the phase of Steps 4–5 to the phase of Steps 1–2.
Consider the case of t = 1.
• Assume that P has an integer point. Let z0 be an integer point of
P . Then, z0 ≤ xu. Applying Corollary 3, we obtain that σ and all the
ACnS(1)’s generated by the algorithm in the phase of Steps 4–5 are con-
tained in C(z0) × {1}. As a result of Lemma 9, we derive that, within
a finite number of iterations, an execution of the phase of Steps 4–5
terminates with either an integer point of P or a CnS(1). If an execu-
tion of the phase of Steps 4–5 generates a CnS(1), then the algorithm
interchanges from the phase of Steps 4–5 to the phase of Steps 1–2.
• Assume that P has no integer point. From Step 5 of the algorithm, one

can see that all the ACnS(1)’s generated by the algorithm in the phase
of Steps 4–5 are contained in C(xu) × {1}. As a result of Lemma 9,
we obtain that, within a finite number of iterations, an execution of
the phase of Steps 4–5 terminates with either a CnS(1) or a point y ∈
Rn×{1} such that y ≥ (xu, 1)�. If an execution of the phase of Steps 4–
5 generates a CnS(1), then the algorithm interchanges from the phase
of Steps 4–5 to the phase of Steps 1–2.

As a result of Theorem 1, we know that the algorithm interchanges between
two phases at most a finite number of times. Therefore, combining the above
results, we come to the conclusion that, within a finite number of iterations,
the algorithm either yields an integer point of P or proves no such point
exists. The theorem follows.

REFERENCES

[1] E. L. Allgower and K. Georg, Piecewise linear methods for nonlinear equations and opti-
mization, J. Comput. Appl. Math., 124 (2000), pp. 245–261.

[2] C. Dang, The D1-triangulation of Rn for simplicial algorithms for computing solutions of
nonlinear equations, Math. Oper. Res., 16 (1991), pp. 148–161.

[3] C. Dang, Triangulations and Simplicial Methods, Lecture Notes in Econom. and Math. Systems
421, Springer-Verlag, Berlin, 1995.

[4] C. Dang and H. van Maaren, A simplicial approach to the determination of an integral point
of a simplex, Math. Oper. Res., 23 (1998), pp. 403–415.

[5] C. Dang and H. van Maaren, An arbitrary starting variable dimension algorithm for com-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A SIMPLICIAL ALGORITHM FOR INTEGER PROGRAMMING 633

puting an integer point of a simplex, Comput. Optim. Appl., 14 (1999), pp. 133–155.
[6] C. Dang and H. van Maaren, Computing an integer point of a simplex with an arbitrary

starting homotopy-like simplicial algorithm, J. Comput. Appl. Math., 129 (2001), pp. 151–
170.

[7] B. C. Eaves, Homotopies for the computation of fixed points, Math. Program., 3 (1972), pp. 1–
22.

[8] B. C. Eaves, A Course in Triangulations for Solving Equations with Deformations, Lecture
Notes in Econom. and Math. Systems 234, Springer-Verlag, Berlin, 1984.

[9] B. C. Eaves and R. Saigal, Homotopies for the computation of fixed points on unbounded
regions, Math. Program., 3 (1972), pp. 225–237.

[10] W. Forster, Homotopy methods, in Handbook of Global Optimization, R. Horst and P. M.
Pardalos, eds., Kluwer Academic Publishers, 1995, pp. 669–750.

[11] H. Freudenthal, Simplizialzerlegungen von beschränkter Flachheit, Ann. of Math. (2), 43
(1942), pp. 580–582.

[12] C. B. Garcia and W. I. Zangwill, Pathways to Solutions, Fixed Points, and Equilibria,
Series in Computational Mathematics, Prentice–Hall, Englewood Cliffs, NJ, 1981.

[13] D. S. Hochbaum and J. Naor, Simple and fast algorithms for linear and integer programs
with two variables per inequality, SIAM J. Comput., 23 (1994), pp. 1179–1192.

[14] R. Kannan, Polynomial-time aggregation of integer programming problems, J. Assoc. Comput.
Mach., 30 (1983), pp. 133–145.

[15] M. Kojima and Y. Yamamoto, A unified approach to the implementation of several restart
fixed point algorithms and a new variable dimension algorithm, Math. Program., 28 (1984),
pp. 288–328.

[16] H. W. Kuhn, Simplicial approximation of fixed points, Proc. Natl. Acad. Sci. USA, 61 (1968),
pp. 1238–1242.

[17] G. van der Laan and A. J. J. Talman, A restart algorithm for computing fixed points without
an extra dimension, Math. Program., 17 (1979), pp. 74–84.

[18] G. van der Laan and A. J. J. Talman, A class of simplicial restart fixed point algorithms
without an extra dimension, Math. Program., 20 (1981), pp. 33–48.

[19] J. C. Lagarias, The computational complexity of simultaneous Diophantine approximation
problems, SIAM J. Comput., 14 (1985), pp. 196–209.

[20] H.-J. Lüthi, A simplicial approximation of a solution for the nonlinear complementarity prob-
lem, Math. Program., 9 (1975), pp. 278–293.

[21] O. H. Merrill, Applications and Extensions of an Algorithm that Computes Fixed Points
of Certain Upper Semi-Continuous Point to Set Mappings, Ph.D. Thesis, Department of
Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, 1972.

[22] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, Wiley, New
York, 1998.

[23] A. Pnueli, A Method of Truncated Relaxation for Integer Programming, RC 2267, IBM Re-
search, Research Division, Yorktown Heights, NY, 1968.

[24] H. Scarf, The approximation of fixed points of a continuous mapping, SIAM J. Appl. Math.,
15 (1967), pp. 1328–1343.

[25] H. Scarf, The Computation of Economic Equilibria, Yale University Press, New Haven, 1973.
[26] H. E. Scarf, Production sets with indivisibilities. I. Generalities, Econometrica, 49 (1981),

pp. 1–32.
[27] H. E. Scarf, Neighborhood systems for production sets with indivisibilities, Econometrica, 54

(1986), pp. 507–532.
[28] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New York, 1998.
[29] M. J. Todd, The Computation of Fixed Points and Applications, Lecture Notes in Econom.

and Math. Systems 124, Springer-Verlag, Berlin, 1976.
[30] A. H. Wright, The octahedral algorithm, a new simplicial fixed point algorithm, Math. Pro-

gram., 21 (1981), pp. 47–69.
[31] Y. Yamamoto, A new variable dimension algorithm for the fixed point problem, Math. Pro-

gram., 25 (1983), pp. 329–342.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 2, pp. 634–646

PEBBLING ALGORITHMS IN DIAMETER TWO GRAPHS∗

AIRAT BEKMETJEV† AND CHARLES A. CUSACK‡

Abstract. Consider a connected graph and a configuration of pebbles on its vertices. A pebbling
step consists of removing two pebbles from a vertex and placing one on an adjacent vertex. A
configuration is called solvable if it is possible to place a pebble on any given vertex through a sequence
of pebbling steps. A smallest number t such that any configuration with t pebbles is solvable is called
the pebbling number of the graph. In this paper, we consider algorithms determining the solvability of
a pebbling configuration on graphs of diameter two. We prove that if k is the vertex connectivity of a
diameter two graph G, then a configuration is solvable if there are at least c(k) = min{k + 4, 3k − 1}
vertices in G with two or more pebbles. We use this result to construct an algorithm that has
complexity O(c(k)! · n2c(k)−3m), where n is the number of vertices and m is the number of edges.
We also present an algorithm for diameter two graphs with pebbling number n+1, known as Class 1
graphs, which takes O(nm) time.

Key words. graph pebbling, diameter, connectivity, algorithms

AMS subject classifications. 05C85, 05C40, 68R05

DOI. 10.1137/080724277

1. Introduction. Let G be a connected graph with vertex set V and edge set E,
with n = |V | and m = |E|. Define a pebbling configuration as a function C : V → Z+,
where C(v) represents the number of pebbles placed on vertex v. For any vertex v
with C(v) � 2, a pebbling step consists of placing one pebble on an adjacent vertex
and discarding two pebbles from v. A configuration is called r-solvable if there is a
sequence of pebbling steps that places at least one pebble on vertex r. Any such
sequence is called an r-solution. A configuration is called solvable if it is r-solvable
for any r ∈ V. We call an r-solution minimal if it contains the smallest number of
pebbling steps.

This paper considers an algorithmic approach to the pebbling problem. Watson
[8] and Milans and Clark [6] showed that determining the solvability of a pebbling
configuration on a general graph is an NP-complete problem. We will consider graphs
of diameter two and show the existence of an algorithm whose running time depends
on the vertex connectivity and the size of the graph. In particular, we will show that
in a diameter two graph with connectivity k, any configuration that contains at least
c(k) = min{3k − 1, k + 4} vertices with two or more pebbles is solvable. Based on
this result, we will establish an algorithm that determines the solvability of a given
configuration in O(c(k)! · n2c(k)−3m) time, which is polynomial when k is constant.

We begin by presenting a backtracking algorithm (Algorithm 1.1, which uses
Algorithm 1.2) that determines the solvability of a pebbling configuration on any
graph. The method AdjacentPebble(u, v) performs a pebbling step from u to v,
assuming that u and v are adjacent, and that C(u) � 2. UndoPebble(u, v) reverses

∗Received by the editors May 13, 2008; accepted for publication (in revised form) November 3,
2008; published electronically February 6, 2009. This work was supported in part by a grant to Hope
College from the Howard Hughes Medical Institute through the Undergraduate Science Education
Program.

http://www.siam.org/journals/sidma/23-2/72427.html
†Department of Mathematics, Hope College, 27 Graves Place, Holland, MI 49422 (bekmetjev@

hope.edu).
‡Department of Computer Science, Hope College, 27 Graves Place, Holland, MI 49422 (cusack@

hope.edu).

634

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PEBBLING ALGORITHMS IN DIAMETER TWO GRAPHS 635

a pebbling move. The algorithm maintains a set L of vertices which can be pebbled,
returning true if |L| = n (since then all of the vertices have been covered), and
returning false if |L| < n at the end of the algorithm.

The algorithm is based on the following ideas. If C is a solvable configuration,
and r is a vertex with no pebbles, it follows from [6] that there is an acyclic r-solution,
and all moves from valid vertices (i.e., vertices that contain at least two pebbles) can
be made in an arbitrary order. Also, if M is an r-solution, then any pebbling sequence
N with M ⊆ N is also an r-solution.

Algorithm 1.1. IsSolvable(G, C).

global Set L
for u← 0 to n− 1

do

{
if C(u) � 1
then add u to L

⎫⎬
⎭ 1.1.1

if |L| = n
then return (true)
else return (IsSolvableRecursive(G, C))

Algorithm 1.2. IsSolvableRecursive(G, C).

comment: Determine first vertex with at least 2 pebbles

u← 0
while u < n and C(u) � 1
do u← u + 1

if u = n
then return (false)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1.2.1

comment: Now try all possible moves from u

for each v adjacent to u

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

add v to L
if |L| = n
then return (true)

C.AdjacentPebble(u, v)
solvable = IsSolvableRecursive(G, C′)
C.UndoPebble(u, v)
if solvable
then return (true)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

1.2.2

return (false)

Let T (t) be the worst-case time it takes to determine the solvability of a graph
with t pebbles using Algorithm 1.1, and let d be the maximum degree of G. Notice
that step 1.1.1 in Algorithm 1.1 and step 1.2.1 in Algorithm 1.2 each take O(n) time.
A graph with a single pebble will end at step 1.2.1, so T (1) = O(n). Step 1.2.2
executes at most d times, each time requiring O(1) time plus making a recursive call
on a graph with one fewer pebble. Thus,

T (t) = d(T (t− 1) + O(1)) + O(n) = d · T (t− 1) + O(n) = O(ndt−1).

Since t may depend on n, Algorithm 1.1 is not polynomial time in general. One source
of inefficiency in this algorithm is that there may be many ways of moving a pebble

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

636 AIRAT BEKMETJEV AND CHARLES A. CUSACK

from one vertex to another along paths of vertices which contain a single pebble, and
it tries all of them. It turns out that, for graphs of diameter two with connectivity k,
we can avoid such an exhaustive search.

2. Diameter and connectivity. Let G2 represent the set of all graphs of di-
ameter two, and let G2,k ⊂ G2 be the set of diameter two graphs which have vertex
connectivity k. It is clear that if Q is a vertex cut set in a diameter two graph, then
any vertex in V \Q must be adjacent to at least one vertex in Q. This observation
leads to the following.

Lemma 2.1. Let G ∈ G2 and let Q be a vertex cut set. Then a configuration C
is solvable if it is possible to place at least two pebbles on each vertex in Q.

Let Cm = {v ∈ V |C(v) � m}. Note that for a graph G ∈ G2, any configuration
is solvable if C4 is nonempty. We are going to establish two upper bounds on |C2| for
members of G2,k which are unsolvable.

Lemma 2.2. Let G ∈ G2,k. Then a configuration C is solvable if |C2| � 3k − 1.
Proof. Let Q be a minimal cut set of G that contains k vertices. For any sequence

of pebbling moves in an unsolvable configuration, none of the vertices in Q can ac-
cumulate four or more pebbles and, by Lemma 2.1, at least one vertex in Q can
accumulate at most one. Therefore, at most 3(k − 1) + 1 = 3k − 2 pebbles can be
placed on vertices in Q without the configuration being solvable. However, at least
3k − 1 pebbles can be placed on Q from C2, and therefore C is solvable.

The last result is tight for k = 1, 2. If G ∈ G2,1, then it has a vertex u that is
not adjacent to all other vertices, and placing two pebbles on u and zero on all other
vertices creates an unsolvable configuration. Further, Figure 2.1 represents a graph
in G2,2 and a configuration C with |C2| = 4, which is not solvable. As it is shown in
the following result, the upper bound on |C2| can be improved for k � 3.

Fig. 2.1. An unsolvable configuration for a graph from G2,2 with |C2| = 4. The squares
represent the cut set, the diamonds are the vertices containing two pebbles, and the triangle is the
root.

Theorem 2.3. Let G ∈ G2,k. Then a configuration C is solvable if |C2| � k +4.
Proof. Let C be an unsolvable configuration with |C2| = k + 4 + i, where i � 0.

Let Q be a vertex cut set of size k in G, Q2 = C2 ∩Q, and Q0,1 = Q \Q2. Also, let
X be the set of vertices in the component of V \Q such that |C2 ∩X | is the smallest,
and let Y = V \ (Q ∪X). Let X2 = C2 ∩X , Y2 = C2 ∩ Y , |Q2| = q, and |X2| = x.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PEBBLING ALGORITHMS IN DIAMETER TWO GRAPHS 637

Then |Y2| = k + 4 + i− q − x. By construction, |X2| � |Y2|, so x � k+4+i−q
2 . Finally,

let Q′ ⊆ Q0,1 be the set of vertices that are adjacent to vertices in both X2 and Y2.
By Lemma 2.1, at least one vertex in Q0,1 must be adjacent to at most one vertex in
X2 ∪ Y2 (or the configuration will be solvable), so |Q′| � k − q − 1.

There are three cases to consider depending on the value of x.
1. (x � 2). Let v2 ∈ X2 and u2 ∈ Y2. Any vertex u ∈ Q that is adjacent to both

v2 and u2 must be in Q0,1, since otherwise two more pebbles can be placed
on u from v2 and u2, giving it four. For the same reason, each u ∈ Q0,1

can be adjacent to at most three vertices in X2 ∪ Y2. This implies that each
u ∈ Q0,1 can be adjacent to at most two distinct pairs in X2 × Y2. Therefore
|X2||Y2| = x(k + 4 + i− q − x) � 2(k − q − 1) or, equivalently,

(2.1) (x− 2 + q − k − i)(x− 2) � 6 + 2i.

Since x � k+4+i−q
2 , and q � k,

(x− 2 + q − k − i)(x− 2) �
(

k + 4 + i− q

2
− 2 + q − k − i

)
(x− 2)

=
(

q − k − i

2

)
(x− 2)

� 0,

contradicting (2.1).
2. (x = 1). Let X = {u}. Then there is a path of length two from each of the

k − q + 3 + i vertices in Y2 to u with some vertex in Q′ as the intermediate
vertex. Thus, it is possible to move at least k − q + 3 + i pebbles onto the
vertices of Q′. Since |Q′| � k − q − 1, then k − q + 3 + i � |Q′| + 4, so
either one of these vertices accumulates four or more, or at least two of them
accumulates two or more. In either case, two pebbles can be moved onto u,
giving it four pebbles.

3. (x = 0). Let u ∈ X . Then there is a path of length two from each of the
k + 4 + i − q vertices in Y2 to u with some vertex in Q as the intermediate
vertex. Let S ⊆ Q be the set of vertices that are adjacent to both u and a
vertex in Y2, and let S2 = S∩Q2. Then |S| ≤ k−q+ |S2|, and it is possible to
accumulate at least |Y2|+2|S2| = k+4+i−q+2|S2| � |S|+4+|S2|+i � |S|+4
pebbles onto the vertices in S. There are four cases to consider, each of which
leads to a solvable configuration.
(a) Some vertex v ∈ S can accumulate four pebbles.
(b) There are four vertices in S which can accumulate two pebbles, in which

case four pebbles can be moved to u.
(c) Some vertex v1 ∈ S can accumulate three pebbles, and v2, v3 ∈ S can

accumulate at least two each. Then two pebbles can be moved from v2

and v3 onto u, and then one can be moved from u to v1, so that v1

accumulates four.
(d) v1, v2 ∈ S can each accumulate three pebbles, and every other vertex in

S can accumulate only one pebble. In this case, S = Q0,1, and every
vertex in S \ {v1, v2} can accumulate exactly one pebble. Then one
pebble can be moved from each of v1 and v2 onto u, and then one pebble
can be moved from u onto any vertex in S. Thus, any vertex in Q can

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

638 AIRAT BEKMETJEV AND CHARLES A. CUSACK

accumulate at least two pebbles and, by Lemma 2.1, the configuration
is solvable.

Corollary 2.4. Let G ∈ G2,k. Then a configuration C is solvable if |C2| �
min{3k − 1, k + 4}.

3. Islands and bridges. An i-island is a maximal connected subgraph of a
graph in which every vertex has at least one pebble and one vertex has at least i
pebbles. Given a set of integers b = {b1, b2, . . . , bl}, a b-island is an island that
contains distinct vertices v1, v2, . . . , vl such that C(vj) � bj, 1 � j � l. A bridge is
a vertex which has zero pebbles. Notice that if a bridge v is adjacent to a 2-island,
then one pebble can be added to v. If every vertex on an island contains precisely one
pebble, we call it a desert. For an island I, the surplus sI(C) of I is the difference
between the number of pebbles placed on I and the number of vertices in I, i.e.,

sI(C) =
∑
v∈I

C(v)− |I|.

We also define the surplus of the graph sG(C) as the sum of the surpluses of all islands.
That is,

sG(C) =
∑
v∈G

C(v)− |C1|.

Note that a pebbling move from an island to a bridge always reduces the surplus
of the graph. In a graph with surplus s, for any vertex r, any r-solution can move
pebbles onto at most s bridges, including r.

A vertex in G that is adjacent to at least one vertex of a subgraph H is called
adjacent to H . Note that a vertex containing two or more pebbles allows the movement
of at least one pebble to any other vertex on its island or any bridge adjacent to its
island.

Every vertex of a graph is either a bridge or a member of a single island, and a
pebbling configuration is solvable if and only if every bridge can be pebbled. In any
sequence of pebbling steps, we say a bridge is filled if two pebbles are moved onto
it, and emptied if two pebbles are removed from it. In a minimal r-solution for any
root r, every bridge that is used must be filled and emptied, except r.

Recall that for any two vertices u, v ∈ V , the distance d(u, v) between u and v is
the number of edges on the shortest path connecting them. For a subset S ⊆ V , let
dmin(v, S) be the smallest distance between vertex v and any vertex in S. Let

Dm(S) = {v ∈ V | dmin(v, S) = m}.
In particular, for an island I, D1(I) is the set of vertices adjacent to at least one
vertex in I.

Lemma 3.1. Let G ∈ G2 and let C be a configuration which contains an island I
with sI(C) � 3. Then C is solvable.

Proof. If sI(C) � 3, then I is a 4-island, a {2, 3}-island, or a {2, 2, 2}-island.
Clearly, a 4-island guarantees solvability. Given a {2, 3}-island, we can move a pebble
from the vertex with two pebbles to the vertex with three pebbles along a path in I,
creating a solvable configuration. If I is a {2, 2, 2}-island, let a, b, and c be vertices
in C2 ∩ I. Consider any path P between a and b. If c ∈ P , we can accumulate
four pebbles on c from a and b. Otherwise, choose a shortest path P ′ between c and
the vertices in P . Let u = P ∩P ′. If u = a (or u = b), we can accumulate four pebbles

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PEBBLING ALGORITHMS IN DIAMETER TWO GRAPHS 639

on u by moving one from b (or a), and the other from c. If u is different from a and b,
we can move three pebbles from a, b, and c onto u, giving it four pebbles.

In light of Lemma 3.1, we call an island I with sI(C) � 3 an empire. If a graph
does not contain an empire, then the only possible islands are deserts, 2-islands,
3-islands, and {2, 2}-islands. Note that the latter three cases of islands are not mu-
tually exclusive.

Islands and pebbles can be maintained as part of the graph data structure, and
each vertex can store a reference to the island to which it belongs. The following
basic procedures are needed in the construction of an algorithm to determine the
solvability of graphs in G2,k. An upper bound for their running time is provided.
Notice that whenever a pebbling move is performed, the islands must be updated,
since a single pebbling move might significantly change the configuration of islands.
Thus UpdateIslands is called at the end of any procedure that moves pebbles.

• UpdateIslands() updates the data structure representing the islands and
records whether or not an empire is present. This can be implemented using
a standard BFS/DFS algorithm in O(n + m) time (see [3], for instance).
• ContainsEmpire() returns true if and only if G contains an empire. This

takes O(1) time.
• IsAdjacentTwoIsland(u) returns true if and only if u is adjacent to a

2-island. This can be implemented in O(d) time, where d is the maximum de-
gree of G, by checking if any of the vertices adjacent to u belong to a 2-island.
• PebbleFromIsland(I, u) performs a sequence of pebbling steps required to

move a pebble from I to u using only vertices in I in intermediate steps,
assuming that u ∈ D1(S) and I is a 2-island. It calls UpdateIslands() and
returns the resulting graph configuration. It takes O(n + m) time.
• CanDoublePebble(G′, I, u, v) returns true if and only if pebbles can be

moved from I (assuming that I is a {2, 2}-island) to vertices u and v (where
u = v is possible) simultaneously, using only vertices from I in intermediate
moves. It assigns to G′ the resulting graph configuration and calls Update

Islands() on G′. It takes O(nm) time (see Corollary 3.3 below).
The next result by Shiloach [7] is used to determine the pebbling solvability in

the presence of a {2, 2}-island.
Theorem 3.2 (see [7]). For any distinct vertices s1, s2, t1, and t2, it can be de-

termined in O(nm) time whether or not G admits two vertex-disjoint paths connecting
s1 to t1 and s2 to t2.

Corollary 3.3. Let I be a {2, 2}-island that is not an empire.
1. For any two distinct vertices u, v ∈ D1(I), it can be determined in O(nm)

time whether or not both u and v can be pebbled from I simultaneously.
2. For any u ∈ D1(I), it can be determined in O(nm) time whether u can be

filled from I.
Proof. Let G′ be the subgraph of G induced by the vertex set I ∪ u ∪ v, and s1

and s2 be elements of C2 ∩ I. Then the first condition follows from Theorem 3.2 by
determining disjoint paths connecting either s1 to u and s2 to v, or s1 to v and s2 to
u in G′.

For the second condition, notice that if u is adjacent only to one vertex in I, then
it cannot be filled from I. Otherwise, vertex u can be filled from I if and only if there
are disjoint paths to u from {s1, s2} = C2 ∩ I. Let G′ be a graph induced by the
vertex set I∪u with an added vertex u′ that is adjacent to everything that u is. Then
there are disjoint paths from s1 to u and s2 to u in G if and only if there are disjoint
paths from s1 to u and s2 to u′ in G′. The result follows from Theorem 3.2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

640 AIRAT BEKMETJEV AND CHARLES A. CUSACK

4. Algorithms for G2,k. The goal of this section is to present a polynomial
time algorithm to determine the solvability of a pebbling configuration for graphs in
G2,k.

Let C be a configuration on G ∈ G2 and I an island in C. In any sequence of
pebbling moves, if one or more pebbles are moved from the vertices of I, and no
pebbles are moved onto I, then I is called an origin.

Theorem 4.1. Let C be a solvable configuration which does not contain an
empire and contains some vertex r with C(r) = 0 that is not adjacent to any 2-island.
Then, any minimal r-solution contains an origin.

Proof. Let b be the number of bridges in C used in a minimal r-solution, counting
repeated use of any bridge. Note that b � 1, since r is not adjacent to a 2-island.
Further, in a minimal r-solution, exactly 2b pebbles are moved to the bridges, and
exactly b pebbles are moved from the bridges to adjacent vertices. Let j be the number
of these b pebbles that is moved onto bridges or deserts in C. Clearly, j � 1, since one
pebble must be moved either to r or a desert adjacent to r. Thus, at most b−j pebbles
can be moved onto 2-islands, since 2-islands in C can be pebbled only from bridges
in C. If there is no origin, the number of 2-islands used in the pebbling is at most
b− j. Since there is no empire, the only possible islands in C are 2-islands (including
3-islands) and {2, 2}-islands, so at most two pebbles can be moved from each island.
Therefore, at most 2(b − j) pebbles can be moved from 2-islands to bridges. Hence,
at most 2(b− j) + j = 2b− j < 2b pebbles can be moved onto bridges, contradicting
the fact that 2b pebbles were moved onto bridges.

Theorem 4.1 allows us to construct a recursive algorithm for determining the
solvability of graphs in G2. We will show that this algorithm is polynomial for graphs
in G2,k when k is constant.

Consider a configuration C that satisfies the condition of Theorem 4.1. Let r be
a vertex of G and let I be an island which is an origin in a minimal r-solution. If I
is a 2-island or 3-island, then the vertices of I are used to pebble to some adjacent
bridge u, and then never used again. Therefore, instead of considering all possible
pebbling sequences from I to u, we can just choose one of them.

If the origin I is a {2, 2}-island, then things are slightly different. If only one
pebble is moved from I, the situation is the same as if I were a 2-island. If two
pebbles are moved from I, either onto the same adjacent bridge u, or two adjacent
bridges u and v, then the vertices of I are never used again, so, as before, we can
choose just one such sequence of moves.

Algorithm 4.1 uses these ideas to determine whether every root r in the graph can
be pebbled. It maintains a set L of vertices which can be pebbled, which is initialized
with every vertex in C1. It then calls Algorithm 4.2, which recursively tries pebbling
moves from every 2-island to every adjacent bridge until every vertex can be pebbled
or no moves are possible. At each recursive step, the algorithm checks whether r is
adjacent to a 2-island or C′ contains an empire, in which case the configuration is
solvable. Otherwise, we need to consider configuration C′ with fewer pebbles than C.

The following result proves that for every {2, 2}-island I, the recursive call will
be made at least once for each vertex in D1(I) at step 4.2.4 in Algorithm 4.2.

Lemma 4.2. Let C be a configuration on a graph G ∈ G2,k which contains
some vertex r that is not adjacent to any 2-island. If C contains a {2, 2}-island
I, then for any vertex u ∈ D1(I) there is a vertex v ∈ D1(I) such that algorithm
CanDoublePebble(G′, I, u, v) returns true.

Proof. Let u1 and u2 be vertices in I with two or more pebbles and u ∈ D1(I). Let

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PEBBLING ALGORITHMS IN DIAMETER TWO GRAPHS 641

P be a shortest path from {u1, u2} to u with vertex set V (P) ⊆ I ∪ u. Without loss
of generality, we can assume that u1 ∈ V (P). Since P is a shortest path, u2 /∈ V (P).
We can move a pebble from u1 to u using vertices of P and, since G ∈ G2, there
is a path u2vr with v ∈ D1(I). Therefore, we can move a pebble from u2 to v and
algorithm CanDoublePebble(G′, I, u, v) returns true.

Algorithm 4.1. IsSolvableDiamTwo(G).

global Set L
for u← 0 to n− 1

do

{
if u ∈ C1

then add u to L
G.UpdateIslands()

⎫⎪⎪⎬
⎪⎪⎭ 4.1.1

return (IsSolvableDiamTwoRec(G))

Algorithm 4.2. IsSolvableDiamTwoRec(G).

if G.ContainsEmpire()
then return (true)

}
4.2.1

for each 2-island I

do

{
for each u ∈ D1(I)
do

{
L.Add(u)

if |L| = n
then return (true)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

4.2.2

for each 2-island I

do

⎧⎪⎪⎨
⎪⎪⎩

for each u ∈ D1(I)

do

⎧⎨
⎩

G′ = G.PebbleFromIsland(I, u)
if IsSolvableDiamTwoRec(G′)
then return (true)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

4.2.3

for each {2, 2}-island I

do

⎧⎪⎪⎨
⎪⎪⎩

for each u ∈ D1(I) and v ∈ D1(I)

do

⎧⎨
⎩

if G.CanDoublePebble(G′, I, u, v)

then

{
if IsSolvableDiamTwoRec(G′)
then return (true)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

4.2.4

return (false)

The next result provides an upper bound on the time required to determine the
solvabilty of a configuration with |C2| = l.

Theorem 4.3. Let G be a diameter two graph with a configuration C of pebbles
such that |C2| = l. Then the solvability of G can be determined in O(l! · n2l−1m)
time.

Proof. We will use induction on |C2|.
Base case. Let C be a configuration with |C2| = 1. Then C is solvable if and

only if either every bridge is adjacent to the 2-island or some vertex v ∈ C2 contains
at least four pebbles. Thus, the solvability of C can be determined in O(n+m) time.

Induction step. Let us assume that the theorem is true for |C2| � l, and let C be
a configuration with |C2| = l + 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

642 AIRAT BEKMETJEV AND CHARLES A. CUSACK

If C contains an empire or every bridge is adjacent to a 2-island, then its solvability
can be verified in O(n+m) time. These conditions are checked in steps 4.2.1 and 4.2.2
of Algorithm 4.2.

Otherwise, C does not contain an empire and there is some bridge r that is not
adjacent to any 2-island. If there is a minimal r-solution Sr in C, then by Theorem 4.1,
there is an island I in G that is an origin for this solution. If I is a 2-island or 3-island,
then a subsequence of steps in Sr required to move a pebble to some bridge u ∈ D1(I)
results in a new configuration C′ with |C′

2| = |C2| − 1 = l. If I is a {2, 2}-island that
is used in Sr to pebble to bridges u and v (with u = v a possibility), the result of
the move(s) from I to u and v is a new configuration C′ with |C′

2| � |C2| − 1 = l. In
either case, the resulting graph is solvable by induction.

Since it is unknown which island I is an origin, or which vertex u (or u and v)
it pebbles to, we need to consider all of them. For every 2-island and 3-island, we
will pebble to each bridge u adjacent to I. There are at most l such islands, and
each is adjacent to at most n − l bridges. For each island I and each u ∈ D1(I),
we need to make the pebbling move and then make a recursive call. This requires
l(n− l)(O(n + m) + T (l− 1)) time, and corresponds to step 4.2.3.

Similarly, for every {2, 2}-island I and pair of bridges u and v (including u = v)
adjacent to I, we make the pebbling moves required to pebble to both u and v,
assuming it is possible, and then make a recursive call. There are at most l/2 such
islands, each adjacent to at most (n − l)2 pairs of bridges. For each of these, we
need to attempt to pebble to both u and v and make a recursive call. This requires
l
2 (n− l)2(O(nm) + T (l− 1)) time, and corresponds to step 4.2.4.

From this, we can see that the complexity of Algorithm 4.1 is

T (l) = O(n + m) + l(n− l)(O(n + m) + T (l− 1)) +
l

2
(n− l)2(O(nm) + T (l− 1))

� O(l · n3m) + l · n2T (l− 1),

where T (1) = O(n + m). It follows that T (l) = O(l! · n2l−1m).
Corollary 4.4. Let G ∈ G2,k, where k is a constant. Then the solvability of G

can be determined in O(c(k)! · n2c(k)−3m) time.
Proof. Algorithm 4.3 extends Algorithm 4.1 by first determining the connectivity

of the graph, and then applying Corollary 2.4. The vertex connectivity of a graph with
n vertices and m edges can be determined in O((n + min{k5/2, kn3/4})m) time (see
[4]). By Corollary 2.4, the configuration is solvable if |C2| � c(k) = min{3k−1, k+4}.
If |C2| < c(k), the solvability of the pebbling configuration can be determined by the
algorithm IsSolvableDiamTwo in O(c(k)! · n2(c(k)−1)−1m) time. The total time is
thus O(c(k)! · n2c(k)−3m + (n + min{k5/2, kn3/4})m) = O(c(k)! · n2c(k)−3m).

Algorithm 4.3. IsSolvableDiamTwoComplete(G).

k = G.ComputeConnectivity()
if |C2| � min{3k − 1, k + 4}
then return (true)
else return (IsSolvableDiamTwo(G))

5. Class 1 graphs. The smallest number t, such that any configuration of t
pebbles on G is solvable, is called the pebbling number of G. Clarke, Hochberg, and
Hurlbert [2] provided a complete classification of graphs in G2. The pebbling number

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PEBBLING ALGORITHMS IN DIAMETER TWO GRAPHS 643

of any graph in G2 is either n (these graphs are called Class 0) or n + 1 (called
Class 1). Figure 5.1 introduces various subsets of G2 graphs according to class and
connectivity. Algorithm 4.3 will determine the solvability of any diameter two graph
of Class 0 or 1 in O(c(k)! ·n2c(k)−3m) time. For graphs in D and F , this takes O(nm)
and O(n7m) time, respectively. In this section, we describe a more efficient technique
for determining the solvability of a configuration for graphs of Class 1 using their
structural properties. We will show that this approach requires O(n + m) time for
graphs in D and O(nm) time for graphs in F .

Class
k 0 1
1 ∅ D
2 E F
≥3 H ∅

Fig. 5.1. Categorization of diameter two graphs.

Lemma 5.1. Let G have a vertex of degree n− 1. Then the solvability of G can
be determined in O(n + m) time.

Proof. Let v be a vertex of degree n − 1. If C2 � 2, then it is possible to move
two pebbles to v, making the configuration solvable. If C2 � 1, then a configuration
is solvable if and only if it contains a vertex with four or more pebbles, every bridge
is adjacent to the single 2-island, or every vertex contains one pebble. All of these
can be checked in O(n + m) time.

Corollary 5.2. Let G ∈ D. Then the solvability of G can be determined in
O(n + m) time.

Proof. If G ∈ D, then G contains a vertex of degree n − 1. The result follows
immediately from Lemma 5.1.

Clarke, Hochberg, and Hurlbert [2] gave a description of the structure of graphs
in F , which was corrected by Blasiak and Schmitt [1]. Figure 5.2 shows the structure
of all graphs in F . At least two of the edges p′q′, p′r′, and q′r′ must be present. The
possibly empty subgraph Hp (similarly for q and r) has all of its vertices adjacent
to both q′ and r′, and each component of Hp has at least one vertex adjacent to p.
Finally, each vertex of the subgraph Hc (which also may be empty) must be adjacent
to at least two of p′, q′, and r′. Except for edges within the subgraphs Hp, Hq, Hr,
and Hc, no other edges are permitted. Let H ′

p = Hp ∪ p (similarly for q and r). Note
that H ′

p is connected if and only if each component of Hp has at least one vertex
adjacent to p. Thus we can replace the conditions above with H ′

p being nonempty,
connected, and each of its vertices being adjacent to both q′ and r′.

The existence of a O(n5) algorithm to determine whether a diameter two graph
is Class 1 is implied in [2, 5], but no details are given.

Lemma 5.3. Membership in F can be determined in O(n3m) time.
Proof. We first attempt to identify p′, q′, and r′ by considering all triples of

vertices in G. For each triple, we proceed with the following test, quitting if any step
fails:

1. Verify that at least two of the edges p′q′, p′r′, and q′r′ are present.
2. Identify the subgraph H ′

p by choosing it to be everything that is not in the
connected component of G \ {q′, r′} which contains p′. Verify that H ′

p is
nonempty, connected, and each of its vertices is connected to both q′ and r′.
Repeat the same process for q and r.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

644 AIRAT BEKMETJEV AND CHARLES A. CUSACK

p

cH

qHpH

rH

q’

r

p’

q
r’

Fig. 5.2. Family F .

3. Let H ′
c be the set of all vertices not already accounted for. Verify that each

one is connected to at least two of p′, q′, and r′.
Each step takes O(n + m) time. If the test passes for a given choice of p′, q′, and
r′, then G ∈ F . Otherwise, we try the next triple. If this test fails for all triples of
vertices in G, G �∈ F . Since there are

(
n
3

)
= O(n3) ways of selecting p′, q′, and r′, the

total running time is O(n3(n + m)) = O(n3m).
By [4], it can be determined in polynomial time whether G ∈ G2,1 or G ∈ G2,2

and, by Lemma 5.3, membership in F can be determined in polynomial time.
Corollary 5.4. Membership in D, E, F , and H can be determined in polynomial

time.
The next result describes properties of an unsolvable configuration in F .
Lemma 5.5. Let G ∈ F . If C is an unsolvable configuration on G, then all of

the following are true:
1. At most one of p′, q′, and r′ has two or more pebbles.
2. At most one vertex in each of H ′

r, H ′
p, H ′

q, and Hc has two or more pebbles.
3. At most two of H ′

r, H ′
p, H ′

q, and Hc have a vertex with two or more pebbles.
4. At most two vertices in G have two or more pebbles.

Proof. Note that any pair of vertices from p′, q′, and r′ forms a cut set, so if
statement 1 or 2 is not met, then it is possible to move two pebbles to two of these
three vertices. Therefore, by Lemma 2.1, the configuration is solvable. If all three
of Hp, Hq, and Hr have a vertex containing two pebbles, it is possible to place two
pebbles on any of p′, q′, and r′. If Hp, Hq, and Hc each have a vertex with two pebbles,
then two pebbles can be placed on r′, and on either q′ or p′ (or both). Applying
symmetry and Lemma 2.1, the third condition is true. If the first three conditions
are satisfied and G contains at least three vertices with two or more pebbles, then
one of them must be p′, q′, or r′, and the other two must be from H ′

r, H ′
p, H ′

q, and
H ′

c with at most one vertex from each. Without loss of generality, assume r′ contains
two pebbles. Due to symmetry there are four cases to consider:

1. If u ∈ Hp and v ∈ Hq each contain two pebbles, four pebbles can be moved
to r′.

2. If u ∈ Hp and v ∈ Hr each contain two pebbles, two pebbles can be moved
to q′.

3. If u ∈ Hp and v ∈ Hc each contain two pebbles, either four pebbles can be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PEBBLING ALGORITHMS IN DIAMETER TWO GRAPHS 645

moved to r′ or two pebbles can be moved to q′, depending on which edges
among p′q′, p′r′, and q′r′ are present.

4. If u ∈ Hr and v ∈ Hc each contain two pebbles, two pebbles can be moved
to q′ or p′, depending on which edges among p′q′, p′r′, and q′r′ are present.

In any of these cases the configuration is solvable.
Corollary 5.6. If G ∈ F has a configuration with |C2| � 3, then C is solvable.
We need to consider the cases |C2| = 1 and |C2| = 2. The result for |C2| = 1 is

obvious, so we state it without proof.
Lemma 5.7. Let G ∈ G2 and C2 = {u}. Then C is solvable if and only if every

bridge in C is adjacent to the 2-island or u ∈ C4.
We say that a bridge has potential s if s pebbles can be moved to it from adjacent

islands.
Lemma 5.8. Let G ∈ G2 and |C2| = 2. Then C is solvable if and only if every

bridge is
1. adjacent to a 2-island,
2. adjacent to a bridge with potential two, or
3. adjacent to a desert which is adjacent to a bridge with potential two.

Proof. The reverse implication is easy to check. For the forward implication,
assume C is solvable, and that some bridge r is not adjacent to a 2-island. We need
to show that r is adjacent to a bridge with potential two or a desert which is adjacent
to a bridge with potential two.

If C contains an empire I, then it is possible to move four pebbles onto some
vertex v ∈ I. Since G ∈ G2, there is some bridge u adjacent to r and v. Therefore, r
is adjacent to a bridge of potential two, and condition 2 is satisfied.

If C does not contain an empire, |C2| = 2 implies that the configuration consists
of a {2, 2}-island, or two 2-islands, either or both of which may be 3-islands. Notice
that moving a pebble from a 2-island to a bridge reduces the surplus of the graph
by 1, and moving from a 3-island to a bridge reduces the surplus of the graph by 2.
In any of these cases, moving pebbles to two different bridges reduces the surplus of
the graph to 0, and r cannot be pebbled. Thus, in any r-solution, two pebbles must
be moved from the vertices in C2 onto the same bridge u, reducing the surplus to 1.
This implies that r is the only other bridge that can be used in this solution, and u
has potential two. Since the configuration is solvable, then r must be adjacent to u
or some desert adjacent to u.

The above discussion leads to the following.
Theorem 5.9. Let G ∈ F . Then the solvability of G can be determined in O(nm)

time.
Proof. The conditions of Corollary 5.6 and Lemmas 5.7 and 5.8 can be checked

in O(nm) time.

REFERENCES

[1] A. Blasiak and J. Schmitt, Degree sum conditions in graph pebbling, Australa. J. Combin., 42
(2008), pp. 83–90.

[2] T. A. Clarke, R. A. Hochberg, and G. H. Hurlbert, Pebbling in diameter two graphs and
products of paths, J. Graph Theory, 25 (1997), pp. 119–128.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
2nd ed., MIT Press, Cambridge, MA, 2001.

[4] H. N. Gabow, Using expander graphs to find vertex connectivity, J. ACM, 53 (2006), pp. 800–
844.

[5] G. Hurlbert, On Graph Pebbling, Threshold Functions, and Supernormal Posets, manuscript,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

646 AIRAT BEKMETJEV AND CHARLES A. CUSACK

2000.
[6] K. Milans and B. Clark, The complexity of graph pebbling, SIAM J. Discrete Math., 20 (2006),

pp. 769–798.
[7] Y. Shiloach, A polynomial solution to the undirected two paths problem, J. ACM, 27 (1980),

pp. 445–456.
[8] N. G. Watson, The Complexity of Pebbling and Cover Pebbling, preprint, http://www.arxiv.

org/abs/math.CO/0503511, 2005.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 2, pp. 647–660

COMPUTING THE DEGREES OF ALL COFACTORS IN
MIXED POLYNOMIAL MATRICES∗

SATORU IWATA† AND MIZUYO TAKAMATSU‡

Abstract. A mixed polynomial matrix is a polynomial matrix which has two kinds of nonzero
coefficients: fixed constants that account for conservation laws and independent parameters that
represent physical characteristics. This paper presents an algorithm for computing the degrees of
all cofactors simultaneously in a regular mixed polynomial matrix. The algorithm is based on the
valuated matroid intersection and all pair shortest paths. The technique is also used for improving
the running time of the algorithm for minimizing the index of the differential-algebraic equation in
the hybrid analysis for circuit simulation.

Key words. combinatorial matrix theory, degree of cofactor, mixed matrix, polynomial matrix,
valuated matroid

AMS subject classifications. 05C50, 15A15, 68Q25

DOI. 10.1137/070706021

1. Introduction. This paper deals with the computation of the degrees of all
cofactors in a polynomial matrix. A polynomial matrix A(s) is said to be regu-
lar if A(s) is square and detA(s) is a nonvanishing polynomial. By Cramer’s rule,
the degrees of cofactors in a regular polynomial matrix determine the degrees of en-
tries of the inverse matrix, which provide useful information for numerical analysis of
differential-algebraic equations [2, 3, 14].

A differential-algebraic equation is known to be solvable if it is represented by a
regular polynomial matrix whose entries are of degree at most one [1]. For this class
of polynomial matrices, Bujakiewicz and van den Bosch [2, 3] proposed an efficient
algorithm for finding the degrees of all cofactors under the assumption that coefficients
of nonzero entries are independent parameters.

Such a genericity assumption is supported by an argument that the values of
physical parameters like resistances in electric circuits are not precise in practice
because of noises. However, there do exist exact numbers such as ±1 that appear
in the coefficients of Kirchhoff’s conservation laws. This observation led Murota and
Iri [15] to introduce the notion of a mixed matrix, which is a constant matrix that
consists of two kinds of numbers as follows.

Accurate numbers (fixed constants): Numbers that account for conservation laws
are precise in values. These numbers should be treated numerically.

Inaccurate numbers (independent parameters): Numbers that represent physical
characteristics are not precise in values. These numbers should be treated combi-
natorially as nonzero parameters without reference to their nominal values. Since
each such nonzero entry often comes from a single physical device, the parameters are
assumed to be independent.

∗Received by the editors October 22, 2007; accepted for publication (in revised form) May 26,
2008; published electronically March 4, 2009. This work is supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

http://www.siam.org/journals/sidma/23-2/70602.html
†Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan (iwata@

kurims.kyoto-u.ac.jp).
‡Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8656,

Japan (mizuyo takamatsu@mist.i.u-tokyo.ac.jp).

647

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

648 SATORU IWATA AND MIZUYO TAKAMATSU

In order to deal with dynamical systems, it is natural to consider the polynomial
matrix version, which is called a mixed polynomial matrix [14].

For a mixed polynomial matrix A(s), Murota [13] devised an algorithm for com-
puting the maximum degree of minors of order r:

δr(A) = max
I,J
{deg detA[I, J] | |I| = |J | = r},

where A[I, J] denotes the submatrix of A(s) indexed by row set I and column set J , as
an application of the valuated matroid intersection [11, 12]. This algorithm is also used
for computing δr(Ā) for a polynomial matrix Ā(s) that is obtained by substituting
specific numerical values to independent parameters of a mixed polynomial matrix [8].

For a regular mixed polynomial matrix, Murota’s algorithm provides the degree of
the determinant and the maximum degree of cofactors. A straightforward approach
to the degrees of all cofactors in an n × n mixed polynomial matrix requires n2

applications of this algorithm, which results in high order time complexity.
In this paper, we present an efficient algorithm for finding the degrees of all

cofactors in a regular mixed polynomial matrix simultaneously, which is an extension
of the result of Bujakiewicz and van den Bosch [2, 3]. The proposed algorithm first
applies Murota’s algorithm for the degree of the determinant. Then, from the obtained
solution, it finds the optimal value of the associated valuated matroid intersection,
which coincides with the degree of each cofactor. This can be done at once by using
all pair shortest paths algorithm.

The time complexity is the same as that of the algorithm for the degree of the
determinant described in [13], because it is dominated by the computation in the first
step. The technique is also used to improve the complexity of the algorithm in [9]
for finding an optimal hybrid analysis in which the index of the differential-algebraic
equation to be solved attains the minimum.

The organization of this paper is as follows. Section 2 provides preliminaries
on mixed polynomial matrices and valuated matroids. In section 3, we describe the
algorithm of Murota for computing the degree of the determinant of a regular mixed
polynomial matrix. Section 4 gives a characterization of the degree of a cofactor. We
present an algorithm for computing the degrees of all cofactors simultaneously in a
regular mixed polynomial matrix and analyze its running time in section 5. Finally,
in section 6, we discuss a similar problem which appears in the index minimization of
the differential-algebraic equation in the hybrid analysis.

2. Preliminaries. This section is devoted to preliminaries on mixed polynomial
matrices and valuated matroids. Valuated matroids are combinatorial abstractions of
polynomial matrices.

For a polynomial a(s), we denote the degree of a(s) by deg a, where deg 0 = −∞
by convention. For a polynomial matrix A(s), we denote by A[I, J] the submatrix of
A(s) with row set I ⊆ R and column set J ⊆ C, where R and C are the row set and
the column set of A(s), respectively. The (i, j) entry of A(s) is denoted by Aij(s).

A generic matrix is a matrix in which each nonzero entry is an independent
parameter. A matrix A(s) is called a mixed polynomial matrix if A(s) is given by
A(s) = Q(s) + T (s) with a pair of polynomial matrices Q(s) =

∑N
h=0 s

hQh and
T (s) =

∑N
h=0 s

hTh that satisfy the following two conditions.
(MP-Q) The coefficients Qh (h = 0, . . . , N) in Q(s) are constant matrices.
(MP-T) The coefficients Th (h = 0, . . . , N) in T (s) are generic matrices.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DEGREES OF ALL COFACTORS IN MIXED POLY MATRICES 649

A layered mixed polynomial matrix (or an LM-polynomial matrix for short) is
defined to be a mixed polynomial matrix such that Q(s) and T (s) satisfying (MP-Q)
and (MP-T) have disjoint nonzero rows. An LM-polynomial matrix A(s) is expressed
by A(s) =

(Q(s)
T (s)

)
.

Dress and Wenzel [4] defined a valuated matroid to be a triple M = (V,B, ω) of a
finite set V , a nonempty family B ⊆ 2V , and a function ω : B → R that satisfy the
following axiom (VM).
(VM) For any B,B′ ∈ B and u ∈ B \B′, there exists v ∈ B′ \B such that B \ {u} ∪

{v} ∈ B, B′ ∪ {u} \ {v} ∈ B, and ω(B) + ω(B′) ≤ ω(B \ {u} ∪ {v}) + ω(B′ ∪
{u} \ {v}).

The function ω is called a valuation. For B ∈ B, u ∈ B, and v ∈ V \B, we define

ω(B, u, v) = ω(B \ {u} ∪ {v})− ω(B).

By convention, we put ω(B, u, v) = −∞ if B \ {u} ∪ {v} /∈ B.
The local optimality for the valuation implies the global optimality as follows.
Theorem 2.1 (see [14, Theorem 5.2.7]). A base B ∈ B satisfies ω(B) ≥ ω(B′)

for any B′ ∈ B if and only if ω(B, u, v) ≤ 0 holds for any u ∈ B and v ∈ V \B.
For B ∈ B and B′ ⊆ V , we consider a bipartite graph, called the exchangeability

graph, G(B,B′) = (B \B′, B′ \B;H) with

H = {(u, v) | u ∈ B \B′, v ∈ B′ \B,B \ {u} ∪ {v} ∈ B}.

We denote by ω̂(B,B′) the maximum weight of a perfect matching in G(B,B′), with
respect to the edge weight ω(B, u, v), i.e.,

ω̂(B,B′) = max

⎧⎨
⎩

∑
(u,v)∈M

ω(B, u, v) |M is a perfect matching in G(B,B′)

⎫⎬
⎭ .

A necessary and sufficient condition for the unique existence of the maximum-weight
perfect matching in G(B,B′) is given as follows.

Lemma 2.2 (see [14, Lemma 5.2.32]). Let B ∈ B and B′ ⊆ V with |B′ \ B| =
|B \B′| = h. There exists exactly one maximum-weight perfect matching in G(B,B′)
if and only if there exist q : (B \ B′) ∪ (B′ \ B) → R and indexings of elements of
B \B′ and B′ \B, say B \B′ = {u1, . . . , uh} and B′ \B = {v1, . . . , vh}, such that

(2.1) ω(B, uj , vi) + q(uj)− q(vi)

⎧⎪⎪⎨
⎪⎪⎩

= 0 (1 ≤ i = j ≤ h),

≤ 0 (1 ≤ i < j ≤ h),

< 0 (1 ≤ j < i ≤ h),

where the latter condition implies that ω̂(B,B′) =
∑h

i=1 q(vi)−
∑h

i=1 q(ui).
The following lemma is called the “unique-max lemma.”
Lemma 2.3 (see [14, Lemma 5.2.35]). Let B ∈ B and B′ ⊆ V with |B′| = |B|. If

there exists exactly one maximum-weight perfect matching in G(B,B′), then B′ ∈ B
and ω(B′) = ω(B) + ω̂(B,B′).

Murota [11] introduced the valuated independent assignment problem as a gen-
eralization of the independent assignment problem [7]. The valuated independent
assignment problem VIAP(r) parametrized by an integer r is as follows [14, p. 307].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

650 SATORU IWATA AND MIZUYO TAKAMATSU

[VIAP(r)] Given a bipartite graph G = (V +, V −;E) with vertex sets V +, V − and
edge set E, a pair of valuated matroids M+ = (V +,B+, ω+) and M− =
(V −,B−, ω−), and a weight function w : E → R, find a triple (M,B+, B−)
that maximizes

Ω(M,B+, B−) := w(M) + ω+(B+) + ω−(B−),

where w(M) =
∑{w(a) | a ∈M}, subject to the constraint that M ⊆ E is a

matching of size r and

(2.2) ∂+M ⊆ B+ ∈ B+, ∂−M ⊆ B− ∈ B−,

where ∂+M and ∂−M denote the set of vertices in V + and V − incident to
M , respectively.

An augmenting path algorithm for solving VIAP(r) has been developed in [12],
where the unique-max lemma plays a key role.

3. Degree of determinant. Let Ã(s) = Q̃(s)+ T̃ (s) be an n×n regular mixed
polynomial matrix with row set R̃ and column set C̃. In this section, we expound
that the computation of

δr(Ã) = max
I,J
{deg det Ã[I, J] | |I| = |J | = r},

the highest degree of a minor of order r, is reduced to solving VIAP(r) [13, 14].
Let us define

(3.1) gi = max
j∈C̃

deg Q̃ij(s) (i ∈ R̃).

We now construct an associated 2n× 2n LM-polynomial matrix:

(3.2) A(s) =

(
Q(s)
T (s)

)
=

(R̃ C̃

RQ DQ(s) Q̃(s)

RT −DT (s) T̃ (s)

)

with column set C = R̃∪ C̃ and row set R = RQ ∪RT , where RQ and RT are disjoint
copies of R̃. For each i ∈ R̃, we denote its copies by iQ ∈ RQ and iT ∈ RT . Both
DQ(s) and DT (s) are diagonal matrices. For each i ∈ R̃, the (iQ, i) entry of DQ(s) is
sgi , and the (iT , i) entry of DT (s) is tisgi , where ti is a new independent parameter.

For an LM-polynomial matrix A(s) =
(Q(s)

T (s)

)
in general, let RQ and RT denote the

row sets of Q(s) and T (s). We also denote |RQ| and |RT | by mQ and mT , respectively.
The degree of detA is expressed as follows.

Theorem 3.1 (see [14, Theorem 6.2.5]). For a regular LM-polynomial matrix
A(s) =

(Q(s)
T (s)

)
, we have

deg detA = max
J⊆C,|J|=mQ

{deg detQ[RQ, J] + deg detT [RT , C \ J]}.

The degrees of detQ[RQ, J] and detT [RT , C \J] correspond to the valuation and
the maximum weight of bipartite matchings, respectively. For r = 0, 1, . . . ,mT , we
define

δLM
r (A) = max

I,J
{deg detA[RQ ∪ I, J] | I ⊆ RT , J ⊆ C, |I| = r, |J | = mQ + r},

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DEGREES OF ALL COFACTORS IN MIXED POLY MATRICES 651

which designates the highest degree of a minor of order mQ+r with row set containing
RQ. Note that we have δLM

mT
(A) = deg detA for a square LM-polynomial matrix A(s).

For an associated LM-polynomial matrix A(s) with an n × n mixed polynomial
matrix Ã(s), we have mQ = mT = n. The relation between δr(Ã) and δLM

r (A) is as
follows.

Lemma 3.2 (see [14, Lemma 6.2.6]). Let Ã(s) = Q̃(s) + T̃ (s) be an n× n mixed
polynomial matrix with row set R̃. We denote by A(s) the associated LM-polynomial
matrix defined by (3.1) and (3.2). For an integer r with 0 ≤ r ≤ n, we have

(3.3) δr(Ã) = δLM
r (A) −

∑
i∈R̃

gi.

Remark 3.3. In fact, (3.3) holds for an associated LM-polynomial matrix defined
by (3.2) if each gi satisfies gi ≥ maxj∈C̃ deg Q̃ij(s).

Example 3.4. Consider a mixed polynomial matrix

Ã =

⎛
⎜⎝

1 0 s

0 1 0
0 t1s 1 + t2s

⎞
⎟⎠ =

⎛
⎜⎝

1 0 s

0 1 0
0 0 1

⎞
⎟⎠+

⎛
⎜⎝

0 0 0
0 0 0
0 t1s t2s

⎞
⎟⎠

with row set R̃ = {x1, x2, x3} and column set C̃ = {y1, y2, y3}. The associated LM-
polynomial matrix defined by (3.1) and (3.2) is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 y1 y2 y3

x1Q s 0 0 1 0 s

x2Q 0 1 0 0 1 0
x3Q 0 0 1 0 0 1
x1T −t3s 0 0 0 0 0
x2T 0 −t4 0 0 0 0
x3T 0 0 −t5 0 t1s t2s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then we have δ3(Ã) = 1 and δLM
3 (A) = 2, which satisfy (3.3).

By Lemma 3.2, δr(Ã) is determined from δLM
r (A). We now describe how to reduce

the computation of δLM
r (A) to VIAP(r).

Let MQ = (C,BQ, ωQ) be a valuated matroid defined by

BQ = {B ⊆ C | detQ[RQ, B] 	= 0}, ωQ(B) = deg detQ[RQ, B] (B ∈ BQ).

Consider a bipartite graph G = (V +, V −;E) with V + = RT , V − = C, and E =
{(i, j) | i ∈ RT , j ∈ C, Tij(s) 	= 0}. Let VIAP(A; r) denote VIAP(r) defined on G
as follows. The valuated matroids M+ = (V +,B+, ω+) and M− = (V −,B−, ω−)
attached to V + and V − are defined by

B+ = {RT }, ω+(RT) = 0

and

B− = {B ⊆ C | C \B ∈ BQ}, ω−(B) = ωQ(C \B) (B ∈ B−).

The weight w(a) of an arc a = (i, j) ∈ E is given by w(a) = deg Tij(s). Figure 3.1
illustrates G of Example 3.4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

652 SATORU IWATA AND MIZUYO TAKAMATSU

RT C

E

x1

x2

x3

y1

y2

y3

x1T

x2T

x3T

0

w = 1

0

1

1

Fig. 3.1. A bipartite graph G of Example 3.4.

A pair (M,B) of a matching M ⊆ E and a base B ∈ B− is called feasible for
VIAP(A; r) if |M | = r and ∂−M ⊆ B. The value of a feasible pair (M,B) is given by

Ωr(M,B) = w(M) + ω+(RT) + ω−(B)

= w(M) + ωQ(C \B)

= deg detQ[RQ, C \B] +
∑

(i,j)∈M

deg Tij(s).

A feasible pair that maximizes Ωr(M,B) is called optimal for VIAP(A; r). The fol-
lowing theorem shows that the optimal value of VIAP(A; r) coincides with δLM

r (A).
Theorem 3.5 (see [14, Theorem 6.2.8]). For a square LM-polynomial matrix

A(s) and an integer r with 0 ≤ r ≤ mT , we have

δLM
r (A) = max{Ωr(M,B) | (M,B) is feasible for VIAP(A; r)},

where the right-hand side is defined to be −∞ if there exists no feasible pair (M,B).
We now describe the algorithm for computing δLM

r (A), proposed by Murota [13,
14]. The algorithm solves VIAP(A; r) successively for r = 0, 1, . . . ,mT . It maintains
a feasible pair (M,B) that maximizes Ωr(M,B). Note that this algorithm works even
if A(s) is not regular.

Let us denote the reorientation of a ∈ E by a◦. With reference to G and (M,B),
we construct an auxiliary graph G∗ = (RT ∪C,E∗) with arc set E∗ = E ∪E− ∪M◦,
where

E− = {(v, u) | u ∈ B, v ∈ C \B,B \ {u} ∪ {v} ∈ B−}, M◦ = {a◦ | a ∈M}.
Note that the arcs in E− have both ends in C and that the arcs in M◦ are directed
from C to RT . The arc length γ : E∗ → Z is defined by

(3.4) γ(a) =

⎧⎪⎪⎨
⎪⎪⎩
−w(a) (a ∈ E),

w(a◦) (a ∈M◦),

−ω−(B, u, v) (a = (v, u) ∈ E−),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DEGREES OF ALL COFACTORS IN MIXED POLY MATRICES 653

where ω−(B, u, v) = ω−(B \ {u} ∪ {v}) − ω−(B). We put S+ = RT \ ∂+M and
S− = B \ ∂−M . Let ∂+a and ∂−a denote the initial and terminal vertices of a,
respectively. Then the following fact holds.

Theorem 3.6 (see [14, Theorem 5.2.62]). Let (M,B) be an optimal pair for
VIAP(A; r) and P be a shortest path from S+ to S− with respect to the arc length γ
in G∗ having the smallest number of arcs. Then (M̂, B̂) defined by

M̂ = M \ {a ∈M | a◦ ∈ P ∩M◦} ∪ (P ∩ E),(3.5)

B̂ = B \ {∂−a | a ∈ P ∩ E−} ∪ {∂+a | a ∈ P ∩ E−}(3.6)

is optimal for VIAP(A; r + 1).
Theorem 3.6 leads to the following algorithm for computing the degree of the

determinant of a regular LM-polynomial matrix.
Algorithm for degree of determinant.

Step 1: Find a maximum-weight base B ∈ B− with respect to ω−. Put M := ∅.
Step 2: Repeat (2-1)–(2-3) until |M | = mT .

(2-1) Construct an auxiliary graph G∗ with respect to (M,B).
(2-2) Find a shortest path P having the smallest number of arcs from S+ to

S− with respect to the arc length γ in G∗.
(2-3) Update (M,B) according to (3.5) and (3.6).

At each stage of this algorithm, it holds that δLM
r (A) = Ωr(M,B) for r = |M |.

At the end of the algorithm, we obtain an optimal pair (M,B) for VIAP(A;n).

4. Degree of cofactor. Let Ã(s) be an n×n regular mixed polynomial matrix
and A(s) be the associated LM-polynomial matrix defined by (3.1) and (3.2). In this
section, we discuss the degree of a cofactor in Ã(s). We first show that the degree of
a cofactor in Ã(s) is determined by that of the corresponding cofactor in A(s).

Lemma 4.1. Let Ã(s) be an n × n mixed polynomial matrix and A(s) be the
associated LM-polynomial matrix defined by (3.1) and (3.2). For k ∈ R̃ and l ∈ C̃,
we have

(4.1) deg det Ã[R̃ \ {k}, C̃ \ {l}] = deg detA[R \ {kT }, C \ {l}]−
∑
i∈R̃

gi.

Proof. Applying Remark 3.3 to a mixed polynomial matrix Ã[R̃ \ {k}, C̃ \ {l}]
and an LM-polynomial matrix A[R \ {kQ, kT }, C \ {k, l}], we have

deg det Ã[R̃ \ {k}, C̃ \ {l}] = deg detA[R \ {kQ, kT }, C \ {k, l}]−
∑

i∈R̃\{k}
gi.

Since the degree of the (kQ, k) entry of A is gk and A[R\{kQ, kT }, {k}] = O, it follows
that

deg detA[R \ {kQ, kT }, C \ {k, l}] = deg detA[R \ {kT }, C \ {l}]− gk.

Thus we obtain (4.1).
By Lemma 4.1, it suffices to compute deg detA[R \ {kT }, C \ {l}] for k ∈ R̃ and

l ∈ C̃. We now define the following problem.
[DOC(A; kT , l)] Find a pair (M,B) of a matching M ⊆ E and a base B ∈ B−

maximizing w(M) + ω−(B) subject to

(4.2) ∂+M = RT \ {kT }, ∂−M = B \ {l}, l ∈ B.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

654 SATORU IWATA AND MIZUYO TAKAMATSU

A pair (M,B) that satisfies (4.2) is feasible for DOC(A; kT , l). Similarly to The-
orem 3.5, the degree of detA[R \ {kT }, C \ {l}] coincides with the optimal value of
DOC(A; kT , l). The following proposition gives a sufficient condition for the optimal-
ity of DOC(A; kT , l).

Proposition 4.2. A feasible pair (M,B) for DOC(A; kT , l) is optimal if there
exists a pair of vectors p : RT → R and q : C → R with q(l) = 0 such that

(i) w(a) − p(∂+a) + q(∂−a) ≤ 0 holds for a ∈ E,
(ii) w(a) − p(∂+a) + q(∂−a) = 0 holds for a ∈M ,
(iii) B maximizes ω−[−q], where ω−[−q](B) ≡ ω−(B)−∑u∈B q(u).
Proof. For any feasible pair (M ′, B′) for DOC(A; kT , l), we show that

(4.3) w(M ′) + ω−(B′) ≤ w(M) + ω−(B).

By (i) and the feasibility of (M ′, B′), we have

w(M ′)+ω−(B′) ≤ p(∂+M ′)−q(∂−M ′)+ω−(B′) = p(RT \{kT})−q(B′\{l})+ω−(B′),

where p(I) =
∑

i∈I p(i) and q(J) =
∑

j∈J q(j). It follows from q(l) = 0 that

−q(B′ \ {l}) + ω−(B′) = −q(B′) + ω−(B′) = ω−[−q](B′).

By (iii), we have ω−[−q](B′) ≤ ω−[−q](B). Thus we obtain

w(M ′) + ω−(B′) ≤ p(RT \ {kT }) + ω−[−q](B) = p(RT \ {kT }) + ω−(B) − q(B),

which implies (4.3) by (ii) and q(l) = 0.
With reference to an optimal pair (M,B) for VIAP(A;n), we construct the aux-

iliary graph G∗. For each pair of vertices u and v, let d(u, v) denote the shortest path
distance from u to v with respect to the arc length γ in G∗. If there exists no path
from u to v, then we put d(u, v) =∞. The degree of a cofactor is now characterized
as follows.

Theorem 4.3. Let (M,B) be an optimal pair for VIAP(A;n). Then we have

deg detA[R \ {kT }, C \ {l}] = Ωn(M,B)− d(l, kT)

for any kT ∈ RT and l ∈ C.
Let (M,B) be an optimal pair for VIAP(A;n) and P be a shortest path from l

to kT with respect to the arc length γ in G∗ having the smallest number of arcs. We
update (M,B) to (M̂, B̂) according to (3.5) and (3.6). Let {(vi, ui) | i = 1, . . . , h} =
P ∩ E−, where h = |P ∩ E−|, and the indices are chosen so that vh, uh, . . . , v1, u1

appear on P in this order. In order to prove Theorem 4.3, we make use of the following
lemma.

Lemma 4.4. Let G(B, B̂) be the exchangeability graph with respect to the val-
uated matroid (V −,B−, ω−). Then there exists exactly one maximum-weight perfect
matching in G(B, B̂). Moreover, we have

(4.4) ω̂−(B, B̂) =
h∑

i=1

d(l, vi)−
h∑

i=1

d(l, ui).

Proof. Consider q(v) = d(l, v) for each v ∈ V −. Then we have q(vi) − ω−(B, uj ,
vi) ≥ q(uj) for any (vi, uj) ∈ E−. The equality holds if i = j and the strict inequality

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DEGREES OF ALL COFACTORS IN MIXED POLY MATRICES 655

does if j < i. Hence, by Lemma 2.2, there exists exactly one maximum-weight perfect
matching in G(B, B̂), and (4.4) holds.

We are now ready to complete the proof of Theorem 4.3. Note that (M̂, B̂) is
feasible for DOC(A; kT , l). We claim that (M̂, B̂) is optimal for DOC(A; kT , l).

Consider p(u) = d(l, u) for u ∈ V + and q(v) = d(l, v) for v ∈ V −. We show that
p, q, and (M̂, B̂) satisfy the following:

(i) w(a) − p(∂+a) + q(∂−a) ≤ 0 holds for a ∈ E,
(ii) w(a) − p(∂+a) + q(∂−a) = 0 holds for a ∈ M̂ ,
(iii) B̂ maximizes ω−[−q],

which is the condition in Proposition 4.2 applied to (M̂, B̂). The definition of p and
q implies that (i) and (ii) hold. By Lemmas 2.3 and 4.4, we have

(4.5) ω−(B̂) = ω−(B) + ω̂−(B, B̂).

It follows from (4.4) that

ω̂−(B, B̂) =
∑

v∈B̂\B

q(v)−
∑

u∈B\B̂

q(u) = q(B̂ \B)− q(B \ B̂) = q(B̂)− q(B).

Thus we obtain ω−(B̂)− q(B̂) = ω−(B)− q(B). This can be written as ω−[−q](B̂) =
ω−[−q](B). By the definition of q, for any u ∈ B and v ∈ V − \ B, we have q(v) −
ω−(B, u, v) ≥ q(u), which implies that ω−(B) ≥ ω−(B \ {u} ∪ {v}) + q(u) − q(v).
Hence

ω−[−q](B \ {u} ∪ {v}) = ω−(B \ {u} ∪ {v})− q(B) + q(u)− q(v)

≤ ω−(B)− q(B) = ω−[−q](B)

holds. Since the triple (V −,B−, ω−[−q]) is a valuated matroid, it follows from The-
orem 2.1 that ω−[−q](B′) ≤ ω−[−q](B) = ω−[−q](B̂) holds for any B′ ∈ B−, which
implies (iii). Therefore, by Proposition 4.2, (M̂, B̂) is optimal for DOC(A; kT , l).

Since the degree of detA[R \ {kT }, C \ {l}] coincides with the optimal value of
DOC(A; kT , l), we have deg detA[R \ {kT }, C \ {l}] = w(M̂)+ω−(B̂). It follows from
(3.4) and (3.5) that

w(M̂) = w(M) −
∑

a◦∈P∩M◦
w(a) +

∑
a∈P∩E

w(a) = w(M)−
∑

a∈P∩M◦
γ(a)−

∑
a∈P∩E

γ(a).

By (4.4) and (4.5), we obtain

ω−(B̂) = ω−(B) + ω̂−(B, B̂) = ω−(B)−
∑

a∈P∩E−
γ(a).

Therefore, we have w(M̂) + ω−(B̂) = w(M) + ω−(B) −∑a∈P γ(a) = Ωn(M,B) −
d(l, kT). Thus deg detA[R\{kT }, C\{l}] = Ωn(M,B)−d(l, kT) holds, which completes
the proof of Theorem 4.3.

Example 4.5. For the LM-polynomial matrix of Example 3.4, Figure 4.1 exhibits
an optimal pair (M,B) for VIAP(A; 3) and an auxiliary graph G∗ with

M = {(x1T , x1), (x2T , x2), (x3T , y3)} and B = {x1, x2, y3}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

656 SATORU IWATA AND MIZUYO TAKAMATSU

x1

x2

x3

y1

y2

y3

x1T

x2T

x3T

Fig. 4.1. An auxiliary graph G∗ of Example 3.4, where � and • denote arcs in M and vertices
in B, respectively.

Then we have Ω3(M,B) = 2. Consider the degree of detA[R \ {x2T }, C \ {y1}]. A
shortest path P from y1 to x2T in G∗ is

P = {(y1, y3), (y3, x3T), (x3T , y2), (y2, x2), (x2, x2T)}
and its shortest path distance is d(y1, x2T) = γ(P) = −1. It follows from Theorem 4.3
that

deg detA[R \ {x2T }, C \ {y1}] = Ω3(M,B)− d(y1, x2T) = 3.

5. Degrees of all cofactors. In this section, we present an algorithm for com-
puting the degrees of all cofactors simultaneously and analyze its running time.

Theorem 4.3 suggests the following algorithm for computing the degrees of all
cofactors in an n × n regular mixed polynomial matrix Ã(s) = Q̃(s) + T̃ (s). The
output of this algorithm is a matrix Ψ whose (k, l) entry, denoted by ψkl, is the
degree of the cofactor det Ã[R̃ \ {k}, C̃ \ {l}].

Algorithm for degrees of all cofactors.
Step 1: Construct the 2n × 2n associated LM-polynomial matrix A(s) defined by

(3.1) and (3.2).
Step 2: Find an optimal pair (M,B) for VIAP(A;n) by the algorithm for degree of

determinant. Construct an auxiliary graph G∗ with respect to (M,B).
Step 3: Compute the shortest path distances for all pairs of kT ∈ RT and l ∈ C̃. For

each k ∈ R̃ and l ∈ C̃, set ψkl := Ωn(M,B)− d(l, kT)−∑i∈R̃ gi.
Step 4: Return Ψ.

We now discuss the running time of the algorithm for degrees of all cofactors. In
Step 3, we can compute the shortest path distances for all pairs by the Warshall–
Floyd method [5, 16] in O(n3) time. This is dominated by the algorithm for degree of
determinant in Step 2. Thus the overall time complexity of the algorithm for degrees
of all cofactors is the same as that of the algorithm for degree of determinant.

In order to reflect the dimensional consistency in conservation laws, Murota [10]
introduced the following assumption.

(MP-Q2) Every nonvanishing minor of Q̃(s) is a monomial in s.
For example, consider a linear time-invariant electric circuit. As for the coefficient
matrix Ã(s) of circuit equations, which consist of Kirchhoff’s conservation laws (KCL

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DEGREES OF ALL COFACTORS IN MIXED POLY MATRICES 657

and KVL) and constitutive equations, we assume that the physical parameters are
independent. Then, Ã(s) is an LM-polynomial matrix that satisfies (MP-Q2).

The assumption (MP-Q2) holds if and only if

(5.1) Q̃(s) = DR(s)Q̃(1)DC(s)

for some diagonal matrices DR(s) and DC(s) with each diagonal entry being a mono-
mial in s. Consequently, VIAP(A; r) reduces to an independent assignment problem
[14, Remark 6.2.10], which allows us to state the time complexity of the algorithm for
degree of determinant as follows.

Lemma 5.1. Let Ã(s) be an n × n regular mixed polynomial matrix. If Ã(s)
satisfies (MP-Q2), we obtain an optimal pair for VIAP(A;n) in O(n4) time.

Proof. Note that the associated LM-polynomial matrix A(s) satisfies (MP-Q2).
As an initial B in Step 1 of the algorithm for degree of determinant, we can set
B = C̃. In Step 2, E− can be constructed in O(n3) time. We can find the shortest
path in Step 3 in O(n2) time. Thus the total complexity of the algorithm for degree
of determinant is O(n4) time.

Lemma 5.1 implies that the time complexity of the algorithm for degrees of all
cofactors is O(n4) as follows.

Theorem 5.2. Let Ã(s) be an n×n regular mixed polynomial matrix that satisfies
(MP-Q2). Then the time complexity of the algorithm for degrees of all cofactors is
O(n4).

Proof. In Step 3, shortest path distances for all pairs of vertices are computed in
O(n3) time by the Warshall–Floyd method. Hence Lemma 5.1 implies that the total
complexity is O(n4).

Gabow and Xu [6] devised an efficient scaling algorithm for the independent
assignment problem. By using this algorithm, the algorithm for degrees of all cofactors
can be implemented to run in O(n3 logn log(nN)) time, where N denotes the highest
degree of all the entries in Ã(s).

6. Degree matrix. This section presents an algorithm for computing a degree
matrix defined as follows.

Definition 6.1 (degree matrix). Let A(s) =
(Q(s)

T (s)

)
be an n × n regular LM-

polynomial matrix with row set R = RQ ∪ RT and column set C. Consider another
LM-polynomial matrix A′(s) defined by

A′(s) =

(C Ĉ

RQ Q(s) Q(s)
RT T (s) O

)
,

where Ĉ is the copy of C. We denote the copy of j ∈ C by ĵ ∈ Ĉ. The degree matrix
is the matrix Θ = (θkl) whose row and column sets are both identical with C such that
each entry θkl is given by θkl = deg detA′[R,C \ {l} ∪ {k̂}].

We now explain the meaning of this degree matrix in the case when Q(s) is
a constant matrix Q. For an LM-polynomial matrix A(s) =

(
Q

T (s)

)
, consider the

following transformation:

(6.1)

(
S O

O ImT

)(
Q

T (s)

)
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

658 SATORU IWATA AND MIZUYO TAKAMATSU

where S is a nonsingular constant matrix and ImT is the identity matrix of order mT .
The transformation (6.1) does not change the entries in row set RT and brings an LM-
polynomial matrix into another LM-polynomial matrix. By a certain transformation
of this type, we obtain an LM-polynomial matrix

Ǎ(s) =
RQ

RT

(
ImQ Q′

T (s)

)
.

We denote by X the column set of ImQ . Note that there exists a one-to-one corre-
spondence between kQ ∈ RQ and l ∈ X with the (kQ, l) entry of Ǎ(s) being nonzero.
The relation between the degree of a cofactor in Ǎ(s) and an entry of the degree
matrix Θ is as follows.

Lemma 6.2. For any kQ ∈ RQ and l ∈ C, we have θkl = deg det Ǎ[R \ {kQ}, C \
{l}], where k ∈ X is the column corresponding to row kQ.

Proof. Since we can transform A(s) into Ǎ(s) by row operations, we may assume
that Θ is defined in terms of Ǎ(s). Hence we have

θkl = deg det

(
Ǎ[RQ, C \ {l}] Ǎ[RQ, {k}]
Ǎ[RT , C \ {l}] 0

)
= deg det Ǎ[R \ {kQ}, C \ {l}],

because Ǎ[RQ, {k}] has only one nonzero entry in row kQ.
By Lemma 6.2, the entries in row k of Θ coincide with the degrees of cofactors

obtained by deleting row kQ from Ǎ(s).
We now define the following problem associated with an n × n regular LM-

polynomial matrix A(s) =
(Q(s)

T (s)

)
.

[DM(A; k, l)] Find a pair (M,B) of a matchingM ⊆ E and a baseB ∈ B− maximizing
w(M) + ω−(B) subject to

∂+M = RT , ∂−M = B \ {l} ∪ {k}, l ∈ B, k /∈ B.
This problem is similar to VIAP(A;mT), which can be reformulated as follows.

[VIAP(A;mT)] Find a pair (M,B) of a matching M ⊆ E and a base B ∈ B− maxi-
mizing w(M) + ω−(B) subject to

∂+M = RT and ∂−M = B.
See Figure 6.1 for the comparison among feasible solutions (M,B) for VIAP(A;mT),
DOC(A; kT , l), and DM(A; k, l).

The value of a feasible pair (M,B) for DM(A; k, l) is given by

w(M) + ω−(B) = w(M) + ωQ(C \B)

= deg detQ[RQ, C \B] +
∑

(i,j)∈M

deg Tij(s)

= deg detA′[RQ, (C \ {l} ∪ {k̂}) \ ∂−M] +
∑

(i,j)∈M

deg Tij(s).

Then it follows from Theorem 3.5 that the value of θkl coincides with the optimal
value of DM(A; k, l).

We can find an optimal pair (M,B) for VIAP(A;mT) by using the algorithm
for degree of determinant. We then construct the auxiliary graph G∗ with respect

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DEGREES OF ALL COFACTORS IN MIXED POLY MATRICES 659

RQ

RT

kT

l l k

B

∂+M ∂+M ∂+M

∂−M

B

∂−M

B

∂−M

RQ

RT

RQ

RT

VIAP(A;mT) DOC(A; kT , l) DM(A; k, l)

C \BC \BC \B

Fig. 6.1. Comparison among feasible solutions (M, B) for VIAP(A; mT), DOC(A; kT , l), and
DM(A; k, l).

to (M,B). The following theorem leads to an algorithm for computing the degree
matrix. The proof is omitted, as it is quite similar to that of Theorem 4.3.

Theorem 6.3. Let (M,B) be an optimal pair for VIAP(A;mT). For any k ∈ C
and l ∈ C, we have

θkl = ΩmT (M,B)− d(l, k),

where d(l, k) denotes the shortest path distance from l to k with respect to the arc
length γ in G∗.

The algorithm for computing a degree matrix is summarized as follows. The
output of this algorithm is a degree matrix Θ = (θkl).

Algorithm for degree matrix.

Step 1: Find an optimal pair (M,B) for VIAP(A;mT) by the algorithm for degree
of determinant.

Step 2: Construct an auxiliary graph G∗ with respect to (M,B).
Step 3: Compute the shortest path distances for all pairs of k ∈ C and l ∈ C. For

each k and l, set θkl := ΩmT (M,B)− d(l, k).
Step 4: Return Θ.

The time complexity of the algorithm for degree matrix is the same as that of the
algorithm for degree of determinant, because the shortest path distances in Step 3
can be computed in O(n3) time by the Warshall–Floyd method [5, 16]. For example,
if an LM-polynomial matrix A(s) satisfies (MP-Q2), the total running time is O(n4).
If A(s) is a coefficient matrix of circuit equations, the complexity is improved under
the genericity assumption that the physical parameters in the constitutive equations
are algebraically independent.

Theorem 6.4. For a linear time-invariant electric circuit with n elements, we
denote by A(s) a 2n× 2n coefficient matrix of circuit equations. Then the algorithm
for degree matrix can be implemented to run in O(n3) time if the set of nonzero entries
coming from the physical parameters are algebraically independent.

Proof. Let us denote the row sets of A(s) corresponding to KCL and KVL by
RI and RV , respectively. We show that the time complexity of the algorithm for
degree of determinant is O(n3). An initial B in Step 1 can be found in O(n3) time,
because A[RI ∪ RV , C] is a constant matrix. In Step 2, the construction of E− is
as follows. Let B be a base, and Γ be a network graph of the circuit with vertex
set W and edge set F . We split C \ B into BI and BV such that A[RI , BI] and
A[RV , BV] are nonsingular. Let us denote a spanning tree corresponding to BI in Γ

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

660 SATORU IWATA AND MIZUYO TAKAMATSU

by TI , and a cotree corresponding to BV by TV . Consider subgraphs ΓI = (W,TI)
and ΓV = (W,F \ TV) of Γ. For each e = (u, v) ∈ F \ TI , we find a path PI(e) from
u to v in ΓI in O(n) time, because the number of edges is O(n). Similarly, for each
e = (u, v) ∈ TV , we find a path PV (e) from u to v in ΓV in O(n) time. Then we
obtain E− = {(ē, e) | e ∈ F \ TI , ē ∈ PI(e)} ∪ {(e, ē) | e ∈ TV , ē ∈ PV (e)}. Thus E−

can be constructed in O(n2) time. A shortest path in Step 3 can be found in O(n2)
time. Therefore, the time complexity of the algorithm for degree of determinant is
O(n3), which implies that Step 1 of the algorithm for degree matrix requires O(n3)
time.

In Step 3, the Warshall–Floyd method finds the shortest path distances in O(n3)
time. Thus, the total time complexity of the algorithm for degree matrix is O(n3).

The notion of the degree matrix plays a key role in the index reduction method
for the differential-algebraic equation arising from the hybrid analysis in circuit simu-
lation. Since the LM-polynomial matrix considered there is a coefficient matrix of the
circuit equations, the degree matrix can be obtained in O(n3) time by Theorem 6.4.
This improves the time complexity of finding the minimum index hybrid analysis in
[9] by a factor of n3.

REFERENCES

[1] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations, SIAM, Philadelphia, 1996.

[2] P. Bujakiewicz, Maximum Weighted Matching for High Index Differential Algebraic Equa-
tions, Doctor’s dissertation, Delft University of Technology, Delft, The Netherlands, 1994.

[3] P. Bujakiewicz and P. P. J. van den Bosch, Determination of perturbation index of a
DAE with maximum weighted matching algorithm, in Proceedings of the IEEE/IFAC Joint
Symposium on Computer-Aided Control System Design, 1994, pp. 129–136.

[4] A. W. M. Dress and W. Wenzel, Valuated matroids, Adv. Math., 93 (1992), pp. 214–250.
[5] R. W. Floyd, Algorithm 97—shortest path, Communications of the ACM, 5 (1962), p. 345.
[6] H. N. Gabow and Y. Xu, Efficient theoretic and practical algorithms for linear matroid in-

tersection problems, J. Comput. System Sci., 53 (1996), pp. 129–147.
[7] M. Iri and N. Tomizawa, An algorithm for finding an optimal “independent assignment,” J.

Oper. Res. Soc. Japan, 19 (1976), pp. 32–57.
[8] S. Iwata and K. Murota, Combinatorial relaxation algorithm for mixed polynomial matrices,

Math. Program., 90 (2001), pp. 353–371.
[9] S. Iwata and M. Takamatsu, Index minimization of differential-algebraic equations in hybrid

analysis for circuit simulation, Math. Program., to appear.
[10] K. Murota, Use of the concept of physical dimensions in the structural approach to systems

analysis, Japan J. Appl. Math., 2 (1985), pp. 471–494.
[11] K. Murota, Valuated matroid intersection I: Optimality criteria, SIAM J. Discrete Math., 9

(1996), pp. 545–561.
[12] K. Murota, Valuated matroid intersection II: Algorithms, SIAM J. Discrete Math., 9 (1996),

pp. 562–576.
[13] K. Murota, On the degree of mixed polynomial matrices, SIAM J. Matrix Anal. Appl., 20

(1999), pp. 196–227.
[14] K. Murota, Matrices and Matroids for Systems Analysis, Springer-Verlag, Berlin, 2000.
[15] K. Murota and M. Iri, Structural solvability of systems of equations—A mathematical formu-

lation for distinguishing accurate and inaccurate numbers in structural analysis of systems,
Japan J. Appl. Math., 2 (1985), pp. 247–271.

[16] S. Warshall, A theorem on Boolean matrices, J. ACM, 9 (1962), pp. 11–12.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 2, pp. 661–664

YET ANOTHER GENERALIZATION OF POSTNIKOV’S HOOK
LENGTH FORMULA FOR BINARY TREES∗

GUO-NIU HAN†

Abstract. We discover another one-parameter generalization of Postnikov’s hook length formula
for binary trees. The particularity of our formula is that the hook length hv appears as an exponent.
As an application, another simple hook length formula for binary trees is derived when the underlying
parameter takes the value 1/2.

Key words. hook length, Postnikov’s formula, binary tree

AMS subject classifications. 05A15, 05A19, 05C05

DOI. 10.1137/080720498

1. Introduction. Consider the set B(n) of all binary trees with n vertices. For
each vertex v of T ∈ B(n), the hook length of v, denoted by hv or just h for short, is
the number of descendants of v (including v). The hook length multiset of T , denoted
by H(T), is the multiset of all hook lengths of T . The following hook length formula
for binary trees

∑
T∈B(n)

∏
h∈H(T)

(
1 +

1
h

)
=

2n

n!
(n + 1)n−1(1)

was discovered by Postnikov [Po]. Further combinatorial proofs and extensions have
been proposed by several authors [CY, GS, MY, Se]. In particular, Lascoux conjec-
tured the following one-parameter generalization:

∑
T∈B(n)

∏
h∈H(T)

(
x +

1
h

)
=

1
(n + 1)!

n−1∏
k=0

((n + 1 + k)x + n + 1− k),(2)

which was, subsequently, proved by Du and Liu [DL]. The latter generalization ap-
pears to be very natural, because the left-hand side of (2) can be obtained from the
left-hand side of (1) by replacing 1 by x.

It is also natural to look for an extension of (1) by introducing a new variable z
in the right-hand side, namely, by replacing 2n(n + 1)n−1/n! by 2nz(n + z)n−1/n!. It
so happens that the corresponding left-hand side is also a sum on binary trees, but
this time the hook length hv appears as an exponent. The purpose of this note is to
prove the following theorem.

Theorem 1. For each positive integer n we have

∑
T∈B(n)

∏
h∈H(T)

(z + h)h−1

h(2z + h− 1)h−2
=

2nz

n!
(n + z)n−1.(3)

∗Received by the editors April 7, 2008; accepted for publication (in revised form) October 13,
2008; published electronically March 4, 2009.

http://www.siam.org/journals/sidma/23-2/72049.html
†Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, People’s Republic of China,

and I.R.M.A. UMR 7501, Université Louis Pasteur et CNRS, 7, rue René-Descartes, F-67084 Stras-
bourg, France (guoniu@math.u-strasbg.fr).

661

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

662 GUO-NIU HAN

With z = 1 in (3) we recover Postnikov’s identity (1). The following corollary is
derived from our identity (3) by taking z = 1/2.

Corollary 2. For each positive integer n we have

∑
T∈B(n)

∏
h∈H(T)

(
1 +

1
2h

)h−1

=
(2n + 1)n−1

n!
.(4)

2. Proof of Theorem 1. Let us take an example before proving Theorem 1.
There are five binary trees with n = 3 vertices, labeled by their hook lengths:

•1
•2

•3
T1

• 1
•2

•3
T2

•1
• 2

• 3

T3

• 1
• 2

• 3

T4

•1 • 1
•3

T5

The hook lengths of T1, T2, T3, and T4 are all the same 1, 2, 3; but the hook lengths
of T5 are 1, 1, 3. The left-hand side of (3) is then equal to

4× 1
(2z)−1

· (z + 2)1

2
· (z + 3)2

3(2z + 1)
+

1
(2z)−1

· 1
(2z)−1

· (z + 3)2

3(2z + 1)
=

23z(z + 3)2

3!
.

Let y(x) be a formal power series in x such that

y(x) = exy(x).(5)

By the Lagrange inversion formula y(x)z has the following explicit expansion:

y(x)z =
∑
n≥0

z(n + z)n−1 xn

n!
.(6)

Since y2z = (yz)2, we have

∑
n≥0

2z(n + 2z)n−1 xn

n!
=

⎛
⎝∑

n≥0

z(n + z)n−1 xn

n!

⎞
⎠

2

.(7)

Comparing the coefficients of xn on both sides of (7) yields the following lemma.
Lemma 3. We have

2z(n + 2z)n−1

n!
=

n∑
k=0

z(k + z)k−1

k!
× z(n− k + z)n−k−1

(n− k)!
.(8)

In fact, Lemma 3 can be obtained from Abel’s celebrated generalization of the
binomial formula by a simple change of variables (see [Mo, p. 12] or [Ri, p. 18]).

Proof of Theorem 1. Let

P (n) =
∑

T∈B(n)

∏
h∈H(T)

(z + h)h−1

h(2z + h− 1)h−2
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GENERALIZATION OF POSTNIKOV’S HOOK LENGTH FORMULA 663

We show that P (n) satisfies a weighted Catalan recurrence (see (9)). In fact, each
binary tree T with n vertices is obtained by attaching a left tree and a right tree (with
k and n − k − 1 vertices, respectively) at the root v, which has hook length hv = n.
Hence, P (0) = 1 and

P (n) =
n−1∑
k=0

P (k)P (n− 1− k)× (z + n)n−1

n(2z + n− 1)n−2
(n ≥ 1).(9)

It is routine to verify that P (n) = 2nz(z + n)n−1/n! for n = 1, 2, 3. Suppose that
P (k) = 2kz(z + k)k−1/k! for k ≤ n− 1. From identity (9) and Lemma 3 we have

P (n) =
n−1∑
k=0

2kz(z + k)k−1

k!
× 2n−k−1z(z + n− k − 1)n−k−2

(n− k − 1)!
× (z + n)n−1

n(2z + n− 1)n−2

=
2nz

n!
(z + n)n−1.

By induction, (3) is true for any positive integer n.

3. Conclusion and remarks. The present hook length formula was originally
discovered by using the expansion technique, developed in [Ha]. A unified formula that
includes both the Lascoux–Du–Liu generalization (2) and the present generalization
(3) has also been proved in [Ha, Theorem 6.8]. In [Ya] Yang has extended (3) to
binomial families of trees.

The right-hand sides of (3) and (4) have been studied by other authors [GS, DL,
MY], but our formula has the following two major differences: (i) the hook length
hv appears as an exponent; (ii) the underlying set remains the set of binary trees,
whereas in the above-mentioned papers the summation has been changed to the set
of m-ary trees or plane forests. It is interesting to compare Corollary 2 with the
following results obtained by Du and Liu [DL]. Note that the right-hand sides of (4),
(10), and (11) are all identical!

Proposition 4. For each positive integer n we have

∑
T∈T (n)

∏
v∈I(T)

(
2
3

+
1

3hv

)
=

(2n + 1)n−1

n!
,(10)

where T (n) is the set of all 3-ary trees with n internal vertices and I(T) is the set of
all internal vertices of T .

Proposition 5. For each positive integer n we have

∑
T∈F(n)

∏
v∈T

(
2− 1

hv

)
=

(2n + 1)n−1

n!
,(11)

where F(n) is the set of all plane forests with n vertices.

Acknowledgments. The author thanks the referee and Laura Yang who made
knowledgeable remarks that have been taken into account in the final version.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

664 GUO-NIU HAN

REFERENCES

[CY] W. Chen and L. Yang, On Postnikov’s hook length formula for binary trees, European J.
Combin., 29 (2008), pp. 1563–1565.

[DL] R. Du and F. Liu, (k, m)-Catalan numbers and hook length polynomials for plane trees,
European J. Combin., 28 (2007), pp. 1312–1321.

[GS] I.M. Gessel and S. Seo, A refinement of Cayley’s formula for trees, Electron. J. Combin.,
11 (2004/06), pp. 27, 23.

[Ha] G.-N. Han, Discovering hook length formulas by an expansion technique, Electron., J. Com-
bin., 15 (2008), R133.

[Mo] J.W. Moon, Counting Labelled Trees, From lectures delivered to the 12th Biennial Seminar
of the Canadian Mathematical Congress (Vancouver, 1969), Canad. Math. Monogr. 1,
Canadian Mathematical Congress, Montreal, 1970.

[MY] J.W. Moon and L. Yang, Postnikov identities and Seo’s formulas, Bull. Inst. Combin. Appl.,
49 (2007), pp. 21–31.

[Po] A. Postnikov, Permutohedra, associahedra, and beyond, arXiv:math. CO/0507163, 2004.
[Ri] J. Riordan, Combinatorial Identities, John Wiley & Sons, New York, 1968.
[Se] S. Seo, A combinatorial proof of Postnikov’s identity and a generalized enumeration of labeled

trees, Electron. J. Combin., 11 (2004/06), p. 9.
[Ya] L. Yang, Generalizations of Han’s hook length identities, arXiv: 0805. 0109 [math.CO], 2008.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 2, pp. 665–679

ON THE INTEGRALITY OF SOME FACILITY LOCATION
POLYTOPES∗

MOURAD BAÏOU† AND FRANCISCO BARAHONA‡

Abstract. We study a system of linear inequalities associated with some facility location prob-
lems. We show that this system defines a polytope with integer extreme points if and only if the
graph does not contain a certain type of odd cycles. We also derive odd cycle inequalities and give
a separation algorithm.

Key words. facility location, odd cycle inequalities

AMS subject classifications. 05C85, 90C27

DOI. 10.1137/070706070

1. Introduction. Let G = (V,A) be a directed graph, not necessarily connected,
where each arc and each node has weight associated with it. We study a “prize
collecting” version of a location problem (LP) as follows. A set of nodes is selected,
usually called centers, and then each nonselected node can be assigned to a center.
The weight of a node is the revenue obtained by opening a facility at that location,
minus the cost of building the facility. The weight of an arc (i, j) is the revenue
obtained by assigning the location i to the location j, minus the cost originated by
this assignment. The goal is to maximize the sum of the weights of the selected nodes
plus the sum of the weights yielded by the assignment. The linear system below
defines a linear programming relaxation:

max
∑

w(u, v)x(u, v) +
∑

w(v)y(v)∑
(u,v)∈A

x(u, v) + y(u) ≤ 1 ∀u ∈ V,(1)

x(u, v) ≤ y(v) ∀(u, v) ∈ A,(2)
0 ≤ y(v) ≤ 1 ∀v ∈ V,(3)
x(u, v) ≥ 0 ∀(u, v) ∈ A.(4)

For each node u, the variable y(u) takes the value 1 if the node u is selected and
0 otherwise. For each arc (u, v) the variable x(u, v) takes the value 1 if u is assigned
to v and 0 otherwise. Inequalities (1) express the fact that either node u can be
selected or it can be assigned to another node. Inequalities (2) indicate that if a node
u is assigned to a node v, then this last node should be selected. The set of integer
vectors that satisfy (1)–(4) corresponds to a transitive packing as defined in [15].

Let P (G) be the polytope defined by (1)–(4), and let LP (G) be the convex hull
of P (G) ∩ {0, 1}|V |+|A|. Clearly

LP (G) ⊆ P (G).

∗Received by the editors October 23, 2007; accepted for publication (in revised form) November 19,
2008; published electronically March 4, 2009.

http://www.siam.org/journals/sidma/23-2/70607.html
†CNRS, Laboratoire LIMOS, Campus des Cézeaux BP 125, 63173 Aubière cedex, France (baiou@

isima.fr).
‡IBM T. J. Watson Research Center, Yorktown Heights, NY 10589 (barahon@us.ibm.com).

665

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

666 MOURAD BAÏOU AND FRANCISCO BARAHONA

In this paper we characterize the graphs G for which LP (G) = P (G). More precisely,
we show that LP (G) = P (G) if and only if G does not contain certain types of “odd”
cycles. We also give a polynomial algorithm to recognize the graphs in this class.

The uncapacitated facility location problem (UFLP) is a variation where V is
partitioned into V1 and V2. The set V1 corresponds to the customers, and the set V2

corresponds to the potential facilities. Each customer in V1 should be assigned to an
opened facility in V2. This is obtained by considering A ⊆ V1 × V2, fixing to zero the
variables y for the nodes in V1, and setting into equations all the inequalities (1) for
the nodes in V1. More precisely, the linear programming relaxation for this case is

min
∑

c(u, v)x(u, v) +
∑

d(v)y(v)∑
(u,v)∈A

x(u, v) = 1 ∀u ∈ V1,(5)

x(u, v) ≤ y(v) ∀(u, v) ∈ A,(6)
0 ≤ y(v) ≤ 1 ∀v ∈ V2,(7)
x(u, v) ≥ 0 ∀(u, v) ∈ A.(8)

Here we also characterize the cases for which (5)–(8) define an integral polytope.
The facets of the uncapacitated facility location polytope have been studied in

[13], [11], [5], [6], [3]. In [1] we gave a description of LP (G) for Y -free graphs. The
UFLP has also been studied from the point of view of approximation algorithms in
[16], [7], [17], [2], [18], and others. Other references on this problem are [10] and [14].
The relationship between location polytopes and the stable set polytope has been
studied in [11], [5], [6], [12], and others.

For a directed graph G = (V,A) and a set W ⊂ V , we denote by δ+(W) the set
of arcs (u, v) ∈ A, with u ∈ W and v ∈ V \W . Also, we denote by δ−(W) the set of
arcs (u, v), with v ∈ W and u ∈ V \W . We write δ+(v) and δ−(v) instead of δ+({v})
and δ−({v}), respectively. If there is a risk of confusion, we use δ+G and δ−G . A node
u with δ+(u) = ∅ is called a pendent node.

A simple cycle C is an ordered sequence

v0, a0, v1, a1, . . . , ap−1, vp,

where
• vi, 0 ≤ i ≤ p− 1, are distinct nodes,
• ai, 0 ≤ i ≤ p− 1, are distinct arcs,
• either vi is the tail of ai and vi+1 is the head of ai, or vi is the head of ai and
vi+1 is the tail of ai for 0 ≤ i ≤ p− 1, and
• v0 = vp.

By setting ap = a0, we associate with C three more sets as below.
• We denote by Ĉ the set of nodes vi, such that vi is the head of ai−1 and also

the head of ai, 1 ≤ i ≤ p.
• We denote by Ċ the set of nodes vi, such that vi is the tail of ai−1 and also

the tail of ai, 1 ≤ i ≤ p.
• We denote by C̃ the set of nodes vi, such that either vi is the head of ai−1 and

also the tail of ai, or vi is the tail of ai−1 and also the head of ai, 1 ≤ i ≤ p.
Notice that |Ĉ| = |Ċ|. A cycle will be called odd if p+ |Ċ| (or |C̃|+ |Ċ|) is odd;

otherwise it will be called even. A cycle C with Ċ = ∅ is a directed cycle. The set of
arcs in C is denoted by A(C). We plan to prove that LP (G) = P (G) if and only if G
has no odd cycle.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRALITY OF SOME FACILITY LOCATION POLYTOPES 667

If we do not require v0 = vp, we have a path P . In a similar way we define Ṗ , P̂ ,
and P̃ , excluding v0 and vp. We say that P is odd if p + |Ṗ | is odd; otherwise it is
even. For the path P , the nodes v1, . . . , vp−1 are called internal.

If G is a connected graph and there is a node u such that its removal disconnects
G, we say that u is an articulation point. A graph is said to be two-connected if at
least two nodes should be removed to disconnect it. For simplicity, sometimes we
use z to denote the vector (x, y), i.e., z(u) = y(u) and z(u, v) = x(u, v). Also for
S ⊆ V ∪A we use z(S) to denote z(S) =

∑
a∈S z(a).

A polyhedron P is defined by a set of linear inequalities, i.e., P = {x | Ax ≤ b}.
A face of P is obtained by setting into equations some of these inequalities. An
extreme point of P is given by a face that contains a unique element. In other words,
some inequalities are set to equations so that this system has a unique solution. A
polyhedron whose extreme points are integer is called an integral polyhedron.

This paper is organized as follows. In section 2 we give a decomposition theorem
that shows that one has to concentrate on two-connected graphs. In section 3 we
describe some transformations of the graph that are needed in the following section.
Section 4 is devoted to two-connected graphs. In section 5 we study graphs with odd
cycles. The separation problem for the so-called odd cycle inequalities is studied in
section 6. In section 7 we show how to test the existence of an odd cycle. Section 8
is devoted to the bipartite case.

2. Decomposition. In this section we consider a graph G = (V,A) that de-
composes into two graphs G1 = (V1, A1) and G2 = (V2, A2), with V = V1 ∪ V2,
V1 ∩ V2 = {u}, A = A1 ∪A2, A1 ∩A2 = ∅. We define G′

1, which is obtained from G1

after replacing u by u′. We also define G′
2, which is obtained from G2 after replacing

u by u′′. See Figure 1. The theorem below shows that we have to concentrate on
two-connected graphs.

........

........

........
.........
.........
.........
..........
...........

............
..............

...................
...
................

.............
...........
..........
..........
.........
.........
.........
........
........
..............

........

........
........
.........
.........
..........
...........

............
..............

...................
...
.................

.............
............
..........
..........
.........
.........
.........
........
........
..

G

u

...
........
........
........
.........
.........
..........
..........

............
.............

..................
...
.................

.............
...........
..........
..........
.........
.........
........
........
........
...

........

........
........
.........
.........
..........
..........

............
.............

..................
...
.................

.............
...........
..........
..........
.........
.........
........
........
........
......

G′
2

u′ u′′

G′
1

Fig. 1.

Theorem 1. Suppose that the system

Az′ ≤ b,(9)

z′
(
δ+G′

1
(u′)

)
+ z′(u′) ≤ 1(10)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

668 MOURAD BAÏOU AND FRANCISCO BARAHONA

describes LP (G′
1). Suppose that (9) contains the inequalities (1)–(4) except for (10).

Similarly, suppose that

Cz′′ ≤ d,(11)

z′′
(
δ+G′

2
(u′′)

)
+ z′′(u′′) ≤ 1(12)

describes LP (G′
2). Also (11) contains the inequalities (1)–(4) except for (12). Then

the system below describes an integral polyhedron:

Az′ ≤ b,(13)
Cz′′ ≤ d,(14)

z′
(
δ+G′

1
(u′)

)
+ z′′

(
δ+G′

2
(u′′)

)
+ z′(u′) ≤ 1,(15)

z′(u′) = z′′(u′′).(16)

Proof. Let (z̄′, z̄′′) be an extreme point of the polytope defined by the above
system. We study two cases.

Case 1. z̄′(u′) = 0. We have that z̄′ ∈ LP (G′
1) and z̄′′ ∈ LP (G′

2). If z̄′ is an
extreme point of LP (G′

1), we have to consider two subcases:
• z̄′(δ+G′

1
(u′)

)
= 0. If z̄′′ is not an extreme point of LP (G′

2), z̄′′ = 1/2λ1+1/2λ2,
with λ1, λ2 in LP (G′

2), λ1 �= λ2. Since λ1

(
δ+G′

2
(u′′)

) ≤ 1, λ2

(
δ+G′

2
(u′′)

) ≤ 1,
we have that (z̄′, z̄′′) = 1/2(z̄′, λ1) + 1/2(z̄′, λ2), with (z̄′, λ1) and (z̄′, λ2)
satisfying (13)–(16), which is a contradiction. Thus z̄′′ is an extreme point
and (z̄′, z̄′′) is an integral vector.
• z̄′(δ+G′

1
(u′)

)
= 1. This implies that z̄′′

(
δ+G′

2
(u′′)

)
= 0. If z̄′′ is not an ex-

treme point, then z̄′′ = 1/2λ1 + 1/2λ2, with λ1, λ2 in LP (G′
2), λ1 �= λ2.

Since λ1

(
δ+G′

2
(u′′)

)
= 0 = λ2

(
δ+G′

2
(u′′)

)
, we have that (z̄′, z̄′′) = 1/2(z̄′, λ1) +

1/2(z̄′, λ2), with (z̄′, λ1) and (z̄′, λ2) satisfying (13)–(16), which is a contra-
diction. Thus z̄′′ is an extreme point and (z̄′, z̄′′) is an integral vector.

Now we should study the situation in which z̄′ and z̄′′ are not extreme points.
We should have z̄′ = 1/2ω1 + 1/2ω2, with ω1, ω2 in LP (G′

1), ω1 �= ω2. If
ω1

(
δ+G′

1
(u′)

)
= ω2

(
δ+G′

1
(u′)

)
= z̄′

(
δ+G′

1
(u′)

)
, we have (z̄′, z̄′′) = 1/2(ω1, z̄

′′)+1/2(ω2, z̄
′′),

with (ω1, z̄
′′) and (ω2, z̄

′′) satisfying (13)–(16), which is a contradiction.
Now we assume that

ω1

(
δ+G′

1
(u′)

)
= z̄′

(
δ+G′

1
(u′)

)
− ε,

ω2

(
δ+G′

1
(u′)

)
= z̄′

(
δ+G′

1
(u′)

)
+ ε,

with ε > 0.
We also have z̄′′ = 1/2λ1+1/2λ2, with λ1, λ2 in LP (G′

2), λ1 �= λ2. If λ1

(
δ+G′

2
(u′′)

)
= λ2

(
δ+G′

2
(u′′)

)
= z̄′′

(
δ+G′

2
(u′′)

)
, we obtain a contradiction as above. Thus we suppose

that

λ1

(
δ+G′

2
(u′′)

)
= z̄′′

(
δ+G′

2
(u′′)

)
+ ρ,

λ2

(
δ+G′

2
(u′′)

)
= z̄′′

(
δ+G′

2
(u′′)

)
− ρ,

with ρ > 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRALITY OF SOME FACILITY LOCATION POLYTOPES 669

We can assume that ε = ρ; otherwise we can change λ1 and λ2. Thus we have
(z̄′, z̄′′) = 1/2(ω1, λ1) + 1/2(ω2, λ2), with (ω1, λ1) and (ω2, λ2) satisfying (13)–(16),
which is a contradiction.

Case 2. 0 < z̄′(u′). We have that z̄′ ∈ LP (G′
1) and z̄′′ ∈ LP (G′

2). Thus z̄′ is a
convex combination of extreme points μi of LP (G′

1) that satisfy with equality every
constraint that is satisfied with equality by z̄′. Also z̄′′ is a convex combination of
extreme points φj of LP (G′

2) that satisfy with equality every constraint satisfied with
equality by z̄′′.

We can assume that μ1(u′) = 1 = φ1(u′′). After putting together these two
vectors we obtain a 0-1 vector that satisfies with equality every constraint that is
satisfied with equality by the original vector (z̄′, z̄′′), which is a contradiction.

We have the following corollary.
Corollary 2. The polytope LP (G) is defined by the system (13)–(16) after

identifying the variables z′(u′) and z′′(u′′).
This last corollary shows that if LP (G′

1) and LP (G′
2) are defined by (1)–(4), then

LP (G) is also defined by (1)–(4). Thus we have to concentrate on graphs that are
two-connected. A result analogous to Theorem 1, for the stable set polytope, has
been given in [8].

3. Graph transformations. First we plan to prove that if G has no odd cycle,
then LP (G) = P (G). The proof consists of assuming that z̄ is a fractional extreme
point of P (G) and arriving at a contradiction. Below we give several assumptions
that can be made about z̄ and G; they will be used in the next section.

Lemma 1. We can assume that z̄(u, v) > 0 for all (u, v) ∈ A.
Proof. Let G′ be the graph obtained after removing all arcs (u, v) with z̄(u, v) = 0,

and let z′ be the vector obtained after removing all components z̄(u, v) = 0. Then z′

is a fractional extreme point of P (G′).
Lemma 2. If 0 < z̄(u, v) < z̄(v), we can assume that v is a pendent node with

|δ−(v)| = 1 and z̄(v) = 1.
Proof. If v is not pendent or |δ−(v)| > 1, we can remove (u, v) and add a new

node v′ and the arc (u, v′). Then we can define z′(u, v′) = z̄(u, v), z′(v′) = 1, and
z′(s, t) = z̄(s, t), z′(r) = z(r) for all other nodes and arcs. Let G′ be this new graph.
We have that the constraints that are tight for z̄ are also tight for z′, so z′ is an
extreme point of P (G′).

Lemma 3. We can assume that G consists of only one connected component.
Proof. Let G1 be a connected component of G. Let z1 be the projection of z̄ onto

the space associated with G1. Then z1 is an extreme point of P (G1).
Lemma 4. We can assume that 0 < z̄(u, v) < 1 for all (u, v) ∈ A.
Proof. If z̄(u, v) = 1, it follows from Lemma 1 that δ−(u) = ∅ and δ+(u) =

{(u, v)}. Since z̄(v) = 1, Lemma 1 implies that v is pendent. It follows from Lemma 2
that z̄(r, v) = 1 for all (r, v) ∈ δ−(v). Therefore, the graph induced by δ−(v) is a
connected component of G. All variables associated with this connected component
take integer values.

Lemma 5. We can assume that either G is two-connected or it consists of a single
arc.

Proof. If G has an articulation point, we can apply Theorem 1 to decompose G
into G1 and G2. If inequalities (1)–(4) define LP (G1) and LP (G2), then a similar
system should define LP (G). One can keep decomposing as long as the graph has an
articulation point.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

670 MOURAD BAÏOU AND FRANCISCO BARAHONA

If the graph G consists of a single arc, it is fairly easy to see that LP (G) = P (G),
so now we have to deal with the two-connected components. This is treated in the
next section.

4. Treating two-connected graphs. In this section we assume that the graph
G is two-connected and it has no odd cycle. Let z̄ be a fractional extreme point of
P (G); we are going to assign labels l to the nodes and arcs and define z′(u, v) =
z̄(u, v) + l(u, v)ε, z′(u) = z̄(u) + l(u)ε, ε > 0, for each arc (u, v) and each node u. We
shall see that every constraint that is satisfied with equality by z̄ is also satisfied with
equality by z′. This is the required contradiction.

Given a path P = v0, a0, . . . , ap−1, vp, assume that the label of a0, l(a0), has the
value 1 or −1. We define the labeling procedure as follows.

For i = 1 to p− 1 do the following:
• If vi is the head of ai−1 and it is the tail of ai, then l(vi) = l(ai−1), l(ai) =
−l(vi).
• If vi is the head of ai−1 and it is the head of ai, then l(vi) = l(ai−1), l(ai) =
l(vi).
• If vi is the tail of ai−1 and it is the head of ai, then l(vi) = −l(ai−1), l(ai) =
l(vi).
• If vi is the tail of ai−1 and it is the tail of ai, then l(vi) = 0, l(ai) = −l(ai−1).

Notice that the labels of v0 and vp were not defined.
This procedure will be used in four different cases as below.
Case 1. G contains a directed cycle C = v0, a0, . . . , ap−1, vp. Assume that the

head of a0 is v1, set l(v0) = −1 and l(a0) = 1, and extend the labels as above.
Case 2. G contains a cycle C = v0, a0, . . . , ap−1, vp and Ċ �= ∅. Assume v0 ∈ Ċ.

Set l(v0) = 0 and l(a0) = 1, and extend the labels.
The lemma below is needed to show that for v0, the constraints that were satisfied

with equality by z̄ remain satisfied with equality.
Lemma 6. After labeling as in Cases 1 and 2, we have l(ap−1) = −l(a0).
Proof. Case 1 should be clear, so we have to study Case 2. Let vj(0), vj(1), . . . , vj(k)

be the ordered sequence of nodes in Ċ, with vj(0) = vj(k). A path in C

vj(i), aj(i), . . . , aj(i+1)−1, vj(i+1)

from vj(i) to vj(i+1) will be called a segment and denoted by Si. A segment is odd
(resp., even) if it contains an odd (resp., even) number of arcs. Let ne be the number
of even segments and no the number of odd segments. We have that ne + no = |Ċ|.
We also have that the parity of p is equal to the parity of no. Therefore, no + |Ċ|
should be even.

The labeling has the following properties:
(a) If the segment is odd, then l(aj(i)) = −l(aj(i+1)−1).
(b) If the segment is even, then l(aj(i)) = l(aj(i+1)−1).
Now we build an undirected cycle as follows. For every node vj(i) we have two

nodes u1
i and u2

i ; we add an edge between them marked “blue.” For every segment
from vj(i) to vj(i+1) we have an edge from u2

i to u1
i+1. If the segment is odd, we mark

the edge “blue”; otherwise we mark it “green.” Start by giving the label l(u2
0) = 1 to

u2
0. Continue labeling so that if st is a blue edge, then l(t) = −l(s), and if the edge is

green, then l(t) = l(s). The label of u2
i corresponds to the label of aj(i), and the label

of u1
i+1 corresponds to the label of aj(i+1)−1. There is an even number of blue edges

in the cycle; therefore, l(u1
0) = −l(u2

0). Thus

l(ap−1) = −l(a0).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRALITY OF SOME FACILITY LOCATION POLYTOPES 671

Notice that after the first cycle has been labeled as in Cases 1 or 2, the properties
below hold. We shall see that these properties hold throughout the entire labeling
procedure.

Property 1. If a node has a nonzero label, then it is the tail of at most one labeled
arc.

Property 2. If a node has a zero label, then it is the tail of exactly two arcs with
opposite labels, and it is not the head of any labeled arc.

The lemma below shows a property of the labeling procedure that will be used in
the analysis of the next case.

Lemma 7. Let P = v0, a0, v1, a1, . . . , ap−1, vp be a path. Suppose that we set l(a0)
and we extend the labels; then the label of ap−1 is determined by

• the orientation of a0,
• the orientation of ap−1, and
• the parity of P .

Proof. Add a node t and the arcs ā = (t, v0) and ã = (t, vp) to create a cycle. If
the cycle is odd, subdivide ã to make it even. Set l(t) = 0 and l(ā) = 1, and extend
the labels as in Case 2. It follows from Lemma 6 that the label of the arc before ā is
−l(ā); this determines the label of the previous arc, and so on.

Once a cycle C has been labeled as in Cases 1 or 2, we have to extend the labeling
as follows.

Case 3. Suppose that l(v0) �= 0 for v0 ∈ C (v0 is the head of a labeled arc) and
there is a path P = v0, a0, v1, a1, . . . , ap−1, vp in G such that

• v0 is the head of a0,
• vp ∈ C, and
• {v1, . . . , vp−1} is disjoint from C.

We set l(a0) = l(v0) and extend the labels. Case 3 is needed so that any inequality (2)
associated with v0 that is satisfied with equality remains satisfied with equality.

We have to see that the label l(ap−1) is such that constraints associated with vp,
that were satisfied with equality, remain satisfied with equality. This is discussed in
the next lemma.

Lemma 8. If vp is the head of ap−1, then l(ap−1) = l(vp). If vp is the tail of
ap−1, then l(ap−1) = −l(vp).

Proof. Notice that v0 /∈ Ċ. In Figure 2 we represent the possible configurations
for the paths in C between v0 and vp. In this figure we show whether v0 and vp are
the head or the tail of the arcs in C incident to them. These two paths are denoted
by P1 and P2. Lemma 7 shows that we have to pay attention to their parity and to
the orientation of the first and last arcs.

.............................
.....................

.............................

.....................

..
..
..
..
..
..
..
..
..
..

.

..
..

..
..
..
..
..
..
..
..
.
v0

vp

(1)

.............................
.....................

..
..
..
..
..
..
..
..
..

..
.

..
..
..
..
..
..
..
..
..
..
.

(2)

v0

vp

.............................
.....................

.............................

.....................

..................
...........
........
........
.....

..
..
..
..
..
..
..
..
..
..

.

..
..

..
..
..
..
..
..
..
..
.

(3)

v0

vp

.............................
.....................

..................
...........
........
........
.....

..
..
..
..
..
..
..
..
..

..
.

..
..

..
..
..
..
..
..
..
..
.

(4)

v0

vp
..
..
..
..
..
..
..
..
..

..
.

..
..

..
..
..
..
..
..
..
..
.

.....................
.............................

.....................

..................
...........
........
........
.....

................

........
.....

..........
...........

(5)

v0

vp
..
..
..
..
..
..
..
..
..

..
.

..
..

..
..
..
..
..
..
..
..
.

.....................

................
........
.....

..........
...........

(6)

v0

vp
..
..
..
..
..
..
..
..
..

..
.

..
..

..
..
..
..
..
..
..
..
.

................

........
.....

..........
...........

.............................

.....................

..................
...........
........
........
.....

(7)

v0

vp

Fig. 2. Possible paths in C between v0 and vp. It is shown whether v0 and vp are the head or
the tail of the arcs in C incident to them.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

672 MOURAD BAÏOU AND FRANCISCO BARAHONA

Consider configuration (1); these two paths should have different parity. When
adding the path P , an odd cycle is created with either P1 or P2. So configuration (1)
will not occur. The same happens with configuration (2).

Now we discuss configuration (3). These two paths should have the same parity.
If vp is the tail of ap−1, then P creates an odd cycle with either P1 or P2. If vp is the
head of ap−1, then P should have the same parity as P1 and P2. Then l(ap−1) = l(vp).

The study of configuration (4) is similar. The two paths should have the same
parity. If vp is the tail of ap−1, then P creates an odd cycle with either P1 or P2.
If vp is the head of ap−1, then P should have the same parity as P1 and P2, and
l(ap−1) = l(vp).

For configuration (5), again the two paths should have the same parity. If vp is the
head of ap−1, then P should have the same parity as P1 and P2, and l(ap−1) = l(vp).
If vp is the tail of ap−1, then P should have the same parity as P1 and P2, and
l(ap−1) = −l(vp).

Also, in configuration (6) the paths P1 and P2 should have the same parity. If vp

is the tail of ap−1, then P forms an odd cycle with either P1 or P2. If vp is the head
of ap−1, then P should have the same parity as P1 and P2, and l(ap−1) = l(vp).

In configuration (7), the two paths should also have the same parity. If vp is the
head of ap−1, then P should have the same parity as P1 and P2, and l(ap−1) = l(vp).
If vp is the tail of ap−1, then P should have the same parity as P1 and P2, and
l(ap−1) = −l(vp).

Based on this the labels are extended recursively. Denote by Gl the subgraph
defined by the labeled arcs. This is a two-connected graph, so for any two nodes v0
and vp it contains a cycle going through these two nodes. Thus we can check if Case 3
applies and extend the labels adding a path to the graph Gl each time. The two
lemmas below show that Properties 1 and 2 remain satisfied.

Lemma 9. Suppose that vp has a label different from 0. If vp is the tail of an arc
in Gl, then in Case 3 it cannot be the tail of ap−1. Thus Property 1 remains satisfied.

Proof. There is a cycle C in Gl containing v0 and vp. Property 1 implies that v0
is the head of at least one arc in C. We can assume that vp is the tail of an arc in C.
Suppose not; let a be an arc in Gl whose tail is vp. Let u be the head of a. Since Gl

is two-connected, there is a path Q from u to a node v in C with v �= vp. The path
Q intersects C only at the node v. We can add a and Q to C and remove the path in
C from vp to v that does not contain v0 as an internal node.

The cycle C can contain configurations (3), (4), and (6) of Figure 2. In these
three cases, the head of ap−1 is vp.

Lemma 10. Let w be a node in Gl with l(w) = 0; then in Case 3 we have that
vp �= w. Therefore, Property 2 remains satisfied.

Proof. Let a1, a2 be the two arcs in Gl having w as their tail. If vp = w, the cycle
C in Case 3 must contain both arcs a1 and a2. But configurations (1) and (2) cannot
occur.

Once Case 3 has been exhausted we might have some nodes in Gl that are only
the heads of labeled arcs. For such nodes we have to ensure that inequalities (1) that
were satisfied as equalities remain satisfied as equalities. This is treated as follows.

Case 4. Suppose that v0 is only the head of labeled arcs, and v0 is not pendent.
Then there is a cycle C in Gl and there is a path P = v0, a0, v1, a1, . . . , ap−1, vp in G
such that

• v0 ∈ C is the tail of a0,
• vp ∈ C, and
• {v1, . . . , vp−1} is disjoint from Gl.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRALITY OF SOME FACILITY LOCATION POLYTOPES 673

We set l(a0) = −l(v0) and extend the labels. We have to see that the label l(ap−1)
is such that constraints associated with vp, that were satisfied with equality, remain
satisfied with equality. This is discussed below.

Lemma 11. In Case 4 we have that vp is the tail of ap−1 and l(ap−1) = −l(vp).
Also Properties 1 and 2 continue to hold.

Proof. The cycle C can correspond to configurations (1), (3), or (5) of Figure 2.
For configuration (1), the paths P1 and P2 have different parities, therefore adding

the path P would create an odd cycle.
Consider now configuration (3). The paths P1 and P2 have the same parity. If vp

is the tail of ap−1, then adding P to C would create an odd cycle. If vp is the head
of ap−1, we would have a situation treated in Case 3 and configuration (7).

Finally consider configuration (5). If vp is the head of ap−1, we have a situation
treated in Case 3 and configuration (5). If vp is the tail of ap−1, then P should have
the same parity as P1 and P2; thus l(ap−1) = −l(vp). If vp were the tail of an arc
in Gl, we would have a cycle like in configuration (3). Adding P to this cycle would
create an odd cycle. Therefore, vp was not the tail of an arc in Gl and Properties 1
and 2 continue to hold.

To summarize, the labeling algorithm consists of the following steps.
• Step 1. Identify a cycle C in G and treat it as in Cases 1 or 2. Set Gl = C.
• Step 2. For as long as needed, label as in Case 3. Each time add to Gl the

new set of labeled nodes and arcs.
• Step 3. If needed, label as in Case 4. Each time add to Gl the new set of

labeled nodes and arcs. If some new labels have been assigned in this step,
go to Step 2; otherwise stop.

At this point we can discuss the properties of the labeling procedure. The labels
are such that any inequality (2) that was satisfied with equality by z̄ is also satisfied
with equality by z′. To see that inequalities (1) that were tight remain tight, we use
Properties 1 and 2:

• Any node that has a nonzero label is the tail of exactly one labeled arc having
the opposite label.
• If u is a node with l(u) = 0, then there are exactly two labeled arcs having

opposite labels and whose tails are u.
Finally, we give the label “0” to all nodes and arcs that are unlabeled; this completes
the definition of z′. Lemma 4 shows that inequalities (4) will not be violated. Since
nodes v with z̄(v) = 0 receive a zero label, and there are no nodes v with z̄(v) = 1, we
have that inequalities (3) cannot not be violated. Any constraint that is satisfied with
equality by z̄ is also satisfied with equality by z′. This contradicts the assumption
that z̄ is an extreme point. We can now state the main result of this section.

Theorem 3. If the graph G is two-connected and has no odd cycle, then LP (G) =
P (G).

This implies the following.
Theorem 4. If G is a graph with no odd cycle, then LP (G) = P (G).
Theorem 5. For graphs with no odd cycle, the UFLP is polynomially solvable.
In some cases one might want to fix to zero the variables y for some set of nodes

and also set to equations some of the inequalities (1). This defines a face Q(G) of
P (G). We have the following corollary that will be used in section 8.

Corollary 6. If G is a graph with no odd cycle, then Q(G) is an integral
polytope.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

674 MOURAD BAÏOU AND FRANCISCO BARAHONA

5. Odd cycles. In this section we study the effect of odd cycles in P (G). Let C
be an odd cycle. We can define a fractional vector (x̄, ȳ) ∈ P (G) as follows:

ȳ(u) = 0 ∀ nodes u ∈ Ċ,(17)

ȳ(u) = 1/2 ∀ nodes u ∈ C \ Ċ,(18)
x̄(a) = 1/2 for a ∈ A(C),(19)
ȳ(v) = 0 ∀ other nodes v /∈ C,(20)
x̄(a) = 0 ∀ other arcs.(21)

In Figure 3 we show two examples. The numbers close to the nodes correspond
to the y variables, and the numbers close to the arcs correspond to the x variables.

.. ..

..

..
..
.........
....

........
.........
....

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........................

.....................

..

1/2 1/2

1/20

1/2

1/2

1/2

1/2

..........
...
..

..........
...
..

...
..

........................
........

...............................

.
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
.........
.................

1/2 1/2

1/21/2
1/2

1/2

Fig. 3. Fractional vectors associated with odd cycles.

Below we show a family of inequalities that separate the vectors defined above
from LP (G). We call them odd cycle inequalities.

Lemma 12. The following inequalities are valid for LP (G):

(22)
∑

a∈A(C)

x(a) −
∑
v∈Ĉ

y(v) ≤ |C̃|+ |Ĉ| − 1
2

for every odd cycle C.
Proof. From inequalities (1)–(4) we obtain

x(u, v) + x(δ+(v)) ≤ 1 for every arc (u, v) ∈ C, v /∈ Ĉ,
x(u, v)− y(v) ≤ 0 for every arc (u, v) ∈ C, v ∈ Ĉ,
x(δ+(v)) ≤ 1 for v ∈ Ċ.

Their sum gives

2
∑

a∈A(C)

x(a)−2
∑
v∈Ĉ

y(v)+
∑
v∈Ċ

x(δ+(v)\A(C))+
∑
v∈C̃

x(δ+(v)\A(C)) ≤ |A(C)|−2|Ĉ|+|Ċ|,

which implies

2
∑

a∈A(C)

x(a) − 2
∑
v∈Ĉ

y(v) ≤ |C̃|+ |Ċ|.

Dividing by 2 and rounding down the right-hand side, we obtain

∑
a∈A(C)

x(a)−
∑
v∈Ĉ

y(v) ≤ |C̃|+ |Ċ| − 1
2

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRALITY OF SOME FACILITY LOCATION POLYTOPES 675

Now we can present our main result.
Theorem 7. Let G be a directed graph; then LP (G) = P (G) if and only if G

does not contain an odd cycle.
Proof. If G contains and odd cycle C, then we can define a vector (x̄, ȳ) ∈ P (G)

as in (17)–(21). We have

∑
a∈A(C)

x̄(a)−
∑
v∈Ĉ

ȳ(v) =
|C̃|+ |Ĉ|

2
.

Lemma 12 shows that z̄ /∈ LP (G).
Then the theorem follows from Theorem 4.

6. Separation of odd cycle inequalities. Now we study the separation prob-
lem: Given a vector (x̄, ȳ) ∈ P (G), find an odd cycle inequality (22), if there is any,
that separates (x̄, ȳ) from LP (G). These inequalities are {0, 1/2}-Chvátal–Gomory
cuts, using the terminology of [4]. A separation algorithm can be obtained from the
results of [4]. Here we give an alternative algorithm.

To solve the separation problem we write the inequalities as

2
∑

a∈A(C)

x(a) +
∑
v∈Ĉ

(1− 2y(v)) ≤ |A(C)| − 1

or ∑
a∈A(C)

(1− 2x(a)) +
∑
v∈Ĉ

(2y(v)− 1) ≥ 1.

In order to reduce this to a shortest path problem, several graph transformations are
required.

6.1. First transformation. We build an auxiliary undirected graphH = (N,F).
For every arc a = (u, v) ∈ A we create the nodes (u, a) and (v, a) in H . The first node
is called a tail node, and the second is called a head node. The tail node is associated
with u, and the head node is associated with v. We also create an edge between these
two nodes with the weight (1− 2x̄(u, v)) and give the label blue to this edge; also this
type of edge will be called old. See Figure 4.

................................
......u v

1− 2x̄(u, v)
• •

Fig. 4. Edge associated with the arc (u, v). It has the label blue and is called old.

Now for every node v ∈ V and every pair of nodes in H associated with v we
create an edge in H as follows. This type of edge will be called new. Let n1 and n2

be two nodes in H associated with v; we distinguish two cases:
• At least one of them is a tail node. In this case we add an edge between them

with weight zero and label it black.
• Both n1 and n2 are head nodes. In this case we add an edge between them

with weight 2ȳ(v)− 1 and label this edge blue. See Figure 5.
A cycle in H consisting of an alternating sequence of old and new edges is called

an alternating cycle. The separation problem reduces to finding an alternating cycle
in H with an odd number of blue edges and total weight less than one.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

676 MOURAD BAÏOU AND FRANCISCO BARAHONA

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.......................

.....................

..•

...

...

..
........
.....

........
........
.....•

..
........
.....

........
........
.....

... ...•

•
•

0 •
•

2ȳ(v)− 10 •
•

Fig. 5. New edges. In the first two cases they have the label black, and in the last case it has
the label blue. Beside each new edge we show their weight.

6.2. Second transformation. To find an alternating cycle in H with an odd
number of blue edges, we create a new graph H ′ = (N ′, F ′) as follows. For every node
n ∈ H we make two copies n′ and n′′. Let n1n2 be an edge in H ; we have two cases:

• If n1n2 is blue, we create the edges n′
1n

′′
2 and n′′

1n
′
2 with the same weight as

n1n2 and the same name (old or new).
• If n1n2 is black, we create the edges n′

1n
′
2 and n′′

1n
′′
2 with the same weight as

n1n2 and the same name (new).
Then for every node n ∈ H we find a shortest alternating path P from n′ to n′′

in H ′. The first edge in the path should be new, and the last edge should be old.
Suppose that the weight of P is less than one; then for each node p ∈ H such that p′

and p′′ are in P we identify them. This gives a (nonnecessarily simple) cycle that is
alternating, has an odd number of blue edges, and has weight less than one. Notice
that the derivation of inequalities (22) does not depend upon the cycle being simple.

Since the edge-weights could be negative, to find a shortest alternating path we
have to modify the Bellman–Ford algorithm for shortest paths as follows. Let s be a
source node. Let fk

o (v) be the length of a shortest alternating path from s to v having
at most k arcs, whose first arc is new and whose last arc is old. Let fk

n(v) be the
length of a shortest alternating path from s to v having at most k arcs, whose first
arc is new and whose last arc is new. These values are computed with the following
formulas:

fk
o (v) = min

{
fk−1

o (v),min{fk−1
n (u) + duv | uv is old}},

fk
n(v) = min

{
fk−1

n (v),min{fk−1
o (u) + duv | uv is new}},

f0
o (s) = 0, f0

n(s) =∞,
f0

o (v) = f0
n(v) =∞ for v �= s.

This algorithm requires that the graph has no alternating cycle of negative weight;
this is shown below.

Lemma 13. The edge weights cannot create a cycle of negative weight.
Proof. Suppose that∑

a∈A(C)

(1 − 2x̄(a)) +
∑
v∈Ĉ

(
2ȳ(v)− 1

)
< 0

for some cycle C. This implies

2
∑

a∈A(C)

x̄(a)− 2
∑
v∈Ĉ

ȳ(v) > |C| − |Ĉ|,

but when deriving inequalities (22) we had

2
∑

a∈A(C)

x̄(a)− 2
∑
v∈Ĉ

ȳ(v) ≤ |C| − |Ĉ|.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRALITY OF SOME FACILITY LOCATION POLYTOPES 677

The complexity of this method is as follows.
Theorem 8. The separation problem for inequalities (22) can be solved in

O(|V |2|A|2) time.
Proof. For the graph H = (N,F), we have |N | = 2|A| and |F | ≤ |A| + |A||V |.

For H ′ = (N ′, F ′), we have |N ′| = 4|A| and |F ′| ≤ 2|A| + 2|A||V |. For a particular
value k, computing the values f takes O(|F ′|) operations. Since k ≤ |V |, applying
this algorithm for a particular source s takes O(|V |2|A|) operations. Since every node
of H should be tried as a source, the entire procedure takes O(|V |2|A|2) time.

7. Detecting odd cycles. Now we study how to recognize the graphs G for
which LP (G) = P (G). We start with a graph G, and a new undirected graph H =
(N,E) is built as follows. For every node u ∈ G we have the nodes u′ and u′′ in N
and the edge u′u′′ ∈ E. For every arc (u, v) ∈ G we have an edge u′v′′ ∈ E. See
Figure 6.

............
....................................

....................................

............
....................................

....................................

........................

.........................
.........................

..........................
.........................

.........................
..........................

.........................
.........................

..........................
..........................

..........

u v

u′

u′′

v′

v′′

Fig. 6. Basic transformation to create the graph H.

Considering a cycle C in G, we build a cycle CH in H as follows:
• If (u, v) and (u,w) are in C, then the edges u′v′′ and u′w′′ are taken.
• If (u, v) and (w, v) are in C, then the edges u′v′′ and v′′w′ are taken.
• If (u, v) and (v, w) are in C, then the edges u′v′′, v′′v′, and v′w′′ are taken.

On the other hand, a cycle in H corresponds to a cycle in G. Thus there is a one
to one correspondence among cycles of G and cycles of H . Moreover, if the cycle in
H has cardinality 2q, then q = |Ċ| + |C̃|, where C is the corresponding cycle in G.
Therefore, an odd cycle in G corresponds to a cycle in H of cardinality 2(2p+ 1) for
some positive integer p. See Figure 7.

..........
...
.

..........
...
...........

...
.

..........
...
.

..........
...
...........

...
.

..........
...
.

............................

......................
......

......................
......

............................

..
..

...
..

...
..

..
....

..

...

..................................

Fig. 7. An odd cycle in G and the corresponding cycle in H. The nodes of H close to a node
u ∈ G correspond to u′ or u′′.

In other words, finding an odd cycle in G reduces to finding a cycle of cardinality
2(2p+ 1) for some positive integer p in the bipartite graph H .

For this question, a linear time algorithm was given in [19]. A simple O(|V ||A|2)
has been given in [9]; we describe it below.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

678 MOURAD BAÏOU AND FRANCISCO BARAHONA

First we should find a cycle basis of H and test if the cardinality of every cycle
in this basis is 0 mod 4. If there is one whose cardinality is 2 mod 4, we are done.
Otherwise consider the symmetric difference of two cycles whose cardinality is 0 mod 4.
If the cardinality of their intersection is even, then the cardinality of their symmetric
difference is 0 mod 4; otherwise it is 2 mod 4. Since any cycle C can be obtained
as the symmetric difference of a set of cycles in the basis, if the cardinality of C is
2 mod 4, then there are at least two cycles in the basis whose symmetric difference
has cardinality 2 mod 4. Therefore, one just has to test all elements of a cycle basis
and the symmetric difference of all pairs.

8. Uncapacitated facility location. Now we assume that V is partitioned into
V1 and V2, A ⊆ V1 × V2, and we deal with the system∑

(u,v)∈A

x(u, v) = 1 ∀u ∈ V1,(23)

x(u, v) ≤ y(v) ∀(u, v) ∈ A,(24)
0 ≤ y(v) ≤ 1 ∀v ∈ V2,(25)
x(u, v) ≥ 0 ∀(u, v) ∈ A.(26)

We denote by Π(G) the polytope defined by (23)–(26). Notice that Π(G) is a face
of P (G). Let V̄1 be the set of nodes u ∈ V1 with |δ+(u)| = 1. Let V̄2 be the set of
nodes in V2 that are adjacent to a node in V̄1. It is clear that the variables associated
with nodes in V̄2 should be fixed, i.e., y(v) = 1 for all v ∈ V̄2. Let us denote by Ḡ
the subgraph induced by V \ V̄2. In this section we prove that Π(G) is an integral
polytope if and only if Ḡ has no odd cycle.

Let us first assume that Ḡ has no odd cycle. As before, we suppose that z̄ is a
fractional extreme point of Π(G). The analogues of Lemmas 1–4 apply here. Thus
we can assume that we deal with a connected component G′. Lemma 2 implies that
any node in V̄2 is not in a cycle of G′. Therefore, G′ has no odd cycle and P (G′) is
an integral polytope. Since Π(G′) is a face of P (G′), we have a contradiction.

Now let C be an odd cycle of Ḡ. We can define a fractional vector as follows:

ȳ(v) = 1/2 ∀ nodes v ∈ V2 ∩ V (C),
x̄(a) = 1/2 for a ∈ A(C),
ȳ(v) = 1 ∀ nodes v ∈ V2 \ V (C).

For every node u ∈ V1 \ V (C), we look for an arc (u, v) ∈ δ+(u). If ȳ(v) = 1, we
set x̄(u, v) = 1. If ȳ(v) = 1/2, then there is another arc (u,w) ∈ δ+(u) such that
ȳ(w) = 1/2 or ȳ(w) = 1. We set x̄(u, v) = x̄(u,w) = 1/2. Finally, we set x̄(a) = 0 for
each remaining arc a. This vector satisfies (23)–(26), but it violates the inequality (22)
associated with C. So in this case (23)–(26) does not define an integral polytope. Thus
we can state the following.

Theorem 9. The system (23)–(26) defines an integral polytope if and only if Ḡ
has no odd cycle.

Theorem 10. The UFLP is polynomially solvable for graphs G such that Ḡ has
no odd cycle.

This class of bipartite graphs can be recognized in polynomial time as described
in section 7.

Acknowledgments. We are grateful to Gérard Cornuéjols for pointing out ref-
erences [19] and [9]. We also thank the referees for their helpful comments.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTEGRALITY OF SOME FACILITY LOCATION POLYTOPES 679

REFERENCES

[1] M. Bäıou and F. Barahona, On the p-median polytope of Y -free graphs, Discrete Optim., 5
(2008), pp. 205–219.

[2] J. Byrka and K. Aardal, The approximation gap for the metric facility location problem is
not yet closed, Oper. Res. Lett., 35 (2007), pp. 379–384.

[3] L. Cánovas, M. Landete, and A. Maŕın, On the facets of the simple plant location packing
polytope, Discrete Appl. Math., 124 (2002), pp. 27–53.

[4] A. Caprara and M. Fischetti, {0, 1
2
}-Chvátal-Gomory cuts, Math. Programming, 74 (1996),

pp. 221–235.
[5] D. C. Cho, E. L. Johnson, M. Padberg, and M. R. Rao, On the uncapacitated plant location

problem. I. Valid inequalities and facets, Math. Oper. Res., 8 (1983), pp. 579–589.
[6] D. C. Cho, M. W. Padberg, and M. R. Rao, On the uncapacitated plant location problem.

II. Facets and lifting theorems, Math. Oper. Res., 8 (1983), pp. 590–612.
[7] F. A. Chudak and D. B. Shmoys, Improved approximation algorithms for the uncapacitated

facility location problem, SIAM J. Comput., 33 (2003), pp. 1–25.
[8] V. Chvátal, On certain polytopes associated with graphs, J. Combin. Theory Ser. B, 18 (1975),

pp. 138–154.
[9] M. Conforti and M. R. Rao, Structural properties and recognition of restricted and strongly

unimodular matrices, Math. Programming, 38 (1987), pp. 17–27.
[10] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser, Location of bank accounts to opti-

mize float: An analytic study of exact and approximate algorithms, Management Sci., 23
(1976/1977), pp. 789–810.

[11] G. Cornuejols and J.-M. Thizy, Some facets of the simple plant location polytope, Math.
Programming, 23 (1982), pp. 50–74.

[12] C. De Simone and C. Mannino, Easy Instances of the Plant Location Problem, Technical
report R. 427, IASI-CNR, Rome, Italy, 1996.

[13] M. Guignard, Fractional vertices, cuts and facets of the simple plant location problem, Math.
Programming Stud., 12 (1980), pp. 150–162.

[14] P. B. Mirchandani and R. L. Francis, eds., Discrete Location Theory, Wiley-Intersci. Ser.
Discrete Math. Optim., Wiley, New York, 1990.

[15] R. Müller and A. S. Schulz, Transitive packing: A unifying concept in combinatorial opti-
mization, SIAM J. Optim., 13 (2002), pp. 335–367.

[16] D. B. Shmoys, É. Tardos, and K. Aardal, Approximation algorithms for facility location
problems (extended abstract), in Proceedings of the 29th ACM Symposium on Theory of
Computing, ACM, New York, 1997, pp. 265–274.

[17] M. Sviridenko, An improved approximation algorithm for the metric uncapacitated facility
location problem, in Integer Programming and Combinatorial Optimization, Lecture Notes
in Comput. Sci. 2337, Springer-Verlag, Berlin, 2002, pp. 240–257.

[18] J. Vygen, Approximation Algorithms for Facility Location Problems, Technical report, Uni-
versity of Bonn, Bonn, Germany, 2005.

[19] M. Yannakakis, On a class of totally unimodular matrices, Math. Oper. Res., 10 (1985), pp.
280–304.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 2, pp. 680–693

STEINER TREES AND CONVEX GEOMETRIES∗

MORTEN H. NIELSEN† AND ORTRUD R. OELLERMANN†

Abstract. Let V be a finite set and M a collection of subsets of V . Then M is an alignment
of V if and only if M is closed under taking intersections and contains both V and the empty set.
If M is an alignment of V , then the elements of M are called convex sets and the pair (V,M) is
called an aligned space. If S ⊆ V , then the convex hull of S is the smallest convex set that contains
S. Suppose X ∈ M. Then x ∈ X is an extreme point for X if X \ {x} ∈ M. The collection
of all extreme points of X is denoted by ex(X). A convex geometry on a finite set is an aligned
space with the additional property that every convex set is the convex hull of its extreme points.
Let G be a connected graph. A set S of vertices is g-convex if for every pair u, v of vertices in S,
every vertex that belongs to some u-v geodesic (shortest path) is also in S. A set S of vertices in
G is k-Steiner-convex, denoted by gk-convex, if, for every set T of k vertices of S, every vertex that
belongs to some Steiner tree for T , i.e., a subtree of G of smallest size containing T , is also in S. Let
R = {k1, k2, . . . , kt} be a collection of positive integers such that 2 ≤ k1 < k2 < · · · < kt. We say
a set S of vertices in a connected graph is gR-convex if S is gki

-convex for 1 ≤ i ≤ t. A set S of
vertices of G is g3-convex if, for every pair u, v of vertices of S, distance at least 3 apart in G, every
vertex that belongs to some u-v geodesic in G is also in S. A set of vertices that is both g3-convex
and g3-convex is called a g3

3-convex set. Structural characterizations are given of those classes of
graphs for which (i) the g3-convex sets, (ii) the gR-convex sets for those sets R that have minimum
element 2 or 3, and (iii) the g3

3-convex sets form a convex geometry.

Key words. Steiner distance, Steiner intervals, Steiner convex sets, convex geometries

AMS subject classifications. 05C75, 05C12, 05C17

DOI. 10.1137/070691383

1. Introduction. This paper is motivated by the results and ideas contained in
[7, 8]. We introduce new graph convexities and show how these give rise to struc-
tural characterizations of certain graph classes. For graph terminology we follow [3]
and [5]. All graphs considered here are connected, finite, simple (i.e., without loops
and multiple edges), unweighted, and undirected. The structural characterizations of
graphs that we describe are often given in terms of forbidden subgraphs. Let G and
F be graphs. Then F is an induced subgraph of G if F is a subgraph of G and for
every u, v ∈ V (F), uv ∈ E(F) if uv ∈ E(G). We say a graph G is F -free if it does
not contain F as an induced subgraph. Suppose C is a collection of graphs. Then G
is C-free if G is F -free for every F ∈ C. If F is a path or cycle that is a subgraph of G,
then F has a chord if it is not an induced subgraph of G; i.e., F has two vertices that
are adjacent in G but not in F . An induced cycle of length at least 5 is called a hole.

When it is clear from context which graph is being considered, we denote by N(v)
the set of neighbors (i.e., the neighborhood) of a given vertex v in the graph. Further,
we use N [v] to denote the closed neighborhood of the vertex v, i.e., the set N(v)∪{v}.
If S is a subgraph of G or a subset of V (G), then NS(v) denotes the set of neighbors
of v in S.

We begin with an overview of convexity notions in graphs. For a more extensive
overview of other abstract convex structures, see [16].

∗Received by the editors May 11, 2007; accepted for publication (in revised form) November 24,
2008; published electronically March 4, 2009.

http://www.siam.org/journals/sidma/23-2/69138.html
†University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada (m.nielsen@

uwinnipeg.ca, o.oellermann@uwinnipeg.ca). The second author was supported by an NSERC grant
Canada.

680

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER TREES AND CONVEX GEOMETRIES 681

Let V be a finite set andM a collection of subsets of V . ThenM is an alignment
of V if and only ifM is closed under taking intersections and contains both V and the
empty set. IfM is an alignment of V , then the elements ofM are called convex sets
and the pair (V,M) is called an aligned space. If S ⊆ V , then the convex hull of S is
the smallest convex set that contains S. Suppose X ∈ M. Then x ∈ X is an extreme
point for X if X \ {x} ∈ M. The collection of all extreme points of X is denoted
by ex(X). A convex geometry on a finite set V is an aligned space (V,M) with the
additional property that every convex set is the convex hull of its extreme points.
This property is referred to as the Minkowski–Krein–Milman (MKM) property.

Farber and Jamison [8] established the following fundamental result for convex
geometries.

Theorem 1. Suppose (V,M) is a convex geometry. Then S ∈ M if and only if
there exists an ordering (v1, v2, . . . , vk) of V \ S such that vi is an extreme point of
S ∪ {vi, vi+1, . . . , vk} for each i = 1, 2, . . . , k.

For a given ordering (v1, v2, . . . , vn) of the vertex set V of a graph G, let Gi =
〈{vi, vi+1, . . . , vn}〉; i.e., Gi is the subgraph induced by {vi, vi+1, . . . , vn}. Several
classes of graphs can be characterized in terms of vertex orderings as follows: A graph
G belongs to a class G if and only if there is an ordering (v1, v2, . . . , vn) of V (G) such
that vi has property P in Gi for i = 1, 2, . . . , n. In that case we say that the ordering
(v1, v2, . . . , vn) is a P elimination ordering for G or simply a P ordering for G. For
example, if P is the property “has a complete neighborhood,” then G is the class
of chordal graphs (see [3]). Theorem 1 suggests that such classes of graphs may be
related to convex geometries. In particular, we will be interested in properties P that
describe the extreme vertices with respect to a given graph convexity. Moreover, for
a given collection M of subsets of the vertex set of a graph G, we are interested in
determining when (V (G),M) is a convex geometry.

Several abstract convexities associated with the vertex set of a graph are well
known (see [8]). Their study is of interest in computational geometry and has some
direct applications to other areas—for example, game theory (see [2]). For another
text containing material on graph convexity, see [3].

We next discuss graph convexities whose convex sets are described in terms of
induced paths (i.e., paths without chords) having certain properties. The distance
between a pair of vertices u, v of G is the length of a shortest u-v path in G and is
denoted by dG(u, v) or, if G is clear from context, simply d(u, v). The eccentricity
ecc(v) of a vertex v in G is the maximum distance between v and any other vertex
in G. A vertex at distance ecc(v) from v is said to be an eccentric vertex for v. A
shortest u-v path is also called a u-v geodesic. Geodesics are necessarily induced paths,
but not all induced paths are geodesics. The g-interval (respectively, m-interval)
between a pair u, v of vertices in a graph G is the collection of all vertices that lie on
some u-v geodesic (respectively, induced u-v path) in G and is denoted by I

(G)
g [u, v]

(respectively, I
(G)
m [u, v]). When G is clear from context, the superscript (G) will be

omitted.
A subset S of vertices of a graph is said to be g-convex (m-convex) if it contains

the g-interval (m-interval) between every pair of vertices in S. It is not difficult to see
that the collection of all g-convex (m-convex) sets is an alignment of V . A vertex in a
graph is simplicial if its neighborhood induces a complete subgraph. It is well known
that a graph G has a simplicial elimination ordering (also called a perfect elimination
ordering) if and only if it is chordal, i.e., G has no induced cycles of length more
than 3. It can readily be seen that v is an extreme point for a g-convex or m-convex

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

682 MORTEN H. NIELSEN AND ORTUD R. OELLERMANN

set S if and only if v is simplicial in the subgraph induced by S. Of course, the
convex hull of the extreme points of a convex set S is contained in S, but equality
holds only in special cases. In [8] those graphs for which the g-convex sets form a
convex geometry are characterized.

Theorem 2. Let G = (V, E) be a connected graph and letMg(G) be the collection
of g-convex sets of G. Then (V,Mg(G)) is a convex geometry if and only if G is
chordal and has no induced 3-fan (see Figure 1).

Chordal graphs without induced 3-fans are also known as the ptolemaic graphs
and are precisely the chordal, distance-hereditary graphs. (A graph is distance-
hereditary if for every connected induced subgraph H of G and every pair u, v of
vertices of H , dH(u, v) = dG(u, v).) Moreover, in [8] those graphs for which the m-
convex sets form a convex geometry are characterized as precisely the chordal graphs.

For what follows we use Pk to denote an induced path of order k. A vertex is
simplicial in a set S of vertices if and only if it is not the central vertex of a P3 in
〈S〉. Jamison and Olariu [10] relaxed this condition: They defined a vertex to be
semisimplicial in S if and only if it is not a central vertex of a P4 in 〈S〉.

Claw Paw 3-Fan P4

House Domino A P

Indicates a central vertex of the claw, paw or P4

Fig. 1. Some special graphs.

Dragan, Nicolai, and Brandstädt in [7] introduced another convexity notion that
relies on induced paths. The m3-interval between a pair u, v of vertices in a graph G,
denoted by Im3 [u, v], is the collection of all vertices of G that belong to an induced
u-v path of length at least 3. Let G be a graph with vertex set V . A set S ⊆ V
is m3-convex if and only if, for every pair u, v of vertices of S, the vertices of the
m3-interval between u and v belong to S. It is not difficult to see that the collection
of all m3-convex sets is an alignment. Note that an m3-convex set is not necessarily
connected. It is shown that the extreme points of an m3-convex set are precisely the
semisimplicial vertices of 〈S〉. Moreover, those graphs for which the m3-convex sets
form a convex geometry are characterized in [7].

Theorem 3. Let G = (V, E) be a connected graph and let Mm3(G) be the
collection of m3-convex sets of G. Then the following are equivalent:

(1) G is (house, hole, domino, A)-free.
(2) (V,Mm3(G)) is a convex geometry.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER TREES AND CONVEX GEOMETRIES 683

If G is a graph of order n, there are n! orderings of its vertices. It is thus not
clear, for a given property P, that there is an efficient procedure for recognizing if a
graph has a P elimination ordering. Several linear-time search techniques have been
proposed, two of which we describe here. Rose, Tarjan, and Leuker [14] proposed the
first of these, namely, the lexicographic breadth-first-search (LexBFS).

LexBFS. Order the vertices of a graph G by assigning them numbers from |V | to 1
as follows: For k from n = |V | down to 1, assign the number k to an as yet unnumbered
vertex v which has a lexicographically largest vector (sn, sn−1, . . . , sk+1), where si = 1
if v is adjacent to a vertex numbered i and si = 0 otherwise for k + 1 ≤ i ≤ n. It is
assumed that initially every vector is empty. So LexBFS may begin at any vertex.

The second search technique we describe is due to Tarjan and Yannakakis [15]
and is called the maximum cardinality search (MCS).

MCS. Order the vertices of a graph G by assigning them numbers from |V | to 1 as
follows: For k from n = |V | down to 1, assign the number k to an as yet unnumbered
vertex that is adjacent to a maximum number of numbered vertices.

Jamison and Olariu showed in [10] that the graphs for which every LexBFS or-
dering is a semisimplicial ordering are precisely the HHD -free graphs, i.e., the (house,
hole, domino)-free graphs. Moreover, they characterized the graphs for which every
MCS ordering of every induced subgraph is a semisimplicial ordering as the HHP -free
graphs, i.e., the (house, hole, P)-free graphs.

A set S of vertices in a graph G is g3-convex if, for every pair u, v ∈ S such that
dG(u, v) ≥ 3, I[u, v] ⊆ S. A vertex v in a graph G is defined in [12] to be weakly
semisimplicial in S if and only if, for all u, w ∈ NS(v), one of the following three
conditions holds:

(1) uw ∈ E(G),
(2) uw /∈ E(G) and NS(u) \NS(v) = NS(w) \NS(v),
(3) uw /∈ E(G) and NS(u) \NS(v) 	= NS(w) \NS(v), and for every x in NS(w) \

(NS(v) ∪ NS(u)) we have NG(x) ∩ NG(u) 	= ∅, and for every y in NS(u) \
(NS(v) ∪NS(w)) we have NG(y) ∩NG(w) 	= ∅.

A vertex satisfying condition (1) alone is simplicial. So condition (1) characterizes
extreme points of g- and m-convex sets. A vertex satisfying condition (1) or (2) is
semisimplicial. So these two conditions characterize extreme vertices of m3-convex
sets. It is shown in [12] that v is an extreme point of a g3-convex set if and only if v is
weakly semisimplicial. Note that every semisimplicial vertex is weakly semisimplicial.

We now introduce a graph convexity that generalizes g-convexity. The Steiner
interval of a set S of vertices in a connected graph G, denoted by I(S), is the union
of all vertices of G that lie on some Steiner tree for S, i.e., a connected subgraph that
contains S and has the minimum number of edges among all such subgraphs. Steiner
intervals have been studied, for example, in [11, 13]. A set S of vertices in a graph G
is k-Steiner-convex, denoted by gk-convex, if the Steiner interval of every collection
of k vertices of S is contained in S. Thus S is g2-convex if and only if it is g-convex.
The collection of gk-convex sets forms an aligned space. We call an extreme point of
a gk-convex set a k-Steiner simplicial vertex, abbreviated kSS vertex.

The extreme points of g3-convex sets S, i.e., the 3SS vertices, are characterized
in [4] as those vertices that are not a central vertex of an induced claw, paw, or
P4 in 〈S〉 (see Figure 1). Thus a 3SS vertex is semisimplicial and hence weakly
semisimplicial. In [4] those graphs for which every LexBFS ordering is a 3SS ordering
and those for which every MCS ordering of every induced subgraph is a 3SS ordering
are characterized.

Some of the previous convexity notions may be combined in a natural way to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

684 MORTEN H. NIELSEN AND ORTUD R. OELLERMANN

obtain new convexity notions for graphs. Suppose R = {k1, k2, . . . , kt} is a collection
of positive integers such that 2 ≤ k1 < k2 < · · · < kt. We say a set S of vertices in
a connected graph is gR-convex if S is gki-convex for 1 ≤ i ≤ t. It is readily seen
that the collection of gR-convex sets forms an alignment of V (G). Moreover, v is an
extreme vertex of a gR-convex set S if and only if v is kiSS in S for every ki ∈ R.
Since simplicial vertices are kSS for every k ≥ 3, it follows that if 2 ∈ R, then the
extreme points of a gR-convex set are precisely the simplicial vertices of the set.

We propose a further convexity notion that combines g3-convexity and g3-con-
vexity. A graph is g3

3-convex if it is both g3- and g3-convex. Since the 3SS vertices of
a g3

3-convex set are weakly semisimplicial, the extreme points of a g3
3-convex set are

precisely the 3SS vertices. We give structural characterizations of those graphs G for
which (V (G),M) is a convex geometry, whereM is (i) the collection of all g3-convex
sets; (ii) the collection of all gR-convex sets where R is a set of positive integers, each
at least 2, and where 2 ∈ R or 3 ∈ R; and (iii) the collection of all g3

3-convex sets.
The following results will be useful in what follows. We begin with a structural

characterization of distance-hereditary graphs given in [9]. Suppose C is a cycle and
e and f are two chords of C. If C + e + f is homeomorphic to K4, then we say e and
f are crossing chords.

Theorem 4. A graph G is distance-hereditary if and only if every cycle of length
at least 5 in G has a pair of crossing chords.

Another useful characterization of distance-hereditary graphs is given in [1].
Theorem 5. A connected graph G is distance-hereditary if and only if it is

(house, hole, domino, 3-fan)-free.
As an immediate consequence we have the following.
Corollary 6. Let G be a graph with diam(G) ≤ 2. Then G is distance-

hereditary if and only if G is (house, hole, 3-fan)-free.
Corollary 7. If G is (house, hole, domino, 3-fan)-free, then a set S of vertices

is g3-convex if and only if it is m3-convex.
Proof. If S is m3-convex, then S is g3-convex. Also, by Theorem 5, if S is g3-

convex, then S contains all induced paths between pairs of vertices of S of length at
least 3, since such paths are geodesics. Thus S is m3-convex.

Let k ≥ 2 be an integer. A graph G is defined to be k-Steiner distance-hereditary
if, for every connected induced subgraph H of G and every set S of k vertices in H ,
the Steiner distance of S in H is the same as the Steiner distance of S in G. The
following result was established in [6].

Theorem 8. If G is distance-hereditary, then G is k-Steiner distance-hereditary
for every integer k ≥ 2.

2. Convex geometries.

2.1. g3-convex geometries. Let G = (V, E) be a connected graph and let
Mg3(G) be the collection of g3-convex sets. In this section we determine the class of
connected graphs G for which (V,Mg3(G)) is a convex geometry.

A graph G is a replicated-twin C4 if it is isomorphic to any one of the four graphs
shown in Figure 3(a), where any subset of the dotted edges may belong to G. The
collection of the four replicated-twin C4 graphs is denoted by RC4 . For a set S of
vertices in a graph G, the g3-convex hull of S is denoted by g3-conv(S).

Theorem 9. Let G = (V, E) be a graph. Then the following are equivalent:
(1) G is (P4, RC4)-free.
(2) (V,Mg3(G)) is a convex geometry.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER TREES AND CONVEX GEOMETRIES 685

Proof. Suppose (V,Mg3(G)) is a convex geometry. Suppose first that G contains
an induced P4, say, P = uv1v2v. Let S be the g3-convex hull of V (P). Since u and v
are the only 3SS vertices of P , the 3SS vertices of S are a subset of {u, v}. But the
g3-convex hull of any subset T of {u, v} is just T and hence does not contain all the
vertices of S, contradicting the fact that (V,Mg3(G)) is a convex geometry. Suppose
next that G contains a replicated-twin C4, say, H , as an induced subgraph. Then H
contains no 3SS vertices. Let S = g3-conv(V (H)). Since H has no 3SS vertices, S
has no 3SS vertices, and S is therefore not the g3-convex hull of its 3SS vertices, again
contradicting the fact that (V,Mg3(G)) is a convex geometry. Thus (2) implies (1).

Suppose there is a graph G for which (1) but not (2) holds. Since G is P4-free,
diam(G) ≤ 2 and G is (house, hole, domino, 3-fan)-free. Let G be such a graph
of smallest possible order. We may assume that diam(G) = 2, for if diam(G) = 1,
then G is complete and (2) holds. Then any proper connected induced subgraph of
G has the property that it is the g3-convex hull of its extreme points. (Note that,
by Theorem 5, G is distance-hereditary, so this subgraph also has diameter at most
2.) One can check, if G has order at most 4, that (V,Mg3(G)) is a convex geometry.
Suppose thus that |V | ≥ 5.

Case 1. The radius of G is 1. Then G has a vertex v that is adjacent to every
other vertex of G.

Subcase 1.1. G − v is connected. By our choice of G, the g3-convex hull of the
extreme vertices of G − v is V (G − v). Suppose w is an extreme point of V (G − v).
Then w is not the central vertex of an induced claw or paw in G−v. Since v is adjacent
to every other vertex of G, it is not a peripheral vertex of any induced claw or paw.
Hence w is an extreme point of G also. So the collection of extreme points of G, ex(V),
contains the collection of extreme points of G− v, i.e., ex (V (G− v)). By Corollary 6,
G is distance-hereditary, and thus, by Theorem 8, G is Steiner distance-hereditary.
Thus IG−v(S) ⊆ IG(S) for every set S of vertices in G− v. This holds in particular if
S is a set of three vertices of G− v. Therefore, V (G− v) = g3-conv(ex (V (G− v))) ⊆
g3-conv(ex (V)). So if v is an extreme point of G, V = g3-conv(ex (V)). If v is not an
extreme point of G, it is the central vertex of a claw or paw whose three peripheral
vertices are contained in G− v. So v is in the Steiner interval of these three vertices
and thus in the g3-convex hull of the extreme vertices of G.

Subcase 1.2. G−v is disconnected. Let H1, H2, . . . , Hk, k ≥ 2, be the components
of G − v. Since G is distance-hereditary, diam(Hi) ≤ 2. By the choice of G, each
V (Hi) is the g3-convex hull of its extreme points. As in Subcase 1.1, the extreme
points of Hi, 1 ≤ i ≤ k, are contained in the extreme points of G. By our choice of G,
the g3-convex hull (in G) of ex(V (Hi)) is either V (Hi) or V (Hi)∪{v} (for 1 ≤ i ≤ k).
If, for some i with 1 ≤ i ≤ k, Hi has at least two vertices, then Hi contains at least
two extreme points, say, x and y. Let z be an extreme point of Hj for some j 	= i.
Then v is in the Steiner interval for {x, y, z}. Hence v is in g3-conv(ex (V)). We
may thus assume that each Hi contains exactly one vertex. Since G has at least five
vertices, this implies that G−v has at least four components. Thus v is in the Steiner
interval of three extreme points of G chosen from distinct components of G− v. Thus
again g3-conv(ex (V)) = V .

Case 2. The radius of G is 2. Let u be any vertex in G. Since each vertex has
eccentricity 2, there exists a vertex u′ such that d(u, u′) = 2. Let S = N(u)∩N(u′). If
u has a neighbor w such that d(w, u′) = 2, then S ⊆ N(w); otherwise, if r ∈ S \N(w),
then wuru′ is an induced P4 (which is not possible in a distance-hereditary graph of
diameter two). Similarly, if u′ has a neighbor w such that d(w, u) = 2, then S ⊆ N(w).

By our choice of G, there exists a vertex v ∈ V which is not 3SS ; i.e., v is the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

686 MORTEN H. NIELSEN AND ORTUD R. OELLERMANN

central vertex of an induced paw or claw 〈{v, x, y, z}〉 for some vertices x, y, z. Among
all vertices u that are the central vertex of some paw or claw induced by {u, x, y, z},
let v be one of maximum degree in G. We may assume that zx, zy /∈ E. Let v′ be an
eccentric vertex for v.

Let S = N(v)∩N(v′). By the above observation, either {x, y, z} ⊆ S or d(x, v′) =
d(y, v′) = d(z, v′) = 2.

Subcase 2.1. {x, y, z} ⊆ S. We show first that N(v) = N(v′). Suppose w ∈
N(v) \ N(v′). Then w is adjacent with each of x, y, and z; otherwise, G contains
an induced P4, wvuv′, for some u ∈ {x, y, z}. But now {v, w, x, y, z, v′} induces a
replicated-twin C4, which is a contradiction. Hence N(v) ⊆ N(v′) and, by symmetry,
N(v′) ⊆ N(v).

We now show that V \ {v, v′} = S. Suppose r ∈ V \ (S ∪ {v, v′}). If ru ∈ E
for u = x or y, then rz ∈ E (otherwise, ruvz is an induced P4). If rz ∈ E, then
ru ∈ E for u = x and y (otherwise, rzvu is an induced P4 for u = x or y). Hence if
ru ∈ E for some u ∈ {x, y, z}, then {x, y, z} ⊆ N(r); but then 〈{v, r, v′, x, y, z}〉 is a
replicated-twin C4. So r must be nonadjacent with each of x, y, and z.

Since d(r, v′) = 2, there exists w ∈ N(r) ∩ (S \ {x, y, z}) and wu ∈ E for all
u = x, y, z (otherwise, 〈{r, w, v, u}〉 is a P4). Now, as w is the central vertex of the
claw or paw 〈{w, x, y, z}〉 and deg w ≥ |{r, v, x, y, z, v′}| = 6, by the choice of v,
there must exist two vertices w′ and w′′ in S \N [w]. Then rw′, rw′′ ∈ E (otherwise,
w′vwr or w′′vwr is an induced P4); however, this implies that 〈{r, v, v′, w, w′, w′′}〉 is
a replicated-twin C4. Hence V \ {v, v′} = S.

In particular, G − v is connected. Suppose every extreme point of V (G − v) is
also an extreme point of V . By our choice of G, the g3-convex hull of the extreme
points (i.e., the 3SS vertices) of G− v is V (G− v) and thus contains x, y, and z. By
Theorem 5, this implies that x, y, z also belong to the g3-convex hull of the extreme
points of V , and hence so does v, which is a contradiction. Therefore, there is some
extreme point u of V (G− v) that is not an extreme point of V . Thus u is the central
vertex of some paw or claw in G but not in G − v; i.e., this paw or claw contains
v. Let {u, v, s, t} be the vertices of this paw or claw. Then, since either s or t must
belong to S, 〈{s, t, v}〉 contains at least two edges, which contradicts the assumption
that 〈{u, v, s, t}〉 is a claw or paw.

Subcase 2.2. d(x, v′) = d(y, v′) = d(z, v′) = 2. Let u ∈ S. Then u is adjacent
with every t ∈ {x, y, z} (otherwise, tvuv′ is an induced P4), so u must have degree
at least |S| − 2 in 〈S〉 (otherwise, 〈{x, y, z, u, u′, u′′}〉 is a replicated-twin C4, where
u′, u′′ ∈ S \N [u]). In fact, u is adjacent with every vertex in N(v) \ S.

Now, since uv′ ∈ E and vv′ /∈ E and since u is the central vertex of the paw
or claw 〈{u, x, y, z}〉, the choice of v implies that there must exist a (unique) vertex
w ∈ S \ N [u] and that u cannot be adjacent with any vertex in V \ (N [v] ∪ {v′}).
Hence N(v′) \N(v) = ∅ (otherwise, 〈{t, v′, u, v}〉 is a P4 for t ∈ N(v′) \N(v)).

Suppose w′ ∈ V −(N [v]∪{v′}). Since G is connected, we may choose w′ such that
it is adjacent to some vertex w′′ in N(v) \ {u}. By the above observations, w′′ /∈ S.
So w′′ ∈ N(v) \ S; but then 〈{w′, w′′, u, v′}〉 is a P4. Thus V \ (N [v] ∪ {v′}) = ∅.

Note that G − v is connected. We can argue as in Subcase 2.1 that there must
exist a vertex u′ ∈ V (G − v) which is an extreme vertex in G − v but not in G.
Hence u′ is the central vertex of a paw or claw 〈{u′, v, a, b}〉 containing v. Since
V \ (N [v]∪{v′}) = ∅ and 〈{v, a, b}〉 contains at most one edge, we must have (without
loss of generality) a = v′ and b ∈ N(v) \ S, and, hence, u′ ∈ S. But then u′ is the
central vertex of the claw 〈{u′, x, y, z}〉 in G− v and hence is not an extreme point of
V (G− v), contradicting the choice of u′.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER TREES AND CONVEX GEOMETRIES 687

2.2. gR-convex geometries. In this section we show that if R = {k1, k2, . . . , kt}
is a collection of positive integers such that k1 < k2 < · · · < kt and k1 = 2 or 3, then
the class of graphs for which the gR-convex sets form a convex geometry is precisely
the same as the class for which the gk1 -convex sets form a convex geometry. For a
connected graph G, let MgR(G) be the collection of all gR-convex sets of G.

Theorem 10. Let G = (V, E) be a connected graph and R = {k1, k2, . . . , kt} be
a collection of positive integers such that 2 = k1 < k2 < · · · < kt. Then the following
are equivalent:

(1) G is chordal without an induced 3-fan.
(2) (V,MgR(G)) is a convex geometry.
Proof. Let G be chordal without an induced 3-fan and let S be a gR-convex set.

Then S is g2- or g-convex since 2 ∈ R. Thus, as mentioned in section 1, the extreme
vertices of S are the simplicial vertices of 〈S〉. So, by Theorem 2, S is the convex hull
of its extreme points.

For the converse, suppose that G is a connected graph with the property that
every gR-convex set is the convex hull of its extreme points. We show first that G
has no induced 3-fan. Suppose G has an induced 3-fan as shown in Figure 2. Let
S = {u, v, w, x, y}. Then S is not gR-convex, since the extreme points of S are u and
x and the gR-convex hull of {u, x} in 〈S〉 is {u, x, y} 	= S. Let S′ be the gR-convex
hull of S. Then any vertex in S′ \ S is not an extreme point of S′ and thus not
simplicial; otherwise, S′ is not the smallest convex set containing S. So the extreme
points of S′ must be contained in {u, x}. But any proper subset of {u, x} does not
have a gR-convex hull that contains S. So u, x are the extreme vertices of S′ and thus
simplicial in 〈S′〉. But then the common neighbors of u and x in S′ (this includes
y) induce a complete graph, and thus these vertices together with u and x form a
gR-convex set which does not contain v or w. So the convex hull of {u, x} does not
contain S. Thus G has no induced 3-fan. Moreover, G is chordal as we now see.
Since V is a gR-convex set, G must have simplicial vertices. Let v1 be one of them.
Then V \ {v1} is gR-convex and hence either is empty or contains a simplicial vertex.
Continuing in this manner, we see that G has a simple elimination ordering and hence
is chordal.

y

u
v w

x

Fig. 2. The 3-fan.

Theorem 11. Let G = (V, E) be a connected graph and R = {k1, k2, . . . , kr} be
a collection of positive integers such that 3 = k1 < k2 < · · · < kr. Then the following
are equivalent:

(1) G is (P4, RC4)-free.
(2) (V,MgR(G)) is a convex geometry.
Proof. We show first that if v is a 3SS vertex in some gR-convex set S of G, then

v is kSS in 〈S〉 for all k ∈ R. Suppose k ∈ R \ {3} and let v1, v2, . . . , vk be k distinct
vertices of S \ {v}; we need to show that no Steiner tree for {v1, v2, . . . , vk} contains
v. Since v is 3SS, it is not the central vertex of an induced paw, claw, or P4 in 〈S〉.
Suppose some Steiner tree for {v1, v2, . . . , vk} contains v; among all such trees, let T
be one for which degT (v) is minimum. Note that degT (v) ≥ 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

688 MORTEN H. NIELSEN AND ORTUD R. OELLERMANN

Suppose degT (v) ≥ 3. Since v is not the central vertex of an induced claw, there
exists an edge xy ∈ E(〈NT (v)〉); but then T ′ = (T − xv) ∪ xy is a Steiner tree for
{v1, v2, . . . , vk}, which contains v and has degT ′(v) = degT (v) − 1, contradicting the
choice of T . Hence degT (v) = 2, say, NT (v) = {x, y}. Since k > 2, we may assume,
without loss of generality, that there is a vertex z /∈ {x, y, v} such that xz ∈ E(T).
As before, by minimality of degT (v), xy, zy /∈ E. Thus, since 〈{x, y, z, v}〉 is not a P4,
zv ∈ E, implying the contradiction that 〈{x, y, z, v}〉 is a paw with v as the central
vertex. This shows that the extreme vertices of a gR-convex set are exactly its 3SS
vertices.

Now suppose G is (P4, RC4)-free. If S is a gR-convex set in G, then it is, in
particular, a g3-convex set and hence, by Theorem 9, the g3-convex hull of its 3SS
vertices; i.e., S is the gR-convex hull of its extreme vertices.

Conversely, suppose (V,MgR(G)) is a convex geometry. Now the same arguments
we used in the first paragraph of the proof of Theorem 9 show that G has no induced
P4 or RC4 , since the gk-convex hull (for each k ∈ R) of any set of at most two vertices
is the set itself.

2.3. g3
3-convex geometries. Before characterizing the class of graphs for which

the g3
3-convex sets form a convex geometry, we introduce another useful result. Recall

that the graphs for which the m3-convex sets form a convex geometry are characterized
in [7] as the (house, hole, domino, A)-free graphs. The proof of this characterization
depends on the following result also proven in [7].

Theorem 12. If G is a (house, hole, domino, A)-free graph, then every vertex
of G either is semisimplicial or lies on an induced path of length at least 3 between
two semisimplicial vertices.

Tailed-twin C s‘4

u

x

y

z

v

u

x

y

z

v

Replicated-twin C s‘4

ww

(a) (b)

Fig. 3. Forbidden subgraphs for g3
3-convex geometries.

We now proceed to characterize those graphs for which the g3
3-convex alignment

forms a convex geometry. Let Mg3
3
(G) be the collection of all g3

3-convex sets of a
graph G. Recall that a graph F is a replicated-twin C4 if it is isomorphic to one of
the four graphs shown in Figure 3(a) where any subset of the dotted edges may be
chosen to belong to F , and the collection of replicated-twin C4’s is denoted by RC4 .
A graph F is a tailed-twin C4 if it is isomorphic to one of the two graphs shown in
Figure 3(b) where again any subset of the dotted edges may be chosen to belong to
F . We denote the collection of tailed-twin C4’s by TC4 .

In order to prove the next main result we first establish the following useful lemma.
Lemma 13. Suppose G is a connected distance-hereditary graph that is tailed-twin

C4-free. If G contains an A as an induced subgraph and if u, v are the two leaves of
A, then the g3

3-convex hull of {u, v} is precisely I[u, v].
Proof. Since G is distance-hereditary and the A is an induced subgraph of G,

d(u, v) = 3. Thus I[u, v] is a subset of the g3
3-convex hull of {u, v}. Denote by V1

the set of vertices at distance 1 from u and by V2 the set of vertices at distance 2

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER TREES AND CONVEX GEOMETRIES 689

from u in I[u, v]. Necessarily, every vertex in V2 is adjacent with v. We show first
that every vertex in V1 is adjacent with every vertex in V2. Suppose some vertex a
in V1 is nonadjacent with some vertex b in V2. Since b ∈ V2, there is some b′ ∈ V1

such that bb′ ∈ E. Also, since a ∈ I[u, v], there is some a′ ∈ V2 such that aa′ ∈ E.
Thus C = uaa′vbb′u is a 6-cycle whose only possible chords are ab′, b′a′, a′b. Thus
C is a 6-cycle without crossing chords. By Theorem 4, this is not possible in a
distance-hereditary graph. Thus u, v are the only vertices in I[u, v] that are distance
(at least) 3 apart. Hence, if there is a vertex in g3

3-conv({u, v}) (denote this set by S)
that does not belong to I[u, v], then there is some vertex w in S \ I[u, v] such that w
is on the Steiner tree of some set of three vertices {a, b, c} in I[u, v]. Thus 〈{a, b, c}〉
is a disconnected graph. From the above observation, the only sets of three vertices
in I[u, v] that induce a disconnected graph are sets that (i) contain both u and v and
one vertex from either V1 or V2, (ii) contain u and two vertices from V2, (iii) contain v
and two vertices in V1, or (iv) are contained in V1 or in V2. In (i), I({a, b, c}) consists
of V2∪{a, b, c} or V1∪{a, b, c}, respectively; in (ii), I({a, b, c}) consists of V1∪{a, b, c};
and in (iii), I({a, b, c}) consists of V2 ∪ {a, b, c}. Thus we must be in case (iv), and
so {a, b, c} is contained in V1 or V2. We consider the first case, since the second case
can be argued similarly. Let x be any vertex in V2. By the above observation, a, b,
and c are all adjacent with x. Thus {u, a, b, c, x, v} induces a tailed-twin C4 which is
forbidden.

Theorem 14. For a connected graph G = (V, E) the following are equivalent:
(1) G is (house, hole, domino, A, 3-fan, RC4 , TC4)-free.
(2) (V,Mg3

3
(G)) is a convex geometry.

Proof. To show that (2) implies (1), suppose F is a house, hole, domino, repli-
cated-twin C4, or tailed-twin C4. Then F has at most one 3SS vertex. Suppose G
is a graph that contains F as an induced subgraph. Then the set of extreme points
of the convex hull of V (F) is contained in the collection of 3SS vertices of F . So the
convex hull of the extreme points of the g3

3-convex hull of V (F) is empty or consists of
a single vertex. So in this case the g3

3-convex alignment of G does not form a convex
geometry. Moreover, the 3-fan has two 3SS vertices that are distance 2 apart. So the
convex hull of the set consisting of these two 3SS vertices is just the set itself. Thus if
G contains a 3-fan, then the convex hull of the vertices in the 3-fan is not the convex
hull of its extreme points. Suppose now that G contains an A. Since G is (house, hole,
domino, 3-fan)-free, G is distance-hereditary by Theorem 5. Let the leaves of the A
be u and v. Since G is also tailed-twin C4-free, it follows from Lemma 13 that the
g3
3-convex hull of {u, v} consists of the vertices in I[u, v] and hence does not contain

the two vertices of A that are not on the u-v geodesic. Let S be the g3
3-convex hull

of the vertices in A. Then its extreme vertices are contained in the set {u, v}. So
the convex hull of the extreme points of S does not contain all the vertices in A and
hence is not S. Thus (2) implies (1).

We now show that (1) implies (2). It is not difficult to see that if G is a connected
graph of order at most 4, then every g3

3-convex set is the convex hull of its extreme
points. Suppose now that there exists a connected (house, hole, domino, A, 3-fan,
RC4 , TC4)-free graph G (abbreviated by HHDA 3-fanRC4TC4-free graph G) for which
(V,Mg3

3
) is not a convex geometry. We may assume that G is such a graph of smallest

possible order. Thus every proper connected induced subgraph of G has the property
that its vertex set is the g3

3-convex hull of its extreme points, i.e., the 3SS vertices. By
assumption, V is not the g3

3-convex hull of its extreme points. Since V is g3
3-convex,

it is g3-convex; so by Corollary 7, V is m3-convex. By Theorem 12, every vertex of
G either is semisimplicial or lies on an induced path of length at least 3 between two

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

690 MORTEN H. NIELSEN AND ORTUD R. OELLERMANN

semisimplicial vertices. By Theorem 5, such a path is necessarily a geodesic of length
at least 3. Thus if every semisimplicial vertex is 3SS, then V is the g3

3-convex hull of
its extreme points, which is a contradiction. Let S be the g3

3-convex hull of ex(V).
We now assume that V \ S 	= ∅.

Case 1. V \S contains a vertex a that is not semisimplicial. Since G is HHDA-free
and V is m3-convex, Theorem 12 guarantees that a lies on an induced path of length
at least 3 between two semisimplicial vertices w, w′ of G. By Theorem 5, such an
induced w-w′ path is a geodesic. Among all pairs {w, w′} of semisimplicial vertices
such that a ∈ I[w, w′] and d(w, w′) ≥ 3 we will assume that {v, v′} is a pair that has
a maximum number of 3SS vertices. Let k = d(v, v′) ≥ 3. At least one of v and v′,
say, v, is not 3SS in G; otherwise, a lies on a geodesic of length at least 3 between
two extreme vertices of V . We may also assume that all neighbors w of v that are
also distance k from v′ are not 3SS vertices; otherwise, a lies on a w-v′ geodesic, and
we have a contradiction to the choice of the pair {v, v′}. Since v is semisimplicial but
not 3SS, it must be the central vertex of an induced claw or paw in G. No neighbor
of v is distance k + 1 from v′; otherwise, v is not semisimplicial. So all neighbors of
v are distance k or k − 1 from v′. Let x, y, z be the neighbors of v in a claw or paw
and assume z is nonadjacent to both x and y. If one of x, y, or z is distance k − 1
from v′, then all three of these vertices are distance k − 1 from v′; otherwise, v is
not semisimplicial. Suppose x, y, and z are all distance k − 1 from v′. Then every
neighbor of x at distance k − 2 from v′ is a neighbor of z, and every neighbor of y at
distance k− 2 from v′ is a neighbor of z; otherwise, v is not semisimplicial. If x and y
have a common neighbor at distance k− 2 from v′, then G has a tailed-twin C4 as an
induced subgraph which is forbidden. Since this does not happen, xy ∈ E and every
neighbor of x distance k− 2 from v′ is not adjacent with y. Let w be a neighbor of x
distance k − 2 from v′. Then 〈{v, x, y, z, w}〉 induces a house, which is forbidden.

We may thus assume x, y, and z are all distance k from v′. Note that any neighbor
of v that is distance k− 1 from v′ in G is necessarily adjacent with x, y, and z, since
v is semisimplicial in G. So a lies on a geodesic of length k ≥ 3 between each of the
vertices in {x, y, z} and v′. So x, y, and z are not 3SS. In particular, either z is the
central vertex of an induced claw or paw or z is not semisimplicial.

Subcase 1.1. z is not semisimplicial. Let P = rzst be an induced P4 containing z
as central vertex. Then d(r, t) = 3, so rt /∈ E and r and t have no common neighbor.
Also, t is neither x nor y; otherwise, rzvt(= x or y) is an induced P4 containing v as a
central vertex (unless rv ∈ E, which is not possible, since d(r, t) = 3). Clearly, v 	= s,
since v is semisimplicial. Suppose v = r. Since xvzs and yvzs are paths of length 3
containing v as central vertex, since z is nonadjacent with both x and y, and since
r(= v) is nonadjacent with s, we have sx, sy ∈ E; otherwise, v is not semisimplicial.
But then 〈{x, y, z, s, t, v(= r)}〉 is a tailed-twin C4, which is impossible. So we may
assume {v, x, y} ∩ {r, z, s, t} = ∅.

If vs /∈ E, then xs, ys ∈ E, since v is semisimplicial. If rv ∈ E, then rvxs and rvys
are induced paths of length 3 containing v as the central vertex, unless rx, ry ∈ E.
Thus 〈{r, v, x, y, z, s}〉 induces a replicated-twin C4, which is not possible. So rv /∈ E.
Now rzvx and rzvy are induced P4’s having v as the central vertex, unless rx, ry ∈ E.
Again, 〈{r, v, x, y, z, s}〉 induces a replicated-twin C4, which is forbidden.

So vs ∈ E. If rv ∈ E, then vt /∈ E, since d(r, t) = 3. But then tsvr is an induced
P4 containing v as the central vertex. So rv /∈ E. Necessarily, rx, ry ∈ E, since
v is semisimplicial. Now rxvs and ryvs induce P4’s having v as the central vertex,
unless xs, ys ∈ E. But then 〈{v, s, x, y, z, r}〉 induces a replicated-twin C4, which is
forbidden.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER TREES AND CONVEX GEOMETRIES 691

Thus we have shown that, whenever v is the central vertex of a claw or paw in
an induced subgraph 〈{v, x, y, z}〉 where zx, zy /∈ E, then z is semisimplicial and thus
the central vertex of an induced claw or paw.

Subcase 1.2. z is the central vertex of an induced claw or paw in G. Let r, s, t be
the neighbors of z in such a claw or paw. Note that these three vertices differ from x
and y, since they are adjacent with z. We may assume that v does not equal r or s.

Subcase 1.2.1. There is an induced claw or paw with z as central vertex that also
contains v. Using the above notation we assume v = t. We may assume that v is
nonadjacent with r. This implies that xr, yr ∈ E, since otherwise rzva is an induced
P4 with v as the central vertex for some a ∈ {x, y}. But then 〈{r, s, x, y, z, v}〉 is a
replicated-twin C4, which is forbidden.

If vs /∈ E, then xs, ys ∈ E; otherwise, szva is an induced P4 with v as the central
vertex for some a ∈ {x, y}.

Suppose vs ∈ E. Then rs /∈ E. Now svyr and svxr are induced P4’s, unless
sx, sy ∈ E. Again, 〈{r, s, x, y, z, v}〉 is a replicated-twin C4, which is forbidden.

Subcase 1.2.2. No induced claw or paw having z as the central vertex contains
v. Then v /∈ {r, s, t} and v and z together with any two of r, s, t do not induce a
claw or paw with z as central vertex. In particular, v must be adjacent with at least
two of the three vertices r, s, t. Suppose that v is nonadjacent to one of r, s, t, say, r.
Then rs, vs, vt ∈ E. So yvzr and xvzr are induced P4’s having v as a central vertex,
unless rx, ry ∈ E. Since rs ∈ E and 〈{z, r, s, t}〉 is a claw or paw with z as the central
vertex, ts, tr /∈ E. Since vt ∈ E, tvxr and tvyr induce P4’s containing v as the central
vertex, unless tx, ty ∈ E. But then 〈{r, x, y, z, v, t}〉 is a replicated-twin C4, which is
forbidden.

So v is adjacent with all three vertices r, s, t. Thus 〈{v, r, s, t}〉 induces a claw or
paw. We may assume ts, tr /∈ E. As in Subcase 1.1 we can show that t is semisimplicial
and thus the central vertex of an induced claw or paw with vertices t, r1, s1, t1 where
we may assume that t1r1, t1s1 are not edges of G. From Subcase 1.2.1 we may assume
v, z, r, s, t /∈ {r1, s1, t1}. From Subcase 1.2.2, both v and z are adjacent with all three
vertices in {r1, s1, t1}. So x, y /∈ {r1, s1, t1}. Now t1 is semisimplicial and thus the
central vertex of some induced claw or paw 〈{t1, r2, s2, t2}〉 where we may assume
t2s2, t2r2 /∈ E. Moreover, one can argue as before that v, z, x, y, r, s, t, r1, s1, t1 /∈
{r2, s2, t2} and that v, z, t, and t1 are all adjacent with r2, s2, t2. This shows that G
has infinitely many vertices, which is not possible. So this case cannot occur.

Case 2. Every vertex of V \ S is semisimplicial, and thus each vertex of V \ S is
the central vertex of a claw or paw.

Subcase 2.1. diam(G) ≤ 2. By Theorem 5, G is distance hereditary. Thus,
since diam(G) ≤ 2, every vertex of G is semisimplicial, and the extreme points of
V are precisely the vertices that are not the central vertex of an induced claw or
paw. Moreover, the g3

3-convex sets of G are precisely the g3-convex sets of G, and
the g3

3-convex hull of any set of vertices in G is the same as the g3-convex hull of the
set. Since G contains no induced P4 and is RC4-free, Theorem 9 implies that V is the
g3
3-convex hull of its extreme points. So this case cannot occur.

Subcase 2.2. diam(G) ≥ 3. Then G has vertices that are not semisimplicial.
These necessarily belong to S. Thus S must contain at least two vertices that are not
semisimplicial. Each of these must either be central vertices of a geodesic between
two vertices of S that are distance at least 3 apart or belong to a Steiner tree of a set
of three vertices of S. Thus S has at least four vertices and is thus connected (since
it contains the Steiner interval of every subset of three vertices that it contains).

Observe that G−S has only one component; for if H1, H2, . . . , Hk are the compo-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

692 MORTEN H. NIELSEN AND ORTUD R. OELLERMANN

nents of G−S where k ≥ 2, then G− V (Hk) is connected, and thus, by our choice of
G, V \V (Hk) is the g3

3-convex hull of its extreme points. No vertex of Hk is adjacent
with any vertices of Hi for 1 ≤ i ≤ k − 1; thus the vertices of Hi for 1 ≤ i ≤ k − 1
are still the central vertex of a claw or paw in G − V (Hk). Therefore, the extreme
points of V \ V (Hk) are contained in S. However, the g3

3-convex hull of any subset
of vertices of S is contained in S. Hence the g3

3-convex hull of the extreme points of
V \ V (Hk) is not V \ V (Hk), contrary to our choice of G. Thus G − S has exactly
one component, say, H .

Observe that diam(H) ≤ 2, since G is distance-hereditary and every vertex of H
is semisimplicial.

Subcase 2.2.1. H contains a vertex v whose eccentricity in G is at least 3. Let
v′ be an eccentric vertex for v. Then d = d(v, v′) ≥ 3. Since diam(H) ≤ 2, we have
v′ ∈ S. Let Vi be the collection of vertices distance i from v in I[v, v′] (1 ≤ i ≤ d).
Since the vertices of V1 ∪ V2 are not semisimplicial, they belong to S.

We show that neighbors of H that belong to S are either in V1 or at distance at
least d from v′. Let w be a neighbor of v in S \ V1. If d(w, v′) ≤ d − 1, then either
w ∈ V1 or d(v, v′) < d, neither of which is possible. So d(w, v′) ≥ d. Suppose now
that u is a neighbor of v in H . Then u is not adjacent with a vertex of Vi for i ≥ 2;
otherwise either u is not semisimplicial or d(v, v′) < d, neither of which is possible.
Since v is semisimplicial, u is adjacent with every vertex of V1. So d(u, v′) ≤ d. If
d(u, v′) < d, then either u is not semisimplicial or d(v, v′) < d, which is not possible.
Hence d(u, v′) = d for every neighbor u of v in H . As we argued for v, the neighbors
of u in S either are in V1 or are distance at least d from v′. Since diam(H) ≤ 2, every
vertex of H not adjacent with v (if any) is necessarily adjacent with a neighbor of v.
Suppose x is a vertex of H distance 2 from v. Let u be a common neighbor of v and
x in H . Since d(u, v′) = d, we can argue as above that every neighbor of x in S is
either in V1 or at distance at least d from v′.

Now v′ is not a cut-vertex of G, since it is an eccentric vertex for v. So, by our
choice of G, the g3

3-convex hull of the extreme points of V (G− v′) is V (G− v′). Since
no vertex of H is adjacent with v′, each vertex of H is the central vertex of a claw or
paw in G−v′. So the extreme points of V (G−v′) are contained in S. From Theorem 8
it follows that S \ {v′} is a g3

3-convex set, and the convex hull of the extreme points
of V (G− v′) is thus contained in S \ {v′}, which is a contradiction.

Subcase 2.2.2. Every vertex of H has eccentricity 2 in G. (Note that since
diam(G) ≥ 3, no vertex of G has eccentricity 1.) Then S contains all the vertices
whose eccentricity equals the diameter. If v is a vertex of H , then v is not adjacent
with a vertex having eccentricity at least 3; otherwise, v either is not semisimplicial
or has eccentricity at least 3, neither of which is possible. Thus no vertex of G having
eccentricity equal to the diameter is adjacent with a vertex of H . Let w be a vertex
such that ecc(w) = diam(G). Then w is not a cut-vertex of G. So by the choice of G,
the g3

3-convex hull of the extreme points of V (G − w) is V (G − w). Since no vertex
of H is adjacent with w, the extreme points of V (G − w) are contained in S \ {w}.
Since S \ {w} is a g3

3-convex set of G−w, the g3
3-convex hull of the extreme points of

V (G− w) is thus contained in S \ {w}, which is a contradiction.

3. Concluding remarks. It appears to be an open problem to determine the
class of graphs for which the g3-convex sets form a convex geometry. Moreover, the
class of graphs for which every LexBFS ordering is a weakly semisimplicial ordering
has not yet been characterized, and neither has the class of graphs for which every
MCS ordering of every induced subgraph is weakly semisimplicial. The task of char-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER TREES AND CONVEX GEOMETRIES 693

acterizing extreme vertices of gk-convex sets for k ≥ 4 will become increasingly more
tedious and thus less appealing. However, in view of section 2.2, the problem of ex-
amining relationships between classes of graphs for which certain Steiner convexities
are convex geometries is more interesting. Suppose R = {k1, k2, . . . , kt} is a collection
of positive integers such that 2 ≤ k1 < k2 < · · · < kt. One may, for example, ask
whether the class of graphs for which the gR-convex sets form a convex geometry is
the same as the class of graphs for which the gk1-convex sets form a convex geometry.
Of course, this question was answered in the affirmative in section 2.2 for the special
cases where k1 = 2 and k1 = 3.

REFERENCES

[1] H.-J. Bandelt and H. M. Mulder, Distance-hereditary graphs, J. Combin. Theory Ser. B, 41
(1986), pp. 182–208.

[2] J. M. Bilbao and P. H. Edelman, The Shapley value on convex geometries, Discrete Appl.
Math., 103 (2000), pp. 33–40.

[3] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: A Survey, SIAM Monographs
on Discrete Mathematics and Applications 3, SIAM, Philadelphia, 1999.

[4] J. Caceres and O. R. Oellermann, On 3-Steiner Simplicial Elimination, Discrete Math., to
appear.

[5] G. Chartrand and L. Lesniak, Graphs and Digraphs, 3rd ed., Chapman and Hall, New York,
1996.

[6] D. P. Day, O. R. Oellermann, and H. C. Swart, Steiner distance-hereditary graphs, SIAM
J. Discrete Math., 7 (1994), pp. 437–442.

[7] F. F. Dragan, F. Nicolai, and A. Brandstädt, Convexity and HHD-free graphs, SIAM J.
Discrete Math., 12 (1999), pp. 119–135.

[8] M. Farber and R. E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic
Discrete Methods, 7 (1986), pp. 433–444.

[9] E. Howorka, A characterization of distance hereditary graphs, Quart. J. Math. Oxford Ser.
(2), 28 (1977), pp. 417–420.

[10] B. Jamison and S. Olariu, On the semi-perfect elimination, Adv. in Appl. Math., 9 (1988),
pp. 364–376.

[11] E. Kubicka, G. Kubicki, and O. R. Oellermann, Steiner intervals in graphs, Discrete Appl.
Math., 81 (1998), pp. 181–190.

[12] O. R. Oellermann, Convexity Notions in Graphs, http://www-ma2.upc.edu/seara/wmcgt06/.
[13] O. R. Oellermann and M. L. Puertas, Steiner intervals and Steiner geodetic numbers in

distance hereditary graphs, Discrete Math., 307 (2007), pp. 88–96.
[14] D. J. Rose, R. E. Tarjan, and G. S. Leuker, Algorithmic aspects of vertex elimination on

graphs, SIAM J. Comput., 5 (1976), pp. 266–283.
[15] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs,

test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput.,
13 (1984), pp. 566–579.

[16] M. J. L. Van de Vel, Theory of Convex Structures, North–Holland, Amsterdam, 1993.

	SJDMEC_V23_i1_p0001
	SJDMEC_V23_i1_p0019
	SJDMEC_V23_i1_p0054
	SJDMEC_V23_i1_p0059
	SJDMEC_V23_i1_p0079
	SJDMEC_V23_i1_p0096
	SJDMEC_V23_i1_p0109
	SJDMEC_V23_i1_p0123
	SJDMEC_V23_i1_p0136
	SJDMEC_V23_i1_p0155
	SJDMEC_V23_i1_p0163
	SJDMEC_V23_i1_p0178
	SJDMEC_V23_i1_p0195
	SJDMEC_V23_i1_p0205
	SJDMEC_V23_i1_p0221
	SJDMEC_V23_i1_p0233
	SJDMEC_V23_i1_p0251
	SJDMEC_V23_i1_p0265
	SJDMEC_V23_i1_p0278
	SJDMEC_V23_i1_p0288
	SJDMEC_V23_i1_p0300
	SJDMEC_V23_i1_p0319
	SJDMEC_V23_i1_p0333
	SJDMEC_V23_i1_p0344
	SJDMEC_V23_i1_p0349
	SJDMEC_V23_i1_p0369
	SJDMEC_V23_i1_p0372
	SJDMEC_V23_i1_p0384
	SJDMEC_V23_i1_p0401
	SJDMEC_V23_i1_p0407
	SJDMEC_V23_i1_p0428
	SJDMEC_V23_i1_p0447
	SJDMEC_V23_i1_p0466
	SJDMEC_V23_i1_p0477
	SJDMEC_V23_i1_p0487
	SJDMEC_V23_i1_p0511
	SJDMEC_V23_i1_p0517
	SJDMEC_V23_i1_p0527
	SJDMEC_V23_i2_p0561
	SJDMEC_V23_i2_p0571
	SJDMEC_V23_i2_p0596
	SJDMEC_V23_i2_p0609
	SJDMEC_V23_i2_p0634
	SJDMEC_V23_i2_p0647
	SJDMEC_V23_i2_p0661
	SJDMEC_V23_i2_p0665
	SJDMEC_V23_i2_p0680

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

